JP5240830B2 - Nonaqueous electrolyte secondary battery and manufacturing method thereof - Google Patents

Nonaqueous electrolyte secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP5240830B2
JP5240830B2 JP2008129076A JP2008129076A JP5240830B2 JP 5240830 B2 JP5240830 B2 JP 5240830B2 JP 2008129076 A JP2008129076 A JP 2008129076A JP 2008129076 A JP2008129076 A JP 2008129076A JP 5240830 B2 JP5240830 B2 JP 5240830B2
Authority
JP
Japan
Prior art keywords
stress
electrolyte secondary
secondary battery
luminescent material
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008129076A
Other languages
Japanese (ja)
Other versions
JP2009277562A (en
Inventor
善洋 新居田
育央 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Envision AESC Energy Devices Ltd
Original Assignee
NEC Energy Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Energy Devices Ltd filed Critical NEC Energy Devices Ltd
Priority to JP2008129076A priority Critical patent/JP5240830B2/en
Publication of JP2009277562A publication Critical patent/JP2009277562A/en
Application granted granted Critical
Publication of JP5240830B2 publication Critical patent/JP5240830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、漏液検知に適した非水電解液二次電池、およびその製造方法に関するものである。   The present invention relates to a non-aqueous electrolyte secondary battery suitable for leak detection and a method for manufacturing the same.

携帯電話やノートパソコン等移動情報端末などの発展は目覚しく、また、電気自動車やハイブリッド自動車などの実用化に伴って、一次電池のみならず電源として使用されるニッケル水素電池やリチウムイオン電池などの二次電池も大きく需要を伸ばしている。ところが、これらの電池において電解液またはポリマー電解質(以下、電解液と表記)漏れが生じると機器が損傷してしまう恐れがあるため、密閉性に優れ、電解液漏れを防止した電池が要求されている。   The development of mobile information terminals such as mobile phones and laptop computers is remarkable, and with the practical application of electric vehicles and hybrid vehicles, there are two types of batteries such as nickel metal hydride batteries and lithium ion batteries used as power sources as well as primary batteries. Secondary batteries are also in great demand. However, if an electrolyte or polymer electrolyte (hereinafter referred to as an electrolyte) leaks in these batteries, the device may be damaged. Therefore, a battery that has excellent hermeticity and prevents electrolyte leak is required. Yes.

非水電解液二次電池は、電池内部に水分が入ると水分とリチウムとが反応して、電池の容量が低下したり充放電特性が低下したりするため、必ず密閉型となっている。非水電解液二次電池は、アルミラミネートフィルム内に電極体などを収納した後、アルミラミネートフィルムの封口部を封止することにより作製されている。封止不良は電池特性の低下、電池使用機器の損傷等の原因となる電解液の漏出を招く。   Non-aqueous electrolyte secondary batteries are always sealed because moisture and lithium react with each other to reduce the capacity of the battery and charge / discharge characteristics. A non-aqueous electrolyte secondary battery is manufactured by enclosing an electrode body or the like in an aluminum laminate film and then sealing a sealing portion of the aluminum laminate film. Sealing failure leads to leakage of electrolyte that causes deterioration of battery characteristics, damage to battery-operated equipment, and the like.

そこで、電池作製後の出荷前に封止検査が行われ、封口部における電解液の存否に基づいて、封止の良否が判定されていた。   Therefore, a sealing inspection is performed before the shipment after the battery is manufactured, and the sealing quality is determined based on the presence or absence of the electrolytic solution in the sealing portion.

このため、電池を製造するにあたり、電解液漏れを精度良く検査する方法が求められており、この要求に応えるべく、さまざまな電解液漏れ検査方法が提案されている。   For this reason, in manufacturing a battery, a method for accurately inspecting electrolyte leakage is required, and various electrolyte leakage inspection methods have been proposed to meet this requirement.

例えば、特許文献1では、電池ケースの表面に電解液の存在下で所定の光を照射すると蛍光を発する蛍光体を被着し、被着部に所定の光を照射し、その検出結果から電解液漏れの有無を判定する電解液漏れ検査方法が開示されている。   For example, in Patent Document 1, a phosphor that emits fluorescence is applied to the surface of a battery case in the presence of an electrolytic solution in the presence of an electrolytic solution, and a predetermined light is applied to the adherend, and electrolysis is performed based on the detection result. An electrolytic solution leakage inspection method for determining the presence or absence of leakage is disclosed.

また、特許文献2では、封口体が挿入される前の電池缶の開口部を拡開変形させる加工を行った後、開口部での外形異常の有無をセンサー検知することにより開口部での亀裂の有無を検知する方法が開示されている。   Moreover, in patent document 2, after performing the process which expands and deforms the opening part of the battery can before a sealing body is inserted, the crack in an opening part is detected by detecting the presence or absence of the external shape abnormality in an opening part. A method for detecting the presence or absence of an error is disclosed.

さらに、特許文献3では、電解液に蛍光体を混合しておき、封止後に封口部から漏出した電解液中の蛍光体に励起エネルギーを吸収させて発光させることで、電解液漏れを検出する手法を提案している。   Furthermore, in Patent Document 3, a phosphor is mixed in the electrolyte solution, and the electrolyte in the electrolyte solution leaked from the sealing portion after sealing is caused to absorb the excitation energy and emit light, thereby detecting the electrolyte leak. A method is proposed.

特開2006−179322号公報JP 2006-179322 A 特開2004−259513号公報JP 2004-259513 A 特開2002−359010号公報JP 2002-359010 A

漏出した電解液を直接検知することは容易ではなく、特に封止の不備が微小な場合には、漏液が微小なために看過されやすい。したがって、検査の結果、漏液なしと判定された電池であっても、出荷後に漏液が進行して封止不良となる可能性が存在するという問題点があった。   It is not easy to directly detect the leaked electrolyte, and when the sealing defect is very small, it is easy to overlook because the leakage is very small. Therefore, even if the battery is determined to have no leakage as a result of the inspection, there is a problem in that there is a possibility that the leakage will progress after shipment and a sealing failure may occur.

本発明の技術的課題は、漏液を正確に検知することができる非水電解液二次電池およびその製造方法を提供することにある。   The technical problem of the present invention is to provide a non-aqueous electrolyte secondary battery capable of accurately detecting leakage and a method for manufacturing the same.

本発明の非水電解液二次電池は、アルミラミネートフィルム外装体にリチウムを吸蔵・放出する正極材料、および負極材料からなる電極と、前記電極間に介装されたセパレータとを含む電極体を収納し、応力発光成分を有する応力発光材料を含有する電解液またはポリマー電解質を注入し封止したものである。   The non-aqueous electrolyte secondary battery of the present invention comprises an electrode body including a positive electrode material that occludes and releases lithium in an aluminum laminate film outer package, an electrode made of a negative electrode material, and a separator interposed between the electrodes. An electrolytic solution or a polymer electrolyte containing a stress luminescent material having a stress luminescent component is injected and sealed.

本発明の非水電解液二次電池は、応力発光材料としては、母体成分に機械的エネルギーによって励起された電子が基底状態に戻る場合に発光する希土類または遷移金属の1種類以上からなる応力発光成分を添加したものであることが好ましい。   The non-aqueous electrolyte secondary battery of the present invention is a stress-stimulated luminescent material, which is a stress-stimulated luminescent material composed of one or more rare earth elements or transition metals that emit light when electrons excited by mechanical energy return to the ground state. It is preferable that the component is added.

本発明の非水電解液二次電池は、応力発光材料の母体成分と応力発光成分との組み合わせがアルミナと炭酸ストロンチウム、ZnSとMn、ZnSとCu、またはスピネル構造を有するM1Al24とM2、もしくはM13Al26とM2、もしくはM1Al1219とM2(ただし、M1=Mg、Ca、Sr、Ba;M2=Eu、Ce、Tb、Sm、Cu、Mn)、またはメリライト系構造酸化物としてのCa2Al2SiO7とM4、もしくはM3MgAl1017とM4、もしくはM33MgSi28とM4(ここで、M3=Ba、Sr、Ca;M4=Eu、Ce、Sm、Cu、Mn)から選択される一種からなることが好ましい。 In the nonaqueous electrolyte secondary battery of the present invention, M1Al 2 O 4 and M2 in which the combination of the matrix component and the stress luminescent component of the stress luminescent material has alumina and strontium carbonate, ZnS and Mn, ZnS and Cu, or spinel structure. Or M1 3 Al 2 O 6 and M2, or M1Al 12 O 19 and M2 (where M1 = Mg, Ca, Sr, Ba; M2 = Eu, Ce, Tb, Sm, Cu, Mn), or melilite structure Ca 2 Al 2 SiO 7 and M4 as oxides, or M3MgAl 10 O 17 and M4, or M3 3 MgSi 2 O 8 and M4 (where M3 = Ba, Sr, Ca; M4 = Eu, Ce, Sm, It is preferably made of one kind selected from Cu, Mn).

本発明の非水電解液二次電池は、応力発光材料の応力発光成分となる希土類または遷移金属を0.01モル%以上、1モル%以下含有させることが好ましい。   The non-aqueous electrolyte secondary battery of the present invention preferably contains 0.01 mol% or more and 1 mol% or less of a rare earth or transition metal serving as a stress luminescent component of the stress luminescent material.

本発明の非水電解液二次電池は、母体成分および前記応力発光成分からなる、一種の応力発光材料を電解液に100ppm以上、1000ppm以下の範囲で含有させることが好ましい。   In the non-aqueous electrolyte secondary battery of the present invention, it is preferable that a kind of stress luminescent material composed of a base component and the stress luminescent component is contained in the electrolytic solution in a range of 100 ppm to 1000 ppm.

本発明の非水電解液二次電池は、応力発光材料の粒子径が、5μm以下であることが好ましい。   In the non-aqueous electrolyte secondary battery of the present invention, it is preferable that the particle size of the stress luminescent material is 5 μm or less.

本発明の非水電解液二次電池の製造方法は、アルミラミネートフィルム外装体にリチウムを吸蔵・放出する正極材料、および負極材料からなる電極と、前記電極間に介装されたセパレータとを含む電極体を収納し、応力発光成分を有する応力発光材料を含有する電解液またはポリマー電解質を注入し封止した非水電解液二次電池の封止辺の封口部に挟まれた応力発光材料の発光により漏液を検知する工程を含む。   A method for producing a nonaqueous electrolyte secondary battery of the present invention includes a positive electrode material that occludes and releases lithium in an aluminum laminate film outer package, an electrode made of a negative electrode material, and a separator interposed between the electrodes. A stress-stimulated luminescent material sandwiched between sealing portions of a nonaqueous electrolyte secondary battery in which an electrode body is housed and an electrolyte or polymer electrolyte containing a stress-stimulated luminescent material having a stress luminescent component is injected and sealed. A step of detecting leakage by luminescence.

本発明により、封止不良部が発光し、封止の良否を正確に判定することが可能な非水電解液二次電池およびその製造方法の提供が可能となった。   According to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery capable of accurately determining sealing quality by emitting light from a poorly sealed portion and a manufacturing method thereof.

本発明によれば、出荷後に漏液が進行して封止不良となることのない非水電解液二次電池が得られる。   According to the present invention, it is possible to obtain a non-aqueous electrolyte secondary battery in which liquid leakage does not occur after shipment and no sealing failure occurs.

本発明によれば、電池の封止(密閉性)が良い場合は、封口部の発光は認められないが、電池の封止が良くない場合は、封口部に挟まった電解液中の応力発光材料が反応し、封口部が発光するので、漏液の判定が容易な非水電解液二次電池が得られる。   According to the present invention, when the battery sealing (sealing property) is good, no light emission is observed in the sealing part, but when the battery sealing is not good, the stress light emission in the electrolytic solution sandwiched between the sealing parts. Since the material reacts and the sealing portion emits light, a non-aqueous electrolyte secondary battery with easy leakage determination can be obtained.

本発明の実施の形態について図面を参照して説明する。図2は、本発明の非水電解液二次電池に用いる電極体の分解斜視図である。本発明の非水電解液二次電池の電極体は、正極2と負極3がセパレータ4を介して巻回されており、最外周に巻き止めテープ1を重ねてなり、正極2には正極タブ5が、負極3には負極タブ6が溶着されている。   Embodiments of the present invention will be described with reference to the drawings. FIG. 2 is an exploded perspective view of an electrode body used in the nonaqueous electrolyte secondary battery of the present invention. The electrode body of the non-aqueous electrolyte secondary battery of the present invention has a positive electrode 2 and a negative electrode 3 wound around a separator 4, and a winding tape 1 is stacked on the outermost periphery. 5, a negative electrode tab 6 is welded to the negative electrode 3.

図3は、本発明の非水電解液二次電池の封止前の斜視図である。非水電解液二次電池は、アルミラミネートフィルム外装体7の中に電極体を収納している。   FIG. 3 is a perspective view of the nonaqueous electrolyte secondary battery of the present invention before sealing. The non-aqueous electrolyte secondary battery has an electrode body housed in an aluminum laminate film outer package 7.

非水電解液二次電池は、電極体をアルミラミネートフィルム外装体7に収納してアルミラミネートフィルム外装電池を形成し、アルミラミネートフィルム外装体7の片側側辺部を加熱シールし、さらに正極タブ5および負極タブ6を外部に露出させた状態でタブ面を加熱シールした後、アルミラミネートフィルム外装体7の未封止側辺部から、調整した電解液をアルミラミネートフィルム外装体7内に注液後、未封止側辺部を加熱シールすることにより作製される。   In the nonaqueous electrolyte secondary battery, an electrode body is housed in an aluminum laminate film outer package 7 to form an aluminum laminate film outer battery, one side of the aluminum laminate film outer package 7 is heat-sealed, and a positive electrode tab 5 and the negative electrode tab 6 are exposed to the outside, and the tab surface is heat-sealed, and then the adjusted electrolyte is poured into the aluminum laminate film exterior body 7 from the unsealed side of the aluminum laminate film exterior body 7. After liquid, it is produced by heat-sealing the unsealed side part.

非水電解液に添加する応力発光材料としては、母体成分に機械的エネルギーによって励起された電子が基底状態に戻る場合に発光する希土類または遷移金属の1種類以上からなる応力発光成分を添加したものであることが好ましい。   As a stress luminescent material added to the non-aqueous electrolyte, a stress luminescent component consisting of one or more of rare earth elements or transition metals that emit light when electrons excited by mechanical energy return to the ground state is added to the base component. It is preferable that

応力発光材料の母体成分と応力発光成分との組み合わせが、アルミナと炭酸ストロンチウム、ZnSとMn、ZnSとCu、またはスピネル構造を有するM1Al24とM2、もしくはM13Al26とM2、もしくはM1Al1219とM2(ただし、M1=Mg、Ca、Sr、Ba;M2=Eu、Ce、Tb、Sm、Cu、Mn)、またはメリライト系構造酸化物としてのCa2Al2SiO7とM4、もしくはM3MgAl1017とM4、もしくはM33MgSi28とM4(ここで、M3=Ba、Sr、Ca;M4=Eu、Ce、Sm、Cu、Mn)から選択される一種からなることが好ましい。 The combination of the matrix component and the stress luminescence component of the stress luminescent material is alumina and strontium carbonate, ZnS and Mn, ZnS and Cu, or M1Al 2 O 4 and M2 having a spinel structure, or M1 3 Al 2 O 6 and M2, Or M1Al 12 O 19 and M2 (where M1 = Mg, Ca, Sr, Ba; M2 = Eu, Ce, Tb, Sm, Cu, Mn), or Ca 2 Al 2 SiO 7 as a melilite structure oxide M4 or M3MgAl 10 O 17 and M4, or M3 3 MgSi 2 O 8 and M4 (where M3 = Ba, Sr, Ca; M4 = Eu, Ce, Sm, Cu, Mn) It is preferable.

応力発光材料の応力発光成分となる希土類または遷移金属を0.01モル%以上、1モル%以下含有させるのが好ましい。   It is preferable to contain 0.01 mol% or more and 1 mol% or less of a rare earth or transition metal that becomes a stress luminescent component of the stress luminescent material.

すなわち、0.01モル%未満であると、発光度が低下してしまい、1モル%を超えると、結晶構造を維持することができず、性能が低下するためである。   That is, when the amount is less than 0.01 mol%, the luminous intensity decreases, and when it exceeds 1 mol%, the crystal structure cannot be maintained and the performance decreases.

アルミラミネートフィルム外装体の封口部は、加熱シールバーを上下から加圧して封止する。その際、封止された封口部に、電解液に添加する応力発光材料が挟まれていると、応力発光材料が圧力に感応して発光し、画像認識検査にて封止不良部を検出するのが設計上好ましい。   The sealing portion of the aluminum laminate film exterior body is sealed by pressurizing the heat seal bar from above and below. At that time, if a stress-stimulated luminescent material to be added to the electrolyte is sandwiched between the sealed sealing portions, the stress-stimulated luminescent material emits light in response to pressure, and a defective sealing portion is detected by an image recognition inspection. Is preferable in terms of design.

図1は、電解液への応力発光材料含有量と、イオン伝導度および発光度の関係図である。電解液への応力発光材料の含有量をX軸、イオン伝導度をY1軸、発光度をY2軸に示した。本発明においてイオン伝導度が10mS/cm以上の範囲では電池特性に影響を与えることなく、発光度が100cd/m2以上の範囲では封止不良部を適切に検出できる。 FIG. 1 is a relationship diagram of stress luminescent material content, ionic conductivity, and luminous intensity in an electrolytic solution. The content of the stress luminescent material in the electrolyte is shown on the X axis, the ionic conductivity is shown on the Y1 axis, and the luminous intensity is shown on the Y2 axis. In the present invention, when the ionic conductivity is in the range of 10 mS / cm or higher, the poorly sealed portion can be appropriately detected in the range of the luminous intensity of 100 cd / m 2 or higher without affecting the battery characteristics.

したがって、応力発光材料は、電解液に100ppm以上、1000ppm以下の範囲で含有することが設計上好ましい。すなわち、100ppm未満であると、封止不良部を適切に検出できなくなり、1000ppmを超えると、電気特性に影響を与えるためである。   Therefore, the stress-stimulated luminescent material is preferably contained in the electrolytic solution in the range of 100 ppm or more and 1000 ppm or less. That is, if it is less than 100 ppm, it becomes impossible to properly detect the sealing failure portion, and if it exceeds 1000 ppm, the electrical characteristics are affected.

応力発光材料の粒子径は、5μm以下であることが設計上好ましい。すなわち、5μmを超えると、セパレータの穴を阻害してしまう恐れがあるためである。   The particle size of the stress-stimulated luminescent material is preferably 5 μm or less in design. That is, if the thickness exceeds 5 μm, the separator hole may be obstructed.

以下に本発明の実施例を詳述する。   Examples of the present invention are described in detail below.

(実施例1〜3)
(電解液の調製例)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)が、体積比2:1の割合で混合された非水溶媒に、電解質塩である六フッ化リン酸リチウム(LiPF6)を1.0モル/lの濃度になるように溶解させた、電解液を調製した。
(Examples 1-3)
(Preparation example of electrolyte)
In a non-aqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed in a ratio of 2: 1 by volume, lithium hexafluorophosphate (LiPF 6 ) as an electrolyte salt is added at 1.0 mol / l. An electrolytic solution was prepared so as to be dissolved to a concentration of.

(電解液に応力発光材料の添加)
上記調整電解液に、母体成分としてのアルミナに応力発光成分としての炭酸ストロンチウムを0.05モル%含有させた、粒子径1μm程度の応力発光材料を1000ppm混合した。
(Addition of stress luminescent material to electrolyte)
The adjusted electrolyte solution was mixed with 1000 ppm of a stress luminescent material having a particle diameter of about 1 μm, containing 0.05 mol% of strontium carbonate as a stress luminescent component in alumina as a base component.

(正極の作製)
コバルト酸リチウムを94質量部と、ポリビニリデンフルオライド(以下、PVDFと表記)を3質量部と、導電性カーボン3質量部を混合して、正極材料とした。この正極材料をN−メチル−2−ピロリドン(以下、NMPと表記)に分散させてスラリー状とした。得られたスラリーを厚さ15μmのアルミ箔上に塗布し、乾燥後、厚さ160μmの正極を得た。
(Preparation of positive electrode)
94 parts by mass of lithium cobaltate, 3 parts by mass of polyvinylidene fluoride (hereinafter referred to as PVDF), and 3 parts by mass of conductive carbon were mixed to obtain a positive electrode material. This positive electrode material was dispersed in N-methyl-2-pyrrolidone (hereinafter referred to as NMP) to form a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 15 μm, and after drying, a positive electrode having a thickness of 160 μm was obtained.

(負極の作製)
炭素材料粉末を96質量部とPVDFを3質量部と、導電性カーボン1質量部を混合して、負極材料とした。この負極材料をNMPに分散させてスラリー状とした。得られたスラリーを厚さ10μmの銅箔上に塗布し乾燥後、厚さ110μmの負極を得た。
(Preparation of negative electrode)
96 parts by mass of carbon material powder, 3 parts by mass of PVDF, and 1 part by mass of conductive carbon were mixed to obtain a negative electrode material. This negative electrode material was dispersed in NMP to form a slurry. The obtained slurry was applied on a copper foil having a thickness of 10 μm and dried to obtain a negative electrode having a thickness of 110 μm.

(非水電解液二次電池の封止)
正極と負極を、セパレータを介して巻回し、最外周に巻き止めテープを重ねた。正極には正極タブを、負極には負極タブを溶着している。
(Sealing of non-aqueous electrolyte secondary battery)
The positive electrode and the negative electrode were wound through a separator, and an anti-winding tape was stacked on the outermost periphery. A positive electrode tab is welded to the positive electrode, and a negative electrode tab is welded to the negative electrode.

アルミラミネートフィルム外装体は、厚さ20μmのPET層(外層)と厚さ80μmのアルミニウム層(中層)と厚さ20μmのPP層(内層)とが積層されてなる。   The aluminum laminate film outer package is formed by laminating a PET layer (outer layer) having a thickness of 20 μm, an aluminum layer (middle layer) having a thickness of 80 μm, and a PP layer (inner layer) having a thickness of 20 μm.

非水電解液二次電池は、電極体にアルミラミネートフィルム外装体を巻回して、アルミラミネートフィルム外装電池を形成し、アルミラミネートフィルム外装体の片側辺部を加熱シールし、さらに正極タブおよび負極タブを外部に露出させた状態でタブ面を加熱シールした後、アルミラミネートフィルム外装体の未封止側辺部から、調整した電解液をアルミラミネートフィルム外装体内に注液後、未封止側辺部を加熱シールすることにより作製した。注液量は1.0g、1.5g、2.0gの3種類とし、表1においては、試料名をそれぞれ実施例1、実施例2、実施例3とした。   A non-aqueous electrolyte secondary battery is formed by winding an aluminum laminate film outer package around an electrode body to form an aluminum laminate film outer battery, heat-sealing one side of the aluminum laminate film outer package, and further forming a positive electrode tab and a negative electrode After the tab surface is heat-sealed with the tab exposed to the outside, the adjusted electrolyte is injected into the aluminum laminate film exterior from the unsealed side of the aluminum laminate film exterior, and then the unsealed side It was produced by heat-sealing the sides. There were three types of injections, 1.0 g, 1.5 g, and 2.0 g. In Table 1, the sample names were Example 1, Example 2, and Example 3, respectively.

Figure 0005240830
Figure 0005240830

(画像認識検査)
図4は、画像認識検査実施部の説明図である。非水電解液二次電池を作製後、注液側漏液検出辺8とタブ側漏液検出辺9の画像認識検査を行った。
(Image recognition inspection)
FIG. 4 is an explanatory diagram of the image recognition inspection execution unit. After producing the nonaqueous electrolyte secondary battery, an image recognition inspection of the liquid injection side leakage detection side 8 and the tab side leakage detection side 9 was performed.

(比較例1〜3)
応力発光材料を含有していない電解液を用いた他は実施例1〜3と同様にして、非水電解液二次電池を作製した。表1においては、試料名をそれぞれ比較例1、比較例2、比較例3とした。
(Comparative Examples 1-3)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Examples 1 to 3, except that an electrolytic solution containing no stress-stimulated luminescent material was used. In Table 1, the sample names are Comparative Example 1, Comparative Example 2, and Comparative Example 3, respectively.

(漏液検査1)
比較例1〜3にて作製した非水電解液二次電池の封口部にリトマス紙を接触させ、目視にて封口部における漏液の有無を調べた。
(Leakage inspection 1)
The litmus paper was brought into contact with the sealing portion of the nonaqueous electrolyte secondary battery produced in Comparative Examples 1 to 3, and the presence or absence of liquid leakage in the sealing portion was examined visually.

(漏液検査2)
本発明電池である実施例1〜3のうち漏液検査1で漏液なしと判定した電池について画像認識検査を行い、封口部の発光を調べて漏液の有無を調べた。この漏液検査は本発明による漏液検査である。なお封口部に発光を示した電池は漏液ありと判定した。
(Leakage inspection 2)
Among the batteries of Examples 1 to 3 which are the batteries of the present invention, an image recognition inspection was performed on the battery determined as having no liquid leakage in the liquid leakage inspection 1, and the presence or absence of liquid leakage was examined by examining the light emission of the sealing portion. This leak test is a leak test according to the present invention. In addition, the battery which showed light emission in the sealing part was determined to have liquid leakage.

(漏液検査3)
本発明電池である実施例1〜3のうち漏液検査2で漏液なしと判定した電池、および比較例1〜3のうち漏液検査1で漏液なしと判定した電池を温度60℃−相対湿度90%の雰囲気下に10日間放置し、放置後の漏液の有無を調べた。この漏液検査で電池を高温多湿の雰囲気下に放置したのは、漏液が短期間に進行するようにするためである。この漏液検査により通常の雰囲気下に長期間放置した際の漏液の有無を推断することができる。したがって、この漏液検査での判定結果と一致した結果が得られる漏液検査方法は、信頼性の高い漏液検査方法といえる。
(Leakage inspection 3)
Among the batteries of Examples 1 to 3 of the present invention, the battery determined as having no leakage in the leakage test 2 and the battery having been determined as having no leakage in the leakage test 1 of Comparative Examples 1 to 3 were subjected to a temperature of 60 ° C. The sample was allowed to stand for 10 days in an atmosphere with a relative humidity of 90%, and the presence or absence of liquid leakage after the standing was examined. The reason for leaving the battery in a high-temperature and high-humidity atmosphere in this leakage test is to allow the leakage to proceed in a short time. By this leakage inspection, it is possible to infer the presence or absence of leakage when left in a normal atmosphere for a long time. Therefore, the liquid leakage inspection method that can obtain a result consistent with the determination result in the liquid leakage inspection can be said to be a highly reliable liquid leakage inspection method.

表2に、漏液検査1〜3での検査結果を示す。表2に示す分数は、分母が検査電池の個数を表し、分子が漏液ありと判定された電池の個数を表す。   Table 2 shows the test results in the liquid leakage tests 1 to 3. In the fractions shown in Table 2, the denominator represents the number of test batteries, and the numerator represents the number of batteries determined to have liquid leakage.

Figure 0005240830
Figure 0005240830

表2に示すように、本発明電池である実施例1〜3のうち本発明による漏液検査2で漏液なしと判定された電池(実施例1では100個、実施例2では16個)は全て漏液検査3でも漏液なしと判定されている。   As shown in Table 2, among Examples 1 to 3 which are the batteries of the present invention, the batteries judged as having no leakage in the leakage test 2 according to the present invention (100 in Example 1 and 16 in Example 2) Are all determined to have no leak in the leak test 3.

これに対して、比較例1〜3のうち従来の方法による漏液検査1で漏液なしと判定された電池は、それぞれ100個、98個、80個であるが、漏液検査3では、比較例2〜3のそれぞれ77個、80個が漏液ありと判定されており、封口部に、非水電解液に添加した応力発光材料の存在を確認した。   On the other hand, in Comparative Examples 1 to 3, the batteries determined to have no leakage in the leakage test 1 according to the conventional method are 100, 98, and 80, respectively. It was determined that 77 and 80 of Comparative Examples 2 and 3, respectively, were leaking, and the presence of the stress-stimulated luminescent material added to the non-aqueous electrolyte was confirmed in the sealing portion.

表2より、本発明方法によれば、従来の方法に比べて非水電解液二次電池の漏液を正確に検知することができることが分かる。   From Table 2, it can be seen that according to the method of the present invention, the leakage of the non-aqueous electrolyte secondary battery can be accurately detected as compared with the conventional method.

(実施例4〜6)
(ポリマー電解質の調製例)
実施例1〜3にて調製した電解液と、ポリマー主材としてポリビニリデンフルオライド−ヘキサフルオロプロピレン(PVDF−HFP)が重量比6:1の割合で混合させた、非水電解液を調製した。
(Examples 4 to 6)
(Preparation example of polymer electrolyte)
A non-aqueous electrolyte was prepared in which the electrolyte prepared in Examples 1 to 3 and polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) as a polymer main material were mixed at a weight ratio of 6: 1. .

実施例1〜3と同様に非水電解液に応力発光材料の添加、正極の作製、負極の作製、非水電解液二次電池の封止を行った。その後、110℃で加熱し、重合を行った。表3においては、試料名をそれぞれ実施例4、実施例5、実施例6とした。   In the same manner as in Examples 1 to 3, a stress luminescent material was added to the non-aqueous electrolyte, the positive electrode was produced, the negative electrode was produced, and the non-aqueous electrolyte secondary battery was sealed. Then, it heated at 110 degreeC and superposition | polymerization was performed. In Table 3, the sample names are Example 4, Example 5, and Example 6, respectively.

実施例1〜3と同様に画像認識検査を行った。   An image recognition test was performed in the same manner as in Examples 1 to 3.

(比較例4〜6)
応力発光材料を含有していない電解液を用いた他は実施例4〜6と同様にして、非水電解液二次電池を作製した。表3においては、試料名をそれぞれ比較例4、比較例5、比較例6とした。その後、比較例1〜3における漏液検査1、3を同様に行った。
(Comparative Examples 4-6)
A non-aqueous electrolyte secondary battery was produced in the same manner as in Examples 4 to 6 except that an electrolytic solution containing no stress luminescent material was used. In Table 3, the sample names are Comparative Example 4, Comparative Example 5, and Comparative Example 6, respectively. Thereafter, liquid leakage tests 1 and 3 in Comparative Examples 1 to 3 were performed in the same manner.

Figure 0005240830
Figure 0005240830

表4に示すように、本発明電池である実施例4〜6のうち本発明による漏液検査2で漏液なしと判定された電池(実施例4では100個、実施例5では18個)は全て漏液検査3でも漏液なしと判定されている。   As shown in Table 4, among Examples 4 to 6 which are the batteries of the present invention, the batteries judged as having no leakage in the leakage test 2 according to the present invention (100 in Example 4 and 18 in Example 5) Are all determined to have no leak in the leak test 3.

Figure 0005240830
Figure 0005240830

これに対して、比較例4〜6のうち従来の方法による漏液検査1で漏液なしと判定された電池は、それぞれ100個、96個、76個であるが、漏液検査3では、比較例5〜6のそれぞれ71個、76個が漏液ありと判定されており、封口部に、非水電解液に添加した応力発光材料の存在を確認した。   On the other hand, in Comparative Examples 4 to 6, the batteries determined to have no leak in the leak test 1 according to the conventional method are 100, 96, and 76, respectively, but in the leak test 3, It was determined that 71 and 76 of Comparative Examples 5 to 6, respectively, were leaking, and the presence of the stress-stimulated luminescent material added to the non-aqueous electrolyte was confirmed in the sealing portion.

表4より、本発明方法によれば、従来の方法に比べて非水電解液二次電池の漏液を正確に検知することができることが分かる。   From Table 4, it can be seen that according to the method of the present invention, the leakage of the nonaqueous electrolyte secondary battery can be accurately detected as compared with the conventional method.

以上の実施例1〜6、比較例1〜6の結果である表2、表4のデータを総合して考慮すれば、本発明方法は、従来の方法に比べて非水電解液二次電池の漏液を正確に検知できることが分かる。   In consideration of the data in Tables 2 and 4 which are the results of Examples 1 to 6 and Comparative Examples 1 to 6 described above, the method of the present invention is a non-aqueous electrolyte secondary battery as compared with the conventional method. It can be seen that the liquid leakage can be accurately detected.

以上、実施例を用いて、この発明の実施の形態を説明したが、この発明は、これらの実施例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更があっても本発明に含まれる。すなわち、当業者であれば、当然なしえるであろう各種変形、修正もまた本発明に含まれる。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to these embodiments, and the present invention is not limited to the scope of the present invention. Included in the invention. That is, various changes and modifications that can be naturally made by those skilled in the art are also included in the present invention.

応力発光材料含有量と、イオン伝導度および発光度の関係図。FIG. 4 is a relationship diagram of stress luminescent material content, ionic conductivity, and luminous intensity. 非水電解液二次電池に用いる電極体の分解斜視図。The disassembled perspective view of the electrode body used for a nonaqueous electrolyte secondary battery. 非水電解液二次電池の封止前の斜視図。The perspective view before sealing of a nonaqueous electrolyte secondary battery. 画像認識検査実施部の説明図。Explanatory drawing of an image recognition test | inspection implementation part.

符号の説明Explanation of symbols

1 巻き止めテープ
2 正極
3 負極
4 セパレータ
5 正極タブ
6 負極タブ
7 アルミラミネートフィルム外装体
8 注液側漏液検出辺
9 タブ側漏液検出辺
DESCRIPTION OF SYMBOLS 1 Winding tape 2 Positive electrode 3 Negative electrode 4 Separator 5 Positive electrode tab 6 Negative electrode tab 7 Aluminum laminate film exterior body 8 Injection side leak detection side 9 Tab side leak detection side

Claims (7)

アルミラミネートフィルム外装体にリチウムを吸蔵・放出する正極材料、および負極材料からなる電極と、前記電極間に介装されたセパレータとを含む電極体を収納し、応力発光成分を有する応力発光材料を含有する電解液またはポリマー電解質を注入し、加圧して封止した非水電解液二次電池の封止辺の封口部に挟まれた応力発光材料の発光により漏液を検知する工程を含むことを特徴とする非水電解液二次電池の製造方法。 A stress luminescent material having a stress luminescence component, containing an electrode body including a positive electrode material that occludes / releases lithium and an electrode made of a negative electrode material, and a separator interposed between the electrodes, in an aluminum laminate film outer package. Injecting the electrolyte solution or polymer electrolyte contained, and including a step of detecting leakage by light emission of the stress-stimulated luminescent material sandwiched between the sealing portions of the sealing side of the nonaqueous electrolyte secondary battery sealed by pressurization A method for producing a non-aqueous electrolyte secondary battery. 前記封口部は加熱シールバーを用いて加圧して封止される、請求項1に記載の非水電解液二次電池の製造方法。  The method for manufacturing a non-aqueous electrolyte secondary battery according to claim 1, wherein the sealing portion is pressurized and sealed using a heat seal bar. 前記応力発光材料は、母体成分に機械的エネルギーによって励起された電子が基底状態に戻る場合に発光する希土類または遷移金属の1種類以上からなる応力発光成分を添加したものであることを特徴とする請求項1又は2に記載の非水電解液二次電池の製造方法。  The stress-stimulated luminescent material is obtained by adding a stress-stimulated luminescent component comprising at least one kind of rare earth or transition metal that emits light when an electron excited by mechanical energy returns to a ground state to a base component. The manufacturing method of the nonaqueous electrolyte secondary battery of Claim 1 or 2. 前記応力発光材料の前記母体成分と前記応力発光成分との組み合わせがアルミナと炭酸ストロンチウム、ZnSとMn、ZnSとCu、またはスピネル構造を有するM1Al  M1Al having a combination of the matrix component and the stress luminescent component of the stress luminescent material having an alumina and strontium carbonate, ZnS and Mn, ZnS and Cu, or a spinel structure. 22 O 4Four とM2、もしくはM1And M2 or M1 3Three AlAl 22 O 66 とM2、もしくはM1AlAnd M2 or M1Al 1212 O 1919 とM2(ただし、M1=Mg、Ca、Sr、Ba;M2=Eu、Ce、Tb、Sm、Cu、Mn)、またはメリライト系構造酸化物としてのCaAnd M2 (where M1 = Mg, Ca, Sr, Ba; M2 = Eu, Ce, Tb, Sm, Cu, Mn), or Ca as a melilite structure oxide 22 AlAl 22 SiOSiO 77 とM4、もしくはM3MgAlAnd M4 or M3MgAl 10Ten O 1717 とM4、もしくはM3And M4 or M3 3Three MgSiMgSi 22 O 88 とM4(ここで、M3=Ba、Sr、Ca;M4=Eu、Ce、Sm、Cu、Mn)から選択される一種からなることを特徴とする請求項3に記載の非水電解液二次電池の製造方法。4. The nonaqueous electrolyte secondary according to claim 3, wherein the secondary aqueous solution is selected from the group consisting of M4 and M4 (where M3 = Ba, Sr, Ca; M4 = Eu, Ce, Sm, Cu, Mn). Battery manufacturing method. 前記母体成分および前記応力発光成分からなる、一種の応力発光材料を電解液に100ppm以上、1000ppm以下の範囲で含有させたことを特徴とする請求項3又は4に記載の非水電解液二次電池の製造方法。  5. The nonaqueous electrolyte secondary according to claim 3, wherein a kind of stress luminescent material composed of the matrix component and the stress luminescent component is contained in the electrolyte in a range of 100 ppm or more and 1000 ppm or less. Battery manufacturing method. 前記応力発光材料の前記応力発光成分となる希土類または遷移金属を0.01モル%以上、1モル%以下含有させたことを特徴とする請求項1〜5のいずれか1項に記載の非水電解液二次電池の製造方法。  The non-aqueous solution according to any one of claims 1 to 5, wherein a rare earth or transition metal serving as the stress luminescent component of the stress luminescent material is contained in an amount of 0.01 mol% or more and 1 mol% or less. Manufacturing method of electrolyte secondary battery. 前記応力発光材料の粒子径が、5μm以下であることを特徴とする請求項1〜6のいずれか1項に記載の非水電解液二次電池の製造方法。  The method for producing a non-aqueous electrolyte secondary battery according to claim 1, wherein the stress-stimulated luminescent material has a particle size of 5 μm or less.
JP2008129076A 2008-05-16 2008-05-16 Nonaqueous electrolyte secondary battery and manufacturing method thereof Active JP5240830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008129076A JP5240830B2 (en) 2008-05-16 2008-05-16 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008129076A JP5240830B2 (en) 2008-05-16 2008-05-16 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009277562A JP2009277562A (en) 2009-11-26
JP5240830B2 true JP5240830B2 (en) 2013-07-17

Family

ID=41442793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008129076A Active JP5240830B2 (en) 2008-05-16 2008-05-16 Nonaqueous electrolyte secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5240830B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689820B2 (en) 2011-10-25 2017-06-27 Purdue Research Foundation Thermography for battery component quality assurance

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263525B2 (en) * 2019-08-30 2023-04-24 富士フイルム株式会社 Composition containing inorganic solid electrolyte, sheet for all-solid secondary battery, all-solid secondary battery, and method for producing sheet for all-solid secondary battery and all-solid secondary battery
KR20230009831A (en) 2021-07-09 2023-01-17 주식회사 엘지에너지솔루션 Battery case capable of detecting physical damage and method for detecting physical damage of battery case

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001297799A (en) * 2000-04-12 2001-10-26 Toshiba Fa Syst Eng Corp Electrolyte leakage testing device and testing method
JP2002246072A (en) * 2001-02-13 2002-08-30 Toshiba It & Control Systems Corp Inspection device for electrolyte leakage
JP2002359010A (en) * 2001-05-30 2002-12-13 Gs-Melcotec Co Ltd Liquid leakage detection method for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2004200012A (en) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd Electrolyte leakage test method, test device, and battery
KR20070012777A (en) * 2003-09-30 2007-01-29 허니웰 인터내셔널 인코포레이티드 Electrolyte with indicator
JP4595091B2 (en) * 2005-07-29 2010-12-08 独立行政法人産業技術総合研究所 Cavitation generation amount measuring method and cavitation generation amount measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9689820B2 (en) 2011-10-25 2017-06-27 Purdue Research Foundation Thermography for battery component quality assurance

Also Published As

Publication number Publication date
JP2009277562A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
KR100793010B1 (en) Fabrication of lithium secondary battery
JP4297877B2 (en) Can-type secondary battery
US8876917B2 (en) Lithium-ion secondary battery
KR20130126365A (en) Manufacturing method of lithium secondary battery
US6755873B2 (en) Gel electrolyte battery
CN106797008A (en) Rechargeable nonaqueous electrolytic battery and its manufacture method
CN111279512B (en) Secondary battery having lead film including light emitting material and secondary battery defect inspection method
US11316196B2 (en) Lithium-ion battery containing electrolyte including capacity restoration additives and method for restoring capacity of lithium-ion battery
US7524393B2 (en) Gel electrolyte battery
KR102264734B1 (en) Nonaqueous electrolyte and lithium secondary battery comprising the same
US20210190874A1 (en) Jig pressing-type pressing short-circuiting inspection method
JP5240830B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2003272597A (en) Sealed battery
KR102656799B1 (en) Battery internal short circuit inductive device, battery having the same, and battery internal short circuit safety evaluating method
JP2013114987A (en) Method of measuring internal pressure of battery
JP2005044583A (en) Thin secondary battery
KR20150056944A (en) Pouch-type Secondary Battery Having pH indicator
JP2014179203A (en) Electrochemical cell
JPH09293490A (en) Sealed battery and manufacture thereof
JP2002359010A (en) Liquid leakage detection method for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2022059339A1 (en) Secondary battery
JP2002231196A (en) Method of manufacturing thin battery
JP2019160619A (en) Nonaqueous electrolyte secondary battery
JP7011782B2 (en) Secondary battery inspection method
JP5317155B2 (en) Nonaqueous electrolyte secondary battery and inspection method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5240830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250