JP5240667B2 - Surface coated cutting tool with excellent chipping resistance in high-speed continuous cutting of hard alloy steel - Google Patents

Surface coated cutting tool with excellent chipping resistance in high-speed continuous cutting of hard alloy steel Download PDF

Info

Publication number
JP5240667B2
JP5240667B2 JP2009056144A JP2009056144A JP5240667B2 JP 5240667 B2 JP5240667 B2 JP 5240667B2 JP 2009056144 A JP2009056144 A JP 2009056144A JP 2009056144 A JP2009056144 A JP 2009056144A JP 5240667 B2 JP5240667 B2 JP 5240667B2
Authority
JP
Japan
Prior art keywords
layer
crystal
distribution
modified
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009056144A
Other languages
Japanese (ja)
Other versions
JP2010207952A (en
Inventor
興平 冨田
誠 五十嵐
晃 長田
惠滋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009056144A priority Critical patent/JP5240667B2/en
Publication of JP2010207952A publication Critical patent/JP2010207952A/en
Application granted granted Critical
Publication of JP5240667B2 publication Critical patent/JP5240667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、焼入鋼などの硬質合金鋼の切削加工を、高熱発生を伴う高速連続切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is a surface-coated cutting tool that exhibits excellent chipping resistance even when hard alloy steel such as hardened steel is machined under high-speed continuous cutting conditions with high heat generation (hereinafter referred to as “the surface-coated cutting tool”). , Referred to as a coated tool).

従来、炭化タングステン(以下、WCで示す)基超硬合金等で構成された基体(以下、これらを総称して工具基体という)の表面に、まず、Tiの炭化物層を下部層として形成し、次いで、この上に、AlとCrとの相互固溶体からなる上部層を形成した被覆切削工具(従来被覆工具という)が知られている。 Conventionally, a carbide layer of Ti is first formed as a lower layer on the surface of a substrate (hereinafter collectively referred to as a tool substrate) made of tungsten carbide (hereinafter referred to as WC) based cemented carbide or the like, Next, a coated cutting tool (referred to as a conventional coated tool) in which an upper layer made of a mutual solid solution of Al 2 O 3 and Cr 2 O 3 is formed thereon is known.

特開昭53−116239号公報JP-A-53-116239

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の条件での高速連続切削加工に用いた場合には問題はないが、特にこれを焼入鋼などの硬質合金鋼の高熱発生を伴う高速連続切削加工に用いた場合には、上記従来のAlとCrとの相互固溶体を上部層とする硬質被覆層では、高温硬さと高温強度が十分とはいえないためチッピング(微少欠け)を発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. For tools, there is no problem when this is used for high-speed continuous cutting under normal conditions such as steel and cast iron, but this is particularly high-speed continuous cutting with high heat generation in hard alloy steel such as hardened steel. When used in processing, the hard coating layer having the above-mentioned conventional solid solution of Al 2 O 3 and Cr 2 O 3 as the upper layer does not have sufficient high temperature hardness and high temperature strength, so chipping (slight chipping) ), And as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、被覆工具の硬質被覆層の耐チッピング性の向上を図るべく鋭意研究を行った結果、以下の知見を得た。   Accordingly, the present inventors have conducted intensive studies to improve the chipping resistance of the hard coating layer of the coated tool from the above viewpoint, and as a result, have obtained the following knowledge.

上記先行技術文献として引用した従来被覆工具の硬質被覆層は、Tiの炭化物層を下部層としてまず形成し、次いで、この上に、Alからなる層とCrからなる層とを交互に積層した後、これを熱処理することにより、AlとCrとの相互固溶体からなる上部層以下、従来(Al,Cr)O層で示す。を形成していた。 The hard coating layer of the conventional coated tool cited as the above prior art document is formed first with a Ti carbide layer as a lower layer, and then on this, a layer made of Al 2 O 3 and a layer made of Cr 2 O 3 After alternately laminating the layers, heat treatment is performed to show a conventional (Al, Cr) O layer below the upper layer made of a mutual solid solution of Al 2 O 3 and Cr 2 O 3 . Was forming.

しかし、本発明者らは、Ti化合物からなる下部層表面に、まず、中間層としての改質酸化アルミニウム層(以下、改質Al層という)を形成し、この改質Al層を介して、AlとCrとの混合層を形成すると、結果として、高温硬さと高温強度のいずれにもすぐれたAlとCrとの混合層(以下、改質(Al,Cr)O層で示す)からなる上部層が蒸着形成されることを見出したのである。 However, the present inventors first formed a modified aluminum oxide layer (hereinafter referred to as a modified Al 2 O 3 layer) as an intermediate layer on the surface of the lower layer made of a Ti compound, and this modified Al 2 O 3 When a mixed layer of Al 2 O 3 and Cr 2 O 3 is formed via three layers, as a result, a mixed layer of Al 2 O 3 and Cr 2 O 3 that is excellent in both high-temperature hardness and high-temperature strength. It has been found that an upper layer made of a modified (Al, Cr) O layer is formed by vapor deposition.

上記改質Al層は、以下のようにして蒸着形成することができる。
即ち、通常の化学蒸着装置を用いて、Ti化合物層からなる下部層の表面に、例えば、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で、Al23核を形成し、この場合、前記Al23核は20〜200nmの平均層厚を有するAl23核薄膜であるのが望ましく、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件で前記Al23核薄膜に加熱処理を施した状態で、α型Al23層を通常の条件で形成することにより改質Al層を蒸着形成することができる。
The modified Al 2 O 3 layer can be formed by vapor deposition as follows.
That is, using a normal chemical vapor deposition apparatus, on the surface of the lower layer made of a Ti compound layer, for example,
Reaction gas composition: volume%, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
At low temperature conditions, to form a Al 2 O 3 nuclei. In this case, the Al 2 O 3 nuclei is desirably in the range of Al 2 O 3 nuclei thin film with an average layer thickness of 20 to 200 nm, and subsequently, reaction atmosphere pressure: changed to a hydrogen atmosphere of 3~13KPa, the reaction atmosphere temperature in a state subjected to heat treatment to the Al 2 O 3 nuclei film under conditions the temperature was raised to 1100 to 1200 ° C., the α type the Al 2 O 3 layer By forming it under normal conditions, a modified Al 2 O 3 layer can be formed by vapor deposition.

上記改質Al層は、電界放出型走査電子顕微鏡を用い、図1(a)、(b)に概略説明図で示されるとおり、断面研磨面の測定範囲内に存在する六方晶結晶格子を有するα型Al23結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した場合、前記従来Al23層は、図4に例示される通り、(0001)面の測定傾斜角の分布は0〜45度の範囲内で不偏的な傾斜角度数分布グラフを示すのに対して、前記加熱処理Al23核薄膜上に蒸着形成された改質Al23層は、図3に例示されるとおり、傾斜角区分の特定位置にシャープな最高ピークが現れ、このシャープな最高ピークの位置は、前記Al23核薄膜の平均層厚を変化させることによりグラフ横軸の傾斜角区分に現れる位置が変わる。
つまり、前記加熱処理Al23核薄膜上に蒸着形成された改質Al23層は、(0001)面配向率が高いα型の結晶構造を有するAl23層であることがわかる。
The modified Al 2 O 3 layer is a hexagonal crystal existing in the measurement range of the cross-sectional polished surface as shown in the schematic explanatory diagrams of FIGS. 1A and 1B using a field emission scanning electron microscope. Irradiate each electron beam with α-type Al 2 O 3 crystal grains having a lattice, and measure the inclination angle formed by the normal of the (0001) plane, which is the crystal plane of the crystal grains, with respect to the normal of the substrate surface In addition, the measured inclination angle within the range of 0 to 45 degrees out of the measured inclination angles is divided into pitches of 0.25 degrees, and the inclination angle number distribution is obtained by counting the frequencies existing in each section. When the graph is prepared, the conventional Al 2 O 3 layer is, as illustrated in FIG. 4, the distribution of the measured inclination angle of the (0001) plane is in the range of 0 to 45 degrees, and the inclination angle number distribution graph is unbiased. The modified Al 2 O 3 layer deposited on the heat-treated Al 2 O 3 core thin film As shown in FIG. 3, a sharp maximum peak appears at a specific position in the tilt angle section, and the position of this sharp maximum peak is a graph obtained by changing the average layer thickness of the Al 2 O 3 nuclear thin film. The position that appears in the tilt angle section on the horizontal axis changes.
That is, the modified Al 2 O 3 layer deposited on the heat-treated Al 2 O 3 nuclear thin film is an Al 2 O 3 layer having an α-type crystal structure with a high (0001) plane orientation ratio. Recognize.

そして、上記改質Al23層の上に蒸着形成した改質(Al,Cr)O層からなる上部層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で表し、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成した場合(この場合前記の結果から、Σ5、Σ9、Σ15、Σ25、およびΣ27の構成原子共有格子点形態は存在しないことになる)、図5に示されるとおり、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が40〜60%である構成原子共有格子点分布グラフを示し、そして、この改質(Al,Cr)O層は、従来被覆工具の従来(Al,Cr)O層に比して、一段とすぐれた高温硬さおよび高温強度を有することがわかった。 Then, the upper layer composed of the modified (Al, Cr) O layer formed by vapor deposition on the modified Al 2 O 3 layer is present within the measurement range of the cross-section polished surface using a field emission scanning electron microscope. The crystal grains having a hexagonal crystal lattice are each irradiated with an electron beam, and the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, with respect to the normal line of the cross-section polished surface A lattice in which each of the constituent atoms shares one constituent atom between the crystal grains at an interface between adjacent crystal grains based on the measured tilt angle obtained by measuring The distribution of points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is two or more on the crystal structure of the corundum hexagonal close-packed crystal) Although it is an even number, the upper limit of N is set to 28 from the point of distribution frequency. In this case, the even number of 4, 8, 14, 24, and 26 does not exist.) The constituent atomic shared lattice point form existing is represented by ΣN + 1, and the constituent atomic shared lattice point distribution indicating the distribution ratio of each ΣN + 1 in the entire ΣN + 1 When a graph is created (in this case, from the above result, there are no constituent atom shared lattice point forms of Σ5, Σ9, Σ15, Σ25, and Σ27), as shown in FIG. The constituent atomic shared lattice point distribution graph which is present and the distribution ratio of Σ3 to the entire ΣN + 1 of the Σ3 is 40-60%, and this modified (Al, Cr) O layer is the conventional ( It has been found that it has excellent high-temperature hardness and high-temperature strength as compared with the Al, Cr) O layer.

なお、前記特許文献1における従来(Al,Cr)O層について、上記と同様にして、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフを作成したところ、図6に示される通り、Σ3の分布割合は20%以下の相対的に低い構成原子共有格子点分布グラフを示した。つまり、改質(Al,Cr)O層は、従来(Al,Cr)O層と異なり、改質Al23層が中間層として蒸着形成されていることによって、Σ3対応粒界の分布割合が非常に高くなり、その結果として、従来(Al,Cr)O層に比して高温硬さおよび高温強度が一段と向上することがわかった。 For the conventional (Al, Cr) O layer in Patent Document 1, a constituent atomic shared lattice distribution graph showing the distribution ratio of each ΣN + 1 to the entire ΣN + 1 was created in the same manner as described above. As shown, the distribution ratio of Σ3 is a relatively low constituent atom shared lattice point distribution graph of 20% or less. That is, the modified (Al, Cr) O layer differs from the conventional (Al, Cr) O layer in that the modified Al 2 O 3 layer is formed as an intermediate layer by vapor deposition. As a result, it was found that the high temperature hardness and high temperature strength were further improved as compared with the conventional (Al, Cr) O layer.

上記のとおり、硬質被覆層として、Ti化合物層からなる下部層の表面に、中間層として改質Al23層を蒸着形成し、その上に更に上部層としての改質(Al,Cr)O層を蒸着形成した本発明の被覆工具は、従来被覆工具に比して、一段とすぐれた高温硬さおよび高温強度を有することから、高熱発生を伴う硬質合金鋼の高速連続切削条件に用いた場合にも、すぐれた耐チッピング性を発揮する。 As described above, a modified Al 2 O 3 layer is vapor-deposited as an intermediate layer on the surface of a lower layer made of a Ti compound layer as a hard coating layer, and further modified as an upper layer (Al, Cr) The coated tool of the present invention in which an O layer is formed by vapor deposition has a higher high-temperature hardness and high-temperature strength than conventional coated tools, so it was used for high-speed continuous cutting conditions of hard alloy steel with high heat generation. Even in cases, it exhibits excellent chipping resistance.

この発明は、上記の知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と中間層と上部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの全体平均層厚を有するTi化合物層、
(b)中間層は、化学蒸着した状態でα型の結晶構造を有し、かつ、1〜3μmの平均層厚を有するα型酸化アルミニウム層であって、
該中間層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すα型酸化アルミニウム層、
(c)上部層は、化学蒸着した状態でα型の結晶構造を有し、かつ、2〜15μmの平均層厚を有し、さらに、α型酸化アルミニウム相の素地に酸化クロム相が均一に分散分布した均一混合組織層であって、しかも、該均一混合組織層におけるアルミニウムとの合量に占めるクロムの含有割合は0.003〜0.2(但し、原子比)であり、
該上部層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が40〜60%である構成原子共有格子点分布グラフを示すα型酸化アルミニウム相と酸化クロム相の均一混合組織層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
In a surface-coated cutting tool in which a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer is vapor-deposited on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and has a total thickness of 3 to 20 μm. A Ti compound layer having an average layer thickness;
(B) The intermediate layer is an α-type aluminum oxide layer having an α-type crystal structure in a chemical vapor deposited state and having an average layer thickness of 1 to 3 μm,
For the intermediate layer, using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set to a pitch of 0.25 degrees. In addition, the maximum peak exists in the inclination angle division within the range of 0 to 10 degrees, and the above 0 to 10 are expressed in the inclination angle number distribution graph obtained by adding up the frequencies existing in each division. An α-type aluminum oxide layer showing a tilt angle number distribution graph in which the total number of frequencies existing in the range of degrees occupies a ratio of 45% or more of the total frequency in the tilt angle number distribution graph,
(C) The upper layer has an α-type crystal structure in the state of chemical vapor deposition, has an average layer thickness of 2 to 15 μm, and further has a uniform chromium oxide phase on the base of the α-type aluminum oxide phase. The uniformly mixed structure layer dispersed and distributed, and the content ratio of chromium in the total amount of aluminum in the uniform mixed structure layer is 0.003 to 0.2 (however, atomic ratio),
For the upper layer, using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam to Then, the inclination angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, are measured, and the crystal grains adjacent to each other are measured based on the measured inclination angles. The distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains is calculated at the interface, and the constituent atoms are shared between the constituent atom shared lattice points. There are N lattice points (N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is 28 in terms of distribution frequency). Is represented by ΣN + 1, each ΣN + 1 is Σ In the constituent atom shared lattice point distribution graph showing the distribution ratio in the entire +1, the constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of the Σ3 is 40 to 60%. A uniform mixed structure layer of α-type aluminum oxide phase and chromium oxide phase,
A surface-coated cutting tool formed by vapor-depositing a hard coating layer composed of (a) to (c) above. "
It has the characteristics.

以下に、この発明の被覆工具の硬質被覆層の構成層について、詳細に説明する。
下部層のTi化合物層:
Ti化合物層は、改質Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体と改質Al23層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性を向上させる作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Below, the constituent layer of the hard coating layer of the coated tool of this invention is demonstrated in detail.
Lower Ti compound layer:
Ti compound layer exists as a lower layer of the reformer the Al 2 O 3 layer, in addition contributes to the improvement of the high temperature strength of the hard coating layer by excellent high temperature strength which includes its own tool substrate and the reformed the Al 2 O 3 layer However, if the average layer thickness is less than 3 μm, the above-mentioned effect cannot be fully exerted, while the adhesion of the hard coating layer to the tool base is improved. When the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed cutting with high heat generation, and this causes uneven wear. Therefore, the average layer thickness was set to 3 to 20 μm.

中間層の改質Al23層:
中間層を構成する改質Al23層は、通常の化学蒸着装置にて、Ti化合物層からなる下部層の表面に、例えば、
反応ガス組成:容量%で、AlCl3:3〜10%、CO2:0.5〜3%、C:0.01〜0.3%、H2:残り、
反応雰囲気温度:750〜900℃、
反応雰囲気圧力:3〜13kPa、
の低温条件で、Al23核を形成し、この場合、前記Al23核は20〜200nmの平均層厚を有するAl23核薄膜であるのが望ましく、引き続いて、反応雰囲気を圧力:3〜13kPaの水素雰囲気に変え、反応雰囲気温度を1100〜1200℃に昇温した条件で前記Al23核薄膜に加熱処理を施した状態で、α型Al23層を通常の条件で蒸着することにより形成することができる。
中間層の改質Al23層はすぐれた高温硬さを備え、耐摩耗性の向上に寄与するばかりか、下部層のTi化合物層および上部層の改質(Al,Cr)O層のいずれにも強固に密着し、硬質被覆層全体としての剥離強度を向上させる。
Modified Al 2 O 3 layer of the intermediate layer:
The modified Al 2 O 3 layer constituting the intermediate layer is formed on the surface of the lower layer made of the Ti compound layer by a normal chemical vapor deposition apparatus, for example,
Reaction gas composition: volume%, AlCl 3 : 3 to 10%, CO 2 : 0.5 to 3%, C 2 H 4 : 0.01 to 0.3%, H 2 : remaining,
Reaction atmosphere temperature: 750 to 900 ° C.
Reaction atmosphere pressure: 3 to 13 kPa,
At low temperature conditions, to form a Al 2 O 3 nuclei. In this case, the Al 2 O 3 nuclei is desirably in the range of Al 2 O 3 nuclei thin film with an average layer thickness of 20 to 200 nm, and subsequently, reaction atmosphere pressure: changed to a hydrogen atmosphere of 3~13KPa, the reaction atmosphere temperature in a state subjected to heat treatment to the Al 2 O 3 nuclei film under conditions the temperature was raised to 1100 to 1200 ° C., the α type the Al 2 O 3 layer It can be formed by vapor deposition under normal conditions.
The modified Al 2 O 3 layer of the intermediate layer has excellent high-temperature hardness and contributes to the improvement of wear resistance, as well as the Ti compound layer of the lower layer and the modified (Al, Cr) O layer of the upper layer. It adheres firmly to both and improves the peel strength of the entire hard coating layer.

さらに、上記改質Al23層は、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示し、(0001)面配向率が高いものとなっている。
そして、このような(0001)面配向率が高い改質Al23層の上に、上部層としての改質(Al,Cr)O層(α型酸化アルミニウム相と酸化クロム相の均一混合組織層)を蒸着形成することによって、該改質(Al,Cr)O層にはCr成分が含有されているにもかかわらず、Σ3対応粒界が高い割合で形成されて粒界強度が向上し、その結果として、改質(Al,Cr)O層が、すぐれた高温硬さとともにすぐれた高温強度を備えるようになる。
すなわち、中間層の改質Al23層は、上部層の改質(Al,Cr)O層のΣ3対応粒界の割合を高めるという大きな役割を担っている。
上記改質Al23層についての傾斜角度数分布グラフにおいて、0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%未満の場合には、上部層におけるΣ3対応粒界の割合の増加を期待できないので、加熱処理Al23核薄膜上にさらにα型Al23層を蒸着することによって改質Al23層を形成するに際しては、Al23核薄膜の平均層厚を20〜200nmとすることが望ましい。
なお、改質Al23層からなる中間層の平均層厚が1μm未満では、(0001)面配向率が45%未満となってしまい、一方、平均層厚が3μmを超える場合には、上部層である改質(Al,Cr)O層との付着強度が低下するため、その平均層厚は1〜3μmと定めた。
Further, the modified Al 2 O 3 layer is formed by irradiating individual crystal grains having a hexagonal crystal lattice existing within the measurement range of the cross-section polished surface with a field emission scanning electron microscope, The inclination angle formed by the normal line of the (0001) plane which is the crystal plane of the crystal grain is measured, and the measurement inclination angle within the range of 0 to 45 degrees is measured among the measurement inclination angles. When divided into 0.25 degree pitches and represented in a slope angle distribution graph obtained by counting the frequencies present in each part, the highest peak exists in the slope angle range within the range of 0 to 10 degrees. In addition, an inclination angle number distribution graph in which the total of the frequencies existing in the range of 0 to 10 degrees occupies a ratio of 45% or more of the entire degrees in the inclination angle number distribution graph is shown, and the (0001) plane orientation ratio is It is expensive.
Then, on such a modified Al 2 O 3 layer having a high (0001) plane orientation ratio, a modified (Al, Cr) O layer as an upper layer (homogeneous mixing of α-type aluminum oxide phase and chromium oxide phase) By forming the texture layer), the modified (Al, Cr) O layer is formed with a high proportion of Σ3-compatible grain boundaries even though the Cr component is contained, and the grain boundary strength is improved. As a result, the modified (Al, Cr) O layer has excellent high temperature strength along with excellent high temperature hardness.
That is, the modified Al 2 O 3 layer of the intermediate layer plays a large role of increasing the ratio of the Σ3 corresponding grain boundary of the modified (Al, Cr) O layer of the upper layer.
In the inclination angle frequency distribution graph for the modified Al 2 O 3 layer, when the sum of the frequencies existing in the range of 0 to 10 degrees is less than 45% of the entire frequency in the inclination angle frequency distribution graph, the upper part Since an increase in the proportion of Σ3-compatible grain boundaries in the layer cannot be expected, when forming a modified Al 2 O 3 layer by further depositing an α-type Al 2 O 3 layer on the heat-treated Al 2 O 3 core thin film, The average layer thickness of the Al 2 O 3 core thin film is preferably 20 to 200 nm.
When the average layer thickness of the intermediate layer composed of the modified Al 2 O 3 layer is less than 1 μm, the (0001) plane orientation ratio is less than 45%, while when the average layer thickness exceeds 3 μm, Since the adhesion strength with the modified (Al, Cr) O layer, which is the upper layer, is lowered, the average layer thickness is determined to be 1 to 3 μm.

上部層の改質(Al,Cr)O層:
上部層を構成する改質(Al,Cr)O層は、通常の化学蒸着装置にて、改質Al23層からなる中間層の表面に、例えば、
反応ガス組成:容量%で、AlCl:6〜10%、CrCl:0.1〜1.2%、CO:10〜15%、HCl:3〜5%、H2S:0.05〜0.2%、H2:残り、
反応雰囲気温度:950〜1000℃、
反応雰囲気圧力:3〜5kPa、
の条件で蒸着することにより形成することができる。
上部層の改質(Al,Cr)O層は、α型酸化アルミニウム相の素地に酸化クロム相が均一に分散分布した均一混合組織を示し、特に、素地を構成するα型酸化アルミニウム相は層の高温硬さおよび耐熱性を向上させ、また、素地中に均一分散分布する酸化クロム相は高温強度と耐熱塑性変形性を向上させる。
Upper layer modification (Al, Cr) O layer:
The modified (Al, Cr) O layer constituting the upper layer is formed on the surface of the intermediate layer composed of the modified Al 2 O 3 layer by a normal chemical vapor deposition apparatus, for example,
Reaction gas composition:% by volume, AlCl 3 : 6 to 10%, CrCl 3 : 0.1 to 1.2%, CO 2 : 10 to 15%, HCl: 3 to 5%, H 2 S: 0.05 ~0.2%, H 2: remainder,
Reaction atmosphere temperature: 950 to 1000 ° C.
Reaction atmosphere pressure: 3 to 5 kPa,
It can form by vapor-depositing on condition of this.
The modified (Al, Cr) O layer of the upper layer shows a uniform mixed structure in which the chromium oxide phase is uniformly dispersed and distributed on the base of the α-type aluminum oxide phase. In particular, the α-type aluminum oxide phase constituting the base is a layer. The high-temperature hardness and heat resistance of the chromium oxide phase and the chromium oxide phase uniformly dispersed in the substrate improve the high-temperature strength and heat-resistant plastic deformation.

また、改質(Al,Cr)O層からなる上部層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が40〜60%である構成原子共有格子点分布グラフを示すようになる。
即ち、上部層の改質(Al,Cr)O層は、改質Al23層を中間層として設け、この上に蒸着形成されることによって、Σ3対応粒界の割合が増加し粒界強度が高められため、その結果として、改質(Al,Cr)O層は高温硬さ、高温強度が一段とすぐれたものとなり、耐チッピング性、耐欠損性を向上させる。
In addition, the upper layer composed of the modified (Al, Cr) O layer is irradiated with an electron beam to each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface using a field emission scanning electron microscope. Then, the inclination angle formed by the normal lines of the (0001) plane and the (10-10) plane, which are crystal planes of the crystal grains, is measured with respect to the normal line of the cross-section polished surface, and the measurement obtained as a result Based on the tilt angle, the distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains at the interface between adjacent crystal grains is calculated, There are N lattice points that do not share constituent atoms between the constituent atomic shared lattice points (where N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is limited in terms of distribution frequency. 28) The existing configuration atom shared lattice point form is ΣN In the constituent atom shared lattice point distribution graph showing the distribution ratio of each ΣN + 1 in the entire ΣN + 1 when represented by 1, the highest peak exists in Σ3, and the distribution ratio of the Σ3 in the entire ΣN + 1 is 40 to 60%. The constituent atomic shared lattice point distribution graph is shown.
That is, the modified (Al, Cr) O layer of the upper layer is provided with a modified Al 2 O 3 layer as an intermediate layer, and is formed by vapor deposition thereon, thereby increasing the ratio of the Σ3 corresponding grain boundary and increasing the grain boundary. Since the strength is increased, as a result, the modified (Al, Cr) O layer has excellent high-temperature hardness and high-temperature strength, and improves chipping resistance and fracture resistance.

そして、Σ3対応粒界の分布割合を上記40〜60%とするためには、上部層におけるAlとの合量に占めるCrの含有割合(Cr/(Al+Cr))は0.003〜0.2(但し、原子比)であることが必要であり、Cr含有割合が0.003未満である場合には、Σ3対応粒界の分布割合を増加させることができたとしても、上部層の耐熱塑性変形性が不十分となり、偏摩耗の発生等による耐摩耗性劣化の恐れがある。一方、Cr含有割合が0.2を超えるような場合には、Σ3対応粒界の分布割合が40%未満となってしまい、高温強度の向上を期待できなくなる。そして、上部層におけるCr成分の含有量が上記0.003〜0.2(但し、原子比)の範囲内である場合には、酸化クロム相は素地中に均一微細な分散相として存在することから、硬質被覆層の耐チッピング性、耐欠損性、耐剥離性に悪影響を及ぼすことはない。   And in order to make the distribution ratio of (SIGMA) 3 corresponding | compatible grain boundary into the said 40 to 60%, the content rate (Cr / (Al + Cr)) which occupies for the total amount with Al in an upper layer is 0.003-0.2. However, if the Cr content ratio is less than 0.003, even if the distribution ratio of the grain boundary corresponding to Σ3 can be increased, the heat resistance plasticity of the upper layer is required. Deformability becomes insufficient, and wear resistance may be deteriorated due to occurrence of uneven wear. On the other hand, when the Cr content ratio exceeds 0.2, the distribution ratio of the Σ3-compatible grain boundary is less than 40%, and improvement in high temperature strength cannot be expected. And when content of Cr component in an upper layer is in the range of the above 0.003-0.2 (however, atomic ratio), a chromium oxide phase exists as a uniform fine dispersed phase in a substrate. Therefore, the chipping resistance, chipping resistance and peel resistance of the hard coating layer are not adversely affected.

改質(Al,Cr)O層からなる上部層は、その平均層厚が2μm未満では、すぐれた高温強度を発揮することができず、一方、その平均層厚が15μmを超えるとチッピング等を発生しやすくなるので、その平均層厚は、2〜15μmと定めた。   The upper layer composed of the modified (Al, Cr) O layer cannot exhibit excellent high-temperature strength when the average layer thickness is less than 2 μm, and on the other hand, when the average layer thickness exceeds 15 μm, chipping, etc. Since it tends to occur, the average layer thickness is determined to be 2 to 15 μm.

なお、改質Al23層からなる中間層と改質(Al,Cr)O層からなる上部層との合計平均層厚は、チッピング発生防止等との観点から、3〜15μmとすることが望ましい。 The total average layer thickness of the intermediate layer composed of the modified Al 2 O 3 layer and the upper layer composed of the modified (Al, Cr) O layer should be 3 to 15 μm from the viewpoint of preventing chipping. Is desirable.

この発明の被覆工具は、焼入鋼などの硬質合金鋼の切削加工を、高い発熱を伴う高速連続切削条件で行うのに用いた場合にも、硬質被覆層の中間層として改質Al23層が設けられ、さらにこの上にΣ3対応粒界の分布割合の高められた改質(Al,Cr)O層が設けられたことによって、硬質被覆層がすぐれた高温硬さと高温強度を備え、その結果、長期の使用に亘って一段とすぐれた耐チッピング性を発揮するものである。 The coated tool of the present invention is a modified Al 2 O as an intermediate layer of a hard coating layer even when it is used for cutting hard alloy steel such as hardened steel under high-speed continuous cutting conditions with high heat generation. Three layers are provided, and a modified (Al, Cr) O layer with an increased distribution ratio of Σ3 corresponding grain boundaries is provided thereon, so that the hard coating layer has excellent high-temperature hardness and high-temperature strength. As a result, the chipping resistance is further improved over a long period of use.

(Al,Cr)O層およびAl23層における結晶粒の(0001)面および(10-10)面の傾斜角の測定態様を示す概略説明図である。(Al, Cr) is a schematic explanatory view showing the measurement mode of the crystal grains (0001) plane and (10-10) plane inclination angle of the O layer and the Al 2 O 3 layer. 相互に隣接する結晶粒の界面における構成原子共有格子点形態の単位形態を示す模式図にして、(a)はΣ3、(b)はΣ7(c)はΣ11の単位形態をそれぞれ示す図である。FIG. 4 is a schematic diagram showing unit forms of constituent atomic shared lattice points at the interface between adjacent crystal grains, where (a) shows Σ3, (b) shows Σ7 (c) and Σ11 unit forms. . 本発明被覆工具13の改質Al23層の傾斜角度数分布グラフである。The inclination angle frequency distribution graph of the reformed the Al 2 O 3 layer of the present invention coated tools 13. 比較被覆工具1の従来Al23層の傾斜角度数分布グラフである。5 is a graph showing the distribution of the number of inclination angles of a conventional Al 2 O 3 layer of the comparative coated tool 1 本発明被覆工具13の改質(Al,Cr)O層の構成原子共有格子点分布グラフである。6 is a constituent atomic shared lattice point distribution graph of a modified (Al, Cr) O layer of the coated tool 13 of the present invention. 比較被覆工具1の非改質(Al,Cr)O層の構成原子共有格子点分布グラフである。4 is a constituent atomic shared lattice point distribution graph of an unmodified (Al, Cr) O layer of a comparative coated tool 1.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも2〜4μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160412に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 2 to 4 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, tool bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG 160412 were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG160412のチップ形状をもったTiCN基サーメット製の工具基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. Tool bases a to f made of TiCN-based cermet having standard / CNMG 160412 chip shapes were formed.

ついで、これらの工具基体A〜Fおよび工具基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される組み合わせおよび目標層厚でTi化合物層を硬質被覆層の下部層として蒸着形成し、ついで、同じく表4に示される条件で、表7に示される組み合わせおよび目標層厚で改質Al23層を硬質被覆層の中間層として蒸着形成し、さらに、表5に示される条件で、表7に示される組み合わせおよび目標層厚で改質(Al,Cr)O層を硬質被覆層の上部層として蒸着形成することにより本発明被覆工具1〜13をそれぞれ製造した。 Next, each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus. First, Table 3 (l-TiCN in Table 3 is disclosed in JP-A-6-8010). The combinations shown in Table 6 under the conditions shown in Table 6 are the conditions for forming the TiCN layer having the vertically elongated crystal structure described, and other conditions for forming the normal granular crystal structure. And a Ti compound layer with a target layer thickness as a lower layer of the hard coating layer, and then, under the same conditions as shown in Table 4, a modified Al 2 O 3 layer with the combinations and target layer thicknesses shown in Table 7 is formed. Evaporation is formed as an intermediate layer of the hard coating layer, and further, a modified (Al, Cr) O layer is deposited as an upper layer of the hard coating layer with the combinations and target layer thicknesses shown in Table 7 under the conditions shown in Table 5. By forming the present invention The tool 1 to 13 were produced, respectively.

比較の目的で、表8に示される通り、硬質被覆層の中間層として、表4に示される条件で、表8に示される目標層厚で従来Al23層を形成し、さらに、表6(a)に示される条件で、Al23層とCr23層を交互に積層し、表6(b)に示される各層の層厚、熱処理、目標層厚で従来(Al,Cr)O層を硬質被覆層の上部層として蒸着形成することにより比較被覆工具1〜13をそれぞれ製造した。 For the purpose of comparison, as shown in Table 8, a conventional Al 2 O 3 layer was formed as the intermediate layer of the hard coating layer under the conditions shown in Table 4 with the target layer thickness shown in Table 8, Under the conditions shown in FIG. 6 (a), Al 2 O 3 layers and Cr 2 O 3 layers are alternately laminated, and the conventional (Al, Comparative coating tools 1 to 13 were produced by vapor-depositing a Cr) O layer as the upper layer of the hard coating layer.

ついで、上記の本発明被覆工具1〜13および比較被覆工具1〜13の硬質被覆層の中間層を構成する改質Al23層および従来Al23層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフを作成した。
すなわち、工具基体表面と垂直な面をそれぞれ研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、この測定結果に基づいて、前記測定傾斜角のうち0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計することにより作成した。
Next, field emission scanning is performed on each of the modified Al 2 O 3 layer and the conventional Al 2 O 3 layer constituting the intermediate layer of the hard coating layer of the present invention coated tools 1 to 13 and comparative coated tools 1 to 13. Using an electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam, and is a crystal plane of the crystal grain with respect to the normal of the substrate surface The inclination angle formed by the normal of the (0001) plane is measured, and among the measurement inclination angles, the measurement inclination angles in the range of 0 to 45 degrees are divided for each pitch of 0.25 degrees, and within each division An inclination angle frequency distribution graph was created by counting the frequencies existing in.
That is, in a state where each surface perpendicular to the tool base surface is a polished surface, it is set in a barrel of a field emission scanning electron microscope, and an electron beam with an acceleration voltage of 15 kV is applied to the polished surface at an incident angle of 70 degrees. With an irradiation current of 1 nA, each crystal grain having a hexagonal crystal lattice existing within the measurement range of each polished surface is irradiated, and an electron backscatter diffraction image apparatus is used to divide a 30 × 50 μm region to 0.1 μm. The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line of the substrate surface at intervals of / step, and based on the measurement result, Among them, the measurement inclination angle in the range of 0 to 45 degrees was divided for each pitch of 0.25 degrees, and the frequency existing in each section was totaled.

この結果得られた各種の改質Al23層および従来Al23層の傾斜角度数分布グラフから、最高ピークが存在する傾斜角区分、および、0〜10度の範囲内に存在する度数の合計が傾斜角度数分布グラフにおける度数全体に占める割合を求め、この値をそれぞれ表7,表8に示した。 From the gradient angle distribution graphs of the various modified Al 2 O 3 layers and the conventional Al 2 O 3 layers obtained as a result of this, the gradient angle segment in which the highest peak exists and the range of 0 to 10 degrees exist. The ratio of the total frequency to the total frequency in the inclination angle frequency distribution graph was obtained, and these values are shown in Tables 7 and 8, respectively.

上記の各種の傾斜角度数分布グラフにおいて、表6にそれぞれ示される通り、本発明被覆工具の改質Al23層は、いずれも0〜10度の範囲内に最高ピークが存在し、かつ、傾斜角度数分布グラフにおける度数全体に占める0〜10度の範囲内に存在する度数の合計の割合は、45%以上を示すのに対して、従来Al23層は、表7にそれぞれ示される通り、いずれも0〜10度の範囲内に最高ピークは存在せず、しかも、0〜10度の範囲内に存在する度数の合計の割合も高々10%という小さな割合であって、特定方向への(0001)面の配向性はなかった。
なお、図3は、本発明被覆工具13の改質Al23層の傾斜角度数分布グラフ、図4は、比較被覆工具1の従来Al23層の傾斜角度数分布グラフをそれぞれ示すものである。
In each of the above-mentioned various inclination angle number distribution graphs, as shown in Table 6, each of the modified Al 2 O 3 layers of the coated tool of the present invention has a maximum peak in the range of 0 to 10 degrees, and The ratio of the total frequency existing in the range of 0 to 10 degrees in the entire frequency in the inclination angle distribution graph shows 45% or more, whereas the conventional Al 2 O 3 layer is shown in Table 7 respectively. As shown, there is no highest peak in the range of 0 to 10 degrees, and the ratio of the total frequency existing in the range of 0 to 10 degrees is a small ratio of at most 10%, and is specified. There was no orientation of the (0001) plane in the direction.
3 shows an inclination angle number distribution graph of the modified Al 2 O 3 layer of the coated tool 13 of the present invention, and FIG. 4 shows an inclination angle number distribution graph of the conventional Al 2 O 3 layer of the comparative coated tool 1. Is.

次に、上記の本発明被覆工具1〜13の上部層を構成する改質(Al,Cr)O層および比較被覆工具1〜13の硬質被覆層を構成する従来(Al,Cr)O層のそれぞれについて、電界放出型走査電子顕微鏡を用いて、構成原子共有格子点分布グラフをそれぞれ作成した。
すなわち、上記構成原子共有格子点分布グラフは、上記の改質(Al,Cr)O層および従来(Al,Cr)O層の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射して、電子後方散乱回折像装置を用い、30×50μmの領域を0.1μm/stepの間隔で、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、図2に示されるように、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした場合、4、8、14、24、および26の偶数は存在せず)存在する構成原子共有格子点形態をΣN+1で現した場合、個々のΣN+1がΣN+1全体に占める分布割合を求めることにより作成した。
Next, the modified (Al, Cr) O layer constituting the upper layer of the above-described coated tools 1 to 13 of the present invention and the conventional (Al, Cr) O layer constituting the hard coated layer of the comparative coated tools 1 to 13 Constituent atom shared lattice point distribution graphs were prepared for each using a field emission scanning electron microscope.
That is, the constituent atomic shared lattice point distribution graph shows a mirror of a field emission scanning electron microscope in a state in which the cross sections of the modified (Al, Cr) O layer and the conventional (Al, Cr) O layer are polished surfaces. An electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface at an irradiation current of 1 nA to each crystal grain existing within the measurement range of the cross-sectional polished surface. Using a backscatter diffraction image apparatus, a region of 30 × 50 μm is spaced at a spacing of 0.1 μm / step with respect to the normal line of the cross-section polished surface (0001) plane and (10 − 10) Measure the tilt angle formed by the normals of the surface, and based on the measured tilt angle obtained as a result, as shown in FIG. Lattice sharing one constituent atom between the crystal grains The distribution of points (constituent atom shared lattice points) is calculated, and there are N lattice points that do not share constituent atoms between the constituent atom shared lattice points (where N is two or more on the crystal structure of the corundum hexagonal close-packed crystal) (Even if the upper limit of N is 28 from the point of distribution frequency, the even number of 4, 8, 14, 24, and 26 does not exist) When the existing constituent atom shared lattice point form is expressed as ΣN + 1 Each ΣN + 1 was created by calculating the distribution ratio of the entire ΣN + 1.

この結果得られた各種の改質(Al,Cr)O層および従来(Al,Cr)O層の構成原子共有格子点分布グラフにおいて、ΣN+1全体(上記の結果からΣ3、Σ7、Σ11、Σ13、Σ17、Σ19、Σ21、Σ23、およびΣ29のそれぞれの分布割合の合計)に占めるΣ3の分布割合をそれぞれ求め、この値をそれぞれ表7,表8に示した。   In the resultant atomic atom lattice distribution graph of various modified (Al, Cr) O layers and conventional (Al, Cr) O layers obtained as a result, the entire ΣN + 1 (Σ3, Σ7, Σ11, Σ13, The distribution ratio of Σ3 in each of the distribution ratios of Σ17, Σ19, Σ21, Σ23, and Σ29) was determined, and these values are shown in Tables 7 and 8, respectively.

上記の各種の構成原子共有格子点分布グラフにおいて、表6にそれぞれ示される通り、本発明被覆工具の改質(Al,Cr)O層は、いずれもΣ3の占める分布割合が40〜60%である構成原子共有格子点分布グラフを示すのに対して、比較被覆工具の非改質(Al,Cr)O層は、表7にそれぞれ示される通り、いずれもΣ3の分布割合が20%以下の構成原子共有格子点分布グラフを示すものであり、Σ3対応粒界の分布割合が小さいものであった。
なお、図5は、本発明被覆工具13の改質(Al,Cr)O層の構成原子共有格子点分布グラフ、図6は、比較被覆工具1の従来(Al,Cr)O層の構成原子共有格子点分布グラフをそれぞれ示すものである。
In each of the above-mentioned various constituent atom sharing lattice point distribution graphs, as shown in Table 6, each of the modified (Al, Cr) O layers of the coated tool of the present invention has a distribution ratio of 40 to 60% of Σ3. While a certain constituent atomic shared lattice point distribution graph is shown, the unmodified (Al, Cr) O layer of the comparative coated tool has a distribution ratio of Σ3 of 20% or less as shown in Table 7, respectively. The constituent atomic shared lattice point distribution graph is shown, and the distribution ratio of the grain boundary corresponding to Σ3 is small.
FIG. 5 is a graph showing the distribution of constituent atomic shared lattice points of the modified (Al, Cr) O layer of the coated tool 13 of the present invention, and FIG. 6 is a structural atom of the conventional (Al, Cr) O layer of the comparative coated tool 1. Each of the shared grid point distribution graphs is shown.

また、本発明被覆工具1〜13および比較被覆工具1〜13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of each structural layer of the hard coating layer of this invention coating tool 1-13 and the comparison coating tool 1-13 was measured using the scanning electron microscope (longitudinal section measurement), all were target layer thickness. The average layer thickness (average value of 5-point measurement) was substantially the same.

つぎに、上記の本発明被覆工具1〜13および比較被覆工具1〜13について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCr420Hの丸棒、
切削速度: 270 m/min、
切り込み: 0.10 mm、
送り: 0.15 mm/rev、
切削時間: 5 分、
の条件(切削条件Aという)での焼入クロム鋼の乾式高速連続切削試験(通常の切削速度は、200m/min)、
被削材:JIS・SCM415Hの丸棒、
切削速度: 270 m/min、
切り込み: 0.10 mm、
送り: 0.17 mm/rev、
切削時間: 5 分、
の条件(切削条件Bという)での焼入クロムモリブデン鋼の乾式高速連続切削試験(通常の切削速度は、200m/min)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表9に示した。
Next, for the above-described inventive coated tools 1 to 13 and comparative coated tools 1 to 13, both are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SCr420H round bar,
Cutting speed: 270 m / min,
Cutting depth: 0.10 mm,
Feed: 0.15 mm / rev,
Cutting time: 5 minutes,
Dry high-speed continuous cutting test (normal cutting speed is 200 m / min) of hardened chrome steel under the above conditions (referred to as cutting condition A),
Work material: JIS / SCM415H round bar,
Cutting speed: 270 m / min,
Cutting depth: 0.10 mm,
Feed: 0.17 mm / rev,
Cutting time: 5 minutes,
Dry high-speed continuous cutting test (normal cutting speed is 200 m / min) of hardened chrome molybdenum steel under the conditions (referred to as cutting condition B),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 9.

Figure 0005240667
Figure 0005240667

Figure 0005240667
Figure 0005240667

Figure 0005240667
Figure 0005240667

Figure 0005240667
Figure 0005240667

Figure 0005240667
Figure 0005240667

Figure 0005240667
Figure 0005240667

Figure 0005240667
Figure 0005240667

Figure 0005240667
Figure 0005240667

Figure 0005240667
Figure 0005240667

表7〜9に示される結果から、本発明被覆工具1〜13は、改質Al23層からなる中間層の上に、Σ3対応粒界の分布割合が高い改質(Al,Cr)O層からなる上部層が形成されていることによって、高熱発生を伴う硬質合金鋼の高速連続切削でも、硬質被覆層がすぐれた高温硬さおよび高温強度を有し、すぐれた耐チッピング性を示すのに対して、従来Al23層の上に、Σ3対応粒界の分布割合が少ない従来(Al,Cr)O層が形成された比較被覆工具は、硬質合金鋼の高速連続切削加工では、硬質被覆層の特に高温硬さ、高温強度が不十分であるために、硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 7 to 9, the coated tools 1 to 13 of the present invention are modified (Al, Cr) having a high distribution ratio of Σ3-compatible grain boundaries on the intermediate layer composed of the modified Al 2 O 3 layer. Due to the formation of the upper layer composed of the O layer, the hard coating layer has excellent high-temperature hardness and high-temperature strength even in high-speed continuous cutting of hard alloy steel with high heat generation, and exhibits excellent chipping resistance. On the other hand, the comparative coated tool in which the conventional (Al, Cr) O layer with a small distribution ratio of the Σ3-compatible grain boundary is formed on the conventional Al 2 O 3 layer is used in high-speed continuous cutting of hard alloy steel. It is clear that chipping occurs in the hard coating layer due to insufficient hardness and strength at the high temperature of the hard coating layer, and the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、高温硬さ、高温強度が必要とされる硬質合金鋼の高熱発生を伴う高速連続切削加工に用いられるばかりでなく、各種の鋼や鋳鉄などの通常の条件での連続切削加工や断続切削加工に用いることができ、各種の被削材に対する汎用性を備え、しかも、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only used for high-speed continuous cutting with high heat generation of hard alloy steel that requires high-temperature hardness and high-temperature strength, but also for various steels and cast irons. It can be used for continuous cutting and intermittent cutting under the above conditions, is versatile for various work materials, and exhibits excellent cutting performance over a long period of time. It can cope with performance improvement, labor saving and energy saving of cutting, and cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、下部層と中間層と上部層とからなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層、および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3〜20μmの全体平均層厚を有するTi化合物層、
(b)中間層は、化学蒸着した状態でα型の結晶構造を有し、かつ、1〜3μmの平均層厚を有するα型酸化アルミニウム層であって、
該中間層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、基体表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、前記測定傾斜角のうち、0〜45度の範囲内にある測定傾斜角を0.25度のピッチ毎に区分すると共に、各区分内に存在する度数を集計してなる傾斜角度数分布グラフで現した場合、0〜10度の範囲内の傾斜角区分に最高ピークが存在すると共に、前記0〜10度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の45%以上の割合を占める傾斜角度数分布グラフを示すα型酸化アルミニウム層、
(c)上部層は、化学蒸着した状態でα型の結晶構造を有し、かつ、2〜15μmの平均層厚を有し、さらに、α型酸化アルミニウム相の素地に酸化クロム相が均一に分散分布した均一混合組織層であって、しかも、該均一混合組織層におけるアルミニウムとの合量に占めるクロムの含有割合は0.003〜0.2(但し、原子比)であり、
該上部層について、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記断面研磨面の法線に対して、前記結晶粒の結晶面である(0001)面および(10−10)面の法線がなす傾斜角を測定し、この結果得られた測定傾斜角に基づいて、相互に隣接する結晶粒の界面で、前記構成原子のそれぞれが前記結晶粒相互間で1つの構成原子を共有する格子点(構成原子共有格子点)の分布を算出し、前記構成原子共有格子点間に構成原子を共有しない格子点がN個(ただし、Nはコランダム型六方最密晶の結晶構造上2以上の偶数となるが、分布頻度の点からNの上限を28とした)存在する構成原子共有格子点形態をΣN+1で表した場合、個々のΣN+1がΣN+1全体に占める分布割合を示す構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつ前記Σ3のΣN+1全体に占める分布割合が40〜60%である構成原子共有格子点分布グラフを示すα型酸化アルミニウム相と酸化クロム相の均一混合組織層、
以上(a)〜(c)で構成された硬質被覆層を蒸着形成してなる表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer is vapor-deposited on the surface of a tool base composed of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet,
(A) The lower layer is composed of one or more of a Ti carbide layer, a nitride layer, a carbonitride layer, a carbonate layer, and a carbonitride layer, and has a total thickness of 3 to 20 μm. A Ti compound layer having an average layer thickness;
(B) The intermediate layer is an α-type aluminum oxide layer having an α-type crystal structure in a chemical vapor deposited state and having an average layer thickness of 1 to 3 μm,
For the intermediate layer, using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam, The inclination angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured, and the measurement inclination angle within the range of 0 to 45 degrees out of the measurement inclination angles is set to a pitch of 0.25 degrees. In addition, the maximum peak exists in the inclination angle division within the range of 0 to 10 degrees, and the above 0 to 10 are expressed in the inclination angle number distribution graph obtained by adding up the frequencies existing in each division. An α-type aluminum oxide layer showing a tilt angle number distribution graph in which the total number of frequencies existing in the range of degrees occupies a ratio of 45% or more of the total frequency in the tilt angle number distribution graph,
(C) The upper layer has an α-type crystal structure in the state of chemical vapor deposition, has an average layer thickness of 2 to 15 μm, and further has a uniform chromium oxide phase on the base of the α-type aluminum oxide phase. The uniformly mixed structure layer dispersed and distributed, and the content ratio of chromium in the total amount of aluminum in the uniform mixed structure layer is 0.003 to 0.2 (however, atomic ratio),
For the upper layer, using a field emission scanning electron microscope, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface is irradiated with an electron beam to Then, the inclination angles formed by the normal lines of the (0001) plane and the (10-10) plane, which are the crystal planes of the crystal grains, are measured, and the crystal grains adjacent to each other are measured based on the measured inclination angles. The distribution of lattice points (constituent atom shared lattice points) in which each of the constituent atoms shares one constituent atom between the crystal grains is calculated at the interface, and the constituent atoms are shared between the constituent atom shared lattice points. There are N lattice points (N is an even number of 2 or more on the crystal structure of the corundum hexagonal close-packed crystal, but the upper limit of N is 28 in terms of distribution frequency). Is represented by ΣN + 1, each ΣN + 1 is Σ In the constituent atom shared lattice point distribution graph showing the distribution ratio in the entire +1, the constituent atom shared lattice point distribution graph in which the highest peak exists in Σ3 and the distribution ratio in the entire ΣN + 1 of the Σ3 is 40 to 60%. A uniform mixed structure layer of α-type aluminum oxide phase and chromium oxide phase,
A surface-coated cutting tool formed by vapor-depositing a hard coating layer composed of (a) to (c) above.
JP2009056144A 2009-03-10 2009-03-10 Surface coated cutting tool with excellent chipping resistance in high-speed continuous cutting of hard alloy steel Active JP5240667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009056144A JP5240667B2 (en) 2009-03-10 2009-03-10 Surface coated cutting tool with excellent chipping resistance in high-speed continuous cutting of hard alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009056144A JP5240667B2 (en) 2009-03-10 2009-03-10 Surface coated cutting tool with excellent chipping resistance in high-speed continuous cutting of hard alloy steel

Publications (2)

Publication Number Publication Date
JP2010207952A JP2010207952A (en) 2010-09-24
JP5240667B2 true JP5240667B2 (en) 2013-07-17

Family

ID=42968702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009056144A Active JP5240667B2 (en) 2009-03-10 2009-03-10 Surface coated cutting tool with excellent chipping resistance in high-speed continuous cutting of hard alloy steel

Country Status (1)

Country Link
JP (1) JP5240667B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853065B2 (en) * 1975-11-29 1983-11-26 トウシバタンガロイ カブシキガイシヤ Nisouhifukukoshitsubutsutai
JP2000246509A (en) * 1999-03-02 2000-09-12 Mitsubishi Materials Corp Throw-awy cutting tip made of surface sheathed super hard alloy exhibiting excellent initial tipping resistant property at its hard coated layer
JP2003025114A (en) * 2001-07-16 2003-01-29 Toshiba Tungaloy Co Ltd Aluminium oxide coated cutting tool
JP4474644B2 (en) * 2005-01-14 2010-06-09 三菱マテリアル株式会社 Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP4780513B2 (en) * 2005-01-21 2011-09-28 三菱マテリアル株式会社 Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high speed cutting
JP4720418B2 (en) * 2005-10-11 2011-07-13 三菱マテリアル株式会社 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4984513B2 (en) * 2005-12-14 2012-07-25 三菱マテリアル株式会社 Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP4863053B2 (en) * 2005-12-20 2012-01-25 三菱マテリアル株式会社 Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials

Also Published As

Publication number Publication date
JP2010207952A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4518260B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5176659B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP4645983B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2006289556A (en) Surface-coated cermet cutting tool having hard coating layer for exhibiting superior chipping resistance in high speed intermittent cutting work
JP5286891B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high speed heavy cutting
JP5263514B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5240668B2 (en) Surface-coated cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard alloy steel
JP2009006426A (en) Surface coated cutting tool with hard coating layer exerting superior wear resistance in high speed cutting
JP4747388B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4793750B2 (en) Surface coated cermet cutting tool with excellent chipping resistance in high-speed intermittent cutting of hard steel with excellent hard coating layer
JP2006198740A (en) Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP4793749B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5454924B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2009006427A (en) Surface coated cutting tool
JP5240667B2 (en) Surface coated cutting tool with excellent chipping resistance in high-speed continuous cutting of hard alloy steel
JP5428569B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP4474644B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5067963B2 (en) Surface coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP5424097B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440268B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5176798B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2007185751A (en) Surface coated cermet-made cutting tool having hard coating layer exhibiting excellent chipping resistance in cutting material hard to work
JP2006334757A (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP2007160464A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP5454923B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Effective date: 20130306

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130311

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Effective date: 20130324

Free format text: JAPANESE INTERMEDIATE CODE: A61