JP5240656B2 - Luminescent color conversion member - Google Patents

Luminescent color conversion member Download PDF

Info

Publication number
JP5240656B2
JP5240656B2 JP2008256497A JP2008256497A JP5240656B2 JP 5240656 B2 JP5240656 B2 JP 5240656B2 JP 2008256497 A JP2008256497 A JP 2008256497A JP 2008256497 A JP2008256497 A JP 2008256497A JP 5240656 B2 JP5240656 B2 JP 5240656B2
Authority
JP
Japan
Prior art keywords
glass
color conversion
powder
conversion member
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008256497A
Other languages
Japanese (ja)
Other versions
JP2010084069A (en
Inventor
克 岩尾
芳夫 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2008256497A priority Critical patent/JP5240656B2/en
Publication of JP2010084069A publication Critical patent/JP2010084069A/en
Application granted granted Critical
Publication of JP5240656B2 publication Critical patent/JP5240656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、発光ダイオード(LED)等の発する光の波長を異なる波長に変換する発光色変換部材に関する。特に、白色LED等の発光色変換LED素子を作製するために好適な発光色変換部材に関する。   The present invention relates to an emission color conversion member that converts the wavelength of light emitted from a light emitting diode (LED) or the like into a different wavelength. In particular, the present invention relates to a light emission color conversion member suitable for producing a light emission color conversion LED element such as a white LED.

従来、無機蛍光体を用いた発光色変換LED素子としては、例えば、粉末状の無機蛍光体を混合した有機系バインダー樹脂(モールド樹脂)を用いてLEDチップの発光面をシールしたものが提案されている。これにより、LEDチップの発光の一部または全部を無機蛍光体が吸収し、所望の波長に変換することが可能となる。しかしながら、当該方法では、LEDチップが発する熱や高エネルギーの短波長(青色〜紫外)光によってモールド樹脂が劣化し、変色や変形を起こすという問題がある。   Conventionally, as an emission color conversion LED element using an inorganic phosphor, for example, an LED chip having a light emitting surface sealed using an organic binder resin (mold resin) mixed with a powdered inorganic phosphor has been proposed. ing. Thereby, a part or all of the light emission of the LED chip is absorbed by the inorganic phosphor and can be converted into a desired wavelength. However, in this method, there is a problem that the mold resin deteriorates due to heat generated by the LED chip or high-energy short wavelength (blue to ultraviolet) light, causing discoloration or deformation.

そこで、樹脂に代えてガラスで無機蛍光体を固定した完全無機固体からなる発光色変換部材が提案されている(例えば、特許文献1参照)。特許文献1に開示された発光色変換部材は、高軟化点のガラス粉末と無機蛍光体粉末の混合粉末を焼成することにより作製される。このようにして作製された発光色変換部材は、母材となるガラスがLEDチップの熱や照射光により劣化しにくいという特徴を有している。   Therefore, an emission color conversion member made of a completely inorganic solid in which an inorganic phosphor is fixed with glass instead of resin has been proposed (for example, see Patent Document 1). The luminescent color conversion member disclosed in Patent Document 1 is produced by firing a mixed powder of a glass powder having a high softening point and an inorganic phosphor powder. The light emitting color conversion member thus produced has a feature that the glass as a base material is not easily deteriorated by the heat or irradiation light of the LED chip.

ところで、発光色変換部材に使用される無機蛍光体としては、YAG、酸化物、窒化物、酸窒化物、硫化物、酸硫化物、ハロゲン化物、アルミン酸塩化物、ハロリン酸塩化物などが知られている。これらの無機蛍光体のうち、硫化物蛍光体および酸硫化物蛍光体は、近紫外〜青の励起光を緑〜赤という幅広い波長領域に変換し、しかも発光強度も比較的高いという特徴を有している。そのため、硫化物蛍光体および酸硫化物蛍光体は、特に白色LED素子用発光色変換部材に用いられる無機蛍光体として有力視されている。硫化物蛍光体および酸硫化物蛍光体は比較的耐熱性が低く、LEDチップの熱や光により劣化しやすいという問題があるが、ガラス組成を適宜選択することにより、これらの蛍光体の劣化を抑制できることが知られている。
特開2007−23267号公報
By the way, YAG, oxides, nitrides, oxynitrides, sulfides, oxysulfides, halides, aluminate chlorides, halophosphates, and the like are known as the inorganic phosphors used in the luminescent color conversion member. It has been. Among these inorganic phosphors, sulfide phosphors and oxysulfide phosphors are characterized by converting near ultraviolet to blue excitation light into a wide wavelength range from green to red and having relatively high emission intensity. doing. For this reason, sulfide phosphors and oxysulfide phosphors are regarded as promising inorganic phosphors particularly used for light-emitting color conversion members for white LED elements. Sulfide phosphors and oxysulfide phosphors have relatively low heat resistance and are prone to degradation due to the heat and light of the LED chip. However, by appropriately selecting the glass composition, these phosphors can be degraded. It is known that it can be suppressed.
JP 2007-23267 A

特定の組成を有するガラス粉末を用いることにより、硫化物蛍光体または酸硫化物蛍光体自体の劣化を抑制できたとしても、焼成時にガラス粉末とこれらの蛍光体が反応するという問題がある。それにより、ガラス粉末が変色して発光色変換部材の光透過率が低下し、発光効率に劣る傾向がある。   Even if the deterioration of the sulfide phosphor or the oxysulfide phosphor itself can be suppressed by using the glass powder having a specific composition, there is a problem that the glass powder and these phosphors react during firing. Thereby, the glass powder changes color, the light transmittance of the luminescent color conversion member decreases, and the luminous efficiency tends to be inferior.

したがって、本発明は、硫化物蛍光体または酸硫化物蛍光体を含有し、かつ発光効率に優れた発光色変換部材を提供することを目的とする。   Accordingly, an object of the present invention is to provide a luminescent color conversion member containing a sulfide phosphor or an oxysulfide phosphor and having excellent luminous efficiency.

本発明者は、種々の実験を行った結果、硫化物蛍光体や酸硫化物蛍光体といったイオウを含む無機蛍光体を用いた発光色変換部材において、ガラス中のイオウがガラス変色の原因であることを突き止めた。そこで、波長変換部材におけるガラス中のイオウ含有量を制限することで、発光効率の高い発光色変換部材を得ることができることを見いだし、本発明として提案するものである。   As a result of various experiments, the present inventor has found that sulfur in glass is a cause of glass discoloration in a luminescent color conversion member using an inorganic phosphor containing sulfur such as a sulfide phosphor or an oxysulfide phosphor. I found out. Therefore, the present inventors have found that an emission color conversion member with high luminous efficiency can be obtained by limiting the sulfur content in the glass of the wavelength conversion member, and propose it as the present invention.

すなわち、本発明は、ガラス粉末と、硫化物および酸硫化物から選択される少なくとも1種の無機蛍光体粉末とを含有する混合粉末の焼結体からなる発光色変換部材であって、ガラス粉末が、質量%で、SiO 30〜70%、B 1〜15%、MgO 0〜10%、CaO 0〜25%、SrO 0〜10%、BaO 8〜40%(ただし、MgO+CaO+SrO+BaO 10〜45%)、Al 0〜20%、ZnO 0〜10%の組成を含有し、焼結体におけるガラス中のイオウ含有量が1質量%以下であることを特徴とする発光色変換部材に関する。 That is, the present invention is a light emitting color conversion member comprising a sintered body of a mixed powder containing glass powder and at least one inorganic phosphor powder selected from sulfides and oxysulfides, and the glass powder but, in mass%, SiO 2 30~70%, B 2 O 3 1~15%, 0~10% MgO, CaO 0~25%, SrO 0~10%, BaO 8~40% ( however, MgO + CaO + SrO + BaO 10 -45%), Al 2 O 3 0-20%, ZnO 0-10% composition , sulfur content in the glass in the sintered body is 1% by mass or less, emission color conversion characterized by It relates to members.

既述のように、硫化物蛍光体および酸硫化物蛍光体は、焼成時にガラス粉末と反応し、ガラスを変色させやすい。これは、硫化物蛍光体または酸硫化物蛍光体とガラス粉末が反応した結果、硫化物蛍光体または酸硫化物蛍光体に含まれるイオウがガラス中に拡散することが原因と考えられる。したがって、硫化物蛍光体または酸硫化物蛍光体とガラスの反応の度合いが大きいほど、ガラス中へのイオウの拡散量が多くなり、変色も顕著になる。   As described above, the sulfide phosphor and the oxysulfide phosphor react with the glass powder at the time of firing and easily change the color of the glass. This is presumably because sulfur contained in the sulfide phosphor or oxysulfide phosphor diffuses into the glass as a result of the reaction between the sulfide phosphor or oxysulfide phosphor and the glass powder. Therefore, the greater the degree of reaction between the sulfide phosphor or oxysulfide phosphor and the glass, the greater the amount of sulfur diffused into the glass, and the more discoloration becomes.

本発明では、焼結体のガラス中におけるイオウ含有量を1質量%以下に制限しているため、ガラスの変色を抑制し、結果として、光透過率が良好であり発光効率に優れた発光色変換部材を得ることが可能となる。   In the present invention, since the sulfur content in the glass of the sintered body is limited to 1% by mass or less, discoloration of the glass is suppressed, and as a result, a light emission color with good light transmittance and excellent light emission efficiency. A conversion member can be obtained.

第二に、本発明の発光色変換部材は、無機蛍光体粉末の含有量が0.01〜30質量%であることが好ましい。   2ndly, it is preferable that content of an inorganic fluorescent substance powder is 0.01-30 mass% in the luminescent color conversion member of this invention.

に、本発明は、前記いずれかの発光色変換部材を用いてなるLED素子に関する。 Thirdly , the present invention relates to an LED element using any one of the light emission color conversion members.

本発明の発光色変換部材は、例えば、波長250〜500nmの領域に発光ピークを有する光を照射すると、380〜780nmの可視光域に蛍光を発するものである。言い換えると、紫外(250〜400nm)や青色(400〜500nm)の励起光が照射されると、少なくともその一部を吸収して可視域の蛍光に変換する部材である。なお本発明でいう発光色変換部材は、ガラス粉末と無機蛍光体粉末の焼結体であれば特に形状は制限されず、例えば、板状、柱状、半球状等、それ自身が特定の形状を有する部材だけでなく、基材表面に形成された被膜状の焼結体も含まれる。   The luminescent color conversion member of the present invention emits fluorescence in the visible light range of 380 to 780 nm when irradiated with light having a light emission peak in a wavelength range of 250 to 500 nm, for example. In other words, when irradiated with ultraviolet (250 to 400 nm) or blue (400 to 500 nm) excitation light, it is a member that absorbs at least part of it and converts it into visible fluorescence. The shape of the luminescent color conversion member referred to in the present invention is not particularly limited as long as it is a sintered body of glass powder and inorganic phosphor powder. For example, a plate shape, a columnar shape, a hemispherical shape, etc. itself has a specific shape. In addition to the members having, a film-like sintered body formed on the substrate surface is also included.

本発明において、ガラス粉末は、無機蛍光体粉末を安定に保持するための媒体としての役割がある。本発明では、ガラス粉末としてはSiO−B−RO(ROは、MgO、CaO、SrOおよびBaOから選ばれる少なくとも1種)系の組成を含有するケイ酸塩ガラスを使用する。この系のガラスは軟化点が高いため、焼成時において無機蛍光体粉末と反応しにくいという特徴がある。またこの系のガラスを用いれば、無機蛍光体粉末の耐熱温度以上の温度で焼成しても、無機蛍光体粉末が劣化しにくいという特徴がある。なお、本発明において「〜系ガラス」とは、該当する成分を必須成分として含有するガラスをいう。 In the present invention, the glass powder serves as a medium for stably holding the inorganic phosphor powder. In the present invention, as the glass powder SiO 2 -B 2 O 3 -RO ( RO is, MgO, CaO, at least one selected from SrO and BaO) that use silicate glass containing the composition of the system. Since this type of glass has a high softening point, it is characterized in that it hardly reacts with the inorganic phosphor powder during firing. In addition, when this type of glass is used, the inorganic phosphor powder is less likely to deteriorate even when baked at a temperature higher than the heat resistant temperature of the inorganic phosphor powder . Your name, the "~ based glass" in the present invention, refers to the glass containing the appropriate component as an essential component.

SiO−B−RO系ガラスとしては、質量%で、SiO 30〜70%、B 1〜15%、MgO 0〜10%、CaO 0〜25%、SrO 0〜10%、BaO 8〜40%(ただし、MgO+CaO+SrO+BaO 10〜45%)、Al 0〜20%、ZnO 0〜10%の組成を含有するものが使用される。このように組成範囲を限定した理由は以下の通りである。 The SiO 2 -B 2 O 3 -RO based glass, in mass%, SiO 2 30~70%, B 2 O 3 1~15%, 0~10% MgO, CaO 0~25%, SrO 0~10 %, BaO 8-40% (however, MgO + CaO + SrO + BaO 10-45%), Al 2 O 3 0-20%, and ZnO 0-10% are used . The reason for limiting the composition range as described above is as follows.

SiOはガラスのネットワークを形成する成分である。SiOの含有量は30〜70%、好ましくは40〜60%である。SiOの含有量が30質量%よりも少なくなると化学的耐久性が低下する傾向がある。一方、SiOの含有量が70質量%よりも多くなると、焼結温度が高温になり、無機蛍光体粉末を劣化させやすくなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is 30 to 70%, preferably 40 to 60%. When the content of SiO 2 is less than 30% by mass, chemical durability tends to be lowered. On the other hand, when the content of SiO 2 is more than 70% by mass, the sintering temperature becomes high and the inorganic phosphor powder tends to be deteriorated.

はガラスの溶融温度を低下させて溶融性を著しく改善する成分である。Bの含有量は1〜15%、好ましくは2〜10%である。Bの含有量が1質量%よりも少なくなると、前記効果が得られにくくなる。一方、Bの含有量が15質量%よりも多くなると、化学的耐久性が低下する傾向がある。 B 2 O 3 is a component that significantly improves the meltability by lowering the melting temperature of the glass. The content of B 2 O 3 is 1 to 15%, preferably 2 to 10%. When the content of B 2 O 3 is less than 1% by mass, the above effect is hardly obtained. On the other hand, when the content of B 2 O 3 exceeds 15% by mass, the chemical durability tends to decrease.

MgO、CaO、SrO、BaOはガラスの溶融温度を低下させて溶融性を改善する成分である。   MgO, CaO, SrO, and BaO are components that improve the meltability by lowering the melting temperature of the glass.

MgOの含有量は0〜10%、好ましくは0.1〜5%である。MgOの含有量が10質量%よりも多くなると、化学的耐久性が劣化する傾向がある。   The content of MgO is 0 to 10%, preferably 0.1 to 5%. When the content of MgO exceeds 10% by mass, the chemical durability tends to deteriorate.

CaOの含有量は0〜25%、好ましくは3〜20%である。CaOの含有量が25質量%よりも多くなると、化学的耐久性が劣化する傾向にある。   The content of CaO is 0 to 25%, preferably 3 to 20%. When the content of CaO is more than 25% by mass, chemical durability tends to deteriorate.

SrOの含有量は0〜10%、好ましくは0.1〜5%である。SrOの含有量が10質量%よりも多くなると、化学的耐久性が劣化する傾向にある。   The content of SrO is 0 to 10%, preferably 0.1 to 5%. When the content of SrO is more than 10% by mass, chemical durability tends to deteriorate.

BaOは前記効果に加えて、ガラス粉末と無機蛍光体粉末の反応を抑制する効果を有する成分である。BaOの含有量は8〜40%、好ましくは10〜35%である。BaOの含有量が8質量%よりも少なくなると、ガラス粉末と無機蛍光体粉末との反応抑制効果が低下する傾向にある。一方、BaOの含有量が40質量%よりも多くなると、化学的耐久性が劣化する傾向にある。   BaO is a component having an effect of suppressing the reaction between the glass powder and the inorganic phosphor powder in addition to the above effect. The content of BaO is 8 to 40%, preferably 10 to 35%. When the content of BaO is less than 8% by mass, the reaction suppression effect between the glass powder and the inorganic phosphor powder tends to decrease. On the other hand, when the content of BaO exceeds 40% by mass, chemical durability tends to deteriorate.

なお、ガラスの化学的耐久性を劣化させることなく、溶融性を向上させるためには、MgO、CaO、SrOおよびBaOの合量(RO含有量)を10〜45%、さらには11〜40%に制限することが好ましい。RO含有量が10質量%より少なくなると、溶融性を改善する効果が得られにくくなる。一方、RO含有量が45質量%より多くなると、化学的耐久性が劣化しやすくなる。   In order to improve the meltability without deteriorating the chemical durability of the glass, the total amount (RO content) of MgO, CaO, SrO and BaO is 10 to 45%, more preferably 11 to 40%. It is preferable to limit to. When the RO content is less than 10% by mass, it is difficult to obtain the effect of improving the meltability. On the other hand, when the RO content exceeds 45% by mass, the chemical durability tends to deteriorate.

Alは化学的耐久性を向上させる成分である。Alの含有量は0〜20%、好ましくは2〜15%である。Alの含有量が20質量%よりも多くなると、ガラスの溶融性が悪化する傾向がある。 Al 2 O 3 is a component that improves chemical durability. The content of Al 2 O 3 is 0 to 20%, preferably 2 to 15%. When the content of Al 2 O 3 exceeds 20% by mass, the meltability of the glass tends to deteriorate.

ZnOはガラスの溶融温度を低下させて溶融性を改善する成分である。ZnOの含有量は0〜10%、好ましくは1〜7%である。ZnOの含有量が10質量%よりも多くなると、化学的耐久性が劣化する傾向にある。   ZnO is a component that improves the meltability by lowering the melting temperature of the glass. The content of ZnO is 0 to 10%, preferably 1 to 7%. When the content of ZnO exceeds 10% by mass, chemical durability tends to deteriorate.

また上記成分以外にも、本発明の効果を損なわない範囲で種々の成分を添加することができる。例えば、アルカリ金属酸化物、P、La等を合量で30質量%以下の範囲で添加してもよい。 In addition to the above components, various components can be added as long as the effects of the present invention are not impaired. For example, alkali metal oxides, P 2 O 5 , La 2 O 3 and the like may be added in a total amount of 30% by mass or less.

本発明においてガラス粉末の粒度は特に限定されないが、例えば、最大粒子径Dmaxが200μm以下(特に45〜150μm、さらには45〜105μm)、かつ平均粒子径D50が1μm以上(特に2〜20μm)であることが好ましい。ガラス粉末の最大粒子径が150μmを超えると、得られる波長変換部材中に粗大ガラス粒子が形成する透明部分が散在することになり、また光を散乱しにくくなるために、均一な散乱体にならず、励起光の色合いが強くなりやすい。また、平均粒子径D50が1μm未満であると、得られる波長変換部材が光を過剰に散乱させるために励起光の透過性が著しく低下し、発光効率が低下するばかりでなく、無機蛍光体粉末による変換波長の色合いが強くなりやすい。このように、発光色変換部材の光散乱を大きくしたい場合には粒度の小さいガラス粉末を、光散乱を小さくしたい場合には粒度の大きいガラス粉末を使用すればよい。なお、本発明において、最大粒子径Dmaxおよび平均粒子径D50はレーザー回折法により測定したものを指す。 Although the particle size of the glass powder is not particularly limited in the present invention, for example, the maximum particle diameter D max is 200μm or less (in particular 45~150Myuemu, further 45~105Myuemu), and an average particle diameter D 50 more than 1 [mu] m (especially 2~20μm ) Is preferable. If the maximum particle diameter of the glass powder exceeds 150 μm, transparent portions formed by coarse glass particles will be scattered in the obtained wavelength conversion member, and it will be difficult to scatter light. Therefore, the color of the excitation light tends to be strong. In addition, when the average particle diameter D 50 is less than 1 μm, the obtained wavelength conversion member scatters light excessively, so that the transmittance of the excitation light is remarkably lowered and the luminous efficiency is lowered. The conversion wavelength due to powder tends to be strong. Thus, when it is desired to increase the light scattering of the luminescent color conversion member, a glass powder with a small particle size may be used, and when it is desired to reduce the light scattering, a glass powder with a large particle size may be used. In the present invention, the maximum particle diameter D max and the average particle diameter D 50 refers to a value measured by a laser diffraction method.

無機蛍光体粉末としては、硫化物蛍光体および酸硫化物蛍光体の少なくとも1種を用いることができる。   As the inorganic phosphor powder, at least one of a sulfide phosphor and an oxysulfide phosphor can be used.

硫化物蛍光体としては、ZnS:Cu,Al3+、SrS:Eu2+、CaS:Eu2+、SrGa:Eu2+等が挙げられる。酸硫化物蛍光体としては、YS:Eu3+等が挙げられる。なおこれらの無機蛍光体は、化学耐久性が低いものが多く、単体で長時間使用すると、水分、熱、および光によって劣化しやすい。そのため通常は、真空中、あるいは希ガス中で取り扱う必要がある。しかし、ガラス粉末との焼結体にすると、これらの無機蛍光体が雰囲気中に直接晒されることがなくなり、雰囲気の影響による劣化がほとんど起こらなくなる。 Examples of the sulfide phosphor include ZnS: Cu + , Al 3+ , SrS: Eu 2+ , CaS: Eu 2+ , SrGa 2 S 4 : Eu 2+ and the like. Examples of the oxysulfide phosphor include Y 2 O 2 S: Eu 3+ . Many of these inorganic phosphors have low chemical durability, and when used alone for a long time, they tend to deteriorate due to moisture, heat and light. Therefore, it is usually necessary to handle in a vacuum or a rare gas. However, when a sintered body with glass powder is used, these inorganic phosphors are not directly exposed to the atmosphere, and deterioration due to the influence of the atmosphere hardly occurs.

なお上記無機蛍光体に加えて、YAG蛍光体、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体等を併用しても差し支えない。   In addition to the inorganic phosphor, a YAG phosphor, an oxide phosphor, a nitride phosphor, an oxynitride phosphor or the like may be used in combination.

発光色変換部材の発光効率(lm/W)は、ガラス中に分散した無機蛍光体粉末の種類や含有量、さらには発光色変換部材の厚みなどによって変化する。無機蛍光体粉末の含有量と発光色変換部材の厚みは、発光効率が最適になるように適宜調整すればよい。無機蛍光体粉末の含有量が多くなりすぎると、焼結しにくくなったり、気孔率が大きくなって、励起光が効率良く無機蛍光体に照射されにくくなったり、発光色変換部材の機械的強度が低下しやすくなるなどの問題が生じる。一方、無機蛍光体粉末の含有量が少なすぎると、所望の発光強度を得ることが困難になる。このような観点から、本発明の発光色変換部材における無機蛍光体粉末の含有量は0.01〜30質量%、好ましくは0.05〜20質量%、0.08〜15質量%の範囲で調整される。   The luminous efficiency (lm / W) of the luminescent color conversion member varies depending on the type and content of the inorganic phosphor powder dispersed in the glass, the thickness of the luminescent color conversion member, and the like. What is necessary is just to adjust suitably content of an inorganic fluorescent substance powder, and the thickness of the luminescent color conversion member so that luminous efficiency may become optimal. If the content of the inorganic phosphor powder becomes too large, it becomes difficult to sinter, the porosity increases, and the inorganic phosphor is not easily irradiated with the excitation light, or the mechanical strength of the luminescent color conversion member This causes problems such as being easily lowered. On the other hand, when there is too little content of inorganic fluorescent substance powder, it will become difficult to obtain desired luminescence intensity. From such a viewpoint, the content of the inorganic phosphor powder in the luminescent color conversion member of the present invention is 0.01 to 30% by mass, preferably 0.05 to 20% by mass, and 0.08 to 15% by mass. Adjusted.

また発光効率の高い発光色変換部材を作製するには、焼結後のガラス中のイオウ含有量が1質量%以下であることが重要である。ガラス中のイオウ含有量が1質量%より多いと、ガラスが着色しやすく、結果として、発光色変換部材の光透過率が低下し発光効率に劣る傾向がある。焼結後のガラス中のイオウ含有量が1質量%以下である発光色変換部材を作製するには、例えば無機蛍光体粉末に付着した水分量、ガラス粉末に付着した水分量、焼成温度、焼成雰囲気等を制御すればよい。これらのパラメータを制御することにより、無機蛍光体粉末とガラス粉末の反応を抑制し、無機蛍光体粉末に含まれるイオウのガラス中への拡散を低減することができる。   Moreover, in order to produce a luminescent color conversion member with high luminous efficiency, it is important that the sulfur content in the sintered glass is 1% by mass or less. When the sulfur content in the glass is more than 1% by mass, the glass tends to be colored, and as a result, the light transmittance of the luminescent color conversion member tends to decrease and the luminous efficiency tends to be inferior. In order to produce a light emitting color conversion member whose sulfur content in the glass after sintering is 1% by mass or less, for example, the amount of moisture attached to the inorganic phosphor powder, the amount of moisture attached to the glass powder, the firing temperature, the firing The atmosphere or the like may be controlled. By controlling these parameters, the reaction between the inorganic phosphor powder and the glass powder can be suppressed, and the diffusion of sulfur contained in the inorganic phosphor powder into the glass can be reduced.

硫化物蛍光体または酸硫化物蛍光体に付着した水分は、これらの無機蛍光体を酸化し、硫化水素ガスを発生させるおそれがある。硫化水素ガスは、焼成時におけるガラス中へのイオウの拡散を容易にする原因の一つであると考えられる。このような観点から、無機蛍光体粉末に付着した水分量は、好ましくは1質量%以下である。   Moisture adhering to the sulfide phosphor or oxysulfide phosphor may oxidize these inorganic phosphors and generate hydrogen sulfide gas. Hydrogen sulfide gas is considered to be one of the causes that facilitate the diffusion of sulfur into the glass during firing. From such a viewpoint, the amount of water adhering to the inorganic phosphor powder is preferably 1% by mass or less.

ガラス粉末に付着した水分は、硫化物蛍光体または酸硫化物蛍光体を酸化し、硫化水素ガスを発生させるおそれがある。硫化水素ガスは、焼成時におけるガラス中へのイオウの拡散を容易にする原因の一つであると考えられる。このような観点から、粉末ガラスに付着した水分量は、好ましくは1質量%以下である。   The water adhering to the glass powder may oxidize the sulfide phosphor or oxysulfide phosphor and generate hydrogen sulfide gas. Hydrogen sulfide gas is considered to be one of the causes that facilitate the diffusion of sulfur into the glass during firing. From such a viewpoint, the amount of water adhering to the powder glass is preferably 1% by mass or less.

無機蛍光体粉末および粉末ガラスに付着した水分量を前記範囲に調整する方法としては、例えば、100〜300℃で3〜10時間乾燥処理を行う方法が挙げられる。   Examples of the method for adjusting the amount of water adhering to the inorganic phosphor powder and the powder glass to the above range include a method of performing a drying treatment at 100 to 300 ° C. for 3 to 10 hours.

焼成温度は、ガラス粉末の軟化点±150℃、好ましくは±100℃の範囲で調整される。焼成温度が、ガラス粉末の軟化点−150℃より低いと、ガラスが流動せず、緻密な焼結体が得られにくい。一方、焼成温度が、軟化点+150℃より高いと、無機蛍光体粉末がガラス中に溶出して発光強度が弱くなったり、無機蛍光体粉末中のイオウがガラス中に拡散して、ガラス着色の原因となる可能性がある。   The firing temperature is adjusted in the range of the softening point of the glass powder ± 150 ° C., preferably ± 100 ° C. If the firing temperature is lower than the softening point of the glass powder of −150 ° C., the glass does not flow and it is difficult to obtain a dense sintered body. On the other hand, if the firing temperature is higher than the softening point + 150 ° C., the inorganic phosphor powder elutes into the glass and the emission intensity becomes weak, or the sulfur in the inorganic phosphor powder diffuses into the glass and the glass coloring It can be a cause.

なお、硫化物蛍光体および酸硫化物蛍光体が焼成によって劣化するのは、ガラスとの反応が主な原因であるが、これに加えて、これらの無機蛍光体粉末自体が酸化されることも原因の一つであると考えられる。それゆえ、焼成雰囲気中の酸素量を少なくすることにより、無機蛍光体粉末の劣化をより一層抑制することができる。したがって、酸素や水分の少ない焼成雰囲気とすることが好ましい。具体的には、不活性雰囲気(ドライN、Ar等)や減圧雰囲気で焼成することが好ましい。 The sulfide phosphors and oxysulfide phosphors are deteriorated by firing mainly due to the reaction with glass. In addition, these inorganic phosphor powders themselves may be oxidized. This is considered to be one of the causes. Therefore, the deterioration of the inorganic phosphor powder can be further suppressed by reducing the amount of oxygen in the firing atmosphere. Therefore, a firing atmosphere with less oxygen and moisture is preferable. Specifically, firing in an inert atmosphere (dry N 2 , Ar, etc.) or a reduced pressure atmosphere is preferable.

また、焼成雰囲気として減圧雰囲気を選択した場合、ガラス粉末が軟化して融着する際に生じる気泡が除去されやすくなる。その結果、得られる発光色変換部材は、気孔率(発光色変換部材中に残存する気泡の占める割合)を例えば2%以下に低減することが可能となるという効果も得られる。発光色変換部材中に残存する気泡が少ないと、光の散乱が少なくなって透過率が高くなり、発光効率が高くなりやすい。なお、減圧雰囲気とは、具体的には1.013×10Pa未満、好ましくは0.9×10Pa以下、より好ましくは1000Pa以下、さらに好ましくは200Pa以下である。下限については特に限定されないが、現実的には0.001Pa以上である。 Moreover, when the reduced pressure atmosphere is selected as the firing atmosphere, bubbles generated when the glass powder is softened and fused are easily removed. As a result, the obtained luminescent color conversion member also has an effect that the porosity (the proportion of bubbles remaining in the luminescent color conversion member) can be reduced to, for example, 2% or less. If there are few bubbles remaining in the luminescent color conversion member, light scattering is reduced, the transmittance is increased, and the luminous efficiency is likely to be increased. Note that the reduced-pressure atmosphere is specifically less than 1.013 × 10 5 Pa, preferably 0.9 × 10 5 Pa or less, more preferably 1000 Pa or less, and even more preferably 200 Pa or less. Although it does not specifically limit about a minimum, It is 0.001 Pa or more practically.

本発明の発光色変換部材は、特に、白色LED等の発光色変換LED素子を作製するために好適である。   The luminescent color conversion member of the present invention is particularly suitable for producing a luminescent color conversion LED element such as a white LED.

以下に、本発明の発光色変換部材を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Although the luminescent color conversion member of the present invention will be described in detail below based on examples, the present invention is not limited to these examples.

表1は本発明の実施例および比較例を示す。   Table 1 shows examples of the present invention and comparative examples.

発光色変換部材は以下のようにして作製した。   The luminescent color conversion member was produced as follows.

質量%で、SiO 50%、B 5%、CaO 10%、BaO 25%、Al 5%、ZnO 5%の組成となるように、各種酸化物のガラス原料を調合した。ガラス原料を均一に混合した後、白金坩堝に投入し、1400℃で2時間溶融して均一なガラスを得た。得られたガラスをアルミナボールで粉砕し、分級して平均粒径D50が2.5μmのガラス粉末(軟化点800℃)を得た。なお、実施例1〜4では、得られたガラス粉末を200℃で6時間乾燥させ、付着した水分の量を1質量%以下にしたものを用いた。一方、比較例1および2では、得られたガラス粉末に対して乾燥処理を行わず、そのまま用いた。 Glass materials of various oxides were prepared so that the composition was 50% by mass, SiO 2 50%, B 2 O 3 5%, CaO 10%, BaO 25%, Al 2 O 3 5%, ZnO 5%. . After mixing glass raw materials uniformly, it was put into a platinum crucible and melted at 1400 ° C. for 2 hours to obtain a uniform glass. The obtained glass was pulverized with alumina balls and classified to obtain glass powder (softening point 800 ° C.) having an average particle diameter D 50 of 2.5 μm. In Examples 1 to 4, the obtained glass powder was dried at 200 ° C. for 6 hours, and the amount of attached water was 1% by mass or less. On the other hand, in Comparative Examples 1 and 2, the obtained glass powder was used without being subjected to a drying treatment.

次に、得られたガラス粉末に、無機蛍光体粉末を表1に示す質量比で混合して混合粉末を作製した。混合粉末を金型で加圧成型して直径1cmの円柱状予備成型体を作製した。この予備成型体を、表1に示す焼結温度で焼成した後加工し、直径8mm、厚さ1mmの円盤状の発光色変換部材を得た。得られた発光色変換部材について、発光スペクトルを測定し、発光効率を算出した。結果を表1に示す。   Next, an inorganic phosphor powder was mixed with the obtained glass powder at a mass ratio shown in Table 1 to prepare a mixed powder. The mixed powder was pressure-molded with a mold to prepare a cylindrical preform with a diameter of 1 cm. The preform was fired at the sintering temperature shown in Table 1 and then processed to obtain a disk-like light emitting color conversion member having a diameter of 8 mm and a thickness of 1 mm. About the obtained luminescent color conversion member, the emission spectrum was measured and the luminous efficiency was computed. The results are shown in Table 1.

発光スペクトルは、励起波長460nmの光を発光色変換部材の片面に入射し、反対側の面から出射した光を汎用の発光スペクトル測定装置を用いて測定した。発光効率は、出射光の全光束を積分球を用いて求め、標準比視感度を掛け合わせた後、光源の電力で除することにより算出した。   The emission spectrum was measured using a general-purpose emission spectrum measuring device with light having an excitation wavelength of 460 nm incident on one side of the emission color conversion member and emitted from the opposite side. The luminous efficiency was calculated by obtaining the total luminous flux of the emitted light using an integrating sphere, multiplying it by the standard relative luminous sensitivity, and then dividing by the power of the light source.

ガラス粉末に付着した水分量は、ガラス粉末に乾燥処理を施した際の乾燥前後での質量差により算出した。   The amount of water adhering to the glass powder was calculated from the difference in mass before and after drying when the glass powder was dried.

発光色変換部材のガラス部分におけるイオウ含有量は、EPMA(電子線プローブマイクロアナライザー)を用いて測定した。   The sulfur content in the glass portion of the luminescent color conversion member was measured using EPMA (Electron Probe Microanalyzer).

表1に示す結果から明らかなように、実施例1〜4の発光色変換部材は高い発光効率を示しているが、比較例1および2の発光色変換部材は、ガラス中におけるイオウ含有量が1質量%より多いため高い発光効率が得られなかった。   As is clear from the results shown in Table 1, the luminescent color conversion members of Examples 1 to 4 show high luminous efficiency, but the luminescent color conversion members of Comparative Examples 1 and 2 have a sulfur content in the glass. Since it is more than 1% by mass, high luminous efficiency could not be obtained.

Claims (3)

ガラス粉末と、硫化物および酸硫化物から選択される少なくとも1種の無機蛍光体粉末とを含有する混合粉末の焼結体からなる発光色変換部材であって、ガラス粉末が、質量%で、SiO 30〜70%、B 1〜15%、MgO 0〜10%、CaO 0〜25%、SrO 0〜10%、BaO 8〜40%(ただし、MgO+CaO+SrO+BaO 10〜45%)、Al 0〜20%、ZnO 0〜10%の組成を含有し、焼結体におけるガラス中のイオウ含有量が1質量%以下であることを特徴とする発光色変換部材。 A luminescent color conversion member comprising a sintered powder of a mixed powder containing glass powder and at least one inorganic phosphor powder selected from sulfides and oxysulfides, wherein the glass powder is, by mass, SiO 2 30~70%, B 2 O 3 1~15%, 0~10% MgO, CaO 0~25%, SrO 0~10%, BaO 8~40% ( however, MgO + CaO + SrO + BaO 10~45%), Al A luminescent color conversion member comprising a composition of 2 O 3 0 to 20% and ZnO 0 to 10%, and having a sulfur content of 1% by mass or less in glass in the sintered body. 無機蛍光体粉末の含有量が0.01〜30質量%であることを特徴とする請求項1に記載の発光色変換部材。   2. The luminescent color conversion member according to claim 1, wherein the content of the inorganic phosphor powder is 0.01 to 30% by mass. 請求項1または2に記載の発光色変換部材を用いてなるLED素子。 The LED element which uses the luminescent color conversion member of Claim 1 or 2 .
JP2008256497A 2008-10-01 2008-10-01 Luminescent color conversion member Expired - Fee Related JP5240656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008256497A JP5240656B2 (en) 2008-10-01 2008-10-01 Luminescent color conversion member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256497A JP5240656B2 (en) 2008-10-01 2008-10-01 Luminescent color conversion member

Publications (2)

Publication Number Publication Date
JP2010084069A JP2010084069A (en) 2010-04-15
JP5240656B2 true JP5240656B2 (en) 2013-07-17

Family

ID=42248340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256497A Expired - Fee Related JP5240656B2 (en) 2008-10-01 2008-10-01 Luminescent color conversion member

Country Status (1)

Country Link
JP (1) JP5240656B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150138515A (en) * 2014-05-29 2015-12-10 주식회사 베이스 White led package with low color temperature and method of manufacturing the same
KR101949893B1 (en) * 2016-11-25 2019-02-19 광주과학기술원 Sapphire phosphor plate and white light apparatus based on laser using thereof
EP3699652B1 (en) * 2017-10-19 2022-08-24 Panasonic Intellectual Property Management Co., Ltd. Wavelength converter

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002160939A (en) * 2000-09-13 2002-06-04 Nippon Electric Glass Co Ltd Powdery material for plasma display panel
JP2005336018A (en) * 2004-05-28 2005-12-08 Central Glass Co Ltd Low melting point glass and its production method
JP2007023267A (en) * 2005-06-16 2007-02-01 Nippon Electric Glass Co Ltd Emission color-converting material
JP2007091808A (en) * 2005-09-27 2007-04-12 Nippon Electric Glass Co Ltd Emitted light color-converting member
JP5371359B2 (en) * 2007-12-27 2013-12-18 豊田合成株式会社 Phosphor-containing glass plate and method for manufacturing light-emitting device

Also Published As

Publication number Publication date
JP2010084069A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
TWI657125B (en) Wavelength conversion member and light-emitting device using the same
JP5483795B2 (en) Luminescent color conversion material and luminescent color conversion member
JP4873361B2 (en) Luminescent color conversion member
JP5152687B2 (en) Luminescent color conversion material
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
TWI715784B (en) Wavelength conversion member and light-emitting device using the same
TWI711189B (en) Wavelength conversion member and light-emitting device using the same
JP5242905B2 (en) Luminescent color conversion member manufacturing method and luminescent color conversion member
JP2007191702A (en) Light emission color converting material
JP2008021868A (en) Phosphor composite member
KR102258536B1 (en) Wavelength-conversion member and light-emitting device
JP6425001B2 (en) Wavelength conversion material, wavelength conversion member and light emitting device
JP7290108B2 (en) Nano-phosphor-attached inorganic particles and wavelength conversion member
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2013055269A (en) Wavelength conversion member and light-emitting device
JP2008255362A (en) Emitting color conversion member
JP2010132923A (en) Light emission color conversion member
JP5240656B2 (en) Luminescent color conversion member
JP6861952B2 (en) Wavelength conversion member and light emitting device using it
JP2008208380A (en) Luminescent color-converting member
JP7205808B2 (en) WAVELENGTH CONVERSION MEMBER AND LIGHT-EMITTING DEVICE USING THE SAME
JP2010132922A (en) Composite component for light emission color conversion
JP2013030536A (en) Light-emitting color conversion member and light-emitting device using the same
JP2010174246A (en) Emitting color conversion member
JP2019151522A (en) Wavelength conversion member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5240656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130324

LAPS Cancellation because of no payment of annual fees