JP5237902B2 - Crystalline resin particles - Google Patents

Crystalline resin particles Download PDF

Info

Publication number
JP5237902B2
JP5237902B2 JP2009196092A JP2009196092A JP5237902B2 JP 5237902 B2 JP5237902 B2 JP 5237902B2 JP 2009196092 A JP2009196092 A JP 2009196092A JP 2009196092 A JP2009196092 A JP 2009196092A JP 5237902 B2 JP5237902 B2 JP 5237902B2
Authority
JP
Japan
Prior art keywords
resin
crystalline
acid
parts
crystalline resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009196092A
Other languages
Japanese (ja)
Other versions
JP2010077419A (en
Inventor
貴司 芥川
浩二 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Chemical Industries Ltd
Original Assignee
Sanyo Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Chemical Industries Ltd filed Critical Sanyo Chemical Industries Ltd
Priority to JP2009196092A priority Critical patent/JP5237902B2/en
Publication of JP2010077419A publication Critical patent/JP2010077419A/en
Application granted granted Critical
Publication of JP5237902B2 publication Critical patent/JP5237902B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、結晶性樹脂粒子に関する。 The present invention relates to crystalline resin particles.

従来より低エネルギーで樹脂粒子を定着する技術が望まれている。そのため、より低温で定着し得る樹脂粒子の要求が強い。
樹脂粒子の定着温度を低くする手段として、樹脂のガラス転移点を低くする技術が一般的に行われている。しかし、ガラス転移点をあまりに低くし過ぎると、粉体の凝集(ブロッキング)が起り易く、また、定着画像表面の樹脂粒子の保存性が悪くなるため、実用上50℃が下限である。樹脂をバインダーとして用いる場合、このガラス転移点は樹脂の設計ポイントであり、ガラス転移点を下げる方法では、今以上に低温定着可能な樹脂粒子を得ることはできなかった。
ブロッキング防止、低温定着性の両立の手段として、結晶性樹脂を樹脂として用いる方法が古くから知られている。しかし、溶融時の弾性不足により定着悪化が起こる問題があった。
また、ブロッキング防止、低温定着性の両立の手段として、溶融懸濁法等を用い、シェルをもつ樹脂粒子が提案されている(例えば、特許文献1参照)。しかしながら、低温定着を維持しながら、良好な耐ブロッキング性を得るためには、以上の技術ではまだ不十分である。
A technique for fixing resin particles with lower energy than before has been desired. Therefore, there is a strong demand for resin particles that can be fixed at a lower temperature.
As a means for lowering the fixing temperature of the resin particles, a technique for lowering the glass transition point of the resin is generally performed. However, if the glass transition point is too low, powder aggregation (blocking) tends to occur, and the preservability of the resin particles on the surface of the fixed image is deteriorated. When a resin is used as a binder, this glass transition point is a design point of the resin, and it has not been possible to obtain resin particles that can be fixed at a lower temperature than before by the method of reducing the glass transition point.
As a means for achieving both blocking prevention and low-temperature fixability, a method using a crystalline resin as a resin has been known for a long time. However, there has been a problem that fixing deterioration occurs due to insufficient elasticity at the time of melting.
Further, as means for achieving both blocking prevention and low-temperature fixability, resin particles having a shell using a melt suspension method or the like have been proposed (for example, see Patent Document 1). However, the above techniques are still insufficient to obtain good blocking resistance while maintaining low temperature fixing.

特開2007−70621号公報JP 2007-70621 A

本発明は、上記従来技術の問題点を解決することを目的とする。すなわち、本発明は、低温定着性及び耐ブロッキング性に優れた樹脂粒子を提供することを目的とする。   The object of the present invention is to solve the above-mentioned problems of the prior art. That is, an object of the present invention is to provide resin particles having excellent low-temperature fixability and blocking resistance.

上記課題は、以下の本発明により達成される。
本発明は、結晶性樹脂(A)を含有する樹脂粒子であって、該樹脂粒子が、水系媒体を用いて作製され、融解熱の最大ピーク温度(Ta)が40〜100℃、軟化点とTaの比(軟化点/Ta)が0.8〜1.55であり、かつ以下の条件を満たすことを特徴とする結晶性樹脂粒子である。
〔条件1〕 G’(Ta+20)=1×102〜5×105[Pa]
〔条件2〕 G”(Ta+20)=1×102〜5×105[Pa]
[G’:貯蔵弾性率、G”:損失弾性率]
The above-mentioned subject is achieved by the following present invention.
The present invention is a resin particle containing a crystalline resin (A), wherein the resin particle is produced using an aqueous medium, the maximum peak temperature (Ta) of heat of fusion is 40 to 100 ° C., and the softening point. The crystalline resin particles are characterized in that the ratio of Ta (softening point / Ta) is 0.8 to 1.55 and the following conditions are satisfied.
[Condition 1] G ′ (Ta + 20) = 1 × 10 2 to 5 × 10 5 [Pa]
[Condition 2] G ″ (Ta + 20) = 1 × 10 2 to 5 × 10 5 [Pa]
[G ′: storage elastic modulus, G ″: loss elastic modulus]

本発明により、低温定着性及び耐ブロッキング性に優れた結晶性樹脂粒子を提供することができる。また、帯電特性も良好である。   According to the present invention, crystalline resin particles having excellent low-temperature fixability and blocking resistance can be provided. Also, the charging characteristics are good.

以下、本発明の結晶性樹脂粒子を詳細に説明する。
本発明において「結晶性」とは、軟化点と融解熱の最大ピーク温度との比(軟化点/融解熱の最大ピーク温度)が0.8〜1.55であり、示差走査熱量測定(DSC)において、階段状の吸熱量変化ではなく、明確な吸熱ピークを有することを指す。また、「非結晶性」とは、(軟化点/融解熱の最大ピーク温度)が1.55より大きいことを指す。
Hereinafter, the crystalline resin particles of the present invention will be described in detail.
In the present invention, “crystallinity” means a ratio of softening point to maximum peak temperature of heat of fusion (softening point / maximum peak temperature of heat of fusion) of 0.8 to 1.55, and differential scanning calorimetry (DSC). ) Refers to having a clear endothermic peak rather than a stepwise endothermic change. “Non-crystalline” means that (softening point / maximum peak temperature of heat of fusion) is greater than 1.55.

本発明の結晶性樹脂粒子は、耐熱保存性の観点から、その融解熱の最大ピーク温度(Ta)が40〜100℃の範囲である必要があり、好ましくは45〜80℃、さらに好ましくは50〜70℃である。   From the viewpoint of heat-resistant storage stability, the crystalline resin particles of the present invention must have a maximum heat of fusion peak temperature (Ta) in the range of 40 to 100 ° C, preferably 45 to 80 ° C, more preferably 50. ~ 70 ° C.

結晶性樹脂粒子の軟化点と融解熱の最大ピーク温度(Ta)との比(軟化点/Ta)は、前記のように0.8〜1.55であり、好ましくは0.85〜1.25、より好ましくは0.9〜1.2、とくに好ましくは0.9〜1.19である。この範囲以外であると、トナー粒子として用いた場合に、画像劣化しやすくなる。   The ratio (softening point / Ta) between the softening point of the crystalline resin particles and the maximum peak temperature (Ta) of the heat of fusion is 0.8 to 1.55 as described above, preferably 0.85 to 1. 25, more preferably 0.9 to 1.2, particularly preferably 0.9 to 1.19. If it is outside this range, the image tends to deteriorate when used as toner particles.

本発明において、軟化点および融解熱の最大ピーク温度は、次のように測定される値である。
<軟化点>
降下式フローテスター{たとえば、(株)島津製作所製、CFT−500D}を用いて、1gの測定試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出して、「プランジャー降下量(流れ値)」と「温度」とのグラフを描き、プランジャーの降下量の最大値の1/2に対応する温度をグラフから読み取り、この値(測定試料の半分が流出したときの温度)を軟化点とする。
In the present invention, the softening point and the maximum peak temperature of the heat of fusion are values measured as follows.
<Softening point>
Using a descending flow tester {for example, CFT-500D, manufactured by Shimadzu Corporation), a load of 1.96 MPa was applied by a plunger while heating a measurement sample of 1 g at a heating rate of 6 ° C./min. Extrude from a nozzle with a diameter of 1 mm and a length of 1 mm, draw a graph of “plunger descent amount (flow value)” and “temperature”, and graph the temperature corresponding to 1/2 of the maximum plunger descent amount And this value (temperature when half of the measurement sample flows out) is taken as the softening point.

<融解熱の最大ピーク温度>
示差走査熱量計(DSC){たとえば、セイコー電子工業社製、DSC210}を用いて、測定する。
融解熱の最大ピーク温度の測定に供する試料は、前処理として、130℃で溶融した後、130℃から70℃まで1.0℃/分の速度で降温し、次に70℃から10℃まで0.5℃/分の速度で降温する。ここで、一度DSCにより、昇温速度20℃/分で昇温して吸発熱変化を測定して、「吸発熱量」と「温度」とのグラフを描き、このとき観測される20℃〜100℃にある吸熱ピーク温度を「Ta*」とする。複数ある場合は最も吸熱量が大きいピークの温度をTa*とする。最後に試料を(Ta*−10)℃で6時間保管した後、(Ta*−15)℃で6時間保管する。
次いで、上記試料を、DSCにより、降温速度10℃/分で0℃まで冷却した後、昇温速度20℃/分で昇温して吸発熱変化を測定して、同様のグラフを描き、吸発熱量の最大ピークに対応する温度を、融解熱の最大ピーク温度とする。
<Maximum peak heat of fusion>
Measurement is performed using a differential scanning calorimeter (DSC) {for example, DSC210 manufactured by Seiko Denshi Kogyo Co., Ltd.}.
As a pretreatment, a sample to be used for measurement of the maximum peak temperature of heat of fusion is melted at 130 ° C., then lowered from 130 ° C. to 70 ° C. at a rate of 1.0 ° C./minute, and then from 70 ° C. to 10 ° C. The temperature is lowered at a rate of 0.5 ° C./min. Here, by DSC, the temperature is increased at a rate of temperature increase of 20 ° C./min, and the endothermic change is measured, and the graph of “endothermic amount” and “temperature” is drawn. The endothermic peak temperature at 100 ° C. is defined as “Ta *”. When there are a plurality of peaks, the peak temperature with the largest endothermic amount is Ta *. Finally, the sample is stored at (Ta * -10) ° C. for 6 hours and then stored at (Ta * −15) ° C. for 6 hours.
Next, the sample was cooled to 0 ° C. by DSC at a rate of temperature decrease of 10 ° C./min, and then the temperature was increased at a rate of temperature increase of 20 ° C./min to measure the endothermic change. The temperature corresponding to the maximum peak of the calorific value is taken as the maximum peak temperature of the heat of fusion.

結晶性樹脂粒子の粘弾性特性において、(Ta+20)℃(Taは融解熱の最大ピーク温度)の貯蔵弾性率G’は、1×102〜5×105[Pa]の範囲〔条件1〕であり、好ましくは2×102〜3×105[Pa]である。
(Ta+20)℃におけるG’が1×102Pa未満であると、弾性不足により定着悪化が起きやすく、定着温度領域が狭くなる。また5×105[Pa]を超えると低温側で定着可能な粘性になりにくく、低温での定着性が悪化する。
〔条件1〕を満たす結晶性樹脂粒子は、樹脂粒子を構成する樹脂中の結晶性成分の比率を調整することや樹脂分子量を調整すること等により得ることができる。例えば、結晶性部(b)の比率や結晶性成分の比率を増加させると、G’(Ta+20)の値は小さくなる。結晶性成分としては、直鎖構造を有するポリオール、ポリイソシアネート等が挙げられる。また樹脂分子量を低下させることでもG’(Ta+20)の値は小さくなる。
In the viscoelastic properties of the crystalline resin particles, the storage elastic modulus G ′ at (Ta + 20) ° C. (Ta is the maximum peak temperature of heat of fusion) is in the range of 1 × 10 2 to 5 × 10 5 [Pa] [Condition 1]. It is preferably 2 × 10 2 to 3 × 10 5 [Pa].
When G ′ at (Ta + 20) ° C. is less than 1 × 10 2 Pa, fixing deterioration is likely to occur due to insufficient elasticity, and the fixing temperature region becomes narrow. On the other hand, if it exceeds 5 × 10 5 [Pa], it becomes difficult for the viscosity to be fixed on the low temperature side, and the fixing property at low temperature is deteriorated.
Crystalline resin particles satisfying [Condition 1] can be obtained by adjusting the ratio of the crystalline components in the resin constituting the resin particles, adjusting the resin molecular weight, or the like. For example, when the ratio of the crystalline part (b) or the ratio of the crystalline component is increased, the value of G ′ (Ta + 20) decreases. Examples of the crystalline component include polyols having a linear structure, polyisocyanates, and the like. Further, the value of G ′ (Ta + 20) is decreased by decreasing the resin molecular weight.

本発明において、動的粘弾性測定値(貯蔵弾性率G’、損失弾性率G”)は、Rheometric Scientific社製 動的粘弾性測定装置 RDS−2を用い周波数1Hz条件下で測定される。
測定試料は、測定装置の冶具にセットした後、(Ta+30)℃まで昇温して冶具に密着させてから、(Ta+30)℃から(Ta−30)℃まで0.5℃/分の速度で降温し、(Ta−30)℃で1時間静置し、次いで(Ta−10)℃まで0.5℃/分の速度で降温し、さらに(Ta−10)℃で1時間静置し、十分に結晶化を進行させたのち、これを用いて測定を行う。測定温度範囲は30℃〜200℃で、この温度間の溶融粘弾性を測定することによって、温度−G’、温度−G”の曲線として得ることができる。
なお、結晶性樹脂(A)を測定する場合、上記の結晶性樹脂粒子融解熱の最大ピーク温度(Ta)を、結晶性樹脂(A)の融解熱の最大ピーク温度(Ta’)に読み替えて行う。
In the present invention, the dynamic viscoelasticity measurement values (storage elastic modulus G ′, loss elastic modulus G ″) are measured under a frequency of 1 Hz using a dynamic viscoelasticity measuring device RDS-2 manufactured by Rheometric Scientific.
After setting the measurement sample on the jig of the measurement apparatus, the temperature is raised to (Ta + 30) ° C. and brought into close contact with the jig, and then from (Ta + 30) ° C. to (Ta−30) ° C. at a rate of 0.5 ° C./min. The temperature was lowered, left at (Ta-30) ° C. for 1 hour, then lowered to (Ta-10) ° C. at a rate of 0.5 ° C./minute, and further left at (Ta-10) ° C. for 1 hour, After sufficient crystallization has proceeded, measurement is performed using this. The measurement temperature range is 30 ° C. to 200 ° C. By measuring the melt viscoelasticity between these temperatures, it can be obtained as a curve of temperature-G ′ and temperature-G ″.
When measuring the crystalline resin (A), the maximum peak temperature (Ta) of the crystalline resin particle melting heat is read as the maximum peak temperature (Ta ′) of the melting heat of the crystalline resin (A). Do.

また、結晶性樹脂粒子の粘弾性特性において、(Ta+20)℃(Taは融解熱の最大ピーク温度)の損失弾性率G”は、1×102〜5×105[Pa]の範囲〔条件2〕であり、好ましくは5×102〜3×105[Pa]である。
(Ta+20)℃におけるG”が5×105Paを超えると、低温定着時でコールドオフセットが起きやすくなり、低温定着性が悪化する。また1×102[Pa]未満であると低温定着時でもホットオフセットが起き、定着温度領域が狭くなる。
〔条件2〕を満たす結晶性樹脂粒子は、樹脂粒子を構成する樹脂中の結晶性成分の比率を調整すること等により得ることができる。例えば、結晶性部(b)の比率や結晶性成分の比率を増加させると、G”(Ta+20)の値は小さくなる。結晶性成分としては、直鎖構造を有するポリオール、ポリイソシアネート等が挙げられる。
In the viscoelastic properties of the crystalline resin particles, the loss elastic modulus G ″ at (Ta + 20) ° C. (Ta is the maximum peak temperature of heat of fusion) is in the range of 1 × 10 2 to 5 × 10 5 [Pa] [Conditions 2], preferably 5 × 10 2 to 3 × 10 5 [Pa].
When G ″ at (Ta + 20) ° C. exceeds 5 × 10 5 Pa, cold offset is likely to occur at low temperature fixing, and the low temperature fixing property deteriorates. When it is less than 1 × 10 2 [Pa], low temperature fixing is performed. However, hot offset occurs and the fixing temperature range becomes narrow.
Crystalline resin particles satisfying [Condition 2] can be obtained by adjusting the ratio of the crystalline component in the resin constituting the resin particles. For example, when the ratio of the crystalline part (b) or the ratio of the crystalline component is increased, the value of G ″ (Ta + 20) decreases. Examples of the crystalline component include polyols having a linear structure, polyisocyanates, and the like. It is done.

また、結晶性樹脂粒子の粘弾性特性において、(Ta+30)℃における損失弾性率G”と(Ta+70)℃における損失弾性率G”の比〔G”(Ta+30)/G”(Ta+70)〕が、0.05〜50であることが好ましく、0.1〜40がさらに好ましく、0.5〜30がとくに好ましい〔Ta:結晶性樹脂の融解熱の最大ピーク温度〕。
結晶性樹脂粒子の〔G”(Ta+30)/G”(Ta+70)〕が0.05〜50であるとき、結晶性樹脂粒子の弾性が維持され、定着温度領域の低温側、高温側で同等の定着性を得ることができる。
上記のG”の比の条件を満たす結晶性樹脂粒子は、樹脂粒子を構成する樹脂中の結晶性成分の比率や結晶性部(b)の分子量を調整すること等により得ることができる例えば、結晶性部(b)の比率や結晶性成分の比率を増加させると、〔G”(Ta+30)/G”(Ta+70)〕の値は小さくなる。また結晶性部(b)の分子量を増加させると〔G”(Ta+30)/G”(Ta+70)〕の値は小さくなる。結晶性成分としては、直鎖構造を有するポリオール、ポリイソシアネート等が挙げられる。
Further, in the viscoelastic properties of the crystalline resin particles, the ratio of the loss elastic modulus G ″ at (Ta + 30) ° C. to the loss elastic modulus G ″ at (Ta + 70) ° C. [G ″ (Ta + 30) / G ″ (Ta + 70)] It is preferably 0.05 to 50, more preferably 0.1 to 40, and particularly preferably 0.5 to 30 [Ta: maximum peak temperature of heat of fusion of crystalline resin].
When [G ″ (Ta + 30) / G ″ (Ta + 70)] of the crystalline resin particles is 0.05 to 50, the elasticity of the crystalline resin particles is maintained, and it is the same on the low temperature side and the high temperature side of the fixing temperature region. Fixability can be obtained.
The crystalline resin particles satisfying the above G ″ ratio can be obtained by adjusting the ratio of the crystalline component in the resin constituting the resin particles, the molecular weight of the crystalline part (b), etc. Increasing the ratio of the crystalline part (b) or the ratio of the crystalline component decreases the value of [G ″ (Ta + 30) / G ″ (Ta + 70)]. Also increases the molecular weight of the crystalline part (b). And the value of [G ″ (Ta + 30) / G ″ (Ta + 70)] are small. Examples of the crystalline component include polyols having a linear structure, polyisocyanates, and the like.

本発明の結晶性樹脂粒子は結晶性樹脂(A)を含有する。
尚、樹脂が結晶性樹脂と非結晶性樹脂のブロック体であっても、示差走査熱量測定(DSC)において、明確な吸熱ピークを有し、(軟化点/融解熱の最大ピーク温度)が0.8〜1.55である場合は、これも結晶性樹脂とする。
The crystalline resin particles of the present invention contain a crystalline resin (A).
Even if the resin is a block body of a crystalline resin and an amorphous resin, the differential scanning calorimetry (DSC) has a clear endothermic peak, and (softening point / maximum peak temperature of heat of fusion) is 0. If it is .8 to 1.55, this is also a crystalline resin.

結晶性樹脂(A)は、耐熱保存性の観点から、その融解熱の最大ピーク温度(Ta’)が40〜100℃の範囲であるのが好ましく、さらに好ましくは45〜80℃、とくに好ましくは50〜70℃である。   From the viewpoint of heat-resistant storage stability, the crystalline resin (A) preferably has a maximum peak temperature (Ta ′) of heat of fusion in the range of 40 to 100 ° C., more preferably 45 to 80 ° C., particularly preferably. 50-70 ° C.

結晶性樹脂(A)の軟化点と融解熱の最大ピーク温度(Ta’)との比(軟化点/Ta’)は、0.8〜1.55が好ましく、さらに好ましくは0.85〜1.25、とくに好ましくは0.9〜1.2、とくに好ましくは0.9〜1.19である。この範囲内であると、耐熱保存性と低温定着性の両立が容易になる。   The ratio (softening point / Ta ′) between the softening point of the crystalline resin (A) and the maximum peak temperature (Ta ′) of heat of fusion is preferably 0.8 to 1.55, more preferably 0.85 to 1. .25, particularly preferably 0.9 to 1.2, particularly preferably 0.9 to 1.19. Within this range, it is easy to achieve both heat-resistant storage stability and low-temperature fixability.

結晶性樹脂(A)の粘弾性特性において、(Ta’+20)℃〔Ta’は(A)の融解熱の最大ピーク温度〕の貯蔵弾性率G’は、50〜1×106[Pa]の範囲〔条件3〕であることが好ましく、さらに好ましくは100〜5×105[Pa]である。
(Ta’+20)℃におけるG’が50Pa以上であると、弾性不足により定着悪化が起きにくく、定着温度領域が広くなる。
〔条件3〕を満たす結晶性樹脂(A)は、(A)を構成する組成中の結晶性成分の比率を調整すること等により得ることができる。例えば結晶性部(b)の比率や結晶性成分の比率を増加させると、G’(Ta’+20)の値は小さくなる。結晶性成分としては、直鎖構造を有するポリオール、ポリイソシアネート等が挙げられる。
In the viscoelastic property of the crystalline resin (A), the storage elastic modulus G ′ at (Ta ′ + 20) ° C. [Ta ′ is the maximum peak temperature of heat of fusion of (A)] is 50 to 1 × 10 6 [Pa]. It is preferable that it is the range [condition 3] of this, More preferably, it is 100-5 * 10 < 5 > [Pa].
When G ′ at (Ta ′ + 20) ° C. is 50 Pa or more, fixing deterioration hardly occurs due to insufficient elasticity, and the fixing temperature range is widened.
The crystalline resin (A) satisfying [Condition 3] can be obtained by adjusting the ratio of the crystalline component in the composition constituting (A). For example, when the ratio of the crystalline part (b) or the ratio of the crystalline component is increased, the value of G ′ (Ta ′ + 20) decreases. Examples of the crystalline component include polyols having a linear structure, polyisocyanates, and the like.

結晶性樹脂(A)の溶融開始温度(X)は、(Ta’±30)℃の温度範囲内であり、好ましくは(Ta’±20)℃の温度範囲内、さらに好ましくは(Ta’±15)℃の温度範囲内である。
(X)は、具体的には30〜100℃が好ましく、さらに好ましくは40〜80℃である。
溶融開始温度(X)は、次のようにして測定される値である。
<溶融開始温度>
降下式フローテスター{たとえば、(株)島津製作所製、CFT−500D}を用いて、1gの測定試料を昇温速度6℃/分で加熱しながら、プランジャーにより1.96MPaの荷重を与え、直径1mm、長さ1mmのノズルから押し出して、「プランジャー降下量(流れ値)」と「温度」とのグラフを描き、試料の熱膨張によるピストンのわずかな上昇が行われた後、再びピストンが明らかに下降し始める点の温度をグラフから読み取り、この値を溶融開始温度とする。
The melting start temperature (X) of the crystalline resin (A) is within the temperature range of (Ta ′ ± 30) ° C., preferably within the temperature range of (Ta ′ ± 20) ° C., more preferably (Ta ′ ± 15) Within the temperature range of ° C.
Specifically, (X) is preferably 30 to 100 ° C, more preferably 40 to 80 ° C.
The melting start temperature (X) is a value measured as follows.
<Melting start temperature>
Using a descending flow tester {for example, CFT-500D, manufactured by Shimadzu Corporation), a load of 1.96 MPa was applied by a plunger while heating a measurement sample of 1 g at a heating rate of 6 ° C./min. After extruding from a nozzle with a diameter of 1 mm and a length of 1 mm, draw a graph of “plunger descent amount (flow value)” and “temperature”. Is read from the graph, and this value is taken as the melting start temperature.

また、結晶性樹脂(A)の損失弾性率G”と溶融開始温度(X)に関して、以下の〔条件4〕を満たすことが好ましく、〔条件4−2〕を満たすことがさらに好ましく、〔条件4−3〕を満たすことがとくに好ましい。
〔条件4〕|LogG”(X+20)−LogG”(X)|>2.0
[G”:損失弾性率[Pa]]
〔条件4−2〕|LogG”(X+20)−LogG”(X)|>2.5
〔条件4−3〕|LogG”(X+15)−LogG”(X)|>2.5
(A)の溶融開始温度(X)が上記範囲内であり、かつ〔条件4〕を満たすと、樹脂の低粘性化速度が速く、トナー粒子としたとき、定着温度領域の低温側、高温側で同等の画質を得ることができる。また、溶融開始から定着可能粘性に至るまでが速く、優れた低温定着性を得るのに有利である。〔条件4〕は、どれだけ早く、少ない熱で定着できるかという、樹脂のシャープメルト性の指標であり、実験的に求めたものである。
溶融開始温度(X)の範囲、および〔条件4〕を満たす結晶性樹脂(A)は、(A)の構成成分中の結晶性成分の比率を調整すること等により得ることができる。例えば、結晶性成分の比率を大きくすると、(Ta’)と(X)の温度差が小さくなる。
Further, regarding the loss elastic modulus G ″ and the melting start temperature (X) of the crystalline resin (A), it is preferable to satisfy the following [Condition 4], more preferably [Condition 4-2], 4-3] is particularly preferable.
[Condition 4] | LogG ″ (X + 20) −LogG ″ (X) |> 2.0
[G ": Loss elastic modulus [Pa]]
[Condition 4-2] | LogG ″ (X + 20) −LogG ″ (X) |> 2.5
[Condition 4-3] | LogG "(X + 15) -LogG" (X) |> 2.5
When the melting start temperature (X) of (A) is within the above range and [Condition 4] is satisfied, the resin has a low viscosity reduction speed, and when toner particles are used, the low temperature side and the high temperature side of the fixing temperature region. Can obtain the same image quality. Moreover, the process from the start of melting to the fixable viscosity is fast, which is advantageous for obtaining excellent low-temperature fixability. [Condition 4] is an index of the sharp melt property of the resin, which indicates how fast it can be fixed with less heat, and is obtained experimentally.
The crystalline resin (A) satisfying the range of the melting start temperature (X) and [Condition 4] can be obtained by adjusting the ratio of the crystalline component in the constituent components of (A). For example, when the ratio of the crystalline component is increased, the temperature difference between (Ta ′) and (X) is decreased.

また結晶性樹脂(A)の粘弾性特性において、(Ta’+30)℃の損失弾性率G”と(Ta’+70)℃の損失弾性率G”の比〔G”(Ta’+30)/G”(Ta’+70)〕が0.05〜50であることが好ましく、より好ましくは0.1〜10である〔Ta’:(A)の融解熱の最大ピーク温度〕。
損失弾性率の比が上記の範囲で維持されることによって、定着温度領域の低温側、高温側で同等の光沢性を得ることができる。
上記のG”の比の条件を満たす結晶性樹脂(A)は、(A)を構成する組成中の結晶性成分の比率や結晶性部(b)の分子量を調整すること等により得ることができる。例えば、結晶性部(b)の比率や結晶性成分の比率を増加させると、〔G”(Ta+30)/G”(Ta+70)〕の値は小さくなる。また結晶性部(b)の分子量を増加させると〔G”(Ta+30)/G”(Ta+70)〕の値は小さくなる。結晶性成分としては、直鎖構造を有するポリオール、ポリイソシアネート等が挙げられる。
Further, in the viscoelastic properties of the crystalline resin (A), the ratio of the loss elastic modulus G ″ at (Ta ′ + 30) ° C. to the loss elastic modulus G ″ at (Ta ′ + 70) ° C. [G ″ (Ta ′ + 30) / G “(Ta ′ + 70)] is preferably 0.05 to 50, more preferably 0.1 to 10 [Ta ′: maximum peak temperature of heat of fusion of (A)].
By maintaining the ratio of the loss elastic modulus within the above range, the same glossiness can be obtained on the low temperature side and the high temperature side of the fixing temperature region.
The crystalline resin (A) satisfying the above G ″ ratio can be obtained by adjusting the ratio of the crystalline component in the composition constituting (A) and the molecular weight of the crystalline part (b). For example, when the ratio of the crystalline part (b) or the ratio of the crystalline component is increased, the value of [G ″ (Ta + 30) / G ″ (Ta + 70)] decreases. When the molecular weight is increased, the value of [G ″ (Ta + 30) / G ″ (Ta + 70)] decreases. Examples of the crystalline component include polyols and polyisocyanates having a linear structure.

結晶性樹脂(A)は、結晶性部(b)のみで構成されても、結晶性部(b)と非結晶性部(c)とをもつブロック樹脂で構成されても、結晶性を有していれば構わないが、定着の観点から(b)と(c)とで構成されるブロック樹脂であることが好ましい。ブロック樹脂は、具体的には結晶性部(b)を構成する樹脂と非結晶性部(c)を構成する樹脂を結合することにより得られる。
また、ブロック樹脂であると耐久性に優れる。
The crystalline resin (A) has crystallinity regardless of whether it is composed of only the crystalline part (b) or a block resin having the crystalline part (b) and the non-crystalline part (c). However, a block resin composed of (b) and (c) is preferable from the viewpoint of fixing. Specifically, the block resin is obtained by bonding a resin constituting the crystalline part (b) and a resin constituting the non-crystalline part (c).
In addition, the block resin is excellent in durability.

結晶性樹脂(A)が結晶性部(b)と非結晶性部(c)をもつブロック樹脂の場合、(c)のガラス転移温度(Tg)は、耐熱保存性の観点から、好ましくは40〜250℃、さらに好ましくは50〜240℃、とくに好ましくは60〜230℃、最も好ましくは65〜180℃である。また、(c)のフローテスター測定における軟化点は、好ましくは100〜300℃、さらに好ましくは110〜290℃、とくに好ましくは120〜280℃である。   When the crystalline resin (A) is a block resin having a crystalline part (b) and an amorphous part (c), the glass transition temperature (Tg) of (c) is preferably 40 from the viewpoint of heat-resistant storage stability. It is -250 degreeC, More preferably, it is 50-240 degreeC, Especially preferably, it is 60-230 degreeC, Most preferably, it is 65-180 degreeC. Moreover, the softening point in the flow tester measurement of (c) is preferably 100 to 300 ° C, more preferably 110 to 290 ° C, and particularly preferably 120 to 280 ° C.

ガラス転移温度(Tg)は、次のように測定される値である。
<ガラス転移温度>
ガラス転移温度は非結晶性樹脂に特有の物性であり、融解熱の最大ピーク温度とは区別される。そして、前記の融解熱の最大ピーク温度の測定において、「吸発熱量」と「温度」とのグラフの最大ピーク温度以下でのベースラインの延長線と、最大ピークの立ち上がり部分から最大ピークの頂点までの最大傾斜を示す接線との交点に対応する温度をガラス転移温度とする。
The glass transition temperature (Tg) is a value measured as follows.
<Glass transition temperature>
The glass transition temperature is a physical property unique to an amorphous resin, and is distinguished from the maximum peak temperature of heat of fusion. In the measurement of the maximum peak temperature of the heat of fusion, the extension of the baseline below the maximum peak temperature in the graph of “endotherm” and “temperature” and the peak of the maximum peak from the rising part of the maximum peak The temperature corresponding to the point of intersection with the tangent indicating the maximum slope until is the glass transition temperature.

結晶性樹脂(A)の重量平均分子量(以下、Mwと記載)は、定着の観点から5000〜100000が好ましく、さらに好ましくは6000〜80000、特に好ましくは8000〜50000である。
(A)が結晶性部(b)と非結晶性部(c)をもつブロック樹脂の場合、(b)のMwは、2000〜80000が好ましく、さらに好ましくは4000〜60000、特に好ましくは7000〜30000である。
(c)のMwは、500〜50000が好ましく、さらに好ましくは750〜20000であり、特に好ましくは1000〜10000である。
なお、本発明において、樹脂の分子量は、ゲルパーミエーションクロマトグラフイー(GPC)を用いて以下の条件で測定される。
装置(一例) :東ソー(株)製 HLC−8120
カラム(一例):TSK GEL GMH6 2本 〔東ソー(株)製〕
測定温度 :40℃
試料溶液 :0.25重量%のTHF溶液
溶液注入量 :100μL
検出装置 :屈折率検出器
基準物質 :東ソー製 標準ポリスチレン(TSKstandard POLY
STYRENE)12点(分子量 500 1050 2800
5970 9100 18100 37900 96400
190000 355000 1090000 2890000)
The weight average molecular weight (hereinafter referred to as Mw) of the crystalline resin (A) is preferably 5000 to 100,000, more preferably 6000 to 80000, and particularly preferably 8000 to 50000 from the viewpoint of fixing.
When (A) is a block resin having a crystalline part (b) and an amorphous part (c), the Mw of (b) is preferably from 2000 to 80000, more preferably from 4000 to 60000, particularly preferably from 7000 to 30000.
As for Mw of (c), 500-50000 are preferable, More preferably, it is 750-20000, Most preferably, it is 1000-10000.
In the present invention, the molecular weight of the resin is measured under the following conditions using gel permeation chromatography (GPC).
Device (example): HLC-8120 manufactured by Tosoh Corporation
Column (example): TSK GEL GMH6 2 [Tosoh Corporation]
Measurement temperature: 40 ° C
Sample solution: 0.25 wt% THF solution Solution injection amount: 100 μL
Detection device: Refractive index detector Reference material: Standard polystyrene (TSK standard POLY made by Tosoh Corporation)
STYRENE) 12 points (Molecular weight 500 1050 2800
5970 9100 18100 37900 96400
190000 355000 1090000 2890000)

結晶性樹脂(A)が、結晶性部(b)と非結晶性部(c)とで構成されるブロック樹脂である場合、結晶性部(b)が結晶性樹脂(A)中に占める割合は、50重量%以上が好ましく、より好ましくは60〜98重量%、さらに好ましくは70〜96重量%である。(b)の割合が50重量%以上であると、樹脂(A)の結晶性が損なわれず、低温定着性がより良好である。   When the crystalline resin (A) is a block resin composed of a crystalline part (b) and an amorphous part (c), the proportion of the crystalline part (b) in the crystalline resin (A) Is preferably 50% by weight or more, more preferably 60 to 98% by weight, still more preferably 70 to 96% by weight. When the proportion of (b) is 50% by weight or more, the crystallinity of the resin (A) is not impaired, and the low-temperature fixability is better.

結晶性樹脂(A)が結晶性部(b)と非結晶性部(c)とで構成されるブロック樹脂である場合、(b)と(c)とが下記の形式で線状に結合された両末端が(b)の樹脂であり、{−(c)−(b)}の単位の繰り返し数の平均値nが0.9〜3.5であることが好ましく、さらに好ましくはn=0.95〜2.0、とくに好ましくはn=1.0〜1.5である。
(b){−(c)−(b)}n
上記式は、具体的には、結晶性部(b)と非結晶性部(c)とが、(b)〔n=0〕、(b)−(c)−(b)〔n=1〕、(b)−(c)−(b)−(c)−(b)〔n=2〕、(b)−(c)−(b)−(c)−(b)−(c)−(b)〔n=3〕等の形式で線状に結合された樹脂、およびこれらの混合物〔n=0のみからなるものを除く〕を意味する。なお、nが0のものを含有するということは、(b)と(c)のブロック樹脂以外に結晶性部(b)を構成する樹脂を含有することを意味する。
nが3.5以下であると、結晶性樹脂(A)の結晶性が損なわれない。またnが0.9以上であると(A)の溶融後の弾性が良好であり、定着時にホットオフセットが発生しにくく、定着温度領域がより広くなる。なお、nは原料の使用量〔(b)と(c)のモル比〕から求めた計算値である。
また、結晶性樹脂(A)の結晶化度の観点から(A)の両末端は結晶性部(b)であることが好ましい。
なお、両末端が非結晶性部(c)である場合は、結晶化度が落ちるため、結晶性樹脂(A)に結晶性を持たせるために、(A)中の結晶性部(b)の比率を75重量%以上にするのが好ましい。
When the crystalline resin (A) is a block resin composed of a crystalline part (b) and an amorphous part (c), (b) and (c) are linearly bonded in the following format. It is preferable that both ends are the resin of (b), and the average value n of the number of repeating units of {-(c)-(b)} is 0.9 to 3.5, more preferably n = 0.95 to 2.0, particularly preferably n = 1.0 to 1.5.
(B) {-(c)-(b)} n
Specifically, the above formula shows that the crystalline part (b) and the non-crystalline part (c) are (b) [n = 0], (b)-(c)-(b) [n = 1 ], (B)-(c)-(b)-(c)-(b) [n = 2], (b)-(c)-(b)-(c)-(b)-(c) -(B) means a resin linearly bonded in the form of [n = 3] or the like, and a mixture thereof (excluding those consisting only of n = 0). In addition, containing that whose n is 0 means containing resin which comprises a crystalline part (b) other than the block resin of (b) and (c).
When n is 3.5 or less, the crystallinity of the crystalline resin (A) is not impaired. Further, when n is 0.9 or more, the elasticity after melting of (A) is good, hot offset hardly occurs at the time of fixing, and the fixing temperature region becomes wider. Note that n is a calculated value obtained from the amount of raw material used [molar ratio of (b) to (c)].
Further, from the viewpoint of the crystallinity of the crystalline resin (A), it is preferable that both ends of (A) are crystalline parts (b).
When both ends are non-crystalline parts (c), the degree of crystallinity is lowered, so that the crystalline part (b) in (A) is used in order to give the crystalline resin (A) crystallinity. The ratio is preferably 75% by weight or more.

結晶性部(b)に用いられる樹脂について説明する。
結晶性部(b)に用いられる樹脂は、結晶性を有していれば特に制限はない。耐熱保存性の観点から融点が40〜100℃の範囲(より好ましくは50〜70℃の範囲)であることが好ましい。
本発明において、融点は融解熱の最大ピーク温度と同様、示差走査熱量計{たとえば、セイコー電子工業社製、DSC210}で測定される。
The resin used for the crystalline part (b) will be described.
The resin used for the crystalline part (b) is not particularly limited as long as it has crystallinity. From the viewpoint of heat-resistant storage stability, the melting point is preferably in the range of 40 to 100 ° C (more preferably in the range of 50 to 70 ° C).
In the present invention, the melting point is measured with a differential scanning calorimeter {for example, DSC210, manufactured by Seiko Denshi Kogyo Co., Ltd.) as is the case with the maximum peak temperature of heat of fusion.

結晶性部(b)は結晶性を有していれば特に制限はなく、複合樹脂であってもかまわない。その中でもポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂およびそれらの複合樹脂が好ましく、特に直鎖ポリエステル樹脂およびそれを含む複合樹脂が好ましい。   The crystalline part (b) is not particularly limited as long as it has crystallinity, and may be a composite resin. Of these, polyester resins, polyurethane resins, polyurea resins, polyamide resins, polyether resins and composite resins thereof are preferable, and linear polyester resins and composite resins containing the same are particularly preferable.

(b)として用いるポリエステル樹脂は、アルコール(ジオール)成分と酸(ジカルボン酸)成分とから合成される重縮合ポリエステル樹脂であることが、結晶性の点から好ましい。ただし、必要に応じて3官能以上のアルコール成分や酸成分を用いてもよい。
なお、ポリエステル樹脂としては、重縮合ポリエステル樹脂以外に、ラクトン開環重合物およびポリヒドロキシカルボン酸も同様に好ましい。
また、ポリウレタン樹脂としては、アルコール(ジオール)成分とイソシアネート(ジイソシアネート)成分とから合成されるポリウレタン樹脂等が挙げられる。ただし、必要に応じて3官能以上のアルコール成分やイソシアネート成分を用いてもよい。
ポリアミド樹脂としては、アミン(ジアミン)成分と酸(ジカルボン酸)成分とから合成されるポリアミド樹脂等が挙げられる。ただし、必要に応じて3官能以上のアミン成分や酸成分を用いてもよい。
ポリウレア樹脂としては、アミン(ジアミン)成分とイソシアネート(ジイソシアネート)成分とから合成されるポリウレア樹脂等が挙げられる。ただし、必要に応じて3官能以上のアミン成分やイソシアネート成分を用いてもよい。
以降の説明において、まず、これら結晶性重縮合ポリエステル樹脂、結晶性ポリウレタン樹脂、結晶性ポリアミド樹脂、結晶性ポリウレア樹脂に用いられるジオール成分、ジカルボン酸成分、ジイソシアネート成分、およびジアミン成分(それぞれ3官能以上のものを含む)についてそれぞれ示す。
The polyester resin used as (b) is preferably a polycondensed polyester resin synthesized from an alcohol (diol) component and an acid (dicarboxylic acid) component from the viewpoint of crystallinity. However, a tri- or higher functional alcohol component or acid component may be used as necessary.
As the polyester resin, in addition to the polycondensation polyester resin, a lactone ring-opening polymer and a polyhydroxycarboxylic acid are also preferable.
Examples of the polyurethane resin include a polyurethane resin synthesized from an alcohol (diol) component and an isocyanate (diisocyanate) component. However, a tri- or higher functional alcohol component or isocyanate component may be used as necessary.
Examples of the polyamide resin include a polyamide resin synthesized from an amine (diamine) component and an acid (dicarboxylic acid) component. However, a trifunctional or higher functional amine component or acid component may be used as necessary.
Examples of the polyurea resin include a polyurea resin synthesized from an amine (diamine) component and an isocyanate (diisocyanate) component. However, a trifunctional or higher functional amine component or isocyanate component may be used as necessary.
In the following description, first, a diol component, a dicarboxylic acid component, a diisocyanate component, and a diamine component (each having three or more functional groups) used for the crystalline polycondensation polyester resin, the crystalline polyurethane resin, the crystalline polyamide resin, and the crystalline polyurea resin. Each of them).

[ジオール成分]
ジオール成分としては、脂肪族ジオールが好ましく、鎖炭素数が2〜36の範囲であることが好ましい。また直鎖型脂肪族ジオールがより好ましい。
脂肪族ジオールが分岐型では、ポリエステル樹脂の結晶性が低下し、融点が降下するため、耐ブロッキング性、及び、低温定着性が悪化してしまう場合がある。また、炭素数が36を超えると、実用上の材料の入手が困難な場合がある。
[Diol component]
As the diol component, an aliphatic diol is preferable, and the chain carbon number is preferably in the range of 2 to 36. A linear aliphatic diol is more preferred.
When the aliphatic diol is branched, the crystallinity of the polyester resin is lowered and the melting point is lowered, so that blocking resistance and low-temperature fixability may be deteriorated. On the other hand, when the number of carbon atoms exceeds 36, it may be difficult to obtain practical materials.

ジオール成分は、直鎖型脂肪族ジオールの含有量が使用ジオール成分の80モル%以上であることが好ましく、より好ましくは90モル%以上である。80モル%以上では、ポリエステル樹脂の結晶性が低下し、融点が上昇するため、耐ブロッキング性、及び低温定着性がより良好となる。   The content of the linear aliphatic diol in the diol component is preferably 80 mol% or more of the diol component used, and more preferably 90 mol% or more. If it is 80 mol% or more, the crystallinity of the polyester resin is lowered and the melting point is raised, so that the blocking resistance and the low-temperature fixability are improved.

直鎖型脂肪族ジオールとしては、具体的には、例えば、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,7−ヘプタンジオール、1,8−オクタンジオール、1,9−ノナンジオール、1,10−デカンジオール、1,11−ウンデカンジオール、1,12−ドデカンジオール、1,13−トリデカンジオール、1,14−テトラデカンジオール、1,18−オクタデカンジオール、1,20−エイコサンジオールなどが挙げられるが、これらに限定されるものではない。これらのうち、入手容易性を考慮するとエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,9−ノナンジオール、1,10−デカンジオールが好ましい。   Specific examples of the linear aliphatic diol include ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 1,7. -Heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol, 1,13-tridecanediol, 1,14 -Tetradecanediol, 1,18-octadecanediol, 1,20-eicosanediol and the like are exemplified, but not limited thereto. Among these, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, 1,9-nonanediol, and 1,10-decanediol are preferable in view of availability.

その他必要に応じて使用されるジオールとしては、炭素数2〜36の上記以外の脂肪族ジオール(1,2−プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、デカンジオール、ドデカンジオール、テトラデカンジオール、ネオペンチルグリコール、2,2−ジエチル−1,3−プロパンジオールなど);炭素数4〜36のアルキレンエーテルグリコール(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールなど);炭素数4〜36の脂環式ジオール(1,4−シクロヘキサンジメタノール、水素添加ビスフェノールAなど);上記脂環式ジオールのアルキレンオキサイド(以下AOと略記する)〔エチレンオキサイド(以下EOと略記する)、プロピレンオキサイド(以下POと略記する)、ブチレンオキサイド(以下BOと略記する)など〕付加物(付加モル数1〜30);ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールSなど)のAO(EO、PO、BOなど)付加物(付加モル数2〜30);ポリラクトンジオール(ポリε−カプロラクトンジオールなど);およびポリブタジエンジオールなどが挙げられる。   Other diols used as necessary include aliphatic diols other than those having 2 to 36 carbon atoms (1,2-propylene glycol, butanediol, hexanediol, octanediol, decanediol, dodecanediol, tetradecanediol, Neopentyl glycol, 2,2-diethyl-1,3-propanediol, etc .; C4-C36 alkylene ether glycol (diethylene glycol, triethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol) C 4 -36 alicyclic diol (1,4-cyclohexanedimethanol, hydrogenated bisphenol A, etc.); alkylene oxide of the alicyclic diol (hereinafter abbreviated as AO) [Ethylene oxide (hereinafter abbreviated as EO), propylene oxide (hereinafter abbreviated as PO), butylene oxide (hereinafter abbreviated as BO)] adducts (addition mole number 1-30); bisphenols (bisphenol A) , Bisphenol F, bisphenol S, etc.) AO (EO, PO, BO, etc.) adduct (added mole number 2-30); polylactone diol (poly ε-caprolactone diol, etc.); and polybutadiene diol.

さらにその他必要に応じて使用されるジオールとしては、他の官能基を有するジオールを用いてもよい。官能基を有するジオールとしては、カルボキシル基を有するジオール、スルホン酸基もしくはスルファミン酸基を有するジオール、およびこれらの塩等が挙げられる。
カルボキシル基を有するジオールとしては、ジアルキロールアルカン酸[C6〜24のもの、例えば2,2−ジメチロールプロピオン酸(DMPA)、2,2−ジメチロールブタン酸、2,2−ジメチロールヘプタン酸、2,2−ジメチロールオクタン酸など]が挙げられる。
スルホン酸基もしくはスルファミン酸基を有するジオールとしては、スルファミン酸ジオール[N,N−ビス(2−ヒドロキシアルキル)スルファミン酸(アルキル基のC1〜6)またはそのAO付加物(AOとしてはEOまたはPOなど、AOの付加モル数1〜6):例えばN,N−ビス(2−ヒドロキシエチル)スルファミン酸およびN,N−ビス(2−ヒドロキシエチル)スルファミン酸PO2モル付加物など];ビス(2−ヒドロキシエチル)ホスフェートなどが挙げられる。
これらの中和塩基を有するジオールの中和塩基としては、例えば前記炭素数3〜30の3級アミン(トリエチルアミンなど)および/またはアルカリ金属(ナトリウム塩など)が挙げられる。
これらのうち好ましいものは、炭素数2〜12のアルキレングリコール、カルボキシル基を有するジオール、ビスフェノール類のAO付加物、およびこれらの併用である。
Furthermore, as a diol used as necessary, a diol having another functional group may be used. Examples of the diol having a functional group include a diol having a carboxyl group, a diol having a sulfonic acid group or a sulfamic acid group, and salts thereof.
Diols having a carboxyl group include dialkylol alkanoic acids [things of C6-24, such as 2,2-dimethylolpropionic acid (DMPA), 2,2-dimethylolbutanoic acid, 2,2-dimethylolheptanoic acid. 2,2-dimethylol octanoic acid, etc.].
Examples of the diol having a sulfonic acid group or a sulfamic acid group include a sulfamic acid diol [N, N-bis (2-hydroxyalkyl) sulfamic acid (C1-6 of alkyl group) or an AO adduct thereof (EO as EO or PO). AO addition mole number 1 to 6): for example, N, N-bis (2-hydroxyethyl) sulfamic acid and N, N-bis (2-hydroxyethyl) sulfamic acid PO2 molar adduct, etc.]; bis (2 -Hydroxyethyl) phosphate and the like.
Examples of the neutralizing base of the diol having these neutralizing bases include the tertiary amines having 3 to 30 carbon atoms (such as triethylamine) and / or alkali metals (such as sodium salts).
Among these, preferred are alkylene glycols having 2 to 12 carbon atoms, diols having a carboxyl group, AO adducts of bisphenols, and combinations thereof.

必要により用いられる3〜8価またはそれ以上のポリオールとしては、炭素数3〜36の3〜8価またはそれ以上の多価脂肪族アルコール(アルカンポリオールおよびその分子内もしくは分子間脱水物、例えばグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ソルビトール、ソルビタン、およびポリグリセリン;糖類およびその誘導体、例えばショ糖、およびメチルグルコシド);トリスフェノール類(トリスフェノールPAなど)のAO付加物(付加モル数2〜30);ノボラック樹脂(フェノールノボラック、クレゾールノボラックなど)のAO付加物(付加モル数2〜30);アクリルポリオール[ヒドロキシエチル(メタ)アクリレートと他のビニル系モノマーの共重合物など];などが挙げられる。
これらのうち好ましいものは、3〜8価またはそれ以上の多価脂肪族アルコールおよびノボラック樹脂のAO付加物であり、さらに好ましいものはノボラック樹脂のAO付加物である。
Examples of the polyol having 3 to 8 valences or more used as necessary include 3 to 8 or more polyhydric aliphatic alcohols having 3 to 36 carbon atoms (alkane polyols and intramolecular or intermolecular dehydrates thereof such as glycerin. , Trimethylolethane, trimethylolpropane, pentaerythritol, sorbitol, sorbitan, and polyglycerol; sugars and derivatives thereof such as sucrose and methylglucoside; and AO adducts (addition moles) of trisphenols (such as trisphenol PA) 2-30); AO adducts of novolak resins (phenol novolak, cresol novolak, etc.) (addition mole number 2-30); acrylic polyol [copolymers of hydroxyethyl (meth) acrylate and other vinyl monomers, etc.] ; It is.
Among these, preferred are trivalent to octavalent or higher polyhydric aliphatic alcohols and novolak resin AO adducts, and more preferred are novolak resin AO adducts.

[ジカルボン酸成分]
ジカルボン酸成分としては、種々のジカルボン酸が挙げられるが、脂肪族ジカルボン酸及び芳香族ジカルボン酸が好ましく、脂肪族ジカルボン酸は直鎖型のカルボン酸がより好ましい。
[Dicarboxylic acid component]
Examples of the dicarboxylic acid component include various dicarboxylic acids, but aliphatic dicarboxylic acids and aromatic dicarboxylic acids are preferable, and the aliphatic dicarboxylic acids are more preferably linear carboxylic acids.

ジカルボン酸としては、炭素数4〜36のアルカンジカルボン酸(コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカンジカルボン酸、オクタデカンジカルボン酸、デシルコハク酸など);炭素数6〜40の脂環式ジカルボン酸〔ダイマー酸(2量化リノール酸)など〕、炭素数4〜36のアルケンジカルボン酸(ドデセニルコハク酸、ペンタデセニルコハク酸、オクタデセニルコハク酸などのアルケニルコハク酸、マレイン酸、フマール酸、シトラコン酸など);炭素数8〜36の芳香族ジカルボン酸(フタル酸、イソフタル酸、テレフタル酸、t−ブチルイソフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸など)などが挙げられる。
また、必要により用いられる3〜6価またはそれ以上のポリカルボン酸としては、炭素数9〜20の芳香族ポリカルボン酸(トリメリット酸、ピロメリット酸など)などが挙げられる。
なお、ジカルボン酸または3〜6価またはそれ以上のポリカルボン酸としては、上述のものの酸無水物または炭素数1〜4の低級アルキルエステル(メチルエステル、エチルエステル、イソプロピルエステルなど)を用いてもよい。
これらジカルボン酸の中では、脂肪族ジカルボン酸(特に直鎖型のカルボン酸)を単独で用いるのが特に好ましいが、脂肪族ジカルボン酸と共に芳香族ジカルボン酸(テレフタル酸、イソフタル酸、t−ブチルイソフタル酸、および、これらの低級アルキルエステル類が好ましい。)を共重合したものも同様に好ましい。芳香族ジカルボン酸の共重合量としては20モル%以下が好ましい。
ジカルボン酸成分としては、主には上記のカルボン酸が挙げられるが、この限りではない。これらのうち、結晶性や入手容易性を考慮すると、アジピン酸、セバシン酸、ドデカンジカルボン酸、テレフタル酸、およびイソフタル酸が好ましい。
Examples of dicarboxylic acids include alkane dicarboxylic acids having 4 to 36 carbon atoms (succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, octadecanedicarboxylic acid, decylsuccinic acid, etc.); alicyclic dicarboxylic acids having 6 to 40 carbon atoms. Acid [dimer acid (dimerized linoleic acid), etc.], alkenedicarboxylic acid having 4 to 36 carbon atoms (alkenyl succinic acid such as dodecenyl succinic acid, pentadecenyl succinic acid, octadecenyl succinic acid, maleic acid, fumaric acid) C8-36 aromatic dicarboxylic acid (phthalic acid, isophthalic acid, terephthalic acid, t-butylisophthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, etc.) Etc.
Examples of the tri- to hexa-valent or higher polycarboxylic acid used as necessary include C9-C20 aromatic polycarboxylic acids (trimellitic acid, pyromellitic acid, and the like).
In addition, as the dicarboxylic acid or the polycarboxylic acid having 3 to 6 valences or more, the above acid anhydrides or lower alkyl esters having 1 to 4 carbon atoms (methyl ester, ethyl ester, isopropyl ester, etc.) may be used. Good.
Among these dicarboxylic acids, it is particularly preferable to use an aliphatic dicarboxylic acid (particularly a straight-chain carboxylic acid) alone, but an aromatic dicarboxylic acid (terephthalic acid, isophthalic acid, t-butylisophthalic acid) together with the aliphatic dicarboxylic acid. Those obtained by copolymerizing acids and their lower alkyl esters are also preferred. The copolymerization amount of the aromatic dicarboxylic acid is preferably 20 mol% or less.
Examples of the dicarboxylic acid component include, but are not limited to, the above carboxylic acids. Of these, adipic acid, sebacic acid, dodecanedicarboxylic acid, terephthalic acid, and isophthalic acid are preferable in consideration of crystallinity and availability.

[ジイソシアネート成分]
ジイソシアネートとしては、炭素数(NCO基中の炭素を除く、以下同様)6〜20の芳香族ジイソシアネート、炭素数2〜18の脂肪族ジイソシアネート、炭素数4〜15の脂環式ジイソシアネート、炭素数8〜15の芳香脂肪族ジイソシアネートおよびこれらのジイソシアネートの変性物(ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物など)およびこれらの2種以上の混合物が挙げられる。また、必要により、3価以上のポリイソシアネートを併用してもよい。
[Diisocyanate component]
Examples of the diisocyanate include C6-C20 aromatic diisocyanate, C2-C18 aliphatic diisocyanate, C4-C15 alicyclic diisocyanate, and C8. To 15 araliphatic diisocyanates and modified products of these diisocyanates (urethane groups, carbodiimide groups, allophanate groups, urea groups, burette groups, uretdione groups, uretoimine groups, isocyanurate groups, oxazolidone group-containing modified products) and the like The mixture of 2 or more types of these is mentioned. Moreover, you may use together polyisocyanate more than trivalence as needed.

上記芳香族ジイソシアネートの具体例(3価以上のポリイソシアネートを含む)としては、1,3−および/または1,4−フェニレンジイソシアネート、2,4−および/または2,6−トリレンジイソシアネート(TDI)、粗製TDI、2,4’−および/または4,4’−ジフェニルメタンジイソシアネート(MDI)、粗製MDI[粗製ジアミノフェニルメタン〔ホルムアルデヒドと芳香族アミン(アニリン)またはその混合物との縮合生成物;ジアミノジフェニルメタンと少量(たとえば5〜20重量%)の3官能以上のポリアミンとの混合物〕のホスゲン化物:ポリアリルポリイソシアネート(PAPI)]、1,5−ナフチレンジイソシアネート、4,4’,4”−トリフェニルメタントリイソシアネート、m−およびp−イソシアナトフェニルスルホニルイソシアネートなどが挙げられる。
上記脂肪族ジイソシアネートの具体例(3価以上のポリイソシアネートを含む)としては、エチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、1,6,11−ウンデカントリイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,6−ジイソシアナトメチルカプロエート、ビス(2−イソシアナトエチル)フマレート、ビス(2−イソシアナトエチル)カーボネート、2−イソシアナトエチル−2,6−ジイソシアナトヘキサノエートなどが挙げられる。
上記脂環式ジイソシアネートの具体例としては、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタン−4,4’−ジイソシアネート(水添MDI)、シクロヘキシレンジイソシアネート、メチルシクロヘキシレンジイソシアネート(水添TDI)、ビス(2−イソシアナトエチル)−4−シクロヘキセン−1,2−ジカルボキシレート、2,5−および/または2,6−ノルボルナンジイソシアネートなどが挙げられる。
上記芳香脂肪族ジイソシアネートの具体例としては、m−および/またはp−キシリレンジイソシアネート(XDI)、α,α,α’,α’−テトラメチルキシリレンジイソシアネート(TMXDI)などが挙げられる。
また、上記ジイソシアネートの変性物には、ウレタン基、カルボジイミド基、アロファネート基、ウレア基、ビューレット基、ウレトジオン基、ウレトイミン基、イソシアヌレート基、オキサゾリドン基含有変性物などが挙げられる。
具体的には、変性MDI(ウレタン変性MDI、カルボジイミド変性MDI、トリヒドロカルビルホスフェート変性MDIなど)、ウレタン変性TDIなどのジイソシアネートの変性物およびこれらの2種以上の混合物[たとえば変性MDIとウレタン変性TDI(イソシアネート含有プレポリマー)との併用]が含まれる。
これらのうちで好ましいものは6〜15の芳香族ジイソシアネート、炭素数4〜12の脂肪族ジイソシアネート、および炭素数4〜15の脂環式ジイソシアネートであり、とくに好ましいものはTDI、MDI、HDI、水添MDI、およびIPDIである。
Specific examples of the aromatic diisocyanate (including tri- or higher polyisocyanates) include 1,3- and / or 1,4-phenylene diisocyanate, 2,4- and / or 2,6-tolylene diisocyanate (TDI). ), Crude TDI, 2,4′- and / or 4,4′-diphenylmethane diisocyanate (MDI), crude MDI [crude diaminophenylmethane [condensation product of formaldehyde with an aromatic amine (aniline) or mixtures thereof; diamino A mixture of diphenylmethane and a small amount (for example, 5 to 20% by weight) of a trifunctional or higher functional polyamine] phosgenation product: polyallyl polyisocyanate (PAPI)], 1,5-naphthylene diisocyanate, 4,4 ', 4 "- Triphenylmethane triisocyanate, m- and p-iso Such Anat phenylsulfonyl isocyanate.
Specific examples of the aliphatic diisocyanate (including triisocyanate or higher polyisocyanate) include ethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate (HDI), dodecamethylene diisocyanate, 1,6,11-undecane triisocyanate, 2, 2,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,6-diisocyanatomethylcaproate, bis (2-isocyanatoethyl) fumarate, bis (2-isocyanatoethyl) carbonate, 2-isocyanatoethyl-2 , 6-diisocyanatohexanoate and the like.
Specific examples of the alicyclic diisocyanate include isophorone diisocyanate (IPDI), dicyclohexylmethane-4,4′-diisocyanate (hydrogenated MDI), cyclohexylene diisocyanate, methylcyclohexylene diisocyanate (hydrogenated TDI), bis (2- And isocyanatoethyl) -4-cyclohexene-1,2-dicarboxylate, 2,5- and / or 2,6-norbornane diisocyanate.
Specific examples of the araliphatic diisocyanate include m- and / or p-xylylene diisocyanate (XDI), α, α, α ′, α′-tetramethylxylylene diisocyanate (TMXDI), and the like.
Examples of the modified diisocyanate include urethane group, carbodiimide group, allophanate group, urea group, burette group, uretdione group, uretoimine group, isocyanurate group, and oxazolidone group-containing modified product.
Specifically, modified MDI (urethane modified MDI, carbodiimide modified MDI, trihydrocarbyl phosphate modified MDI, etc.), modified products of diisocyanates such as urethane modified TDI, and mixtures of two or more thereof (for example, modified MDI and urethane modified TDI ( In combination with an isocyanate-containing prepolymer).
Of these, preferred are aromatic diisocyanates having 6 to 15 carbon atoms, aliphatic diisocyanates having 4 to 12 carbon atoms, and alicyclic diisocyanates having 4 to 15 carbon atoms, and particularly preferred are TDI, MDI, HDI, water. Attached MDI and IPDI.

[ジアミン成分]
ジアミン(必要により用いられる3価以上のポリアミンを含む)の例として、脂肪族ジアミン類(C2〜C18)としては、〔1〕脂肪族ジアミン{C2〜C6 アルキレンジアミン(エチレンジアミン、プロピレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミンなど)、ポリアルキレン(C2〜C6)ジアミン〔ジエチレントリアミン、イミノビスプロピルアミン、ビス(ヘキサメチレン)トリアミン,トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミンなど〕};〔2〕これらのアルキル(C1〜C4)またはヒドロキシアルキル(C2〜C4)置換体〔ジアルキル(C1〜C3)アミノプロピルアミン、トリメチルヘキサメチレンジアミン、アミノエチルエタノールアミン、2,5−ジメチル−2,5−ヘキサメチレンジアミン、メチルイミノビスプロピルアミンなど〕;〔3〕脂環または複素環含有脂肪族ジアミン{脂環式ジアミン(C4〜C15)〔1,3−ジアミノシクロヘキサン、イソホロンジアミン、メンセンジアミン、4,4´−メチレンジシクロヘキサンジアミン(水添メチレンジアニリン)など〕、複素環式ジアミン(C4〜C15)〔ピペラジン、N−アミノエチルピペラジン、1,4−ジアミノエチルピペラジン、1,4ビス(2−アミノ−2−メチルプロピル)ピペラジン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカンなど〕;〔4〕芳香環含有脂肪族アミン類(C8〜C15)(キシリレンジアミン、テトラクロル−p−キシリレンジアミンなど)、等が挙げられる。
[Diamine component]
Examples of diamines (including trivalent or higher polyamines used as necessary) include aliphatic diamines (C2 to C18): [1] aliphatic diamines {C2 to C6 alkylenediamines (ethylenediamine, propylenediamine, trimethylene) Diamine, tetramethylenediamine, hexamethylenediamine, etc.), polyalkylene (C2-C6) diamine [diethylenetriamine, iminobispropylamine, bis (hexamethylene) triamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc.]} [2] These alkyl (C1 to C4) or hydroxyalkyl (C2 to C4) substitutes [dialkyl (C1 to C3) aminopropylamine, trimethylhexamethylenediamine, aminoethylethanol; Amine, 2,5-dimethyl-2,5-hexamethylenediamine, methyliminobispropylamine, etc.]; [3] Alicyclic or heterocyclic-containing aliphatic diamine {alicyclic diamine (C4 to C15) [1,3 -Diaminocyclohexane, isophoronediamine, mensendiamine, 4,4'-methylenedicyclohexanediamine (hydrogenated methylenedianiline), etc.], heterocyclic diamine (C4-C15) [piperazine, N-aminoethylpiperazine, 1, 4-diaminoethylpiperazine, 1,4bis (2-amino-2-methylpropyl) piperazine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] Undecane etc.]; [4] Aromatic ring-containing aliphatic amines (C8-C15) (xylylenediamine, tetrachloro-p-) Siri diamine, etc.), and the like.

芳香族ジアミン類(C6〜C20)としては、〔1〕非置換芳香族ジアミン〔1,2−、1,3−および1,4−フェニレンジアミン、2,4´−および4,4´−ジフェニルメタンジアミン、クルードジフェニルメタンジアミン(ポリフェニルポリメチレンポリアミン)、ジアミノジフェニルスルホン、ベンジジン、チオジアニリン、ビス(3,4−ジアミノフェニル)スルホン、2,6−ジアミノピリジン、m−アミノベンジルアミン、トリフェニルメタン−4,4´,4”−トリアミン、ナフチレンジアミンなど;〔2〕核置換アルキル基〔メチル,エチル,n−およびi−プロピル、ブチルなどのC1〜C4アルキル基)を有する芳香族ジアミン、たとえば2,4−および2,6−トリレンジアミン、クルードトリレンジアミン、ジエチルトリレンジアミン、4,4´−ジアミノ−3,3´−ジメチルジフェニルメタン、4,4´−ビス(o−トルイジン)、ジアニシジン、ジアミノジトリルスルホン、1,3−ジメチル−2,4−ジアミノベンゼン、1,3−ジメチル−2,6−ジアミノベンゼン、1,4−ジイソプロピル−2,5−ジアミノベンゼン、2,4−ジアミノメシチレン、1−メチル−3,5−ジエチル−2,4−ジアミノベンゼン、2,3−ジメチル−1,4−ジアミノナフタレン、2,6−ジメチル−1,5−ジアミノナフタレン、3,3´,5,5´−テトラメチルベンジジン、3,3´,5,5´−テトラメチル−4,4´−ジアミノジフェニルメタン、3,5−ジエチル−3´−メチル−2´,4−ジアミノジフェニルメタン、3,3´−ジエチル−2,2´−ジアミノジフェニルメタン、4,4´−ジアミノ−3,3´−ジメチルジフェニルメタン、3,3´,5,5´−テトラエチル−4,4´−ジアミノベンゾフェノン、3,3´,5,5´−テトラエチル−4,4´−ジアミノジフェニルエーテル、3,3´,5,5´−テトライソプロピル−4,4´−ジアミノジフェニルスルホンなど〕、およびこれらの異性体の種々の割合の混合物;〔3〕核置換電子吸引基(Cl,Br,I,Fなどのハロゲン;メトキシ、エトキシなどのアルコキシ基;ニトロ基など)を有する芳香族ジアミン〔メチレンビス−o−クロロアニリン、4−クロロ−o−フェニレンジアミン、2−クロル−1,4−フェニレンジアミン、3−アミノ−4−クロロアニリン、4−ブロモ−1,3−フェニレンジアミン、2,5−ジクロル−1,4−フェニレンジアミン、5−ニトロ−1,3−フェニレンジアミン、3−ジメトキシ−4−アミノアニリン;4,4´−ジアミノ−3,3´−ジメチル−5,5´−ジブロモ−ジフェニルメタン、3,3´−ジクロロベンジジン、3,3´−ジメトキシベンジジン、ビス(4−アミノ−3−クロロフェニル)オキシド、ビス(4−アミノ−2−クロロフェニル)プロパン、ビス(4−アミノ−2−クロロフェニル)スルホン、ビス(4−アミノ−3−メトキシフェニル)デカン、ビス(4−アミノフェニル)スルフイド、ビス(4−アミノフェニル)テルリド、ビス(4−アミノフェニル)セレニド、ビス(4−アミノ−3−メトキシフェニル)ジスルフイド、4,4´−メチレンビス(2−ヨードアニリン)、4,4´−メチレンビス(2−ブロモアニリン)、4,4´−メチレンビス(2−フルオロアニリン)、4−アミノフェニル−2−クロロアニリンなど〕;〔4〕2級アミノ基を有する芳香族ジアミン〔上記〔1〕〜〔3〕の芳香族ジアミンの−NH2の一部または全部が−NH−R´(R´はアルキル基たとえばメチル,エチルなどの低級アルキル基)で置き換ったもの〕〔4,4´−ジ(メチルアミノ)ジフェニルメタン、1−メチル−2−メチルアミノ−4−アミノベンゼンなど〕が挙げられる。 As aromatic diamines (C6-C20), [1] unsubstituted aromatic diamine [1,2-, 1,3- and 1,4-phenylenediamine, 2,4′- and 4,4′-diphenylmethane Diamine, crude diphenylmethanediamine (polyphenylpolymethylenepolyamine), diaminodiphenylsulfone, benzidine, thiodianiline, bis (3,4-diaminophenyl) sulfone, 2,6-diaminopyridine, m-aminobenzylamine, triphenylmethane-4 , 4 ', 4 "-triamine, naphthylenediamine, etc .; [2] aromatic diamines having a nucleus-substituted alkyl group [C1-C4 alkyl group such as methyl, ethyl, n- and i-propyl, butyl, etc.], for example 2 , 4- and 2,6-tolylenediamine, crude tolylenediamine, die Rutorylenediamine, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 4,4'-bis (o-toluidine), dianisidine, diaminoditolylsulfone, 1,3-dimethyl-2,4-diaminobenzene 1,3-dimethyl-2,6-diaminobenzene, 1,4-diisopropyl-2,5-diaminobenzene, 2,4-diaminomesitylene, 1-methyl-3,5-diethyl-2,4-diaminobenzene 2,3-dimethyl-1,4-diaminonaphthalene, 2,6-dimethyl-1,5-diaminonaphthalene, 3,3 ′, 5,5′-tetramethylbenzidine, 3,3 ′, 5,5 ′ -Tetramethyl-4,4'-diaminodiphenylmethane, 3,5-diethyl-3'-methyl-2 ', 4-diaminodiphenylmethane, 3,3'-diethyl-2,2 -Diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyldiphenylmethane, 3,3 ', 5,5'-tetraethyl-4,4'-diaminobenzophenone, 3,3', 5,5'-tetraethyl -4,4'-diaminodiphenyl ether, 3,3 ', 5,5'-tetraisopropyl-4,4'-diaminodiphenylsulfone, etc.), and mixtures of these isomers in various proportions; [3] nuclear substitution Aromatic diamines having an electron withdrawing group (halogen such as Cl, Br, I, F; alkoxy group such as methoxy and ethoxy; nitro group) [methylenebis-o-chloroaniline, 4-chloro-o-phenylenediamine, 2 -Chlor-1,4-phenylenediamine, 3-amino-4-chloroaniline, 4-bromo-1,3-phenylenediamine, 2,5 Dichloro-1,4-phenylenediamine, 5-nitro-1,3-phenylenediamine, 3-dimethoxy-4-aminoaniline; 4,4′-diamino-3,3′-dimethyl-5,5′-dibromo- Diphenylmethane, 3,3'-dichlorobenzidine, 3,3'-dimethoxybenzidine, bis (4-amino-3-chlorophenyl) oxide, bis (4-amino-2-chlorophenyl) propane, bis (4-amino-2- Chlorophenyl) sulfone, bis (4-amino-3-methoxyphenyl) decane, bis (4-aminophenyl) sulfide, bis (4-aminophenyl) telluride, bis (4-aminophenyl) selenide, bis (4-amino-) 3-methoxyphenyl) disulfide, 4,4'-methylenebis (2-iodoaniline), 4,4'-methyl Bis (2-bromoaniline), 4,4′-methylenebis (2-fluoroaniline), 4-aminophenyl-2-chloroaniline, etc.]; [4] aromatic diamine having a secondary amino group [above [1] To [3] wherein a part or all of —NH 2 of the aromatic diamine is replaced by —NH—R ′ (R ′ is an alkyl group such as a lower alkyl group such as methyl or ethyl)] [4, 4 '-Di (methylamino) diphenylmethane, 1-methyl-2-methylamino-4-aminobenzene, etc.].

ジアミン成分としては、これらの他、ポリアミドポリアミン〔ジカルボン酸(ダイマー酸など)と過剰の(酸1モル当り2モル以上の)ポリアミン類(上記アルキレンジアミン,ポリアルキレンポリアミンなど)との縮合により得られる低分子量ポリアミドポリアミンなど〕、ポリエーテルポリアミン〔ポリエーテルポリオール(ポリアルキレングリコールなど)のシアノエチル化物の水素化物など〕等が挙げられる。   In addition to these, the diamine component can be obtained by condensation of polyamide polyamine [dicarboxylic acid (dimer acid etc.) and excess (more than 2 mol per mole of acid) polyamine (alkylenediamine, polyalkylenepolyamine etc.). Low molecular weight polyamide polyamine, etc.], polyether polyamine [hydride of cyanoethylated polyether polyol (polyalkylene glycol, etc.), etc.].

結晶性ポリエステル樹脂のうち、ラクトン開環重合物は、例えば、β−プロピオラクトン、γ−ブチロラクトン、δ−バレロラクトン、ε−カプロラクトンなどの炭素数3〜12のモノラクトン(環中のエステル基数1個)等のラクトン類を金属酸化物、有機金属化合物などの触媒を用いて、開環重合させることにより得ることができる。これらのうち、好ましいラクトンは、結晶性の観点からε−カプロラクトンである。
開始剤として、グリコールを用いると、末端にヒドロキシル基を有するラクトン開環重合物が得られる。例えば、上記ラクトン類とエチレングリコール、ジエチレングリコール等の前記ジオール成分を触媒の存在下で反応させることにより得ることができる。触媒としては、有機スズ化合物、有機チタン化合物、有機ハロゲン化スズ化合物等が一般的であり、0.1〜5000ppm程度の割合で添加して、100〜230℃で、好ましくは不活性雰囲気下に重合させることによって、ラクトン開環重合物を得ることができる。ラクトン開環重合物は、その末端を例えばカルボキシル基になるように変性したものであってもよい。ラクトン開環重合物は、結晶性の高い熱可塑性脂肪族ポリエステル樹脂である。ラクトン開環重合物は、市販品を用いてもよく、例えば、ダイセル株式会社製のPLACCELシリーズのH1P、H4、H5、H7など(いずれも、融点=約60℃、Tg=約−60℃の高結晶性ポリカプロラクトン)が挙げられる。
Among crystalline polyester resins, lactone ring-opening polymerization products are monolactones having 3 to 12 carbon atoms such as β-propiolactone, γ-butyrolactone, δ-valerolactone, ε-caprolactone (the number of ester groups in the ring). Lactones such as one) can be obtained by ring-opening polymerization using a catalyst such as a metal oxide or an organometallic compound. Of these, a preferred lactone is ε-caprolactone from the viewpoint of crystallinity.
When glycol is used as the initiator, a lactone ring-opening polymer having a hydroxyl group at the terminal is obtained. For example, it can be obtained by reacting the lactone with the diol component such as ethylene glycol or diethylene glycol in the presence of a catalyst. As the catalyst, an organic tin compound, an organic titanium compound, an organic tin halide compound, and the like are common, added at a rate of about 0.1 to 5000 ppm, and preferably at 100 to 230 ° C., preferably in an inert atmosphere. By polymerizing, a lactone ring-opening polymer can be obtained. The lactone ring-opening polymer may be modified at its terminal so as to be, for example, a carboxyl group. The lactone ring-opening polymer is a thermoplastic aliphatic polyester resin having high crystallinity. As the lactone ring-opening polymer, commercially available products may be used. For example, H1P, H4, H5, H7 of PLACEL series manufactured by Daicel Corporation (all of which melting point = about 60 ° C., Tg = about −60 ° C. Highly crystalline polycaprolactone).

結晶性ポリエステル樹脂のうち、ポリヒドロキシカルボン酸は、グリコール酸、乳酸(L体、D体、ラセミ体)等のヒドロキシカルボン酸を直接脱水縮合することで得られるが、グリコリド、ラクチド(L体、D体、ラセミ体)などのヒドロキシカルボン酸の2分子間もしくは3分子間脱水縮合物に相当する炭素数4〜12の環状エステル(環中のエステル基数2〜3個)を金属酸化物、有機金属化合物などの触媒を用いて、開環重合する方が分子量の調整の観点から好ましい。これらのうち、好ましい環状エステルは、結晶性の観点からL−ラクチド、およびD−ラクチドである。
開始剤として、グリコールを用いると、末端にヒドロキシル基を有するポリヒドロキシカルボン酸骨格が得られる。例えば、上記環状エステルとエチレングリコール、ジエチレングリコール等の前記ジオール成分を触媒の存在下で反応させることにより得ることができる。触媒としては、有機スズ化合物、有機チタン化合物、有機ハロゲン化スズ化合物等が一般的であり、0.1〜5000ppm程度の割合で添加して、100〜230℃で、好ましくは不活性雰囲気下に重合させることによって、ポリヒドロキシカルボン酸を得ることができる。ポリヒドロキシカルボン酸は、その末端を例えばカルボキシル基になるように変性したものであってもよい。
Among crystalline polyester resins, polyhydroxycarboxylic acid can be obtained by directly dehydrating and condensing hydroxycarboxylic acid such as glycolic acid and lactic acid (L-form, D-form, racemic form), but glycolide, lactide (L-form, A cyclic ester having 4 to 12 carbon atoms (2 to 3 ester groups in the ring) corresponding to a dehydration condensate between two or three molecules of a hydroxycarboxylic acid such as D-form or racemate) as a metal oxide or organic Ring-opening polymerization using a catalyst such as a metal compound is preferable from the viewpoint of adjusting the molecular weight. Among these, preferred cyclic esters are L-lactide and D-lactide from the viewpoint of crystallinity.
When glycol is used as an initiator, a polyhydroxycarboxylic acid skeleton having a hydroxyl group at the terminal is obtained. For example, it can be obtained by reacting the cyclic ester with the diol component such as ethylene glycol or diethylene glycol in the presence of a catalyst. As the catalyst, an organic tin compound, an organic titanium compound, an organic tin halide compound, and the like are common, added at a rate of about 0.1 to 5000 ppm, and preferably at 100 to 230 ° C., preferably in an inert atmosphere. A polyhydroxycarboxylic acid can be obtained by polymerization. The polyhydroxycarboxylic acid may have a terminal modified so as to be, for example, a carboxyl group.

ポリエーテル樹脂としては、結晶性ポリオキシアルキレンポリオール等が挙げられる。
結晶性ポリオキシアルキレンポリオールの製造方法としては特に限定されず、従来より公知のいずれの方法でもよい。
例えば、キラル体のAOを、通常AOの重合で使用される触媒で開環重合させる方法(例えば、Journal of the American Chemical Society、1956年、第78巻、第18号、p.4787−4792 に記載)や、安価なラセミ体のAOを立体的に嵩高い特殊な化学構造の錯体を触媒として用いて、開環重合させる方法が知られている。
特殊な錯体を用いる方法としては、ランタノイド錯体と有機アルミニウムを接触させた化合物を触媒として用いる方法(例えば、特開平11−12353号公報に記載)やバイメタルμ−オキソアルコキサイドとヒドロキシル化合物をあらかじめ反応させる方法(例えば、特表2001−521957号公報に記載)等が知られている。
また、非常にアイソタクティシティーの高いポリオキシアルキレンポリオールを得る方法として、サレン錯体を触媒として用いる方法(例えば、Journal of the American Chemical Society、2005年、第127巻、第33号、p.11566−11567 に記載)が知られている。
Examples of the polyether resin include crystalline polyoxyalkylene polyols.
The method for producing the crystalline polyoxyalkylene polyol is not particularly limited, and any conventionally known method may be used.
For example, a method of ring-opening polymerization of a chiral AO with a catalyst usually used in polymerization of AO (for example, Journal of the American Chemical Society, 1956, Vol. 78, No. 18, p. 4787-4792) And a method of ring-opening polymerization of inexpensive racemic AO using a sterically bulky complex having a special chemical structure as a catalyst.
As a method of using a special complex, a method in which a compound obtained by contacting a lanthanoid complex and an organoaluminum is used as a catalyst (for example, described in JP-A No. 11-12353) or bimetal μ-oxoalkoxide and a hydroxyl compound are previously used. A reaction method (for example, described in JP-T-2001-521957) is known.
Further, as a method for obtaining a polyoxyalkylene polyol having a very high isotacticity, a method using a salen complex as a catalyst (for example, Journal of the American Chemical Society, 2005, 127, 33, p. 11666- 11567) is known.

例えば、キラル体のAOを用い、その開環重合時に、開始剤として、グリコールまたは水を用いると、末端にヒドロキシル基を有するアイソタクティシティが50%以上であるポリオキシアルキレングリコールが得られる。アイソタクティシティが50%以上であるポリオキシアルキレングリコールは、その末端を例えば、カルボキシル基になるように変性したものであってもよい。なお、アイソタクティシティが50%以上であると、通常結晶性となる。
上記グリコールとしては、前記ジオール成分等が挙げられ、カルボキシ変性するのに用いるカルボン酸としては、前記ジカルボン酸成分等が挙げられる
For example, when a chiral AO is used and glycol or water is used as an initiator during the ring-opening polymerization, a polyoxyalkylene glycol having a hydroxyl group at the terminal and having an isotacticity of 50% or more is obtained. The polyoxyalkylene glycol having an isotacticity of 50% or more may be modified such that its terminal is, for example, a carboxyl group. If the isotacticity is 50% or more, the crystallinity is usually obtained.
Examples of the glycol include the diol component, and examples of the carboxylic acid used for carboxy modification include the dicarboxylic acid component.

結晶性ポリオキシアルキレンポリオールの製造に用いるAOとしては、炭素数3〜9のものが挙げられ、例えば以下の化合物が挙げられる。
炭素数3のAO[PO、1−クロロオキセタン、2−クロロオキセタン、1,2−ジクロロオキセタン、エピクロルヒドリン、エピブロモヒドリン];炭素数4のAO[1,2−BO、メチルグリシジルエーテル];炭素数5のAO[1,2−ペンチレンオキサイド、2,3−ペンチレンオキサイド、3−メチル−1,2−ブチレンオキサイド];炭素数6のAO[シクロヘキセンオキサイド、1,2−へキシレンオキサイド、3−メチル−1,2−ペンチレンオキサイド、2,3−ヘキシレンオキサイド、4−メチル−2,3−ペンチレンオキサイド、アリルグリシジルエーテル];炭素数7のAO[1,2−へプチレンオキサイド];炭素数8のAO[スチレンオキサイド];炭素数9のAO[フェニルグリシジルエーテル]等である。
As AO used for manufacture of crystalline polyoxyalkylene polyol, a C3-C9 thing is mentioned, For example, the following compounds are mentioned.
C3 AO [PO, 1-chlorooxetane, 2-chlorooxetane, 1,2-dichlorooxetane, epichlorohydrin, epibromohydrin]; C4 AO [1,2-BO, methylglycidyl ether]; C5 AO [1,2-pentylene oxide, 2,3-pentylene oxide, 3-methyl-1,2-butylene oxide]; C6 AO [cyclohexene oxide, 1,2-hexylene oxide , 3-methyl-1,2-pentylene oxide, 2,3-hexylene oxide, 4-methyl-2,3-pentylene oxide, allyl glycidyl ether]; AO [1,2-heptyl having 7 carbon atoms] Ren oxide]; AO having 8 carbon atoms [styrene oxide]; AO having 9 carbon atoms [phenyl glycidyl ether] and the like.

これらのAOのうち、PO、1,2−BO、スチレンオキサイドおよびシクロへキセンオキサイドが好ましい。さらに好ましくはPO、1,2−BOおよびシクロへキセンオキサイドである。重合速度の観点から、最も好ましくはPOである。
これらのAOは、単独で、または、2種類以上を使用することができる。
Of these AOs, PO, 1,2-BO, styrene oxide and cyclohexene oxide are preferred. More preferred are PO, 1,2-BO and cyclohexene oxide. From the viewpoint of the polymerization rate, PO is most preferable.
These AOs can be used alone or in combination of two or more.

結晶性ポリオキシアルキレンポリオールのアイソタクティシティは、得られる結晶性ポリエーテル樹脂の高シャープメルト性と耐ブロッキング性の観点から70%以上が好ましく、さらに好ましくは80%以上、より好ましくは90%以上、最も好ましくは95%以上である。   The isotacticity of the crystalline polyoxyalkylene polyol is preferably 70% or more, more preferably 80% or more, more preferably 90% or more from the viewpoint of high sharp melt property and blocking resistance of the obtained crystalline polyether resin. Most preferably, it is 95% or more.

アイソタクティシティーは、Macromolecules、vol.35、No.6、2389−2392頁(2002年)に記載の方法で算出することができ、以下のようにして求める。
測定試料約30mgを直径5mmの13C−NMR用試料管に秤量し、約0.5mlの重水素化溶剤を加えて溶解させ、分析用試料とする。ここで重水素化溶剤は、重水素化クロロホルム、重水素化トルエン、重水素化ジメチルスルホキシド、重水素化ジメチルホルムアミド等であり、試料を溶解させることのできる溶剤を適宜選択する。
Isotacticity is described in Macromolecules, vol. 35, no. 6, 2389-2392 (2002), and can be calculated as follows.
About 30 mg of a measurement sample is weighed into a 13 C-NMR sample tube having a diameter of 5 mm, and about 0.5 ml of deuterated solvent is added and dissolved to obtain an analysis sample. Here, the deuterated solvent is deuterated chloroform, deuterated toluene, deuterated dimethyl sulfoxide, deuterated dimethylformamide, or the like, and a solvent capable of dissolving the sample is appropriately selected.

13C−NMRの3種類のメチン基由来の信号は、それぞれシンジオタクチック値(S)75.1ppm付近とヘテロタクチック値(H)75.3ppm付近とアイソタクチック値(I)75.5ppm付近に観測される。アイソタクティシティーを次の計算式(1)により算出する。
アイソタクティシティー(%)=[I/(I+S+H)]×100 (1)
但し、式中、Iはアイソタクチック信号の積分値;Sはシンジオタクチック信号の積分値;Hはヘテロタクチック信号の積分値である。
13 C-NMR signals derived from three types of methine groups are syndiotactic value (S) in the vicinity of 75.1 ppm, heterotactic value (H) in the vicinity of 75.3 ppm, and isotactic value (I) in 75.5 ppm. Observed nearby. Isotacticity is calculated by the following calculation formula (1).
Isotacticity (%) = [I / (I + S + H)] × 100 (1)
Where I is the integrated value of the isotactic signal; S is the integrated value of the syndiotactic signal; and H is the integrated value of the heterotactic signal.

結晶性樹脂(A)が結晶性部(b)と非結晶性部(c)をもつブロック樹脂の場合、非結晶性部(c)の形成に用いられる樹脂としては、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂、ビニル樹脂(ポリスチレン、スチレンアクリル系ポリマー等)、エポキシ樹脂等が挙げられるが、その限りではない。
ただし、前記結晶性部(b)の形成に用いられる樹脂が、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂であることが好ましいので、加熱時に相溶することを考慮すると、非結晶性部(c)の形成に用いられる樹脂もポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂、およびそれらの複合樹脂であることが好ましい。さらに好ましくはポリウレタン樹脂およびポリエステル樹脂である。
When the crystalline resin (A) is a block resin having a crystalline part (b) and an amorphous part (c), the resin used for forming the amorphous part (c) includes a polyester resin, a polyurethane resin, Polyurea resin, polyamide resin, polyether resin, vinyl resin (polystyrene, styrene acrylic polymer, etc.), epoxy resin and the like can be mentioned, but not limited thereto.
However, the resin used for forming the crystalline part (b) is preferably a polyester resin, a polyurethane resin, a polyurea resin, a polyamide resin, or a polyether resin. The resin used for forming the crystalline part (c) is also preferably a polyester resin, a polyurethane resin, a polyurea resin, a polyamide resin, a polyether resin, and a composite resin thereof. More preferred are polyurethane resins and polyester resins.

これらの非結晶性樹脂の組成は、前記結晶性部(b)と同様のものが挙げられ、使用するモノマーも、前記ジオール成分、前記ジカルボン酸成分、前記ジイソシアネート成分、前記ジアミン成分、および前記AOが具体例として挙げられ、非結晶性樹脂となるものであれば、いかなる組合せでも構わない。   The composition of these non-crystalline resins is the same as that of the crystalline part (b), and the monomers used are the diol component, the dicarboxylic acid component, the diisocyanate component, the diamine component, and the AO. As a specific example, any combination may be used as long as it becomes an amorphous resin.

[ブロックポリマーの製法]
結晶性部(b)と非結晶性部(c)とで構成されるブロックポリマーは、それぞれの末端官能基の反応性を考慮して結合剤の使用、非使用を選択し、また使用の際は末端官能基にあった結合剤種を選択し、(b)と(c)を結合させ、ブロックポリマーとすることが出来る。
結合剤を使わない場合、必要により加熱減圧しつつ、(b)を形成する樹脂の末端官能基と(c)を形成する樹脂の末端官能基の反応を進める。特に酸とアルコールとの反応や酸とアミンとの反応の場合、片方の樹脂の酸価が高く、もう一方の樹脂の水酸基価やアミン価が高い場合、反応がスムーズに進行する。反応温度は180℃〜230℃で行うのが好ましい。
結合剤を使う場合は、種々の結合剤が使用できる。多価カルボン酸、多価アルコール、多価イソシアネート、多官能エポキシ、酸無水物等を用いて、脱水反応や、付加反応を行うことで得られる。
多価カルボン酸および酸無水物としては、前記ジカルボン酸成分と同様のものが挙げられる。多価アルコールとしては、前記ジオール成分と同様のものが挙げられる。多価イソシアネートとしては、前記ジイソシアネート成分と同様のものが挙げられる。多官能エポキシとしては、ビスフェノールA型および−F型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物、水添ビスフェノールA型エポキシ化合物、ビスフェノールAまたは−FのAO付加体のジグリシジルエーテル、水添ビスフェノールAのAO付加体のジグリシジルエーテル、ジオール(エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ブタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、ポリエチレングリコールおよびポリプロピレングリコール等)のジグリシジルエーテル、トリメチロールプロパンジおよび/またはトリグリシジルエーテル、ペンタエリスリトールトリおよび/またはテトラグリシジルエーテル、ソルビトールヘプタおよび/またはヘキサグリシジルエーテル、レゾルシンジグリシジルエーテル、ジシクロペンタジエン・フェノール付加型グリシジルエーテル、メチレンビス(2,7−ジヒドロキシナフタレン)テトラグリシジルエーテル、1,6−ジヒドロキシナフタレンジグリシジルエーテル、ポリブタジエンジグリシジルエーテルなどが挙げられる。
[Production method of block polymer]
For the block polymer composed of the crystalline part (b) and the non-crystalline part (c), the use or non-use of a binder is selected in consideration of the reactivity of each terminal functional group. Can select a binder type suitable for the terminal functional group and bond (b) and (c) to form a block polymer.
When the binder is not used, the reaction between the terminal functional group of the resin forming (b) and the terminal functional group of the resin forming (c) is advanced while heating and decompressing as necessary. In particular, in the case of a reaction between an acid and an alcohol or a reaction between an acid and an amine, the reaction proceeds smoothly when the acid value of one resin is high and the hydroxyl value or amine value of the other resin is high. The reaction temperature is preferably 180 ° C to 230 ° C.
When a binder is used, various binders can be used. It can be obtained by performing a dehydration reaction or an addition reaction using polyvalent carboxylic acid, polyhydric alcohol, polyvalent isocyanate, polyfunctional epoxy, acid anhydride or the like.
Examples of the polyvalent carboxylic acid and acid anhydride include those similar to the dicarboxylic acid component. Examples of the polyhydric alcohol include those similar to the diol component. Examples of the polyvalent isocyanate include those similar to the diisocyanate component. As the polyfunctional epoxy, bisphenol A type and -F type epoxy compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds, hydrogenated bisphenol A type epoxy compounds, diglycidyl ethers of AO adducts of bisphenol A or -F, Diglycidyl ether of AO adduct of hydrogenated bisphenol A, diol (ethylene glycol, propylene glycol, neopentyl glycol, butanediol, hexanediol, cyclohexanedimethanol, polyethylene glycol, polypropylene glycol, etc.) diglycidyl ether, trimethylolpropane Di and / or triglycidyl ether, pentaerythritol tri and / or tetraglycidyl ether, sorbitol hepta And / or hexaglycidyl ether, resorcin diglycidyl ether, dicyclopentadiene / phenol-added glycidyl ether, methylenebis (2,7-dihydroxynaphthalene) tetraglycidyl ether, 1,6-dihydroxynaphthalenediglycidyl ether, polybutadiene diglycidyl ether, etc. Is mentioned.

(b)と(c)を結合させる方法のうち、脱水反応の例としては、結晶性部(b)、非結晶性部(c)とも両末端アルコール樹脂で、これらを結合剤(例えば多価カルボン酸)で結合する反応が挙げられる。この場合、例えば、無溶剤下、反応温度180℃〜230℃で反応し、ブロックポリマーが得られる。
付加反応の例としては、結晶性部(b)、非結晶性部(c)とも末端に水酸基を有する樹脂であり、これらを結合剤(例えば多価イソシアネート)で結合する反応や、また結晶性部(b)、非結晶性部(c)の片方が末端に水酸基を有する樹脂で、もう一方が末端にイソシアネート基を有する樹脂の場合、結合剤を用いずにこれらを結合する反応が挙げられる。この場合、例えば、結晶性部(b)、非結晶性部(c)ともに溶解可能な溶剤に溶解させ、これに必要であるなら結合剤を投入し、反応温度80℃〜150℃で反応し、ブロックポリマーが得られる。
Among the methods for bonding (b) and (c), as an example of the dehydration reaction, both the crystalline part (b) and the non-crystalline part (c) are alcohol resins at both ends, and these are combined with a binder (for example, polyvalent). Reaction which couple | bonds with carboxylic acid) is mentioned. In this case, for example, the reaction is performed at a reaction temperature of 180 ° C. to 230 ° C. in the absence of a solvent to obtain a block polymer.
Examples of the addition reaction include a resin having a hydroxyl group at both ends of the crystalline part (b) and the non-crystalline part (c), a reaction in which these are bonded with a binder (for example, polyvalent isocyanate), and crystalline In the case where one of the part (b) and the non-crystalline part (c) is a resin having a hydroxyl group at the terminal and the other is a resin having an isocyanate group at the terminal, there is a reaction of bonding them without using a binder. . In this case, for example, both the crystalline part (b) and the non-crystalline part (c) are dissolved in a soluble solvent, and if necessary, a binder is added and reacted at a reaction temperature of 80 ° C. to 150 ° C. A block polymer is obtained.

結晶性樹脂(A)としては、上記のブロックポリマーが好ましいが、非結晶性部(c)を有さず、結晶性部(b)のみからなる樹脂を用いることもできる。
結晶性部のみからなる(A)の組成としては、前記の結晶性部(b)と同様のもの、および結晶性ビニル樹脂が挙げられる。
結晶性ビニル樹脂としては、結晶性基を有するビニルモノマー(m)と、必要により結晶性基を有しないビニルモノマー(n)を構成単位として有するものが好ましい。
As the crystalline resin (A), the above block polymer is preferable, but a resin having only the crystalline part (b) without the amorphous part (c) can also be used.
Examples of the composition of (A) consisting only of the crystalline part include the same as the crystalline part (b) and a crystalline vinyl resin.
As a crystalline vinyl resin, what has a vinyl monomer (m) which has a crystalline group and a vinyl monomer (n) which does not have a crystalline group as a structural unit if necessary is preferable.

ビニルモノマー(m)としては、アルキル基の炭素数が12〜50の直鎖アルキル(メタ)アクリレート(m1)(炭素数12〜50の直鎖アルキル基が結晶性基である)、および前記結晶性部(b)の単位を有するビニルモノマー(m2)等が挙げられる。
結晶性ビニル樹脂としては、ビニルモノマー(m)として、アルキル基の炭素数が12〜50(好ましくは16〜30)の直鎖アルキル(メタ)アクリレート(m1)を含有するものがさらに好ましい。
(m1)としては、各アルキル基がいずれも直鎖状の、ラウリル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、およびベヘニル(メタ)アクリレート等が挙げられる。
なお、本発明において、アルキル(メタ)アクリレートとは、アルキルアクリレートおよび/またはアルキルメタアクリレートを意味し、以下同様の記載法を用いる。
Examples of the vinyl monomer (m) include linear alkyl (meth) acrylate (m1) having 12 to 50 carbon atoms in the alkyl group (the linear alkyl group having 12 to 50 carbon atoms is a crystalline group), and the crystal And vinyl monomer (m2) having a unit of the sex part (b).
As a crystalline vinyl resin, what contains linear alkyl (meth) acrylate (m1) whose carbon number of an alkyl group is 12-50 (preferably 16-30) as a vinyl monomer (m) is further more preferable.
Examples of (m1) include linear lauryl (meth) acrylate, tetradecyl (meth) acrylate, stearyl (meth) acrylate, eicosyl (meth) acrylate, and behenyl (meth) acrylate, each of which is linear. It is done.
In the present invention, alkyl (meth) acrylate means alkyl acrylate and / or alkyl methacrylate, and the same description method is used hereinafter.

結晶性部(b)の単位を有するビニルモノマー(m2)において、結晶性部(b)の単位をビニルモノマーに導入する方法は、それぞれの末端官能基の反応性を考慮して、結合剤(カップリング剤)を使用するかしないかを選択し、また使用する場合は、末端官能基にあった結合剤を選択し、結晶性部(b)とビニルモノマーを結合させ、結晶性部(b)の単位を有するビニルモノマー(m2)とすることができる。   In the vinyl monomer (m2) having a unit of the crystalline part (b), the method of introducing the unit of the crystalline part (b) into the vinyl monomer takes into account the reactivity of each terminal functional group, and the binder ( (Coupling agent) is used or not, and when it is used, the binder suitable for the terminal functional group is selected, and the crystalline part (b) is bonded to the vinyl monomer, and the crystalline part (b ) Units of vinyl monomer (m2).

結晶性部(b)の単位を有するビニルモノマー(m2)の作成時に結合剤を使わない場合、必要により加熱減圧しつつ、結晶性部(b)の末端官能基とビニルモノマーの末端官能基の反応を進める。特に末端の官能基がカルボキシル基と水酸基との反応や、カルボキシル基とアミノ基との反応の場合、片方の樹脂の酸価が高く、もう一方の樹脂の水酸基価やアミン価が高い場合、反応がスムーズに進行する。反応温度は180℃〜230℃で行うのが好ましい。   When a binder is not used when producing the vinyl monomer (m2) having the unit of the crystalline part (b), the terminal functional group of the crystalline part (b) and the terminal functional group of the vinyl monomer are heated and decompressed as necessary. Advance the reaction. Especially when the terminal functional group is a reaction between a carboxyl group and a hydroxyl group, or a reaction between a carboxyl group and an amino group, if the acid value of one resin is high and the hydroxyl value or amine value of the other resin is high, Progresses smoothly. The reaction temperature is preferably 180 ° C to 230 ° C.

結合剤を使う場合は、末端の官能基の種類に合わせて、種々の結合剤が使用できる。
結合剤の具体例、および結合剤を用いたビニルモノマー(m2)の作製法としては、前記のブロックポリマーの製法と同様の方法が挙げられる。
When using a binder, various binders can be used according to the kind of the functional group at the terminal.
Specific examples of the binder and a method for producing the vinyl monomer (m2) using the binder include the same methods as those for producing the block polymer.

結晶性基を有しないビニルモノマー(n)としては、特に限定されず、結晶性基を有するビニルモノマー(m)以外のビニル樹脂の製造に通常用いられる分子量が1000以下のビニルモノマー(n1)、および前記非結晶性部(c)の単位を有するビニルモノマー(n2)等が挙げられる。   The vinyl monomer (n) having no crystalline group is not particularly limited, and a vinyl monomer (n1) having a molecular weight of 1000 or less, which is usually used for the production of vinyl resins other than the vinyl monomer (m) having a crystalline group, And a vinyl monomer (n2) having a unit of the non-crystalline part (c).

上記ビニルモノマー(n1)としては、スチレン類、(メタ)アクリルモノマー、カルボキシル基含有ビニルモノマー、他のビニルエステルモノマー、および脂肪族炭化水素系ビニルモノマー等が挙げられ、2種以上を併用してもよい。   Examples of the vinyl monomer (n1) include styrenes, (meth) acrylic monomers, carboxyl group-containing vinyl monomers, other vinyl ester monomers, and aliphatic hydrocarbon vinyl monomers. Also good.

スチレン類としては、スチレン、アルキル基の炭素数が1〜3のアルキルスチレン〔例えば、α−メチルスチレン、p−メチルスチレン〕などが挙げられ、好ましくはスチレンである。   Examples of styrenes include styrene and alkyl styrene having an alkyl group having 1 to 3 carbon atoms [for example, α-methyl styrene, p-methyl styrene], and styrene is preferable.

(メタ)アクリルモノマーとしては、アルキル基の炭素数が1〜11のアルキル(メタ)アクリレートおよびアルキル基の炭素数が12〜18の分岐アルキル(メタ)アクリレート〔例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート〕、アルキル基の炭素数1〜11のヒドロキシルアルキル(メタ)アクリレート〔例えば、ヒドロキシルエチル(メタ)アクリレート〕、アルキル基の炭素数が1〜11のアルキルアミノ基含有(メタ)アクリレート〔例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート〕、およびニトリル基含有ビニルモノマー〔例えば、アクリロニトリル、メタアクリロニトリル〕などが挙げられる。
カルボキシル基含有ビニルモノマーとしては、モノカルボン酸〔炭素数3〜15、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸〕、ジカルボン酸〔炭素数4〜15、例えば、(無水)マレイン酸、フマル酸、イタコン酸、シトラコン酸〕、ジカルボン酸モノエステル〔上記ジカルボン酸のモノアルキル(炭素数1〜18)エステル、例えば、マレイン酸モノアルキルエステル、フマル酸モノアルキルエステル、イタコン酸モノアルキルエステル、シトラコン酸モノアルキルエステル〕などが挙げられる。
(Meth) acrylic monomers include alkyl (meth) acrylates having 1 to 11 carbon atoms in the alkyl group and branched alkyl (meth) acrylates having 12 to 18 carbon atoms in the alkyl group [for example, methyl (meth) acrylate, ethyl (Meth) acrylates, butyl (meth) acrylates, 2-ethylhexyl (meth) acrylates], alkyl groups having 1 to 11 carbon atoms hydroxylalkyl (meth) acrylates [for example, hydroxylethyl (meth) acrylates], alkyl group carbons Alkylamino group-containing (meth) acrylates having a number of 1 to 11 [for example, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate], and nitrile group-containing vinyl monomers [for example, acrylonitrile, methacrylonitrile And the like.
Examples of the carboxyl group-containing vinyl monomer include monocarboxylic acids [having 3 to 15 carbon atoms such as (meth) acrylic acid, crotonic acid and cinnamic acid], dicarboxylic acids [having 4 to 15 carbon atoms such as (anhydrous) maleic acid, Fumaric acid, itaconic acid, citraconic acid], dicarboxylic acid monoester [monoalkyl (carbon number 1 to 18) ester of the above dicarboxylic acid, for example, maleic acid monoalkyl ester, fumaric acid monoalkyl ester, itaconic acid monoalkyl ester, Citraconic acid monoalkyl ester] and the like.

他のビニルエステルモノマーとしては、脂肪族ビニルエステル〔炭素数4〜15、たとえば酢酸ビニル、プロピオン酸ビニル、イソプロペニルアセテート〕、不飽和カルボン酸多価(2〜3価またはそれ以上)アルコールエステル〔炭素数8〜50、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,6ヘキサンジオールジアクリレート、ポリエチレングリコールジ(メタ)アクリレート〕、芳香族ビニルエステル〔炭素数9〜15、例えば、メチル−4−ビニルベンゾエート〕などが挙げられる。
脂肪族炭化水素系ビニルモノマーとしてはオレフィン〔炭素数2〜10、例えば、エチレン、プロピレン、ブテン、オクテン〕、ジエン(炭素数4〜10、例えば、ブタジエン、イソプレン、1,6−ヘキサジエン〕などが挙げられる。
これら(b1)の中で好ましくは、(メタ)アクリルモノマー、およびカルボキシル基含有ビニルモノマーである。
Other vinyl ester monomers include aliphatic vinyl esters [4 to 15 carbon atoms, such as vinyl acetate, vinyl propionate, isopropenyl acetate], unsaturated carboxylic acid polyvalent (2 to 3 or more) alcohol esters [ C8-50, for example, ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,6 hexanediol diacrylate, Polyethylene glycol di (meth) acrylate], aromatic vinyl ester [carbon number 9 to 15, for example, methyl-4-vinylbenzoate] and the like.
Aliphatic hydrocarbon vinyl monomers include olefins [2-10 carbon atoms such as ethylene, propylene, butene, octene], dienes (4-10 carbon atoms such as butadiene, isoprene, 1,6-hexadiene) and the like. Can be mentioned.
Among these (b1), (meth) acrylic monomers and carboxyl group-containing vinyl monomers are preferable.

非結晶性部(c)の単位を有するビニルモノマー(n2)において、非結晶性部(c)の単位をビニルモノマーに導入する方法は、前記の結晶性部(b)の単位を有するビニルモノマー(m2)において、結晶性部(b)の単位をビニルモノマーに導入する方法と同様の方法が挙げられる。   In the vinyl monomer (n2) having the unit of the non-crystalline part (c), the method of introducing the unit of the non-crystalline part (c) into the vinyl monomer is the same as the vinyl monomer having the unit of the crystalline part (b). In (m2), a method similar to the method of introducing the unit of the crystalline part (b) into the vinyl monomer can be mentioned.

結晶性基を有するビニルモノマー(m)の構成単位が結晶性ビニル樹脂中に占める割合は、30重量%以上が好ましく、さらに好ましくは35〜95重量%であり、特に好ましくは40〜90重量%である。この範囲であるとビニル樹脂の結晶性が損なわれず、耐熱保存安定性が良好である。また(m)中のアルキル基の炭素数が12〜50の直鎖アルキル(メタ)アクリレート(m1)の含有量は、好ましくは30〜100重量%、さらに好ましくは40〜80重量%である。
これらのビニルモノマーを公知の方法で重合させることにより、結晶性ビニル樹脂が得られる。
The proportion of the structural unit of the vinyl monomer (m) having a crystalline group in the crystalline vinyl resin is preferably 30% by weight or more, more preferably 35 to 95% by weight, particularly preferably 40 to 90% by weight. It is. Within this range, the crystallinity of the vinyl resin is not impaired and the heat resistant storage stability is good. The content of the linear alkyl (meth) acrylate (m1) having 12 to 50 carbon atoms in the alkyl group in (m) is preferably 30 to 100% by weight, more preferably 40 to 80% by weight.
A crystalline vinyl resin is obtained by polymerizing these vinyl monomers by a known method.

結晶性樹脂(A)は、本発明の結晶性樹脂粒子中の樹脂として単独で用いられても構わないが、非結晶性樹脂と共に用いられてもよい。
非結晶性樹脂としては、例えば、数平均分子量(以下、Mnと記載)が1000〜100万のポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、ビニル樹脂、およびそれらの併用が挙げられる。好ましいものは、ポリエステル樹脂、およびビニル樹脂であり、さらに好ましくはポリエステル樹脂である。ただし低温定着性、および光沢性の観点から、樹脂中の結晶性樹脂(A)の割合は、65重量%以上が好ましく、より好ましくは68重量%以上、さらに好ましくは70重量%以上である。
The crystalline resin (A) may be used alone as a resin in the crystalline resin particles of the present invention, but may be used together with an amorphous resin.
Examples of the amorphous resin include polyester resins having a number average molecular weight (hereinafter referred to as Mn) of 1,000 to 1,000,000, polyurethane resins, epoxy resins, vinyl resins, and combinations thereof. Preferred are polyester resins and vinyl resins, and more preferred are polyester resins. However, from the viewpoint of low-temperature fixability and glossiness, the ratio of the crystalline resin (A) in the resin is preferably 65% by weight or more, more preferably 68% by weight or more, and further preferably 70% by weight or more.

本発明の結晶性樹脂粒子は、水系媒体を用い、水系媒体中で結晶性樹脂(A)を粒子化して作製される。水系媒体中での粒子化方法としては通常用いられる方法でよく、懸濁重合法、乳化凝集法、溶解懸濁法等いずれの方法を用いてもよい。これらの中で、好ましくは溶解懸濁法であり、さらに好ましくは以下の[粒子化方法1]である。
[粒子化方法1] 樹脂(d)および/または無機化合物(e)を含有する粒子(D)の水性分散液(W)と結晶性樹脂(A)もしくはその有機溶剤溶液(O)とを混合し、(W)中に(O)を分散させ、水性分散液(W)中で(A)を含有する樹脂粒子(C0)を形成させて、(C0)の表面に(D)が付着した結晶性樹脂粒子(C)の水性分散体(Y)を得て、その後(Y)から水性媒体を除去する方法。
The crystalline resin particles of the present invention are produced by using an aqueous medium and granulating the crystalline resin (A) in the aqueous medium. The particle formation method in the aqueous medium may be a commonly used method, and any method such as a suspension polymerization method, an emulsion aggregation method, or a dissolution suspension method may be used. Of these, the dissolution suspension method is preferred, and the following [Particulation Method 1] is more preferred.
[Particulation Method 1] Mixing aqueous dispersion (W) of particles (D) containing resin (d) and / or inorganic compound (e) with crystalline resin (A) or an organic solvent solution (O) thereof Then, (O) is dispersed in (W) to form resin particles (C0) containing (A) in the aqueous dispersion (W), and (D) adheres to the surface of (C0). A method of obtaining an aqueous dispersion (Y) of crystalline resin particles (C) and then removing the aqueous medium from (Y).

上記の粒子化方法で使用される粒子(D)は水系媒体中で微粒子を形成することができ、また結晶性樹脂(A)に吸着するものであれば素材は何でも構わない。
樹脂(d)としてはビニル系樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ケイ素系樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート樹脂等が挙げられる。(d)としては、上記樹脂の2種以上を併用しても差し支えない。
無機化合物(e)としては、シリカ、アルミナ、チタニア、炭酸カルシウム、炭酸マグネシウム、リン酸三カルシウム等が挙げられ、2種以上併用してもよい。
これらうち好ましいのは、低温定着性の観点から、炭酸カルシウム、ビニル系樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂およびそれらの複合樹脂である。
The particles (D) used in the above-mentioned particle formation method can form fine particles in an aqueous medium, and any material can be used as long as they can be adsorbed to the crystalline resin (A).
Examples of the resin (d) include vinyl resins, polyurethane resins, epoxy resins, polyester resins, polyamide resins, polyimide resins, silicon resins, phenol resins, melamine resins, urea resins, aniline resins, ionomer resins, and polycarbonate resins. . As (d), two or more of the above resins may be used in combination.
Examples of the inorganic compound (e) include silica, alumina, titania, calcium carbonate, magnesium carbonate, tricalcium phosphate and the like, and two or more kinds may be used in combination.
Of these, calcium carbonate, vinyl resin, polyester resin, polyurethane resin, epoxy resin, and composite resins thereof are preferable from the viewpoint of low-temperature fixability.

以下、好ましい樹脂である、ビニル系樹脂、ポリエステル樹脂、ポリウレタン樹脂、およびエポキシ樹脂につき、詳細に説明する。   Hereinafter, vinyl resins, polyester resins, polyurethane resins, and epoxy resins, which are preferable resins, will be described in detail.

ビニル系樹脂は、ビニル系モノマーを単独重合または共重合したポリマーである。ビニル系モノマーとしては、下記(1)〜(10)が挙げられる。
(1)カルボキシル基含有ビニル系モノマーおよびその塩:
炭素数3〜20の不飽和モノカルボン酸、不飽和ジカルボン酸およびその無水物、例えば(メタ)アクリル酸、(無水)マレイン酸、フマル酸、クロトン酸、イタコン酸、シトラコン酸、桂皮酸等のカルボキシル基含有ビニル系モノマー。
The vinyl resin is a polymer obtained by homopolymerizing or copolymerizing a vinyl monomer. Examples of the vinyl monomer include the following (1) to (10).
(1) Carboxyl group-containing vinyl monomers and salts thereof:
C3-C20 unsaturated monocarboxylic acid, unsaturated dicarboxylic acid and its anhydride, such as (meth) acrylic acid, (anhydrous) maleic acid, fumaric acid, crotonic acid, itaconic acid, citraconic acid, cinnamic acid, etc. Carboxyl group-containing vinyl monomer.

(2)ビニル系炭化水素:
(1−1)脂肪族ビニル系炭化水素:アルケン類、例えばエチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセン、前記以外のα−オレフィン等;アルカジエン類、例えばブタジエン、イソプレン、1,4−ペンタジエン、1,6−ヘキサジエン、1,7−オクタジエン。
(1−2)脂環式ビニル系炭化水素:モノ−もしくはジ−シクロアルケンおよびアルカジエン類、例えばシクロヘキセン、(ジ)シクロペンタジエン、ビニルシクロヘキセン、エチリデンビシクロヘプテン等;テルペン類、例えばピネン、リモネン、インデン等。
(1−3)芳香族ビニル系炭化水素:スチレンおよびそのハイドロカルビル(アルキル、シクロアルキル、アラルキルおよび/またはアルケニル)置換体、例えばα−メチルスチレン、ビニルトルエン、2,4−ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン、クロチルベンゼン、ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、トリビニルベンゼン等;およびビニルナフタレン。
(2) Vinyl hydrocarbons:
(1-1) Aliphatic vinyl hydrocarbons: alkenes such as ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, other α-olefins, etc .; alkadienes such as butadiene , Isoprene, 1,4-pentadiene, 1,6-hexadiene, 1,7-octadiene.
(1-2) Alicyclic vinyl hydrocarbons: mono- or di-cycloalkenes and alkadienes such as cyclohexene, (di) cyclopentadiene, vinylcyclohexene, ethylidenebicycloheptene and the like; terpenes such as pinene, limonene, Inden etc.
(1-3) Aromatic vinyl hydrocarbons: Styrene and its hydrocarbyl (alkyl, cycloalkyl, aralkyl and / or alkenyl) substitutes such as α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethyl Styrene, isopropyl styrene, butyl styrene, phenyl styrene, cyclohexyl styrene, benzyl styrene, crotyl benzene, divinyl benzene, divinyl toluene, divinyl xylene, trivinyl benzene, and the like; and vinyl naphthalene.

(3)スルホン基含有ビニル系モノマー、ビニル系硫酸モノエステル化物およびこれらの塩:炭素数2〜14のアルケンスルホン酸、例えばビニルスルホン酸、(メタ)アリルスルホン酸、メチルビニルスルホン酸、スチレンスルホン酸;およびその炭素数2〜24のアルキル誘導体、例えばα−メチルスチレンスルホン酸等;スルホ(ヒドロキシ)アルキル−(メタ)アクリレートもしくは(メタ)アクリルアミド、例えば、スルホプロピル(メタ)アクリレート、2−ヒドロキシ−3−(メタ)アクリロキシプロピルスルホン酸、2−(メタ)アクリロイルアミノ−2,2−ジメチルエタンスルホン酸、2−(メタ)アクリロイルオキシエタンスルホン酸、3−(メタ)アクリロイルオキシ−2−ヒドロキシプロパンスルホン酸、2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、3−(メタ)アクリルアミド−2−ヒドロキシプロパンスルホン酸、アルキル(炭素数3〜18)アリルスルホコハク酸、ポリ(n=2〜30)オキシアルキレン(エチレン、プロピレン、ブチレン:単独、ランダム、ブロックでもよい)モノ(メタ)アクリレートの硫酸エステル[ポリ(n=5〜15)オキシプロピレンモノメタクリレート硫酸エステル等]、ポリオキシエチレン多環フェニルエーテル硫酸エステル、および下記一般式(3−1)〜(3−3)で示される硫酸エステルもしくはスルホン酸基含有モノマー;ならびそれらの塩等。 (3) Sulfonic group-containing vinyl monomers, vinyl sulfate monoesters and their salts: Alkene sulfonic acids having 2 to 14 carbon atoms such as vinyl sulfonic acid, (meth) allyl sulfonic acid, methyl vinyl sulfonic acid, styrene sulfone Acids; and alkyl derivatives thereof having 2 to 24 carbon atoms such as α-methylstyrene sulfonic acid; sulfo (hydroxy) alkyl- (meth) acrylates or (meth) acrylamides such as sulfopropyl (meth) acrylates, 2-hydroxy -3- (meth) acryloxypropylsulfonic acid, 2- (meth) acryloylamino-2,2-dimethylethanesulfonic acid, 2- (meth) acryloyloxyethanesulfonic acid, 3- (meth) acryloyloxy-2- Hydroxypropanesulfonic acid, 2- ( T) Acrylamide-2-methylpropanesulfonic acid, 3- (meth) acrylamide-2-hydroxypropanesulfonic acid, alkyl (C3-C18) allylsulfosuccinic acid, poly (n = 2-30) oxyalkylene (ethylene, Propylene, butylene: single, random or block) mono (meth) acrylate sulfate [poly (n = 5-15) oxypropylene monomethacrylate sulfate, etc.], polyoxyethylene polycyclic phenyl ether sulfate, and Sulfate ester or sulfonic acid group-containing monomers represented by general formulas (3-1) to (3-3); and salts thereof.

O−(AO)nSO3

CH2=CHCH2−OCH2CHCH2O−Ar−R (3−1)

CH=CH−CH3

R−Ar−O−(AO)nSO3H (3−2)

CH2COOR’

HO3SCHCOOCH2CH(OH)CH2OCH2CH=CH2 (3−3)

(式中、Rは炭素数1〜15のアルキル基、Aは炭素数2〜4のアルキレン基を示し、nが複数の場合同一でも異なっていてもよく、異なる場合はランダムでもブロックでもよい。Arはベンゼン環を示し、nは1〜50の整数を示し、R’はフッ素原子で置換されていてもよい炭素数1〜15のアルキル基を示す。)
O- (AO) nSO 3 H

CH 2 = CHCH 2 -OCH 2 CHCH 2 O-Ar-R (3-1)

CH = CH-CH 3

R-Ar-O- (AO) nSO 3 H (3-2)

CH 2 COOR '

HO 3 SCHCOOCH 2 CH (OH) CH 2 OCH 2 CH═CH 2 (3-3)

(In the formula, R represents an alkyl group having 1 to 15 carbon atoms, A represents an alkylene group having 2 to 4 carbon atoms, and when n is plural, they may be the same or different, and when they are different, they may be random or block. Ar represents a benzene ring, n represents an integer of 1 to 50, and R ′ represents an alkyl group having 1 to 15 carbon atoms which may be substituted with a fluorine atom.

(4)燐酸基含有ビニル系モノマーおよびその塩:
(メタ)アクリロイルオキシアルキル(C1〜C24)燐酸モノエステル、例えば、2−ヒドロキシエチル(メタ)アクリロイルホスフェート、フェニル−2−アクリロイロキシエチルホスフェート、(メタ)アクリロイルオキシアルキル(炭素数1〜24)ホスホン酸類、例えば2−アクリロイルオキシエチルホスホン酸。
(4) Phosphoric acid group-containing vinyl monomers and salts thereof:
(Meth) acryloyloxyalkyl (C1 to C24) phosphoric acid monoester, for example, 2-hydroxyethyl (meth) acryloyl phosphate, phenyl-2-acryloyloxyethyl phosphate, (meth) acryloyloxyalkyl (C1-24) Phosphonic acids, such as 2-acryloyloxyethylphosphonic acid.

なお、上記(1)、(3)、および(4)の塩としては、前記のカルボキシル基の中和塩として例示したものなどが挙げられる。好ましくはアルカリ金属塩、およびアミン塩であり、さらに好ましくは、ナトリウム塩および炭素数3〜20の3級モノアミンの塩である。   Examples of the salts (1), (3), and (4) include those exemplified as the neutralized salt of the carboxyl group. Preferred are alkali metal salts and amine salts, and more preferred are sodium salts and salts of tertiary monoamines having 3 to 20 carbon atoms.

(5)ヒドロキシル基含有ビニル系モノマー:
ヒドロキシスチレン、N−メチロール(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、(メタ)アリルアルコール、クロチルアルコール、イソクロチルアルコール、1−ブテン−3−オール、2−ブテン−1−オール、2−ブテン−1,4−ジオール、プロパルギルアルコール、2−ヒドロキシエチルプロペニルエーテル、庶糖アリルエーテル等
(5) Hydroxyl group-containing vinyl monomer:
Hydroxystyrene, N-methylol (meth) acrylamide, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, (meth) allyl alcohol, crotyl alcohol, isocrotyl alcohol, 1- Buten-3-ol, 2-buten-1-ol, 2-butene-1,4-diol, propargyl alcohol, 2-hydroxyethylpropenyl ether, sucrose allyl ether, etc.

(6)含窒素ビニル系モノマー:
(6−1)アミノ基含有ビニル系モノマー:アミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、t−ブチルアミノエチルメタクリレート、N−アミノエチル(メタ)アクリルアミド、(メタ)アリルアミン、モルホリノエチル(メタ)アクリレート、4ービニルピリジン、2ービニルピリジン、クロチルアミン、N,N−ジメチルアミノスチレン、メチルα−アセトアミノアクリレート、ビニルイミダゾール、N−ビニルピロール、N−ビニルチオピロリドン、N−アリールフェニレンジアミン、アミノカルバゾール、アミノチアゾール、アミノインドール、アミノピロール、アミノイミダゾール、アミノメルカプトチアゾール、これらの塩等
(6−2)アミド基含有ビニル系モノマー:(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−ブチルアクリルアミド、ジアセトンアクリルアミド、N−メチロール(メタ)アクリルアミド、N,N’−メチレン−ビス(メタ)アクリルアミド、桂皮酸アミド、N,N−ジメチルアクリルアミド、N,N−ジベンジルアクリルアミド、メタクリルホルムアミド、N−メチルN−ビニルアセトアミド、N−ビニルピロリドン等
(6−3)ニトリル基含有ビニル系モノマー:(メタ)アクリロニトリル、シアノスチレン、シアノアクリレート等
(6−4)4級アンモニウムカチオン基含有ビニル系モノマー:ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリルアミド、ジエチルアミノエチル(メタ)アクリルアミド、ジアリルアミン等の3級アミン基含有ビニル系モノマーの4級化物(メチルクロライド、ジメチル硫酸、ベンジルクロライド、ジメチルカーボネート等の4級化剤を用いて4級化したもの)
(6−5)ニトロ基含有ビニル系モノマー:ニトロスチレン等
(6) Nitrogen-containing vinyl monomer:
(6-1) Amino group-containing vinyl monomer: aminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, t-butylaminoethyl methacrylate, N-aminoethyl (meth) acrylamide, (Meth) allylamine, morpholinoethyl (meth) acrylate, 4-vinylpyridine, 2-vinylpyridine, crotylamine, N, N-dimethylaminostyrene, methyl α-acetaminoacrylate, vinylimidazole, N-vinylpyrrole, N-vinylthiopyrrolidone, N -Arylphenylenediamine, aminocarbazole, aminothiazole, aminoindole, aminopyrrole, aminoimidazole, aminomercaptothiazole, salts thereof (6-2) amide Containing vinyl monomers: (meth) acrylamide, N-methyl (meth) acrylamide, N-butyl acrylamide, diacetone acrylamide, N-methylol (meth) acrylamide, N, N′-methylene-bis (meth) acrylamide, cinnamic acid Amides, N, N-dimethylacrylamide, N, N-dibenzylacrylamide, methacrylformamide, N-methyl N-vinylacetamide, N-vinylpyrrolidone, etc. (6-3) Nitrile group-containing vinyl monomers: (meth) acrylonitrile, Cyanostyrene, cyanoacrylate, etc. (6-4) Quaternary ammonium cation group-containing vinyl monomers: dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylamide Diethylaminoethyl (meth) acrylamide, quaternized product of tertiary amine group-containing vinyl monomers such as diallylamine (methyl chloride, dimethyl sulfate, benzyl chloride, which was quaternized with quaternizing agents such as dimethyl carbonate)
(6-5) Nitro group-containing vinyl monomers: nitrostyrene, etc.

(7)エポキシ基含有ビニル系モノマー:
グルシジル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、p−ビニルフェニルフェニルオキサイド等
(7) Epoxy group-containing vinyl monomer:
Glucidyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, p-vinylphenylphenyl oxide, etc.

(8)ハロゲン元素含有ビニル系モノマー:
塩化ビニル、臭化ビニル、塩化ビニリデン、アリルクロライド、クロルスチレン、ブロムスチレン、ジクロルスチレン、クロロメチルスチレン、テトラフルオロスチレン、クロロプレン等
(8) Halogen element-containing vinyl monomers:
Vinyl chloride, vinyl bromide, vinylidene chloride, allyl chloride, chlorostyrene, bromostyrene, dichlorostyrene, chloromethylstyrene, tetrafluorostyrene, chloroprene, etc.

(9)ビニルエステル、ビニル(チオ)エーテル、ビニルケトン、ビニルスルホン類:
(9−1)ビニルエステル、例えば酢酸ビニル、ビニルブチレート、プロピオン酸ビニル、酪酸ビニル、ジアリルフタレート、ジアリルアジペート、イソプロペニルアセテート、ビニルメタクリレート、メチル4−ビニルベンゾエート、シクロヘキシルメタクリレート、ベンジルメタクリレート、フェニル(メタ)アクリレート、ビニルメトキシアセテート、ビニルベンゾエート、エチルα−エトキシアクリレート、炭素数1〜50のアルキル基を有するアルキル(メタ)アクリレート[メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ヘプタデシル(メタ)アクリレート、エイコシル(メタ)アクリレート等]、ジアルキルフマレート(2個のアルキル基は、炭素数2〜8の、直鎖、分枝鎖もしくは脂環式の基である)、ジアルキルマレエート(2個のアルキル基は、炭素数2〜8の、直鎖、分枝鎖もしくは脂環式の基である)、ポリ(メタ)アリロキシアルカン類[ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシエタン、テトラアリロキシプロパン、テトラアリロキシブタン、テトラメタアリロキシエタン等]等、ポリアルキレングリコール鎖を有するビニル系モノマー[ポリエチレングリコール(数平均分子量300)モノ(メタ)アクリレート、ポリプロピレングリコール(数平均分子量500)モノアクリレート、メチルアルコールEO10モル付加物(メタ)アクリレート、ラウリルアルコールEO30モル付加物(メタ)アクリレート等]、ポリ(メタ)アクリレート類[多価アルコール類のポリ(メタ)アクリレート:エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート等]等
(9−2)ビニル(チオ)エーテル、例えばビニルメチルエーテル、ビニルエチルエーテル、ビニルプロピルエーテル、ビニルブチルエーテル、ビニル2−エチルヘキシルエーテル、ビニルフェニルエーテル、ビニル2−メトキシエチルエーテル、メトキシブタジエン、ビニル2−ブトキシエチルエーテル、3,4−ジヒドロ1,2−ピラン、2−ブトキシ−2’−ビニロキシジエチルエーテル、ビニル2−エチルメルカプトエチルエーテル、アセトキシスチレン、フェノキシスチレン等
(9−3)ビニルケトン、例えばビニルメチルケトン、ビニルエチルケトン、ビニルフェニルケトン;
ビニルスルホン、例えばジビニルサルファイド、p−ビニルジフェニルサルファイド、ビニルエチルサルファイド、ビニルエチルスルフォン、ジビニルスルフォン、ジビニルスルフォキサイド等
(9) Vinyl esters, vinyl (thio) ethers, vinyl ketones, vinyl sulfones:
(9-1) Vinyl esters such as vinyl acetate, vinyl butyrate, vinyl propionate, vinyl butyrate, diallyl phthalate, diallyl adipate, isopropenyl acetate, vinyl methacrylate, methyl 4-vinylbenzoate, cyclohexyl methacrylate, benzyl methacrylate, phenyl ( (Meth) acrylate, vinyl methoxyacetate, vinyl benzoate, ethyl α-ethoxy acrylate, alkyl (meth) acrylate having 1 to 50 carbon atoms [methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate , Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadec (Meth) acrylate, eicosyl (meth) acrylate, etc.], dialkyl fumarate (two alkyl groups are straight, branched or alicyclic groups having 2 to 8 carbon atoms), dialkyl maleate (Two alkyl groups are linear, branched or alicyclic groups having 2 to 8 carbon atoms), poly (meth) allyloxyalkanes [diallyloxyethane, triaryloxyethane, Tetraallyloxyethane, tetraallyloxypropane, tetraallyloxybutane, tetrametaallyloxyethane, etc.] vinyl monomers having a polyalkylene glycol chain [polyethylene glycol (number average molecular weight 300) mono (meth) acrylate, polypropylene glycol (Number average molecular weight 500) Monoacrylate, methyl alcohol EO 10 mol adduct (meta) Acrylate, lauryl alcohol EO 30 mol adduct (meth) acrylate, etc.], poly (meth) acrylates [poly (meth) acrylate of polyhydric alcohols: ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, neo Pentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, polyethylene glycol di (meth) acrylate, etc.] etc. (9-2) vinyl (thio) ether, such as vinyl methyl ether, vinyl ethyl ether, vinyl propyl ether , Vinyl butyl ether, vinyl 2-ethylhexyl ether, vinyl phenyl ether, vinyl 2-methoxyethyl ether, methoxybutadiene, vinyl 2-butoxyethyl ether, 3,4-dihy (1) Vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone, vinyl, etc. (9-3) vinyl ketones such as vinyl methyl ketone, vinyl ethyl ketone, vinyl Phenyl ketone;
Vinyl sulfone, such as divinyl sulfide, p-vinyl diphenyl sulfide, vinyl ethyl sulfide, vinyl ethyl sulfone, divinyl sulfone, divinyl sulfoxide, etc.

(10)その他のビニル系モノマー:
イソシアナトエチル(メタ)アクリレート、m−イソプロペニル−α,α−ジメチルベンジルイソシアネート等
(10) Other vinyl monomers:
Isocyanatoethyl (meth) acrylate, m-isopropenyl-α, α-dimethylbenzyl isocyanate, etc.

ビニル系モノマーの共重合体としては、上記(1)〜(10)の任意のモノマー同士を、2元またはそれ以上の個数で、好ましくは樹脂(d)中のカルボキシル基の含量が0.1〜10重量%になるように、任意の割合で共重合したポリマーが挙げられるが、例えば、スチレン−(メタ)アクリル酸エステル−(メタ)アクリル酸共重合体、スチレン−ブタジエン−(メタ)アクリル酸共重合体、(メタ)アクリル酸−アクリル酸エステル共重合体、スチレン−アクリロニトリル−(メタ)アクリル酸共重合体、スチレン−(メタ)アクリル酸共重合体、スチレン−(メタ)アクリル酸−ジビニルベンゼン共重合体、スチレン−スチレンスルホン酸−(メタ)アクリル酸エステル共重合体、およびこれらの共重合体の塩などが挙げられる。   As a copolymer of vinyl monomers, any one of the monomers (1) to (10) described above is a binary or higher number, preferably the carboxyl group content in the resin (d) is 0.1. Polymers copolymerized at an arbitrary ratio so as to be 10% by weight can be mentioned. For example, styrene- (meth) acrylic acid ester- (meth) acrylic acid copolymer, styrene-butadiene- (meth) acrylic Acid copolymer, (meth) acrylic acid-acrylic acid ester copolymer, styrene-acrylonitrile- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid- Examples thereof include divinylbenzene copolymers, styrene-styrenesulfonic acid- (meth) acrylic acid ester copolymers, and salts of these copolymers.

なお、樹脂粒子を製造する[粒子化方法1]の場合、樹脂(d)が、水中で樹脂粒子(D)を形成する必要があり、水に完全に溶解していないことが必要である。そのため、ビニル系樹脂が共重合体である場合には、ビニル系樹脂を構成する疎水性モノマーと親水性モノマーの比率は、選ばれるモノマーの種類によるが、一般に疎水性モノマーが10重量%以上であることが好ましく、30重量%以上であることがより好ましい。疎水性モノマーの比率が、10重量%以下になるとビニル系樹脂が水溶性になり、結晶性樹脂粒子(C)の粒径均一性が損なわれる。ここで、親水性モノマーとは水に任意の割合で溶解するモノマーをいい、疎水性モノマーとは、それ以外のモノマー(基本的に水に混和しないモノマー)をいう。   In the case of [Particulation Method 1] for producing resin particles, the resin (d) needs to form the resin particles (D) in water, and is not completely dissolved in water. Therefore, when the vinyl resin is a copolymer, the ratio between the hydrophobic monomer and the hydrophilic monomer constituting the vinyl resin depends on the type of monomer selected, but generally the hydrophobic monomer is 10% by weight or more. It is preferable that it is 30% by weight or more. When the ratio of the hydrophobic monomer is 10% by weight or less, the vinyl resin becomes water-soluble and the particle size uniformity of the crystalline resin particles (C) is impaired. Here, the hydrophilic monomer means a monomer that dissolves in water at an arbitrary ratio, and the hydrophobic monomer means another monomer (a monomer that is basically not miscible with water).

ポリエステル樹脂としては、ポリオールと、ポリカルボン酸またはその酸無水物またはその低級アルキルエステルとの重縮合物、およびこれらの重縮合物の金属塩などが挙げられる。ポリオールとしてはジオール(11)および3〜8価またはそれ以上のポリオール(12)が、ポリカルボン酸またはその酸無水物またはその低級アルキルエステルとしては、ジカルボン酸(13)および3〜6価またはそれ以上のポリカルボン酸(14)およびこれらの酸無水物または低級アルキルエステルが挙げられる。
ポリオールとポリカルボン酸の比率は、水酸基[OH]とカルボキシル基[COOH]の当量比[OH]/[COOH]として、好ましくは2/1〜1/5、さらに好ましくは1.5/1〜1/4、とくに好ましくは1/1.3〜1/3である。
カルボキシル基の含有量を前記の好ましい範囲内とするために、水酸基が過剰なポリエステルをポリカルボン酸で処理してもよい。
Examples of polyester resins include polycondensates of polyols with polycarboxylic acids or acid anhydrides or lower alkyl esters thereof, and metal salts of these polycondensates. The polyol is a diol (11) and a polyol having 3 to 8 or more valences (12), and the polycarboxylic acid or its acid anhydride or its lower alkyl ester is a dicarboxylic acid (13) and 3 to 6 or more valences. The above polycarboxylic acid (14) and these acid anhydrides or lower alkyl esters are mentioned.
The ratio of the polyol and the polycarboxylic acid is preferably 2/1 to 1/5, more preferably 1.5 / 1 to the equivalent ratio [OH] / [COOH] of the hydroxyl group [OH] and the carboxyl group [COOH]. 1/4, particularly preferably 1 / 1.3 to 1/3.
In order to keep the carboxyl group content within the above preferred range, the polyester having an excess of hydroxyl groups may be treated with polycarboxylic acid.

ジオール(11)としては、前記のジオール成分として記載のものと同様のものが挙げられる。
ジオール(11)のうち好ましいものは、炭素数2〜12のアルキレングリコール、カルボキシル基を有するジオール、ビスフェノール類のAO付加物、およびこれらの併用である。
3〜8価またはそれ以上のポリオール(12)としては、前記のものが挙げられる。ポリオール(12)のうち好ましいものは、3〜8価またはそれ以上の多価脂肪族アルコールおよびノボラック樹脂のAO付加物であり、さらに好ましいものはノボラック樹脂のAO付加物である。
Examples of the diol (11) include the same diol components as those described above.
Among the diols (11), preferred are alkylene glycols having 2 to 12 carbon atoms, diols having a carboxyl group, AO adducts of bisphenols, and combinations thereof.
Examples of the trivalent to octavalent or higher polyol (12) include those described above. Preferred among the polyols (12) are AO adducts of 3 to 8 or higher polyhydric aliphatic alcohols and novolak resins, and more preferred are AO adducts of novolak resins.

ジカルボン酸(13)としては、前記のジカルボン酸成分として記載のものと同様のものが挙げられる。
ジカルボン酸(13)のうち好ましいものは、炭素数4〜20のアルケンジカルボン酸、および炭素数8〜20の芳香族ジカルボン酸である。
3〜6価またはそれ以上のポリカルボン酸(14)としては、前記のものが挙げられる。
Examples of the dicarboxylic acid (13) include those described as the dicarboxylic acid component.
Among the dicarboxylic acids (13), alkene dicarboxylic acids having 4 to 20 carbon atoms and aromatic dicarboxylic acids having 8 to 20 carbon atoms are preferable.
Examples of the trivalent to hexavalent or higher polycarboxylic acid (14) include those described above.

ポリウレタン樹脂としては、ポリイソシアネート(15)と活性水素含有化合物{水、ポリオール[前記ジオール(11)(ヒドロキシル基以外の官能基を有するジオールを含む)、および3〜8価またはそれ以上のポリオール(12)]、ポリカルボン酸[ジカルボン酸(13)、および3〜6価またはそれ以上のポリカルボン酸(14)]、ポリオールとポリカルボン酸の重縮合により得られるポリエステルポリオール、炭素数6〜12のラクトンの開環重合体、ポリアミン(16)、ポリチオール(17)、およびこれらの併用等}の重付加物、並びに(15)と活性水素含有化合物を反応させてなる末端イソシアネート基プレポリマーと、該プレポリマーのイソシアネート基に対して等量の1級および/または2級モノアミン(18)とを反応させて得られる、アミノ基含有ポリウレタン樹脂が挙げられる。
ポリウレタン樹脂中のカルボキシル基の含有量は、0.1〜10重量%が好ましい。
Polyurethane resins include polyisocyanate (15) and active hydrogen-containing compounds {water, polyols [including the diol (11) (including diols having functional groups other than hydroxyl groups), and polyols having 3 to 8 or more valences ( 12)], polycarboxylic acid [dicarboxylic acid (13), and polycarboxylic acid (14) having 3 to 6 or more valences], polyester polyol obtained by polycondensation of polyol and polycarboxylic acid, and C6-12 A lactone ring-opening polymer, a polyamine (16), a polythiol (17), and a polyaddition product of these, etc.}, and a terminal isocyanate group prepolymer obtained by reacting (15) with an active hydrogen-containing compound, Equivalent primary and / or secondary monoamines (18 Obtained by reacting the door, and amino group-containing polyurethane resins.
The content of carboxyl groups in the polyurethane resin is preferably 0.1 to 10% by weight.

ポリイソシアネート(15)としては、前記のジイソシアネート成分として記載のものと同様のものが挙げられる。
ポリイソシアネート(15)のうちで好ましいものは6〜15の芳香族ポリイソシアネート、炭素数4〜12の脂肪族ポリイソシアネート、および炭素数4〜15の脂環式ポリイソシアネートであり、とくに好ましいものはTDI、MDI、HDI、水添MDI、およびIPDIである。
Examples of the polyisocyanate (15) include those described as the diisocyanate component.
Among the polyisocyanates (15), preferred are 6-15 aromatic polyisocyanates, C4-C12 aliphatic polyisocyanates, and C4-C15 alicyclic polyisocyanates, and particularly preferred are TDI, MDI, HDI, hydrogenated MDI, and IPDI.

ポリアミン(16)の例としては、前記のジアミン成分として記載のものと同様のものが挙げられる。
ポリチオール(17)としては、炭素数2〜36のアルカンジチオール(エチレンジチオール、1,4−ブタンジチオール、1,6−ヘキサンジチオールなど)等が挙げられる。
Examples of the polyamine (16) include the same as those described as the diamine component.
Examples of the polythiol (17) include alkanedithiols having 2 to 36 carbon atoms (ethylene dithiol, 1,4-butanedithiol, 1,6-hexanedithiol, etc.).

1級および/または2級モノアミン(18)としては、炭素数2〜24のアルキルアミン(エチルアミン、n−ブチルアミン、イソブチルアミンなど)等が挙げられる。   Examples of the primary and / or secondary monoamine (18) include alkylamines having 2 to 24 carbon atoms (such as ethylamine, n-butylamine, and isobutylamine).

エポキシ樹脂としては、ポリエポキシド(19)の開環重合物、ポリエポキシド(19)と活性水素含有化合物{水、ポリオール[前記ジオール(11)および3〜8価またはそれ以上のポリオール(12)]、ジカルボン酸(13)、3〜6価またはそれ以上のポリカルボン酸(14)、ポリアミン(16)、ポリチオール(17)等}との重付加物、またはポリエポキシド(19)とジカルボン酸(13)または3〜6価またはそれ以上のポリカルボン酸(14)の酸無水物との硬化物などが挙げられる。   Examples of the epoxy resin include ring-opened polymer of polyepoxide (19), polyepoxide (19) and active hydrogen-containing compound {water, polyol [the diol (11) and a polyol having 3 to 8 or more valences or more) (12), dicarboxylic acid Acid (13), polyaddition of 3-6 or higher polycarboxylic acid (14), polyamine (16), polythiol (17), etc.}, or polyepoxide (19) and dicarboxylic acid (13) or 3 Examples thereof include a cured product of an acid anhydride of polycarboxylic acid (14) having a valence of 6 or more.

本発明に用いるポリエポキシド(19)は、分子中に2個以上のエポキシ基を有していれば、特に限定されない。ポリエポキシド(19)として好ましいものは、硬化物の機械的性質の観点から分子中にエポキシ基を2〜6個有するものである。ポリエポキシド(19)のエポキシ当量(エポキシ基1個当たりの分子量)は、好ましくは65〜1000であり、さらに好ましくは90〜500である。エポキシ当量が1000以下であると、架橋構造が密になり硬化物の耐水性、耐薬品性、機械的強度等の物性が向上し、一方、エポキシ当量が65未満のものを合成するのは困難である。   The polyepoxide (19) used for this invention will not be specifically limited if it has two or more epoxy groups in a molecule | numerator. A thing preferable as a polyepoxide (19) has 2-6 epoxy groups in a molecule | numerator from a viewpoint of the mechanical property of hardened | cured material. The epoxy equivalent of the polyepoxide (19) (molecular weight per epoxy group) is preferably 65 to 1000, and more preferably 90 to 500. When the epoxy equivalent is 1000 or less, the crosslinked structure becomes dense and the physical properties such as water resistance, chemical resistance and mechanical strength of the cured product are improved. On the other hand, it is difficult to synthesize an epoxy equivalent of less than 65. It is.

ポリエポキシド(19)の例としては、芳香族系ポリエポキシ化合物、複素環系ポリエポキシ化合物、脂環族系ポリエポキシ化合物あるいは脂肪族系ポリエポキシ化合物が挙げられる。芳香族系ポリエポキシ化合物としては、多価フェノール類のグリシジルエーテル体およびグリシジルエステル体、グリシジル芳香族ポリアミン、並びに、アミノフェノールのグリシジル化物等が挙げられる。多価フェノールのグリシジルエーテル体としては、ビスフェノールFジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールBジグリシジルエーテル、ビスフェノールADジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、ハロゲン化ビスフェノールAジグリシジル、テトラクロロビスフェノールAジグリシジルエーテル、カテキンジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ハイドロキノンジグリシジルエーテル、ピロガロールトリグリシジルエーテル、1,5−ジヒドロキシナフタリンジグリシジルエーテル、ジヒドロキシビフェニルジグリシジルエーテル、オクタクロロ−4,4’−ジヒドロキシビフェニルジグリシジルエーテル、テトラメチルビフェニルジグリシジルエーテル、ジヒドロキシナフチルクレゾールトリグリシジルエーテル、トリス(ヒドロキシフェニル)メタントリグリシジルエーテル、ジナフチルトリオールトリグリシジルエーテル、テトラキス(4−ヒドロキシフェニル)エタンテトラグリシジルエーテル、p−グリシジルフェニルジメチルトリールビスフェノールAグリシジルエーテル、トリスメチル−tret−ブチル−ブチルヒドロキシメタントリグリシジルエーテル、9,9’−ビス(4−ヒドキシフェニル)フロオレンジグリシジルエーテル、4,4’−オキシビス(1,4−フェニルエチル)テトラクレゾールグリシジルエーテル、4,4’−オキシビス(1,4−フェニルエチル)フェニルグリシジルエーテル、ビス(ジヒドロキシナフタレン)テトラグリシジルエーテル、フェノールまたはクレゾールノボラック樹脂のグリシジルエーテル体、リモネンフェノールノボラック樹脂のグリシジルエーテル体、ビスフェノールA2モルとエピクロロヒドリン3モルの反応から得られるジグリシジルエーテル体、フェノールとグリオキザール、グルタールアルデヒド、またはホルムアルデヒドの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体、およびレゾルシンとアセトンの縮合反応によって得られるポリフェノールのポリグリシジルエーテル体等が挙げられる。多価フェノールのグリシジルエステル体としては、フタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル等が挙げられる。グリシジル芳香族ポリアミンとしては、N,N−ジグリシジルアニリン、N,N,N’,N’−テトラグリシジルキシリレンジアミン、N,N,N’,N’−テトラグリシジルジフェニルメタンジアミン等が挙げられる。さらに、本発明において、前記芳香族系として、P−アミノフェノールのトリグリシジルエーテル、トリレンジイソシアネートまたはジフェニルメタンジイソシアネートとグリシドールの付加反応によって得られるジグリシジルウレタン化合物、前記2反応物にポリオールも反応させて得られるグリシジル基含有ポリウレタン(プレ)ポリマーおよびビスフェノールAのアルキレンオキシド(エチレンオキシドまたはプロピレンオキシド)付加物のジグリシジルエーテル体も含む。複素環系ポリエポキシ化合物としては、トリスグリシジルメラミンが挙げられる;脂環族系ポリエポキシ化合物としては、ビニルシクロヘキセンジオキシド、リモネンジオキシド、ジシクロペンタジエンジオキシド、ビス(2,3−エポキシシクロペンチル)エーテル、エチレングリコールビスエポキシジシクロペンチルエール、3,4−エポキシ−6−メチルシクロヘキシルメチル−3’,4’−エポキシ−6’−メチルシクロヘキサンカルボキシレート、ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)アジペート、およびビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)ブチルアミン、ダイマー酸ジグリシジルエステル等が挙げられる。また、脂環族系としては、前記芳香族系ポリエポキシド化合物の核水添化物も含む;脂肪族系ポリエポキシ化合物としては、多価脂肪族アルコールのポリグリシジルエーテル体、多価脂肪酸のポリグリシジルエステル体、およびグリシジル脂肪族アミンが挙げられる。多価脂肪族アルコールのポリグリシジルエーテル体としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、テトラメチレングリコールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、グリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ソルビトールポリグリシジルエーテルおよびポリグリセロールンポリグリシジルエーテル等が挙げられる。多価脂肪酸のポリグリシジルエステル体としては、ジグリシジルオキサレート、ジグリシジルマレート、ジグリシジルスクシネート、ジグリシジルグルタレート、ジグリシジルアジペート、ジグリシジルピメレート等が挙げられる。グリシジル脂肪族アミンとしては、N,N,N’,N’−テトラグリシジルヘキサメチレンジアミンが挙げられる。また、本発明において、脂肪族系としては、ジグリシジルエーテル、グリシジル(メタ)アクリレートの(共)重合体も含む。これらのうち、好ましいのは、脂肪族系ポリエポキシ化合物および芳香族系ポリエポキシ化合物である。ポリエポキシドは、2種以上併用しても差し支えない。   Examples of the polyepoxide (19) include aromatic polyepoxy compounds, heterocyclic polyepoxy compounds, alicyclic polyepoxy compounds, and aliphatic polyepoxy compounds. Examples of the aromatic polyepoxy compounds include glycidyl ethers and glycidyl ethers of polyhydric phenols, glycidyl aromatic polyamines, and glycidylates of aminophenols. Examples of glycidyl ethers of polyphenols include bisphenol F diglycidyl ether, bisphenol A diglycidyl ether, bisphenol B diglycidyl ether, bisphenol AD diglycidyl ether, bisphenol S diglycidyl ether, halogenated bisphenol A diglycidyl, and tetrachlorobisphenol A. Diglycidyl ether, catechin diglycidyl ether, resorcinol diglycidyl ether, hydroquinone diglycidyl ether, pyrogallol triglycidyl ether, 1,5-dihydroxynaphthalene diglycidyl ether, dihydroxybiphenyl diglycidyl ether, octachloro-4,4'-dihydroxybiphenyldi Glycidyl ether, tetramethylbiphenyl diglycidyl ester Ter, dihydroxynaphthylcresol triglycidyl ether, tris (hydroxyphenyl) methane triglycidyl ether, dinaphthyltriol triglycidyl ether, tetrakis (4-hydroxyphenyl) ethanetetraglycidyl ether, p-glycidylphenyldimethyltolylbisphenol A glycidyl ether, trismethyl -Tret-butyl-butylhydroxymethane triglycidyl ether, 9,9'-bis (4-hydroxyphenyl) furorange glycidyl ether, 4,4'-oxybis (1,4-phenylethyl) tetracresol glycidyl ether, 4 , 4′-oxybis (1,4-phenylethyl) phenylglycidyl ether, bis (dihydroxynaphthalene) tetraglycidyl ether, Of glycol ether of enolic or cresol novolak resin, glycidyl ether of limonene phenol novolak resin, diglycidyl ether obtained from the reaction of 2 mol of bisphenol A and 3 mol of epichlorohydrin, phenol and glyoxal, glutaraldehyde, or formaldehyde Examples thereof include polyglycidyl ethers of polyphenols obtained by condensation reactions, polyglycidyl ethers of polyphenols obtained by condensation reactions of resorcin and acetone, and the like. Examples of the glycidyl ester of polyhydric phenol include diglycidyl phthalate, diglycidyl isophthalate, and diglycidyl terephthalate. Examples of the glycidyl aromatic polyamine include N, N-diglycidylaniline, N, N, N ′, N′-tetraglycidylxylylenediamine, N, N, N ′, N′-tetraglycidyldiphenylmethanediamine and the like. Furthermore, in the present invention, as the aromatic system, triglycidyl ether of P-aminophenol, tolylene diisocyanate or diglycidyl urethane compound obtained by addition reaction of diphenylmethane diisocyanate and glycidol, and the above two reactants are reacted with polyol. Also included are the resulting glycidyl group-containing polyurethane (pre) polymer and diglycidyl ethers of alkylene oxide (ethylene oxide or propylene oxide) adducts of bisphenol A. Heterocyclic polyepoxy compounds include trisglycidyl melamine; alicyclic polyepoxy compounds include vinylcyclohexene dioxide, limonene dioxide, dicyclopentadiene dioxide, bis (2,3-epoxycyclopentyl). Ether, ethylene glycol bisepoxy dicyclopentyl ale, 3,4-epoxy-6-methylcyclohexylmethyl-3 ′, 4′-epoxy-6′-methylcyclohexanecarboxylate, bis (3,4-epoxy-6-methylcyclohexyl) Methyl) adipate, and bis (3,4-epoxy-6-methylcyclohexylmethyl) butylamine, dimer acid diglycidyl ester, and the like. The alicyclic group also includes a hydrogenated product of the aromatic polyepoxide compound; examples of the aliphatic polyepoxy compound include polyglycidyl ethers of polyvalent aliphatic alcohols and polyglycidyl esters of polyvalent fatty acids. Body, and glycidyl aliphatic amines. Polyglycidyl ethers of polyhydric aliphatic alcohols include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tetramethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, polypropylene glycol Diglycidyl ether, polytetramethylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, glycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, sorbitol polyglycidyl ether and polyglycerol polyglycidyl ether Can be mentioned. Examples of polyglycidyl ester of polyvalent fatty acid include diglycidyl oxalate, diglycidyl malate, diglycidyl succinate, diglycidyl glutarate, diglycidyl adipate, diglycidyl pimelate and the like. Examples of the glycidyl aliphatic amine include N, N, N ′, N′-tetraglycidylhexamethylenediamine. In the present invention, the aliphatic type also includes a (co) polymer of diglycidyl ether and glycidyl (meth) acrylate. Of these, preferred are aliphatic polyepoxy compounds and aromatic polyepoxy compounds. Two or more polyepoxides may be used in combination.

粒子(D)に用いる樹脂(d)の融解熱の最大ピーク温度(Td)は、結晶性樹脂粒子(C)の粒径均一性、粉体流動性、保存時の耐熱性、耐ストレス性の観点から、好ましくは0℃〜300℃、さらに好ましくは20℃〜250℃、とくに好ましくは40℃〜200℃である。樹脂粒子の水性樹脂分散体を作成する温度よりTdが低いと、合一を防止したり、***を防止したりする効果が小さくなり、粒径の均一性を高める効果が小さくなる。なおTdは、DSC測定から求められる値である。   The maximum peak temperature (Td) of the heat of fusion of the resin (d) used for the particles (D) is the uniformity of the particle size of the crystalline resin particles (C), powder flowability, heat resistance during storage, and stress resistance. From the viewpoint, it is preferably 0 ° C to 300 ° C, more preferably 20 ° C to 250 ° C, and particularly preferably 40 ° C to 200 ° C. When Td is lower than the temperature at which the aqueous resin dispersion of resin particles is produced, the effect of preventing coalescence or preventing splitting is reduced, and the effect of increasing the uniformity of particle size is reduced. Td is a value obtained from DSC measurement.

粒子(D)が水や分散時に用いる溶剤に対してに対して、溶解したり、膨潤したりするのを低減する観点から、樹脂(d)の分子量、SP値(SP値の計算方法はPolymer Engineering and Science,Feburuary,1974,Vol.14,No.2 P.147〜154による)、結晶性、架橋点間分子量等を適宜調整するのが好ましい。   From the viewpoint of reducing dissolution or swelling of the particles (D) with respect to water or a solvent used for dispersion, the molecular weight of the resin (d), the SP value (SP value is calculated by Polymer According to Engineering and Science, February, 1974, Vol. 14, No. 2 P. 147 to 154), crystallinity, molecular weight between cross-linking points, and the like are preferably adjusted as appropriate.

樹脂(d)の数平均分子量(GPCにて測定、以下Mnと略記)は、好ましくは200〜500万、さらに好ましくは2,000〜500,000である。SP値は、好ましくは7〜18、さらに好ましくは8〜14である。樹脂(d)の融点(DSCにて測定)は、好ましくは50℃以上、さらに好ましくは80℃以上である。また、結晶性樹脂粒子(C)の、耐熱性、耐水性、耐薬品性、粒径の均一性等を向上させたい場合には、樹脂(d)に架橋構造を導入させても良い。かかる架橋構造は、共有結合性、配位結合性、イオン結合性、水素結合性等、いずれの架橋形態であってもよい。樹脂(d)に架橋構造を導入する場合の架橋点間分子量は、好ましくは30以上、さらに好ましくは50以上である。   The number average molecular weight (measured by GPC, hereinafter abbreviated as Mn) of the resin (d) is preferably 2 to 5,000,000, more preferably 2,000 to 500,000. The SP value is preferably 7 to 18, and more preferably 8 to 14. The melting point (measured by DSC) of the resin (d) is preferably 50 ° C. or higher, more preferably 80 ° C. or higher. Further, when it is desired to improve the heat resistance, water resistance, chemical resistance, particle size uniformity, etc. of the crystalline resin particles (C), a crosslinked structure may be introduced into the resin (d). Such a cross-linked structure may be any cross-linked form such as covalent bond, coordinate bond, ionic bond, hydrogen bond, and the like. The molecular weight between crosslinking points when a crosslinked structure is introduced into the resin (d) is preferably 30 or more, and more preferably 50 or more.

樹脂(d)を粒子(D)の水性分散液にする方法は、特に限定されないが、以下の〔1〕〜〔8〕が挙げられる。
〔1〕ビニル系樹脂の場合において、モノマーを出発原料として、懸濁重合法、乳化重合法、シード重合法または分散重合法等の重合反応により、直接、粒子(D)の水性分散液を製造する方法。
〔2〕ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂等の重付加あるいは縮合系樹脂の場合において、前駆体(モノマー、オリゴマー等)またはその溶剤溶液を適当な分散剤存在下で水性媒体中に分散させ、その後に加熱したり、硬化剤を加えたりして硬化させて粒子(D)の水性分散体を製造する方法。
〔3〕ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂等の重付加あるいは縮合系樹脂の場合において、前駆体(モノマー、オリゴマー等)またはその溶剤溶液(液体であることが好ましい。加熱により液状化してもよい)中に適当な乳化剤を溶解させた後、水を加えて転相乳化する方法。
〔4〕あらかじめ重合反応(付加重合、開環重合、重付加、付加縮合、縮合重合等いずれの重合反応様式であってもよい。以下の本項の重合反応についても同様。)により作成した樹脂を機械回転式またはジェット式等の微粉砕機を用いて粉砕し、次いで、分球するすることによって樹脂粒子を得た後、適当な分散剤存在下で水中に分散させる方法。
〔5〕あらかじめ重合反応により作成した樹脂を溶剤に溶解した樹脂溶液を霧状に噴霧することにより樹脂粒子を得た後、該樹脂粒子を適当な分 散剤存在下で水中に分散させる方法。
〔6〕あらかじめ重合反応により作成した樹脂を溶剤に溶解した樹脂溶液に貧溶剤を添加するか、またはあらかじめ溶剤に加熱溶解した樹脂溶液を冷却することにより樹脂粒子を析出させ、次いで、溶剤を除去して樹脂粒子を得た後、該樹脂粒子を適当な分散剤存在下で水中に分散させる方法。
〔7〕あらかじめ重合反応により作成した樹脂を溶剤に溶解した樹脂溶液を、適当な分散剤存在下で水性媒体中に分散させ、これを加熱または減圧等によって溶剤を除去する方法。
〔8〕あらかじめ重合反応により作成した樹脂を溶剤に溶解した樹脂溶液中に適当な乳化剤を溶解させた後、水を加えて転相乳化する方法。
Although the method to make resin (d) the aqueous dispersion of particle | grains (D) is not specifically limited, The following [1]-[8] are mentioned.
[1] In the case of a vinyl resin, an aqueous dispersion of particles (D) is directly produced by a polymerization reaction such as a suspension polymerization method, an emulsion polymerization method, a seed polymerization method or a dispersion polymerization method using a monomer as a starting material. how to.
[2] In the case of polyaddition or condensation resin such as polyester resin, polyurethane resin, epoxy resin, etc., a precursor (monomer, oligomer, etc.) or a solvent solution thereof is dispersed in an aqueous medium in the presence of a suitable dispersant, The method of manufacturing the aqueous dispersion of particle | grains (D) by making it harden by heating after that or adding a hardening agent after that.
[3] In the case of polyaddition or condensation resin such as polyester resin, polyurethane resin, and epoxy resin, a precursor (monomer, oligomer, etc.) or a solvent solution thereof (preferably liquid) may be liquefied by heating. ) A suitable emulsifier is dissolved therein and then water is added to carry out phase inversion emulsification.
[4] A resin prepared in advance by a polymerization reaction (any polymerization reaction mode such as addition polymerization, ring-opening polymerization, polyaddition, addition condensation, condensation polymerization, etc. The same applies to the polymerization reaction in the following section). Is obtained by pulverizing using a mechanical rotating type or jet type fine pulverizer and then spheroidizing to obtain resin particles, and then dispersing in water in the presence of a suitable dispersant.
[5] A method of obtaining resin particles by spraying a resin solution in which a resin prepared in advance by a polymerization reaction is dissolved in a solvent, and then dispersing the resin particles in water in the presence of an appropriate dispersant.
[6] Add a poor solvent to a resin solution prepared by dissolving a resin prepared in advance in a solvent, or cool a resin solution previously dissolved in a solvent to precipitate resin particles, and then remove the solvent. Then, after obtaining resin particles, the resin particles are dispersed in water in the presence of a suitable dispersant.
[7] A method in which a resin solution obtained by dissolving a resin prepared in advance by a polymerization reaction in a solvent is dispersed in an aqueous medium in the presence of an appropriate dispersant, and the solvent is removed by heating or decompression.
[8] A method in which a suitable emulsifier is dissolved in a resin solution prepared by previously dissolving a resin prepared by a polymerization reaction in a solvent, and then water is added to perform phase inversion emulsification.

上記〔1〕〜〔8〕の方法において、併用する乳化剤または分散剤としては、公知の界面活性剤(s)、水溶性ポリマー(t)等を用いることができる。また、乳化または分散の助剤として有機溶剤(u)、可塑剤(v)等を併用することができる。
界面活性剤(s)としては、特に限定されず、アニオン界面活性剤(s−1)、カチオン界面活性剤(s−2)、両性界面活性剤(s−3)、非イオン界面活性剤(s−4)などが挙げられる。界面活性剤(s)は2種以上の界面活性剤を併用したものであってもよい。
In the above methods [1] to [8], as the emulsifier or dispersant used in combination, a known surfactant (s), water-soluble polymer (t) and the like can be used. Moreover, an organic solvent (u), a plasticizer (v), etc. can be used together as an auxiliary agent for emulsification or dispersion.
It does not specifically limit as surfactant (s), Anionic surfactant (s-1), Cationic surfactant (s-2), Amphoteric surfactant (s-3), Nonionic surfactant ( s-4). The surfactant (s) may be a combination of two or more surfactants.

アニオン界面活性剤(s−1)としては、カルボン酸またはその塩、硫酸エステル塩、カルボキシメチル化物の塩、スルホン酸塩およびリン酸エステル塩等が用いられる。
加物などの無機酸塩または有機酸塩が挙げられる。
カチオン界面活性剤(s−2)としては、第4級アンモニウム塩型界面活性剤およびアミン塩型界面活性剤等が使用できる。
両性界面活性剤(s−3)としては、カルボン酸塩型両性界面活性剤、硫酸エステル塩型両性界面活性剤、スルホン酸塩型両性界面活性剤およびリン酸エステル塩型両性界面活性剤などが使用できる。
非イオン界面活性剤(s−4)としては、AO付加型非イオン界面活性剤および多価アルコ−ル型非イオン界面活性剤などが使用できる。
これらの界面活性剤(s)の具体例としては、特開2002−284881号公報に記載のもの等が挙げられる。
As the anionic surfactant (s-1), a carboxylic acid or a salt thereof, a sulfate ester salt, a salt of a carboxymethylated product, a sulfonate salt, a phosphate ester salt, or the like is used.
Examples thereof include inorganic acid salts or organic acid salts such as additives.
As the cationic surfactant (s-2), a quaternary ammonium salt type surfactant, an amine salt type surfactant and the like can be used.
Examples of the amphoteric surfactant (s-3) include a carboxylate type amphoteric surfactant, a sulfate ester type amphoteric surfactant, a sulfonate type amphoteric surfactant and a phosphate ester type amphoteric surfactant. Can be used.
As the nonionic surfactant (s-4), an AO addition type nonionic surfactant and a polyvalent alcohol type nonionic surfactant can be used.
Specific examples of these surfactants (s) include those described in JP-A-2002-284881.

水溶性ポリマー(t)としては、セルロース系化合物(例えば、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロースおよびそれらのケン化物など)、ゼラチン、デンプン、デキストリン、アラビアゴム、キチン、キトサン、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリエチレンイミン、ポリアクリルアミド、アクリル酸(塩)含有ポリマー(ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリアクリル酸の水酸化ナトリウム部分中和物、アクリル酸ナトリウム−アクリル酸エステル共重合体)、スチレン−無水マレイン酸共重合体の水酸化ナトリウム(部分)中和物、水溶性ポリウレタン(ポリエチレングリコール、ポリカプロラクトンジオール等とポリイソシアネートの反応生成物等)などが挙げられる。   Examples of the water-soluble polymer (t) include cellulose compounds (for example, methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose and saponified products thereof), gelatin, starch, dextrin, gum arabic, chitin , Chitosan, polyvinyl alcohol, polyvinylpyrrolidone, polyethylene glycol, polyethyleneimine, polyacrylamide, acrylic acid (salt) -containing polymer (sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, in the sodium hydroxide part of polyacrylic acid) Sodium hydroxide, acrylic acid ester copolymer), styrene-maleic anhydride copolymer sodium hydroxide Beam (partial) neutralization product, water-soluble polyurethane (polyethylene glycol, reaction products of polycaprolactone diol with polyisocyanate and the like) and the like.

本発明に用いる有機溶剤(u)は、乳化分散の際に必要に応じて水性媒体中に加えても、被乳化分散体中[結晶性樹脂(A)を含む油相(O)中]に加えても良い。
有機溶剤(u)の具体例としては、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素系溶剤;n−ヘキサン、n−ヘプタン、ミネラルスピリット、シクロヘキサン等の脂肪族または脂環式炭化水素系溶剤;塩化メチル、臭化メチル、ヨウ化メチル、メチレンジクロライド、四塩化炭素、トリクロロエチレン、パークロロエチレンなどのハロゲン系溶剤;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテートなどのエステル系またはエステルエーテル系溶剤;ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテルなどのエーテル系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ−n−ブチルケトン、シクロヘキサノンなどのケトン系溶剤;メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、t−ブタノール、2−エチルヘキシルアルコール、ベンジルアルコールなどのアルコール系溶剤;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系溶剤;ジメチルスルホキシドなどのスルホキシド系溶剤、N−メチルピロリドンなどの複素環式化合物系溶剤、ならびにこれらの2種以上の混合溶剤が挙げられる。
The organic solvent (u) used in the present invention can be added to the aqueous dispersion in the emulsified dispersion [in the oil phase (O) containing the crystalline resin (A)] even if it is added to the aqueous medium as needed during the emulsification dispersion. May be added.
Specific examples of the organic solvent (u) include aromatic hydrocarbon solvents such as toluene, xylene, ethylbenzene and tetralin; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, mineral spirit and cyclohexane. Solvent: Halogen solvents such as methyl chloride, methyl bromide, methyl iodide, methylene dichloride, carbon tetrachloride, trichloroethylene, perchloroethylene; ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, etc. Ester or ester ether solvents; ether solvents such as diethyl ether, tetrahydrofuran, dioxane, ethyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether; acetone, methyl ethyl ketone, methyl Ketone solvents such as isobutyl ketone, di-n-butyl ketone and cyclohexanone; alcohol solvents such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, 2-ethylhexyl alcohol and benzyl alcohol; Examples thereof include amide solvents such as dimethylformamide and dimethylacetamide; sulfoxide solvents such as dimethyl sulfoxide; heterocyclic compound solvents such as N-methylpyrrolidone; and mixed solvents of two or more of these.

可塑剤(v)は、乳化分散の際に必要に応じて水性媒体中に加えても、被乳化分散体中[結晶性樹脂(A)を含む油相(O)中]に加えても良い。
可塑剤(V)としては、何ら限定されず、以下のものが例示される。
(v1)フタル酸エステル[フタル酸ジブチル、フタル酸ジオクチル、フタル酸ブチルベンジル、フタル酸ジイソデシル等];
(v2)脂肪族2塩基酸エステル[アジピン酸ジ−2−エチルヘキシル、セバシン酸−2−エチルヘキシル等];
(v3)トリメリット酸エステル[トリメリット酸トリ−2−エチルヘキシル、トリメリット酸トリオクチル等];
(v4)燐酸エステル[リン酸トリエチル、リン酸トリ−2−エチルヘキシル、リン酸トリクレジール等];
(v5)脂肪酸エステル[オレイン酸ブチル等];
(v6)およびこれらの2種以上の混合物が挙げられる。
The plasticizer (v) may be added to the aqueous medium as necessary during the emulsification dispersion, or may be added to the emulsified dispersion [in the oil phase (O) containing the crystalline resin (A)]. .
As a plasticizer (V), it is not limited at all, The following are illustrated.
(V1) Phthalates [dibutyl phthalate, dioctyl phthalate, butyl benzyl phthalate, diisodecyl phthalate, etc.];
(V2) Aliphatic dibasic acid ester [di-2-ethylhexyl adipate, 2-ethylhexyl sebacate, etc.];
(V3) trimellitic acid ester [tri-2-ethylhexyl trimellitic acid, trioctyl trimellitic acid, etc.];
(V4) Phosphate ester [triethyl phosphate, tri-2-ethylhexyl phosphate, tricresyl phosphate, etc.];
(V5) fatty acid ester [butyl oleate and the like];
(V6) and a mixture of two or more of these.

粒子(D)の粒径は、通常、結晶性樹脂粒子(C)から粒子(D)を除いた結晶性樹脂(A)を含有する樹脂粒子(C0)の粒径よりも小さく、粒径均一性の観点から、粒径比[粒子(D)の体積平均粒径]/[樹脂粒子(C0)の体積平均粒径]の値が0.001〜0.3の範囲であるのが好ましい。かかる粒径比が、0.3より大きいと(D)が(C0)の表面に効率よく吸着しないため、得られる(C)の粒度分布が広くなる傾向がある。   The particle size of the particles (D) is usually smaller than the particle size of the resin particles (C0) containing the crystalline resin (A) obtained by removing the particles (D) from the crystalline resin particles (C), and the particle size is uniform. From the viewpoint of properties, the value of the particle size ratio [volume average particle size of particles (D)] / [volume average particle size of resin particles (C0)] is preferably in the range of 0.001 to 0.3. When the particle size ratio is larger than 0.3, (D) does not efficiently adsorb to the surface of (C0), and thus the particle size distribution of (C) obtained tends to be wide.

粒子(D)の体積平均粒径は、所望の粒径の結晶性樹脂粒子(C)を得るのに適した粒径になるように、上記粒径比の範囲で適宜調整することができる。例えば、体積平均粒径1μmの(C)を得たい場合には、好ましくは0.0005〜0.3μm、特に好ましくは0.001〜0.2μmの範囲、10μmの(C)を得た場合には、好ましくは0.005〜3μm、特に好ましくは0.05〜2μm、100μmの(C)を得たい場合には、好ましくは0.05〜30μm、特に好ましくは0.1〜20μmである。なお、体積平均粒径は、レーザー式粒度分布測定装置LA−920(堀場製作所製)やマルチサイザーIII(コールター社製)で測定できる。   The volume average particle diameter of the particles (D) can be appropriately adjusted within the above range of particle diameter ratios so as to be a particle diameter suitable for obtaining the crystalline resin particles (C) having a desired particle diameter. For example, when it is desired to obtain (C) having a volume average particle size of 1 μm, preferably 0.0005 to 0.3 μm, particularly preferably 0.001 to 0.2 μm, and 10 μm (C). In order to obtain (C) of preferably 0.005 to 3 μm, particularly preferably 0.05 to 2 μm, and 100 μm, preferably 0.05 to 30 μm, particularly preferably 0.1 to 20 μm. . The volume average particle size can be measured with a laser type particle size distribution analyzer LA-920 (manufactured by Horiba Seisakusho) or Multisizer III (manufactured by Coulter).

前記の本発明の結晶性樹脂粒子の好ましい製造方法である[粒子化方法1]においては、樹脂(d)および/または無機化合物(e)を含有する粒子(D)の水性分散液(W)と結晶性樹脂(A)(溶融し液状化して用いるのが好ましい)とを混合し、(W)中に(A)を分散させ、水性分散液(W)中で(A)を含有する樹脂粒子(C0)を形成させて、(C0)の表面に(D)が付着した結晶性樹脂粒子(C)の水性分散体(Y)を得る。
または、樹脂(d)および/または無機化合物(e)を含有する粒子(D)の水性分散液(W)と結晶性樹脂(A)の有機溶剤溶液とを混合し、(W)中に(A)の有機溶剤溶液を分散させ、水性分散液(W)中で(A)を含有する樹脂粒子(C0)を形成させて、(C0)の表面に(D)が付着した結晶性樹脂粒子(C)の水性分散体(Y)を得る。
これらのうち、好ましいのは後者の方法である。
また、結晶性樹脂(A)100部に対する水性分散液(W)の使用量は、好ましくは50〜2,000部、さらに好ましくは100〜1,000部である。50部以上では(A)の分散状態が良好であり、2,000部以下であると経済的である。上記および以下において、部は重量部を意味する。
In [Particulation Method 1], which is a preferred method for producing the crystalline resin particles of the present invention, an aqueous dispersion (W) of particles (D) containing the resin (d) and / or the inorganic compound (e). And crystalline resin (A) (preferably used after being melted and liquefied), (A) is dispersed in (W), and resin containing (A) in aqueous dispersion (W) Particles (C0) are formed to obtain an aqueous dispersion (Y) of crystalline resin particles (C) in which (D) adheres to the surface of (C0).
Alternatively, the aqueous dispersion (W) of the particles (D) containing the resin (d) and / or the inorganic compound (e) and the organic solvent solution of the crystalline resin (A) are mixed, and (W) Crystalline resin particles in which the organic solvent solution of A) is dispersed to form resin particles (C0) containing (A) in the aqueous dispersion (W), and (D) adheres to the surface of (C0) An aqueous dispersion (Y) of (C) is obtained.
Of these, the latter method is preferred.
Moreover, the usage-amount of the aqueous dispersion liquid (W) with respect to 100 parts of crystalline resin (A) becomes like this. Preferably it is 50-2,000 parts, More preferably, it is 100-1,000 parts. If it is 50 parts or more, the dispersed state of (A) is good, and if it is 2,000 parts or less, it is economical. Above and below, parts mean parts by weight.

結晶性樹脂(A)もしくはその有機溶剤溶液を水性分散液(W)中に分散させる場合には、分散装置を用いることができる。
使用する分散装置としては、一般に乳化機、分散機として市販されているものであればとくに限定されず、例えば、ホモジナイザー(IKA社製)、ポリトロン(キネマティカ社製)、TKオートホモミキサー(特殊機化工業社製)等のバッチ式乳化機、エバラマイルダー(荏原製作所社製)、TKフィルミックス、TKパイプラインホモミキサー(特殊機化工業社製)、コロイドミル(神鋼パンテック社製)、スラッシャー、トリゴナル湿式微粉砕機(三井三池化工機社製)、キャピトロン(ユーロテック社製)、ファインフローミル(太平洋機工社製)等の連続式乳化機、マイクロフルイダイザー(みずほ工業社製)、ナノマイザー(ナノマイザー社製)、APVガウリン(ガウリン社製)等の高圧乳化機、膜乳化機(冷化工業社製)等の膜乳化機、バイブロミキサー(冷化工業社製)等の振動式乳化機、超音波ホモジナイザー(ブランソン社製)等の超音波乳化機等が挙げられる。このうち粒径の均一化の観点で好ましいものは、APVガウリン、ホモジナイザー、TKオートホモミキサー、エバラマイルダー、TKフィルミックス、TKパイプラインホモミキサーが挙げられる。
When the crystalline resin (A) or an organic solvent solution thereof is dispersed in the aqueous dispersion (W), a dispersing device can be used.
The dispersing apparatus to be used is not particularly limited as long as it is generally marketed as an emulsifier or a dispersing machine. For example, a homogenizer (manufactured by IKA), polytron (manufactured by Kinematica), TK auto homomixer (special machine) Batch type emulsifier such as Ebara Milder (manufactured by Ebara Seisakusho), TK Fillmix, TK Pipeline Homomixer (made by Special Machine Industries), colloid mill (made by Shinko Pantech), Continuous emulsifiers such as slasher, trigonal wet pulverizer (manufactured by Mitsui Miike Chemical Co., Ltd.), Captron (manufactured by Eurotech), fine flow mill (manufactured by Taiheiyo Kiko Co., Ltd.), microfluidizer (manufactured by Mizuho Kogyo Co., Ltd.), High pressure emulsifiers such as Nanomizer (made by Nanomizer), APV Gaurin (made by Gaurin), membrane emulsifier (made by Chilling Industries Co., Ltd.), etc. Membrane emulsification machine, Vibro Mixer (Hiyaka Kogyo) vibrating emulsifier such as, ultrasonic emulsifier such as an ultrasonic homogenizer (manufactured by Branson Co., Ltd.). Among these, APV Gaurin, homogenizer, TK auto homomixer, Ebara milder, TK fill mix, and TK pipeline homomixer are preferable from the viewpoint of uniform particle size.

結晶性樹脂(A)もしくはその有機溶剤溶液の粘度は、粒径均一性の観点から好ましくは10〜5万mPa・s(B型粘度計で測定)、さらに好ましくは100〜1万mPa・sである。
分散時の温度としては、好ましくは0〜150℃(加圧下)、さらに好ましくは5〜98℃である。分散体の粘度が高い場合は、高温にして粘度を上記好ましい範囲まで低下させて、乳化分散を行うのが好ましい。
The viscosity of the crystalline resin (A) or the organic solvent solution thereof is preferably 10 to 50,000 mPa · s (measured with a B-type viscometer), more preferably 100 to 10,000 mPa · s from the viewpoint of particle size uniformity. It is.
The temperature at the time of dispersion is preferably 0 to 150 ° C. (under pressure), more preferably 5 to 98 ° C. When the viscosity of the dispersion is high, it is preferable to carry out emulsification dispersion by lowering the viscosity to the above preferred range by increasing the temperature.

結晶性樹脂(A)の有機溶剤溶液樹脂に用いる有機溶剤は、(A)を常温もしくは加熱下で溶解しうる溶剤であればとくに限定されず、具体的には、有機溶剤(u)と同様のものが例示される。好ましいものは(A)の種類によって異なるが、(A)とのsp値差が3以下であるのが好適である。また、結晶性樹脂粒子(C)の粒径均一性の観点からは、(A)を溶解させるが、樹脂(d)を含有する粒子(D)を溶解・膨潤させにくい溶剤が好ましい。   The organic solvent used in the organic solvent solution resin of the crystalline resin (A) is not particularly limited as long as it is a solvent that can dissolve (A) at room temperature or under heating. Specifically, it is the same as the organic solvent (u). Are exemplified. What is preferable differs depending on the type of (A), but it is preferable that the difference in sp value from (A) is 3 or less. Moreover, from the viewpoint of the particle size uniformity of the crystalline resin particles (C), a solvent that dissolves (A) but hardly dissolves and swells the particles (D) containing the resin (d) is preferable.

結晶性樹脂粒子(C)の水性分散体(Y)は、アルカリ(水酸化ナトリウム、水酸化カリウム等)および/または酸(塩酸等)で処理してもよい。アルカリおよび/または酸処理することにより、得られる(C)の帯電特性が向上する場合がある。   The aqueous dispersion (Y) of the crystalline resin particles (C) may be treated with an alkali (sodium hydroxide, potassium hydroxide, etc.) and / or an acid (hydrochloric acid, etc.). When the alkali and / or acid treatment is performed, the charging property of the obtained (C) may be improved.

結晶性樹脂粒子(C)は、水性分散体(Y)から水性媒体を除去することにより得られる。
結晶性樹脂粒子(C)の水性樹脂分散体から水性媒体を除去する方法としては、
〔1〕水性樹脂分散体を減圧下または常圧下で乾燥する方法
〔2〕遠心分離器、スパクラフィルター、フィルタープレスなどにより固液分離し、得られた粉末を乾燥する方法
〔3〕水性樹脂分散体を凍結させて乾燥させる方法(いわゆる凍結乾燥)
等が例示される。
上記〔1〕、〔2〕において、得られた粉末を乾燥する際、流動層式乾燥機、減圧乾燥機、循風乾燥機など公知の設備を用いて行うことができる。
また、必要に応じ、風力分級器などを用いて分級し、所定の粒度分布とすることもできる。
Crystalline resin particles (C) can be obtained by removing the aqueous medium from the aqueous dispersion (Y).
As a method for removing the aqueous medium from the aqueous resin dispersion of crystalline resin particles (C),
[1] A method of drying an aqueous resin dispersion under reduced pressure or normal pressure [2] A method of solid-liquid separation using a centrifuge, a spacula filter, a filter press, etc., and drying the resulting powder [3] Aqueous resin dispersion Freezing and drying the body (so-called lyophilization)
Etc. are exemplified.
In the above [1] and [2], when the obtained powder is dried, it can be performed using a known facility such as a fluidized bed dryer, a vacuum dryer, or a circulating dryer.
Moreover, it can classify | classify using a wind classifier etc. as needed, and can also be set as predetermined particle size distribution.

結晶性樹脂粒子(C)を構成する、結晶性樹脂(A)含有する樹脂粒子(C0)および/または粒子(D)中に、添加剤(顔料、充填剤、帯電防止剤、着色剤、離型剤、荷電制御剤、紫外線吸収剤、酸化防止剤、ブロッキング防止剤、耐熱安定剤、難燃剤など)を混合しても差し支えない。(C0)または(D)中に添加剤を添加する方法としては、水系媒体中で結晶性樹脂粒子(C)を含有する水性樹脂分散体(Y)を形成させる際に混合してもよいが、あらかじめ結晶性樹脂(A)または樹脂(d)と添加剤を混合した後、水系媒体中にその混合物を加えて分散させたほうがより好ましい。
また、本発明においては、添加剤は、必ずしも、水系媒体中で樹脂粒子を形成させる時に混合しておく必要はなく、粒子を形成せしめた後、添加してもよい。たとえば、着色剤を含まない粒子を形成させた後、公知の染着の方法で着色剤を添加したり、有機溶剤(u)および/または可塑剤(v)とともに上記添加剤を含浸させることもできる。
本発明の結晶性樹脂粒子中の結晶性樹脂(A)の含有量は、低温定着性および光沢性の観点から、好ましくは60重量%以上、さらに好ましくは70重量%以上である。
In the resin particles (C0) and / or particles (D) containing the crystalline resin (A) constituting the crystalline resin particles (C), additives (pigments, fillers, antistatic agents, colorants, release agents). Mold agents, charge control agents, ultraviolet absorbers, antioxidants, antiblocking agents, heat stabilizers, flame retardants, etc.) may be mixed. As a method of adding an additive in (C0) or (D), the aqueous resin dispersion (Y) containing crystalline resin particles (C) may be mixed in an aqueous medium. More preferably, the crystalline resin (A) or the resin (d) and the additive are mixed in advance, and then the mixture is added and dispersed in the aqueous medium.
In the present invention, the additive is not necessarily mixed when the resin particles are formed in the aqueous medium, and may be added after the particles are formed. For example, after forming particles containing no colorant, a colorant may be added by a known dyeing method, or the additive may be impregnated with the organic solvent (u) and / or the plasticizer (v). it can.
The content of the crystalline resin (A) in the crystalline resin particles of the present invention is preferably 60% by weight or more, more preferably 70% by weight or more, from the viewpoint of low-temperature fixability and gloss.

粒径均一性から、結晶性樹脂粒子(C)の[体積平均粒径/個数平均粒径]の値は、1.0〜1.4であるのが好ましく、1.0〜1.2であるのがさらに好ましい。
(C)の体積平均粒径は、用途により異なるが、一般的には0.1〜300μmが好ましい。上限は、さらに好ましくは250μm、特に好ましくは200μmであり、下限は、さらに好ましくは0.5μm、特に好ましくは1μmである。
なお、体積平均粒径および個数平均粒径は、マルチサイザーIII(コールター社製)で同時に測定することができる。
From the particle size uniformity, the value of [volume average particle size / number average particle size] of the crystalline resin particles (C) is preferably 1.0 to 1.4, preferably 1.0 to 1.2. More preferably.
The volume average particle size of (C) varies depending on the application, but is generally preferably 0.1 to 300 μm. The upper limit is more preferably 250 μm, particularly preferably 200 μm, and the lower limit is more preferably 0.5 μm, particularly preferably 1 μm.
The volume average particle diameter and the number average particle diameter can be measured simultaneously with Multisizer III (manufactured by Coulter).

本発明の結晶樹脂粒子は、塗料用添加剤、接着剤用添加剤、化粧品用添加剤、紙塗工用添加剤、スラッシュ成形用樹脂、粉体塗料、電子部品製造用スペーサー、触媒用担体、電子写真トナー、静電記録トナー、静電印刷トナー、電子測定機器の標準粒子、電子ペーパー用粒子、医療診断用担体、クロマトグラフ充填剤、電気粘性流体用粒子等各種用途に使用できる。
例えば、結晶性樹脂(A)と着色剤とを混合させ、また必要により、荷電制御剤、離型剤及び流動化剤等を含有させることでトナー用樹脂粒子として使用できる。
Crystalline resin particles of the present invention include paint additives, adhesive additives, cosmetic additives, paper coating additives, slush molding resins, powder coatings, electronic component manufacturing spacers, catalyst carriers, It can be used for various applications such as electrophotographic toner, electrostatic recording toner, electrostatic printing toner, standard particles for electronic measuring instruments, particles for electronic paper, medical diagnostic carrier, chromatographic filler, particles for electrorheological fluid.
For example, a crystalline resin (A) and a colorant can be mixed, and if necessary, a charge control agent, a release agent, a fluidizing agent, and the like can be used as toner resin particles.

着色剤としては、トナー用着色剤として使用されている染料、顔料等のすべてを使用することができる。具体的には、カーボンブラック、鉄黒、スーダンブラックSM、ファーストイエローG、ベンジジンイエロー、ソルベントイエロー(21,77,114など)、ピグメントイエロー(12,14,17,83など)、インドファーストオレンジ、イルガシンレッド、パラニトアニリンレッド、トルイジンレッド、ソルベントレッド(17,49,128,5,13,22,48・2など)、ディスパースレッド、カーミンFB、ピグメントオレンジR、レーキレッド2G、ローダミンFB、ローダミンBレーキ、メチルバイオレットBレーキ、フタロシアニンブルー、ソルベントブルー(25,94,60,15・3など)、ピグメントブルー、ブリリアントグリーン、フタロシアニングリーン、オイルイエローGG、カヤセットYG、オラゾールブラウンBおよびオイルピンクOP等が挙げられ、これらは単独でまたは2種以上を混合して用いることができる。また、必要により磁性粉(鉄、コバルト、ニッケル等の強磁性金属の粉末もしくはマグネタイト、ヘマタイト、フェライト等の化合物)を着色剤としての機能を兼ねて含有させることができる。 着色剤の含有量は、結晶性樹脂(A)を含有する樹脂100部に対して、好ましくは0.1〜40部、さらに好ましくは0.5〜10部である。なお、磁性粉を用いる場合は、好ましくは20〜150部、さらに好ましくは40〜120部である。   As the colorant, all of dyes and pigments used as toner colorants can be used. Specifically, carbon black, iron black, Sudan black SM, first yellow G, benzidine yellow, solvent yellow (21, 77, 114, etc.), pigment yellow (12, 14, 17, 83, etc.), Indian first orange, Irgasin Red, Paranitaniline Red, Toluidine Red, Solvent Red (17, 49, 128, 5, 13, 22, 48, 2 etc.), Disperse Red, Carmine FB, Pigment Orange R, Lake Red 2G, Rhodamine FB, Rhodamine B lake, methyl violet B lake, phthalocyanine blue, solvent blue (25, 94, 60, 15.3, etc.), pigment blue, brilliant green, phthalocyanine green, oil yellow GG, Kayaset YG, o Mentioned tetrazole brown B and oil pink OP etc. These may be used alone or in admixture of two or more thereof. Further, if necessary, magnetic powder (a powder of a ferromagnetic metal such as iron, cobalt, nickel, or a compound such as magnetite, hematite, ferrite) can also be included as a colorant. The content of the colorant is preferably 0.1 to 40 parts, and more preferably 0.5 to 10 parts, with respect to 100 parts of the resin containing the crystalline resin (A). In addition, when using magnetic powder, Preferably it is 20-150 parts, More preferably, it is 40-120 parts.

離型剤としては、軟化点が50〜170℃のものが好ましく、ポリオレフィンワックス、天然ワックス(例えばカルナウバワックス、モンタンワックス、パラフィンワックスおよびライスワックスなど)、炭素数30〜50の脂肪族アルコール(例えばトリアコンタノールなど)、炭素数30〜50の脂肪酸(例えばトリアコンタンカルボン酸など)およびこれらの混合物等が挙げられる。ポリオレフィンワックスとしては、オレフィン(例えばエチレン、プロピレン、1−ブテン、イソブチレン、1−ヘキセン、1−ドデセン、1−オクタデセンおよびこれらの混合物等)の(共)重合体[(共)重合により得られるものおよび熱減成型ポリオレフィンを含む]、オレフィンの(共)重合体の酸素および/またはオゾンによる酸化物、オレフィンの(共)重合体のマレイン酸変性物[例えばマレイン酸およびその誘導体(無水マレイン酸、マレイン酸モノメチル、マレイン酸モノブチルおよびマレイン酸ジメチル等)変性物]、オレフィンと不飽和カルボン酸[(メタ)アクリル酸、イタコン酸および無水マレイン酸等]および/または不飽和カルボン酸アルキルエステル[(メタ)アクリル酸アルキル(アルキルの炭素数1〜18)エステルおよびマレイン酸アルキル(アルキルの炭素数1〜18)エステル等]等との共重合体、およびポリメチレン(例えばサゾールワックス等のフィシャートロプシュワックスなど)、脂肪酸金属塩(ステアリン酸カルシウムなど)、脂肪酸エステル(ベヘニン酸ベヘニルなど)が挙げられる。   As the mold release agent, those having a softening point of 50 to 170 ° C. are preferable, polyolefin wax, natural wax (for example, carnauba wax, montan wax, paraffin wax and rice wax), aliphatic alcohol having 30 to 50 carbon atoms ( For example, triacontanol and the like, fatty acids having 30 to 50 carbon atoms (e.g., triacontanecarboxylic acid and the like), and mixtures thereof. Polyolefin waxes include (co) polymers [obtained by (co) polymerization] of olefins (for example, ethylene, propylene, 1-butene, isobutylene, 1-hexene, 1-dodecene, 1-octadecene, and mixtures thereof). And olefin (co) polymer oxides with oxygen and / or ozone, maleic acid modifications of olefin (co) polymers [eg maleic acid and its derivatives (maleic anhydride, Modified products such as monomethyl maleate, monobutyl maleate and dimethyl maleate), olefins and unsaturated carboxylic acids [such as (meth) acrylic acid, itaconic acid and maleic anhydride] and / or unsaturated carboxylic acid alkyl esters [(meta ) Alkyl acrylate (alkyl 1 to 1 carbon atoms) 8) Copolymers with esters and alkyl maleates (alkyl esters having 1 to 18 carbon atoms), etc., and polymethylene (such as Fischer-Tropsch wax such as sazol wax), fatty acid metal salts (such as calcium stearate), Fatty acid ester (behenyl behenate etc.) is mentioned.

荷電制御剤としては、ニグロシン染料、3級アミンを側鎖として含有するトリフェニルメタン系染料、4級アンモニウム塩、ポリアミン樹脂、イミダゾール誘導体、4級アンモニウム塩基含有ポリマー、含金属アゾ染料、銅フタロシアニン染料、サリチル酸金属塩、ベンジル酸のホウ素錯体、スルホン酸基含有ポリマー、含フッ素系ポリマー、ハロゲン置換芳香環含有ポリマー、サリチル酸のアルキル誘導体の金属錯体、セチルトリメチルアンモニウムブロミド等が挙げられる。   As charge control agents, nigrosine dyes, triphenylmethane dyes containing tertiary amines as side chains, quaternary ammonium salts, polyamine resins, imidazole derivatives, quaternary ammonium base-containing polymers, metal-containing azo dyes, copper phthalocyanine dyes , Salicylic acid metal salts, boron complexes of benzylic acid, sulfonic acid group-containing polymers, fluorine-containing polymers, halogen-substituted aromatic ring-containing polymers, metal complexes of salicylic acid alkyl derivatives, cetyltrimethylammonium bromide, and the like.

流動化剤としては、コロイダルシリカ、アルミナ粉末、酸化チタン粉末、炭酸カルシウム粉末、チタン酸バリウム、チタン酸マグネシウム、チタン酸カルシウム、チタン酸ストロンチウム、酸化亜鉛、ケイ砂、クレー、雲母、ケイ灰石、ケイソウ土、酸化クロム、酸化セリウム、ベンガラ、三酸化アンチモン、酸化マグネシウム、酸化ジルコニウム、硫酸バリウム、炭酸バリウム等が挙げられる。   As a fluidizing agent, colloidal silica, alumina powder, titanium oxide powder, calcium carbonate powder, barium titanate, magnesium titanate, calcium titanate, strontium titanate, zinc oxide, silica sand, clay, mica, wollastonite, Examples thereof include diatomaceous earth, chromium oxide, cerium oxide, bengara, antimony trioxide, magnesium oxide, zirconium oxide, barium sulfate, and barium carbonate.

粒子化するときの組成比は、粒子の重量に基づき(以下の本項の%は重量%である。)、本発明の結晶性樹脂(A)が、好ましくは30〜97、さらに好ましくは40〜95%、とくに好ましくは45〜92%;着色剤が、好ましくは0.05〜60%、さらに好ましくは0.1〜55%、とくに好ましくは0.5〜50%;添加剤のうち、離型剤が、好ましくは0〜30%、さらに好ましくは0.5〜20%、とくに好ましくは1〜10%;荷電制御剤が、好ましくは0〜20%、さらに好ましくは0.1〜10%、とくに好ましくは0.5〜7.5%;流動化剤が、好ましくは0〜10%、さらに好ましくは0〜5%、とくに好ましくは0.1〜4%である。また、添加剤の合計含有量は、好ましくは3〜70%、さらに好ましくは4〜58%、とくに好ましくは5〜50%である。粒子の組成比が上記の範囲であることで帯電性が良好なものを容易に得ることができる。   The composition ratio when forming into particles is based on the weight of the particles (% in the following term is% by weight), and the crystalline resin (A) of the present invention is preferably 30 to 97, more preferably 40. ~ 95%, particularly preferably 45 to 92%; the colorant is preferably 0.05 to 60%, more preferably 0.1 to 55%, particularly preferably 0.5 to 50%; The release agent is preferably 0-30%, more preferably 0.5-20%, particularly preferably 1-10%; the charge control agent is preferably 0-20%, more preferably 0.1-10. %, Particularly preferably 0.5 to 7.5%; the fluidizing agent is preferably 0 to 10%, more preferably 0 to 5%, particularly preferably 0.1 to 4%. The total content of additives is preferably 3 to 70%, more preferably 4 to 58%, and particularly preferably 5 to 50%. When the composition ratio of the particles is in the above range, a particle having good chargeability can be easily obtained.

トナー用に用いる場合、樹脂粒子は、必要に応じて、キャリアー粒子{鉄粉、ガラスビーズ、ニッケル粉、フェライト、マグネタイト及び樹脂(アクリル樹脂及びシリコーン樹脂等)により表面をコーティングしたフェライト等}と混合して、電気的潜像の現像剤として用いることができる。また、キャリアー粒子のかわりに、帯電ブレード等と摩擦させて、電気的潜像を形成させることもできる。
そして、電気的潜像は、公知の熱ロール定着方法等によって、支持体(紙及びポリエステルフィルム等)に定着される。
When used for toner, resin particles are mixed with carrier particles {iron powder, glass beads, nickel powder, ferrite, magnetite, and ferrite (surface coated with acrylic resin, silicone resin, etc.), if necessary] Thus, it can be used as a developer for an electric latent image. Further, instead of the carrier particles, an electric latent image can be formed by friction with a charging blade or the like.
The electric latent image is fixed on a support (paper, polyester film, etc.) by a known hot roll fixing method or the like.

以下実施例により本発明をさらに説明するが、本発明はこれに限定されるものではない。以下の記載において、「%」は重量%、「部」は重量部を示す。   EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited thereto. In the following description, “%” indicates% by weight, and “part” indicates part by weight.

製造例1(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、セバシン酸159部、アジピン酸11部と1,4−ブタンジオール108部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)0.5部を入れ、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで225℃まで徐々に昇温しながら、窒素気流下に、生成する水および1,4−ブタンジオールを留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、Mwがおよそ10000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b1]を得た。[結晶性部b1]の融点は57℃、Mnは5000、Mwは11000、水酸基価は30であった。
Production Example 1 (Production of crystalline part b)
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 159 parts of sebacic acid, 11 parts of adipic acid and 108 parts of 1,4-butanediol and titanium dihydroxybis (triethanolaminate) as a condensation catalyst 0. 5 parts were added and reacted for 8 hours at 180 ° C. under a nitrogen stream while distilling off the generated water. Next, while gradually raising the temperature to 225 ° C., the reaction is carried out for 4 hours while distilling off the generated water and 1,4-butanediol under a nitrogen stream, and the reaction is further carried out under a reduced pressure of 5 to 20 mmHg. When it became 10,000, it took out. The resin taken out was cooled to room temperature and then pulverized into particles to obtain a crystalline polycondensed polyester resin [crystalline part b1]. The melting point of [crystalline part b1] was 57 ° C., Mn was 5000, Mw was 11000, and the hydroxyl value was 30.

製造例2(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ドデカン二酸286部と1,6−ヘキサンジオール190部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水を留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、Mwがおよそ10000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b2]を得た。[結晶性部b2]の融点は66℃、Mnは4900、Mwは10000、水酸基価は34であった。
Production Example 2 (Production of crystalline part b)
286 parts of dodecanedioic acid, 190 parts of 1,6-hexanediol and 1 part of titanium dihydroxybis (triethanolaminate) as a condensation catalyst were placed in a reaction vessel equipped with a condenser, a stirrer and a nitrogen introduction tube. The reaction was carried out for 8 hours while distilling off the water produced under a nitrogen stream at ° C. Next, while gradually raising the temperature to 220 ° C., the reaction is carried out for 4 hours while distilling off the water produced under a nitrogen stream, and the reaction is further carried out under reduced pressure of 5 to 20 mmHg. It was. The taken-out resin was cooled to room temperature and then pulverized into particles to obtain a crystalline polycondensed polyester resin [crystalline part b2]. [Crystalline part b2] had a melting point of 66 ° C., Mn of 4900, Mw of 10,000, and a hydroxyl value of 34.

製造例3(結晶性部bの製造)
攪拌棒および温度計をセットした反応容器に、1,4−ブタンジオール66部、1,6−ヘキサンジオール86部、およびメチルエチルケトン(以下、MEKと記載する。)40部を仕込んだ。この溶液にヘキサメチレンジイソシアネート(HDI)248部を仕込み80℃で5時間反応し、結晶性ポリウレタン樹脂[結晶性部b3]のMEK溶液を得た。溶剤を除いた後の[結晶性部b3]の融点は57℃、Mnは4500、Mwは9700、水酸基価は36であった。
Production Example 3 (Production of crystalline part b)
A reaction vessel equipped with a stirrer and a thermometer was charged with 66 parts of 1,4-butanediol, 86 parts of 1,6-hexanediol, and 40 parts of methyl ethyl ketone (hereinafter referred to as MEK). This solution was charged with 248 parts of hexamethylene diisocyanate (HDI) and reacted at 80 ° C. for 5 hours to obtain a MEK solution of a crystalline polyurethane resin [crystalline part b3]. [Crystalline part b3] after removing the solvent had a melting point of 57 ° C., Mn of 4500, Mw of 9700, and hydroxyl value of 36.

製造例4(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、セバシン酸159部、アジピン酸28部と1,4−ブタンジオール124部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、を仕込み、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水および1,4−ブタンジオールを留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、Mwが20000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b4]を得た。[結晶性部b4]の融点は55℃、Mnは8300、Mwは20000、水酸基価は19であった。
Production Example 4 (Production of crystalline part b)
In a reaction vessel equipped with a condenser, a stirrer and a nitrogen introduction tube, 159 parts of sebacic acid, 28 parts of adipic acid and 124 parts of 1,4-butanediol and 1 part of titanium dihydroxybis (triethanolaminate) as a condensation catalyst The mixture was charged and reacted at 180 ° C. under a nitrogen stream for 8 hours while distilling off the generated water. Next, while gradually raising the temperature to 220 ° C., the reaction is carried out for 4 hours while distilling off the water and 1,4-butanediol produced under a nitrogen stream, and the reaction is further carried out under a reduced pressure of 5 to 20 mmHg. When it became, it took out. The taken-out resin was cooled to room temperature and then pulverized into particles to obtain a crystalline polycondensed polyester resin [crystalline part b4]. [Crystalline part b4] had a melting point of 55 ° C., Mn of 8300, Mw of 20000, and a hydroxyl value of 19.

製造例5(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、セバシン酸159部、アジピン酸11部と1,4−ブタンジオール108部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)0.5部を入れ、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで225℃まで徐々に昇温しながら、窒素気流下に、生成する水および1,4−ブタンジオールを留去しながら4時間反応させ、さらに10〜25mmHgの減圧下に反応させ、Mwがおよそ10000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b5]を得た。[結晶性部b5]の融点は56℃、Mnは4100、Mwは9200、水酸基価は45であった。
Production Example 5 (Production of crystalline part b)
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 159 parts of sebacic acid, 11 parts of adipic acid and 108 parts of 1,4-butanediol and titanium dihydroxybis (triethanolaminate) as a condensation catalyst 0. 5 parts were added and reacted for 8 hours at 180 ° C. under a nitrogen stream while distilling off the generated water. Next, while gradually raising the temperature to 225 ° C., the reaction was performed for 4 hours while distilling off the water and 1,4-butanediol produced under a nitrogen stream, and the reaction was further performed under reduced pressure of 10 to 25 mmHg. When it became 10,000, it took out. The taken-out resin was cooled to room temperature and then pulverized into particles to obtain a crystalline polycondensed polyester resin [crystalline part b5]. The melting point of [crystalline part b5] was 56 ° C., Mn was 4100, Mw was 9200, and the hydroxyl value was 45.

製造例6(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、セバシン酸159部、アジピン酸28部と1,4−ブタンジオール124部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、を仕込み、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで210℃まで徐々に昇温しながら、窒素気流下に、生成する水および1,4−ブタンジオールを留去しながら2時間反応させ、さらに5〜20mmHgの減圧下に反応させ、Mwがおよそ5000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b6]を得た。[結晶性部b6]の融点は55℃、Mnは2300、Mwは5000、水酸基価は83であった。
Production Example 6 (Production of crystalline part b)
In a reaction vessel equipped with a condenser, a stirrer and a nitrogen introduction tube, 159 parts of sebacic acid, 28 parts of adipic acid and 124 parts of 1,4-butanediol and 1 part of titanium dihydroxybis (triethanolaminate) as a condensation catalyst The mixture was charged and reacted at 180 ° C. under a nitrogen stream for 8 hours while distilling off the generated water. Next, while gradually raising the temperature to 210 ° C., the mixture is reacted for 2 hours while distilling off the generated water and 1,4-butanediol under a nitrogen stream, and further reacted under a reduced pressure of 5 to 20 mmHg. When it reached 5000, it was taken out. The resin taken out was cooled to room temperature and then pulverized into particles to obtain a crystalline polycondensed polyester resin [crystalline part b6]. The melting point of [crystalline part b6] was 55 ° C., Mn was 2300, Mw was 5000, and the hydroxyl value was 83.

製造例7(結晶性部bの製造)
(S)−PO・180部とKOH30部を1Lのオートクレーブに入れ、室温で48時間攪拌して重合させた。得られた重合物を70℃に昇温して溶融し、KOHを水洗するため、トルエンを100部、水を各100部加えて分液を3回繰り返した。そのトルエン相を、0.1mol/Lの塩酸で中和し、水を各100部加えてさらに分液を3回行い、そのトルエン相からトルエンを留去し、得られた樹脂を室温まで冷却後、粉砕し粒子化し、結晶性ポリエーテル樹脂[結晶性部b7]を得た。[結晶性部b7]の融点は55℃、Mwは9000、水酸基価は20、アイソタクティシティは99%であった。
Production Example 7 (Production of crystalline part b)
180 parts of (S) -PO and 30 parts of KOH were placed in a 1 L autoclave and polymerized by stirring at room temperature for 48 hours. In order to melt the polymer obtained by raising the temperature to 70 ° C. and wash KOH with water, 100 parts of toluene and 100 parts of water were added, and the liquid separation was repeated three times. The toluene phase was neutralized with 0.1 mol / L hydrochloric acid, each 100 parts of water was added, and liquid separation was further performed three times. Toluene was distilled off from the toluene phase, and the resulting resin was cooled to room temperature. Then, it grind | pulverized and granulated and obtained crystalline polyether resin [crystalline part b7]. [Crystalline part b7] had a melting point of 55 ° C., Mw of 9000, a hydroxyl value of 20, and an isotacticity of 99%.

製造例8(結晶性部bの製造)
攪拌装置および脱水装置のついた反応容器に、1,4−ブタンジオール2部、ε−カプロラクトン650部、ジブチルチンオキサイド2部を投入し、常圧、窒素雰囲気下、150℃で10時間反応を行った。さらに得られた樹脂を室温まで冷却後、粉砕し粒子化し、ラクトン開環重合物である結晶性ポリエステル樹脂[結晶性部b8]を得た。[結晶性部b8]の融点は60℃、Mwは9800、水酸基価は14であった。
Production Example 8 (Production of crystalline part b)
In a reaction vessel equipped with a stirrer and a dehydrator, 2 parts of 1,4-butanediol, 650 parts of ε-caprolactone, and 2 parts of dibutyltin oxide are added, and the reaction is carried out at 150 ° C. for 10 hours under normal pressure and nitrogen atmosphere. went. Further, the obtained resin was cooled to room temperature and then pulverized into particles to obtain a crystalline polyester resin [crystalline part b8] which is a lactone ring-opening polymer. [Crystalline part b8] had a melting point of 60 ° C., Mw of 9800, and a hydroxyl value of 14.

製造例9(結晶性部bの製造)
攪拌装置および脱水装置のついた反応容器に、エチレングリコール2部、L−ラクチド400部、グリコリド150部、ジブチルチンオキサイド2部を投入し、常圧、窒素雰囲気下、150℃で10時間反応を行った。さらに得られた樹脂を室温まで冷却後、粉砕し粒子化し、ポリヒドロキシカルボン酸である結晶性ポリエステル樹脂[結晶性部b9]を得た。[結晶性部b9]の融点は60℃、Mwは11200、水酸基価は14であった。
Production Example 9 (Production of crystalline part b)
In a reaction vessel equipped with a stirrer and a dehydrator, 2 parts of ethylene glycol, 400 parts of L-lactide, 150 parts of glycolide, and 2 parts of dibutyltin oxide are charged and reacted at 150 ° C. for 10 hours under normal pressure and nitrogen atmosphere. went. Further, the obtained resin was cooled to room temperature and then pulverized into particles to obtain a crystalline polyester resin [crystalline part b9] which is polyhydroxycarboxylic acid. [Crystalline part b9] had a melting point of 60 ° C., Mw of 11,200, and a hydroxyl value of 14.

製造例10(結晶性部bの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、セバシン酸121部、ジメチルテレフタル酸118部と1,6−ヘキサンジオール124部および縮合触媒としてチタニウムジヒドロキシビス(トリエタノールアミネート)1部を入れ、180℃で窒素気流下に、生成する水を留去しながら8時間反応させた。次いで220℃まで徐々に昇温しながら、窒素気流下に、生成する水および1,6−ヘキサンジオールを留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、Mwが8000になった時点で取り出した。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、結晶性重縮合ポリエステル樹脂[結晶性部b10]を得た。[結晶性部b10]の融点は53℃、Mwは8000、水酸基価は46であった。
Production Example 10 (Production of crystalline part b)
In a reaction vessel equipped with a cooling pipe, a stirrer and a nitrogen introduction pipe, 121 parts of sebacic acid, 118 parts of dimethylterephthalic acid and 124 parts of 1,6-hexanediol and titanium dihydroxybis (triethanolaminate) 1 as a condensation catalyst The reaction was allowed to proceed for 8 hours while distilling off the water produced under a nitrogen stream at 180 ° C. Next, while gradually raising the temperature to 220 ° C., the reaction is carried out for 4 hours while distilling off the generated water and 1,6-hexanediol under a nitrogen stream, and the reaction is further carried out under a reduced pressure of 5 to 20 mmHg. When it became, it took out. The resin taken out was cooled to room temperature and then pulverized into particles to obtain a crystalline polycondensed polyester resin [crystalline part b10]. The melting point of [crystalline part b10] was 53 ° C., Mw was 8000, and the hydroxyl value was 46.

製造例11(非結晶性部cの製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、1,2−プロピレングリコール(以下、プロピレングリコールと記載。)831部、テレフタル酸750部、および縮合触媒としてテトラブトキシチタネート0.5部を入れ、180℃で窒素気流下に、生成するメタノールを留去しながら8時間反応させた。次いで230℃まで徐々に昇温しながら、窒素気流下に、生成するプロピレングリコール、水を留去しながら4時間反応させ、さらに5〜20mmHgの減圧下に反応させ、軟化点が87℃になった時点で180℃まで冷却し、さらに無水トリメリット酸24部、テトラブトキシチタネート0.5部を投入し90分反応させた後、取り出した。回収されたプロピレングリコールは442部であった。取り出した樹脂を室温まで冷却後、粉砕し粒子化し、非結晶性重縮合ポリエステル樹脂[非結晶性部c1’]を得た。[非結晶性部c1’]のMwは8000、Tgは65℃、水酸基価は30であった。
Production Example 11 (Production of amorphous part c)
In a reaction vessel equipped with a cooling tube, a stirrer and a nitrogen introduction tube, 831 parts of 1,2-propylene glycol (hereinafter referred to as propylene glycol), 750 parts of terephthalic acid, and 0.5% of tetrabutoxy titanate as a condensation catalyst. The reaction mixture was allowed to react for 8 hours while distilling off the methanol produced at 180 ° C. under a nitrogen stream. Next, while gradually raising the temperature to 230 ° C., the reaction is carried out for 4 hours while distilling off the produced propylene glycol and water under a nitrogen stream, and further the reaction is carried out under a reduced pressure of 5 to 20 mmHg, and the softening point becomes 87 ° C. After cooling to 180 ° C., 24 parts of trimellitic anhydride and 0.5 part of tetrabutoxy titanate were added, reacted for 90 minutes, and then taken out. The recovered propylene glycol was 442 parts. The taken-out resin was cooled to room temperature and then pulverized into particles to obtain a non-crystalline polycondensed polyester resin [non-crystalline part c1 ′]. [Amorphous part c1 ′] had Mw of 8000, Tg of 65 ° C., and a hydroxyl value of 30.

製造例12(結晶性樹脂Aの製造)
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート44部およびMEK100部を仕込んだ。この溶液にシクロヘキサンジメタノール32部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液を、MEK140部に[結晶性部b1]140部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A1]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A1]のTaは55℃、Mnは14000、Mwは28000であった。
Production Example 12 (Production of crystalline resin A)
A reaction vessel equipped with a stir bar and a thermometer was charged with 44 parts of tolylene diisocyanate and 100 parts of MEK. This solution was charged with 32 parts of cyclohexanedimethanol and reacted at 80 ° C. for 2 hours. Next, a solution of an amorphous polyurethane resin [amorphous part c2] having an isocyanate group at the terminal is added to a solution in which 140 parts of [crystalline part b1] are dissolved in 140 parts of MEK, and the solution is 4 at 80 ° C. By reacting for a time, an MEK solution of [crystalline resin A1] composed of a crystalline part and an amorphous part was obtained. After removing the solvent, [crystalline resin A1] had Ta of 55 ° C., Mn of 14000, and Mw of 28000.

製造例13(結晶性樹脂Aの製造)
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート38部およびMEK100部を仕込んだ。この溶液に1,2−プロピレングリコール14部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c3]の溶液を、MEK130部に[結晶性樹脂b2]130部を溶解させた溶液へ投入し80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A2]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A2]のTaは64℃、Mnは9000、Mwは34000であった。
Production Example 13 (Production of crystalline resin A)
A reaction vessel equipped with a stir bar and a thermometer was charged with 38 parts of tolylene diisocyanate and 100 parts of MEK. This solution was charged with 14 parts of 1,2-propylene glycol and allowed to react at 80 ° C. for 2 hours. Next, a solution of the amorphous polyurethane resin [amorphous part c3] having an isocyanate group at the terminal is added to a solution in which 130 parts of [crystalline resin b2] is dissolved in 130 parts of MEK, and then at 80 ° C. for 4 hours. Reaction was performed to obtain a MEK solution of [crystalline resin A2] composed of a crystalline part and an amorphous part. [Crystalline resin A2] after removing the solvent had Ta of 64 ° C., Mn of 9000, and Mw of 34000.

製造例14(結晶性樹脂Aの製造)
製造例13と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c3]の溶液152部を、MEK130部に[結晶性部b3]130部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A3]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A3]のTaは54℃、Mnは12000、Mwは37000であった。
Production Example 14 (Production of Crystalline Resin A)
A solution of 152 parts of an amorphous polyurethane resin having an isocyanate group at the end [amorphous part c3] obtained in the same manner as in Production Example 13 was dissolved in 130 parts of MEK and 130 parts of [crystalline part b3]. The solution was put into the solution and reacted at 80 ° C. for 4 hours to obtain a MEK solution of [crystalline resin A3] composed of a crystalline part and an amorphous part. After removing the solvent, [crystalline resin A3] had Ta of 54 ° C., Mn of 12,000, and Mw of 37,000.

製造例15(結晶性樹脂Aの製造)
製造例12と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液176部を、MEK250部に[結晶性部b4]250部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A4]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A4]のTaは55℃、Mnは24000、Mwは45000であった。
Production Example 15 (Production of crystalline resin A)
176 parts of a solution of an amorphous polyurethane resin having an isocyanate group at the end [amorphous part c2] obtained in the same manner as in Production Example 12, and 250 parts of [crystalline part b4] were dissolved in 250 parts of MEK. The solution was put into a solution and reacted at 80 ° C. for 4 hours to obtain a MEK solution of [crystalline resin A4] composed of a crystalline part and an amorphous part. After removing the solvent, [crystalline resin A4] had Ta of 55 ° C., Mn of 24,000, and Mw of 45,000.

製造例16(結晶性樹脂Aの製造)
攪拌棒および温度計をセットした反応容器に、MEK190部に[結晶性部b1]190部を溶解させた溶液を入れ、次いでトリレンジイソシアネート9部を投入し、80℃で4時間反応して、結晶性ポリウレタン樹脂である[結晶性樹脂A5]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A5]のTaは55℃、Mnは31000、Mwは72000であった。
Production Example 16 (Production of crystalline resin A)
In a reaction vessel in which a stir bar and a thermometer were set, a solution in which 190 parts of [crystalline part b1] was dissolved in 190 parts of MEK was added, and then 9 parts of tolylene diisocyanate were added and reacted at 80 ° C. for 4 hours. A MEK solution of [crystalline resin A5], which is a crystalline polyurethane resin, was obtained. After removing the solvent, [crystalline resin A5] had Ta of 55 ° C., Mn of 31000, and Mw of 72000.

製造例17(結晶性樹脂Aの製造)
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート63部およびMEK100部を仕込んだ。この溶液にシクロヘキサンジメタノール46部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c4]の溶液を、MEK210部に[結晶性部b5]210部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A6]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A6]のTaは54℃、Mnは19000、Mwは30000であった。
Production Example 17 (Production of crystalline resin A)
A reaction vessel equipped with a stir bar and a thermometer was charged with 63 parts of tolylene diisocyanate and 100 parts of MEK. This solution was charged with 46 parts of cyclohexanedimethanol and reacted at 80 ° C. for 2 hours. Next, a solution of the amorphous polyurethane resin [amorphous part c4] having an isocyanate group at the terminal is added to a solution in which 210 parts of [crystalline part b5] is dissolved in 210 parts of MEK, and the solution is 4 at 80 ° C. By reacting for a time, an MEK solution of [crystalline resin A6] composed of a crystalline part and an amorphous part was obtained. After removing the solvent, [crystalline resin A6] had Ta of 54 ° C., Mn of 19000, and Mw of 30000.

製造例18〔結晶性樹脂Aの製造〕
製造例12と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液176部を、MEK250部に[結晶性部b7]250部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A7]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A7]のTaは64℃、Mnは15000、Mwは36000であった。
Production Example 18 (Production of crystalline resin A)
176 parts of a solution of an amorphous polyurethane resin having an isocyanate group at the end [amorphous part c2] obtained in the same manner as in Production Example 12, and 250 parts of [crystalline part b7] were dissolved in 250 parts of MEK. The solution was put into the solution and reacted at 80 ° C. for 4 hours to obtain a MEK solution of [crystalline resin A7] composed of a crystalline part and an amorphous part. After removing the solvent, [crystalline resin A7] had Ta of 64 ° C., Mn of 15000 and Mw of 36000.

製造例19〔結晶性樹脂Aの製造〕
製造例12と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液176部を、MEK250部に[結晶性部b8]250部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A8]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A8]のTaは59℃、Mnは10000、Mwは22000であった。
Production Example 19 (Production of crystalline resin A)
176 parts of a solution of an amorphous polyurethane resin having an isocyanate group at the end [amorphous part c2] obtained in the same manner as in Production Example 12, and 250 parts of [crystalline part b8] were dissolved in 250 parts of MEK. The solution was put into the solution and reacted at 80 ° C. for 4 hours to obtain a MEK solution of [crystalline resin A8] composed of a crystalline part and an amorphous part. After removing the solvent, [crystalline resin A8] had Ta of 59 ° C., Mn of 10,000, and Mw of 22,000.

製造例20〔結晶性樹脂Aの製造〕
製造例12と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液176部を、MEK250部に[結晶性部b9]250部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A9]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A9]のTaは60℃、Mnは9000、Mwは21000であった。
Production Example 20 [Production of Crystalline Resin A]
176 parts of a solution of an amorphous polyurethane resin having an isocyanate group at the end [amorphous part c2] obtained in the same manner as in Production Example 12, and 250 parts of [crystalline part b9] were dissolved in 250 parts of MEK. The solution was put into the solution and reacted at 80 ° C. for 4 hours to obtain a MEK solution of [crystalline resin A9] composed of a crystalline part and an amorphous part. After removing the solvent, [crystalline resin A9] had Ta of 60 ° C., Mn of 9000, and Mw of 21,000.

製造例21〔結晶性樹脂Aの製造〕
撹拌装置、加熱冷却装置、温度計、滴下ロート、および窒素吹き込み管を備えた反応容器に、トルエン500部を仕込み、別のガラス製ビーカーに、トルエン350部、ベヘニルアクリレート(炭素数22個の直鎖アルキル基を有するアルコールのアクリレート:プレンマーVA(日本油脂製))120部、2−エチルヘキシルアクリレート20部、メタクリル酸10部、アゾビスイソブチロニトリル(AIBN)7.5部を仕込み、20℃で撹拌、混合して単量体溶液を調製し、滴下ロートに仕込んだ。反応容器の気相部の窒素置換を行った後に密閉下80℃で2時間かけて単量体溶液を滴下し、滴下終了から2時間、85℃で熟成した後、トルエンを130℃で3時間減圧除去して、結晶性ビニル樹脂である[結晶性樹脂A10]を得た。[結晶性樹脂A10]のTaは56℃、Mnは68000、Mwは89000であった。
Production Example 21 [Production of Crystalline Resin A]
A reaction vessel equipped with a stirrer, heating / cooling device, thermometer, dropping funnel, and nitrogen blowing tube was charged with 500 parts of toluene, and another glass beaker was charged with 350 parts of toluene and behenyl acrylate (22 carbon atoms directly). 120 parts of an acrylate of an alcohol having a chain alkyl group: Plenmer VA (manufactured by NOF Corporation), 20 parts of 2-ethylhexyl acrylate, 10 parts of methacrylic acid, 7.5 parts of azobisisobutyronitrile (AIBN), 20 ° C. The monomer solution was prepared by stirring and mixing at, and charged into the dropping funnel. After substituting the gas phase portion of the reaction vessel with nitrogen, the monomer solution was added dropwise at 80 ° C. over 2 hours in a sealed state, and after aging at 85 ° C. for 2 hours from the end of the addition, toluene was added at 130 ° C. for 3 hours. After removing under reduced pressure, [crystalline resin A10], which is a crystalline vinyl resin, was obtained. [Crystalline Resin A10] had Ta of 56 ° C., Mn of 68000, and Mw of 89000.

製造例22〔結晶性樹脂Aの製造〕
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート42部およびMEK100部を仕込んだ。この溶液にシクロヘキサンジメタノール31部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c5]の溶液を、MEK140部に[結晶性部b10]126部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A11]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A11]のTaは52℃、Mnは10000、Mwは22000であった。
Production Example 22 [Production of Crystalline Resin A]
A reaction vessel equipped with a stir bar and a thermometer was charged with 42 parts of tolylene diisocyanate and 100 parts of MEK. This solution was charged with 31 parts of cyclohexanedimethanol and allowed to react at 80 ° C. for 2 hours. Next, a solution of the amorphous polyurethane resin [amorphous part c5] having an isocyanate group at the terminal is added to a solution in which 126 parts of [crystalline part b10] are dissolved in 140 parts of MEK, and the solution is 4 at 80 ° C. By reacting for a time, an MEK solution of [crystalline resin A11] composed of a crystalline part and an amorphous part was obtained. [Crystalline Resin A11] after removing the solvent had Ta of 52 ° C., Mn of 10,000, and Mw of 22,000.

製造例23〔結晶性樹脂Aの製造〕
攪拌棒および温度計をセットした反応容器に、キシレンジイソシアネート32部およびMEK100部を仕込んだ。この溶液にビスフェノールA・EO2モル付加物47部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c6]の溶液を、MEK140部に[結晶性部b1]122部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A12]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A12]のTaは55℃、Mnは14000、Mwは30000であった。
Production Example 23 [Production of Crystalline Resin A]
A reaction vessel equipped with a stir bar and a thermometer was charged with 32 parts of xylene diisocyanate and 100 parts of MEK. This solution was charged with 47 parts of a bisphenol A · EO 2 molar adduct and allowed to react at 80 ° C. for 2 hours. Next, a solution of the amorphous polyurethane resin [amorphous part c6] having an isocyanate group at the terminal is added to a solution in which 122 parts of [crystalline part b1] are dissolved in 140 parts of MEK, and the solution is 4 at 80 ° C. By reacting for a time, an MEK solution of [crystalline resin A12] composed of a crystalline part and an amorphous part was obtained. After removing the solvent, [crystalline resin A12] had Ta of 55 ° C., Mn of 14,000, and Mw of 30000.

製造例24〔結晶性樹脂Aの製造〕
攪拌棒および温度計をセットした反応容器に、キシレンジイソシアネート35部およびMEK100部を仕込んだ。この溶液にビスフェノールA・EO2モル付加物52部を仕込み80℃で2時間反応させた。次に、この末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c7]の溶液を、MEK140部に[結晶性部b1]111部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A13]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A13]のTaは52℃、Mnは18000、Mwは38000であった。
Production Example 24 [Production of Crystalline Resin A]
A reaction vessel equipped with a stir bar and a thermometer was charged with 35 parts of xylene diisocyanate and 100 parts of MEK. This solution was charged with 52 parts of a bisphenol A · EO 2-mol adduct and allowed to react at 80 ° C. for 2 hours. Next, a solution of an amorphous polyurethane resin [amorphous part c7] having an isocyanate group at the terminal is added to a solution in which 111 parts of [crystalline part b1] is dissolved in 140 parts of MEK, and the solution is 4 at 80 ° C. By reacting for a time, an MEK solution of [crystalline resin A13] composed of a crystalline part and an amorphous part was obtained. After removing the solvent, [crystalline resin A13] had Ta of 52 ° C., Mn of 18000 and Mw of 38000.

製造例25〔結晶性樹脂Aの製造〕
攪拌棒および温度計をセットした反応容器に、製造例11で得られた非結晶性重縮合ポリエステル樹脂[非結晶性部c1’]およびMEK100部を仕込んだ。この溶液にキシレンジイソシアネート7部を仕込み80℃で2時間反応させた。次にこの末端にイソシアネート基を有する[非結晶性部c1’]のウレタン変性物[非結晶性部c1]の溶液を、MEK140部に[結晶性樹脂b1]111部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[結晶性樹脂A14]のMEK溶液を得た。溶剤を除いた後の[結晶性樹脂A14]のTaは55℃、Mnは25000、Mwは51000であった。
Production Example 25 [Production of Crystalline Resin A]
A non-crystalline polycondensed polyester resin [non-crystalline part c1 ′] obtained in Production Example 11 and 100 parts of MEK were charged into a reaction vessel in which a stir bar and a thermometer were set. This solution was charged with 7 parts of xylene diisocyanate and reacted at 80 ° C. for 2 hours. Next, a solution of the [modified part c1 ′] urethane-modified product [amorphous part c1] having an isocyanate group at the terminal is added to a solution obtained by dissolving 111 parts [crystalline resin b1] in 140 parts of MEK. Then, the mixture was reacted at 80 ° C. for 4 hours to obtain a MEK solution of [crystalline resin A14] composed of a crystalline part and an amorphous part. After removing the solvent, [crystalline resin A14] had Ta of 55 ° C., Mn of 25000, and Mw of 51000.

比較製造例1(比較用樹脂A’の製造)
冷却管、撹拌機および窒素導入管の付いた反応槽中に、ビスフェノールA・PO2モル付加物456部(9.0モル)、ビスフェノールA・EO2モル付加物321部(7.0モル)、テレフタル酸247部(10.0モル)、およびテトラブトキシチタネート3部を入れ、230℃で窒素気流下に、生成する水を留去しながら5時間反応させた。次いで5〜20mmHgの減圧下に反応させ、酸価が2になった時点で180℃に冷却し、無水トリメリット酸74部(2.6モル)を加え、常圧密閉下2時間反応後取り出し、非結晶性樹脂である[比較用樹脂A’15]を得た。[比較用樹脂A’15]のTaは55℃、Mnは3500、Mwは7500であった。
Comparative Production Example 1 (Production of Comparative Resin A ′)
In a reaction vessel equipped with a condenser, a stirrer, and a nitrogen introduction tube, 456 parts (9.0 moles) of bisphenol A · PO2 mole adduct, 321 parts (7.0 moles) of bisphenol A · EO2 mole adduct, terephthalate 247 parts (10.0 mol) of acid and 3 parts of tetrabutoxytitanate were added and reacted at 230 ° C. under a nitrogen stream for 5 hours while distilling off generated water. Next, the reaction was carried out under reduced pressure of 5 to 20 mmHg. When the acid value reached 2, the mixture was cooled to 180 ° C., 74 parts (2.6 mol) of trimellitic anhydride was added, and the reaction was taken out after 2 hours of reaction under normal pressure and sealed. Thus, [Comparative Resin A′15] which is an amorphous resin was obtained. [Comparative Resin A′15] had Ta of 55 ° C., Mn of 3500, and Mw of 7500.

比較製造例2(比較用樹脂A’の製造)
製造例12と同様にして得られた、末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c2]の溶液176部を、MEK110部に[結晶性部b6]110部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[比較用樹脂A’16]のMEK溶液を得た。溶剤を除いた後の[比較用樹脂A’16]の融点は52℃、Mnは6000、Mwは13000であった。
Comparative Production Example 2 (Production of Comparative Resin A ′)
176 parts of a solution of an amorphous polyurethane resin having an isocyanate group at the end [amorphous part c2] obtained in the same manner as in Production Example 12, and 110 parts of [crystalline part b6] were dissolved in 110 parts of MEK. The solution was put into the solution and reacted at 80 ° C. for 4 hours to obtain a MEK solution of [Comparative Resin A′16] composed of a crystalline part and an amorphous part. [Comparative Resin A′16] after removing the solvent had a melting point of 52 ° C., Mn of 6000, and Mw of 13,000.

比較製造例3(比較用樹脂A’の製造)
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート59部およびMEK80部を仕込んだ。この溶液にシクロヘキサンジメタノール46部を仕込み80℃で2時間反応させた。次にこの末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c8]の溶液を、MEK17部に[結晶性部b1]17部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[比較用樹脂A’17]のMEK溶液を得た。溶剤を除いた後の[比較用樹脂A’17]のTaは45℃、Mnは12000、Mwは26000であった。
Comparative Production Example 3 (Production of Comparative Resin A ′)
A reaction vessel equipped with a stir bar and a thermometer was charged with 59 parts of tolylene diisocyanate and 80 parts of MEK. This solution was charged with 46 parts of cyclohexanedimethanol and reacted at 80 ° C. for 2 hours. Next, a solution of the amorphous polyurethane resin having an isocyanate group at the end [amorphous part c8] was added to a solution in which 17 parts of [crystalline part b1] was dissolved in 17 parts of MEK, and the mixture was heated at 80 ° C. for 4 hours. Reaction was performed to obtain a MEK solution of [Comparative Resin A′17] composed of a crystalline part and an amorphous part. [Comparative Resin A′17] after removing the solvent had Ta of 45 ° C., Mn of 12000, and Mw of 26000.

比較製造例4(比較用樹脂A’の製造)
攪拌棒および温度計をセットした反応容器に、トリレンジイソシアネート9部およびMEK80部を仕込んだ。この溶液にビスフェノールA・PO2モル付加物とイソフタル酸とで形成されるMw2000のポリエステル樹脂48部を仕込み80℃で2時間反応させた。次にこの末端にイソシアネート基を有する非結晶性ポリウレタン樹脂[非結晶性部c9]の溶液を、MEK95部に[結晶性部b1]95部を溶解させた溶液へ投入し、80℃で4時間反応して、結晶性部と非結晶性部で構成される[比較用樹脂A’18]のMEK溶液を得た。溶剤を除いた後の[比較用樹脂A’18]のTaは55℃、Mnは4400、Mwは14000であった。
Comparative Production Example 4 (Production of Comparative Resin A ′)
9 parts of tolylene diisocyanate and 80 parts of MEK were charged into a reaction vessel equipped with a stir bar and a thermometer. This solution was charged with 48 parts of an Mw2000 polyester resin formed from bisphenol A · PO2 molar adduct and isophthalic acid and reacted at 80 ° C. for 2 hours. Next, a solution of the amorphous polyurethane resin [amorphous part c9] having an isocyanate group at the terminal is added to a solution in which 95 parts of [crystalline part b1] is dissolved in 95 parts of MEK, and the mixture is heated at 80 ° C. for 4 hours. Reaction was performed to obtain a MEK solution of [Comparative Resin A′18] composed of a crystalline part and an amorphous part. [Comparative Resin A′18] after removing the solvent had Ta of 55 ° C., Mn of 4400, and Mw of 14,000.

製造例26(着色剤分散液の製造)
ビーカー内に銅フタロシアニン20部と着色剤分散剤(ソルスパーズ28000;アビシア株式会社製)4部、および酢酸エチル76部を入れ、攪拌して均一分散させた後、ビーズミルによって銅フタロシアニンを微分散して、[着色剤分散液1]を得た。[着色剤分散液1]を堀場製作所製粒子径測定装置LA−920で測定した体積平均粒径は0.3μmであった。
Production Example 26 (Production of colorant dispersion)
In a beaker, 20 parts of copper phthalocyanine, 4 parts of a colorant dispersant (Solspers 28000; manufactured by Avicia Co., Ltd.) and 76 parts of ethyl acetate were stirred and uniformly dispersed. [Colorant dispersion 1] was obtained. The volume average particle diameter of [Colorant Dispersion Liquid 1] measured with a particle size measuring apparatus LA-920 manufactured by Horiba, Ltd. was 0.3 μm.

製造例27(変性ワックスの製造)
温度計および撹拌機の付いたオートクレーブ反応槽中に、キシレン454部、低分子量ポリエチレン(三洋化成工業(株)製 サンワックス LEL−400:軟化点128℃)150部を投入し、窒素置換後170℃に昇温して十分溶解し、スチレン595部、メタクリル酸メチル255部、ジ−t−ブチルパーオキシヘキサヒドロテレフタレート34部およびキシレン119部の混合溶液を170℃で3時間で滴下して重合し、さらにこの温度で30分間保持した。次いで脱溶剤を行い、[変性ワックス 1]を得た。[変性ワックス 1]のMnは1872、Mwは5194、Tgは56.9℃であった。
Production Example 27 (Production of modified wax)
In an autoclave reaction vessel equipped with a thermometer and a stirrer, 454 parts of xylene and 150 parts of low molecular weight polyethylene (Sanwa Kasei Kogyo Co., Ltd. sun wax LEL-400: softening point 128 ° C.) were added, and after nitrogen substitution, 170 parts were obtained. The temperature was raised to 0 ° C. and dissolved sufficiently, and a mixed solution of 595 parts of styrene, 255 parts of methyl methacrylate, 34 parts of di-t-butylperoxyhexahydroterephthalate and 119 parts of xylene was added dropwise at 170 ° C. over 3 hours for polymerization. And kept at this temperature for 30 minutes. Next, the solvent was removed to obtain [modified wax 1]. [Modified wax 1] had Mn of 1872, Mw of 5194, and Tg of 56.9 ° C.

製造例28(ワックス分散液の製造)
温度計および撹拌機の付いた反応容器中に、パラフィンワックス(融点73℃)10部、[変性ワックス1]1部、酢酸エチル33部を投入し、78℃に加熱して充分溶解し、1時間で30℃まで冷却を行いワックスを微粒子状に晶析させ、さらにウルトラビスコミル(アイメックス製)で湿式粉砕し、[ワックス分散液1]を得た。
Production Example 28 (Production of wax dispersion)
In a reaction vessel equipped with a thermometer and a stirrer, 10 parts of paraffin wax (melting point: 73 ° C.), 1 part of [modified wax 1] and 33 parts of ethyl acetate are added, heated to 78 ° C. and sufficiently dissolved. After cooling to 30 ° C. over time, the wax was crystallized into fine particles and further wet-pulverized with Ultraviscomyl (manufactured by IMEX) to obtain [Wax Dispersion 1].

製造例29(結晶性樹脂溶液の製造)
温度計および撹拌機の付いた反応容器中に、[結晶性樹脂A1]10部、MEK5部および酢酸エチル5部を入れ、70℃まで加温し攪拌して均一分散させ、さらに室温まで冷やして[結晶性樹脂溶液A1]を得た。
Production Example 29 (Production of crystalline resin solution)
In a reaction vessel equipped with a thermometer and a stirrer, 10 parts of [Crystalline Resin A1], 5 parts of MEK and 5 parts of ethyl acetate are added, heated to 70 ° C., stirred and uniformly dispersed, and further cooled to room temperature. [Crystalline resin solution A1] was obtained.

製造例30(結晶性樹脂溶液の製造)
[結晶性樹脂A1]の代わりに、[結晶性樹脂A2]〜[結晶性樹脂A14]を各々用いる以外は製造例29と同様にして、[結晶性樹脂溶液A2]〜[結晶性樹脂溶液A14]を得た。
Production Example 30 (Production of crystalline resin solution)
Instead of [Crystalline Resin A1], [Crystalline Resin A2] to [Crystalline Resin A14] are used in the same manner as in Production Example 29 except that [Crystalline Resin A2] to [Crystalline Resin A14] ] Was obtained.

比較製造例5(比較用樹脂溶液の製造)
[結晶性樹脂A1]の代わりに、[比較用樹脂A’15]〜[比較用樹脂A’18]を各々用いる以外は製造例29と同様にして、[比較用樹脂溶液A’15]〜[比較用樹脂溶液A’18]を得た。
Comparative Production Example 5 (Production of Comparative Resin Solution)
Instead of [Crystalline Resin A1], [Comparative Resin A′15] to [Comparative Resin A′15] to [Comparative Resin A′15] are used in the same manner as in Production Example 29, except that [Comparative Resin A′15] to [Comparative Resin A′18] are used. [Comparative resin solution A′18] was obtained.

製造例31〔粒子(D)の水性分散液(W)の製造〕
撹拌棒および温度計をセットした反応容器に、イソプロパノール130部を仕込み、攪拌下、アクリル酸ブチル10部、酢酸ビニル67部、無水マレイン酸15部、メタクリロイロキシポリオキシアルキレン硫酸エステルナトリウム塩(エレミノールRS−30、三洋化成工業製)6部、過酸化ベンゾイル(25%含水品)2部の混合溶液を、120分間かけて滴下し重合させた。この重合溶液50部をさらに撹拌下のイオン交換水60部に滴下して、重合体粒子を含有する水性分散液[微粒子分散液W1]を得た。[微粒子分散液W1]をLA−920および大塚電子社製電気泳動光散乱光度計ELS−800で測定した体積平均粒径は、いずれも0.10μmであった。[微粒子分散液W1]の一部を乾燥して樹脂分を単離した。該樹脂分のDSC測定による融解熱の最大ピーク温度(Td)は71℃であった。
Production Example 31 [Production of aqueous dispersion (W) of particles (D)]
In a reaction vessel equipped with a stirrer and a thermometer, 130 parts of isopropanol was charged. A mixed solution of 6 parts of RS-30 (manufactured by Sanyo Chemical Industries) and 2 parts of benzoyl peroxide (25% water-containing product) was dropped and polymerized over 120 minutes. 50 parts of this polymerization solution was further added dropwise to 60 parts of ion-exchanged water with stirring to obtain an aqueous dispersion [fine particle dispersion W1] containing polymer particles. The volume average particle diameters of [fine particle dispersion W1] measured by LA-920 and an electrophoretic light scattering photometer ELS-800 manufactured by Otsuka Electronics Co., Ltd. were both 0.10 μm. A portion of [fine particle dispersion W1] was dried to isolate the resin component. The maximum peak temperature (Td) of heat of fusion as measured by DSC of the resin was 71 ° C.

製造例32〔粒子(D)の水性分散液(W)の製造〕
撹拌機および温度計を備えた反応装置に、水酸基価56の1,6−ヘキサンジオールとアジピン酸からなるポリエステルジオール(日本ポリウレタン工業(株)製、商品名「ニッポラン 4073」)を74部、1,9−ノナンジオールを20部、2,2−ジメチロールプロピオン酸を47部、3−(2,3−ジヒドロキシプロポキシ)−1−プロパンスルホン酸ナトリウムを9部、ヘキサメチレンジイソシアネートを100部、トリエチルアミンを4部およびアセトンを250部、窒素を導入しながら仕込んだ。その後50℃に加熱し、10時間かけてウレタン化反応を行い、イソシアネート基末端ウレタン樹脂溶液を製造した。次いで、n−ブチルアミンを8部およびトリエチルアミンを31部加え、50℃で3時間反応させ、ポリウレタン樹脂溶液を得た。反応終了時のNCO含量は0%であった。
このポリウレタン樹脂溶液を40℃に冷却後、攪拌下、水1800部中に注ぎ乳化させ[微粒子分散液W2]を得た。このポリウレタン樹脂エマルションをELS−800で測定した体積平均粒径は0.05μmであった。[微粒子分散液W2]の一部を乾燥して樹脂分を単離した。該樹脂分のDSC測定による融解熱の最大ピーク温度(Td)は50℃であった。
Production Example 32 [Production of aqueous dispersion (W) of particles (D)]
In a reactor equipped with a stirrer and a thermometer, 74 parts of a polyester diol composed of 1,6-hexanediol having a hydroxyl value of 56 and adipic acid (manufactured by Nippon Polyurethane Industry Co., Ltd., trade name “Nipporan 4073”), 1 , 9-nonanediol 20 parts, 2,2-dimethylolpropionic acid 47 parts, 3- (2,3-dihydroxypropoxy) -1-propanesulfonic acid sodium 9 parts, hexamethylene diisocyanate 100 parts, triethylamine 4 parts and 250 parts of acetone were charged while introducing nitrogen. Thereafter, the mixture was heated to 50 ° C. and subjected to urethanization reaction for 10 hours to produce an isocyanate group-terminated urethane resin solution. Next, 8 parts of n-butylamine and 31 parts of triethylamine were added and reacted at 50 ° C. for 3 hours to obtain a polyurethane resin solution. The NCO content at the end of the reaction was 0%.
The polyurethane resin solution was cooled to 40 ° C. and then poured into 1800 parts of water with stirring to emulsify to obtain [fine particle dispersion W2]. The volume average particle diameter of this polyurethane resin emulsion measured by ELS-800 was 0.05 μm. A portion of [fine particle dispersion W2] was dried to isolate the resin component. The maximum peak temperature (Td) of heat of fusion determined by DSC measurement of the resin was 50 ° C.

製造例33〔粒子(D)の水性分散液(W)の製造〕
アクリル酸−マレイン酸共重合体(Mn:10000)で被覆された炭酸カルシウム(平均粒径:0.18μm) 60部と、平均重合度800〜900、エーテル化度0.70〜0.80のカルボキシルメチルセルロース 2部及び、イオン交換水 238部をエバラマイルダーで25℃で5時間分散することにより[無機微粒子分散液W3]を得た。
Production Example 33 [Production of aqueous dispersion (W) of particles (D)]
60 parts of calcium carbonate (average particle size: 0.18 μm) coated with an acrylic acid-maleic acid copolymer (Mn: 10000), an average degree of polymerization of 800 to 900, and an etherification degree of 0.70 to 0.80 [Inorganic fine particle dispersion W3] was obtained by dispersing 2 parts of carboxymethyl cellulose and 238 parts of ion-exchanged water with an Ebara milder at 25 ° C. for 5 hours.

実施例1
(結晶性樹脂粒子の製造)
ビーカー内に[結晶性樹脂溶液A1]60部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、50℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水97部、[微粒子分散液W1]10.5部、カルボキシメチルセルロースナトリウム1部、およびドデシルジフェニルエーテルジスルホン酸ナトリウムの48.5%水溶液(三洋化成工業製、「エレミノールMON−7」)10部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液1A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、樹脂粒子(C0)の表面に粒子(D)が付着された樹脂粒子の水性樹脂分散体(Y−1)を得た。次いで、水性樹脂分散体(Y−1)に水酸化ナトリウム水溶液を足しPH=9.0にした後、50℃に加熱し、1時間攪拌し、さらにこれを室温まで冷ました後、濾別し、40℃×18時間乾燥を行い、体積平均粒径が6.1μmの結晶性樹脂粒子(C−1)を得た。
Example 1
(Manufacture of crystalline resin particles)
Place 60 parts of [Crystalline Resin Solution A1], 27 parts of [Wax Dispersion 1], and 10 parts of [Colorant Dispersion 1] in a beaker and stir at 8,000 rpm with a TK homomixer at 50 ° C. And uniformly dissolved and dispersed to obtain [resin solution 1A].
In a beaker, 97 parts of ion-exchanged water, 10.5 parts of [fine particle dispersion W1], 1 part of sodium carboxymethylcellulose, and a 48.5% aqueous solution of sodium dodecyldiphenyl ether disulfonate (“ELEMINOL MON-7” manufactured by Sanyo Chemical Industries) ) 10 parts was added and dissolved uniformly. Then, at 25 ° C., 75 parts of [resin solution 1A] was added and stirred for 2 minutes while stirring the TK homomixer at 10,000 rpm. Next, this mixed solution was transferred to a Kolben equipped with a stirrer and a thermometer, and the temperature was raised, and ethyl acetate was distilled off at 35 ° C. until the concentration reached 0.5% or less. An aqueous resin dispersion (Y-1) of resin particles to which D) was attached was obtained. Next, an aqueous sodium hydroxide solution was added to the aqueous resin dispersion (Y-1) to adjust the pH to 9.0, followed by heating to 50 ° C., stirring for 1 hour, and further cooling to room temperature, followed by filtration. And drying at 40 ° C. for 18 hours to obtain crystalline resin particles (C-1) having a volume average particle diameter of 6.1 μm.

実施例2〜14
[結晶性樹脂溶液A1]の代わりに表1および表2に記載の[結晶性樹脂溶液A2]〜[結晶性樹脂溶液A14]を各々用いる以外は実施例1と同様にして、体積平均粒径が6.1〜6.3μmの結晶性樹脂粒子(C−2)〜(C−14)を得た。
Examples 2-14
The volume average particle diameter is the same as in Example 1 except that [crystalline resin solution A2] to [crystalline resin solution A14] shown in Table 1 and Table 2 are used instead of [crystalline resin solution A1]. Obtained 6.1 to 6.3 μm of crystalline resin particles (C-2) to (C-14).

実施例15
[微粒子分散液W1]の代わりに[微粒子分散液W2]を用いる以外は実施例1と同様にして、体積平均粒径が6.1μmの結晶性樹脂粒子(C−15)を得た。
Example 15
Crystalline resin particles (C-15) having a volume average particle diameter of 6.1 μm were obtained in the same manner as in Example 1 except that [fine particle dispersion W2] was used instead of [fine particle dispersion W1].

実施例16
ビーカー内に[結晶性樹脂溶液1]60部、[ワックス分散液1]27部、および[着色剤分散液1]10部を入れ、50℃にてTK式ホモミキサーで8,000rpmで撹拌し、均一に溶解、分散させて[樹脂溶液1A]を得た。
ビーカー内にイオン交換水97部、[無機微粒子分散液W3]30.5部、カルボキシメチルセルロースナトリウム1部を入れ均一に溶解した。ついで25℃で、TK式ホモミキサーを10,000rpmに撹拌しながら、[樹脂溶液1A]75部を投入し2分間撹拌した。ついでこの混合液を撹拌棒および温度計付のコルベンに移し、昇温して35℃で濃度が0.5%以下となるまで酢酸エチルを留去し、樹脂粒子(C0)の表面に粒子(D)が付着された樹脂粒子の水性樹脂分散体(Y−16)を得た。次いで、水性樹脂分散体(Y−16)に塩酸水溶液を足しPH=1.5にした後、水酸化ナトリウム水溶液を足しPH=9.0にし、また塩酸水溶液を足しPH=4.5にした後、1時間攪拌し、さらにこれを室温まで冷ました後、濾別し、40℃×18時間乾燥を行い、体積平均粒径が6.3μmの結晶性樹脂粒子(C−16)を得た。
Example 16
In a beaker, 60 parts of [Crystalline Resin Solution 1], 27 parts of [Wax Dispersion 1] and 10 parts of [Colorant Dispersion 1] are stirred at 8,000 rpm with a TK homomixer at 50 ° C. And uniformly dissolved and dispersed to obtain [resin solution 1A].
In a beaker, 97 parts of ion-exchanged water, 30.5 parts of [inorganic fine particle dispersion W3] and 1 part of sodium carboxymethylcellulose were uniformly dissolved. Then, at 25 ° C., 75 parts of [resin solution 1A] was added and stirred for 2 minutes while stirring the TK homomixer at 10,000 rpm. Next, this mixed solution was transferred to a Kolben equipped with a stirrer and a thermometer, and the temperature was raised, and ethyl acetate was distilled off at 35 ° C. until the concentration reached 0.5% or less. An aqueous resin dispersion (Y-16) of resin particles to which D) was adhered was obtained. Next, after adding an aqueous hydrochloric acid solution to the aqueous resin dispersion (Y-16) to PH = 1.5, an aqueous sodium hydroxide solution was added to PH = 9.0, and an aqueous hydrochloric acid solution was added to make PH = 4.5. Thereafter, the mixture was stirred for 1 hour, further cooled to room temperature, filtered, and dried at 40 ° C. for 18 hours to obtain crystalline resin particles (C-16) having a volume average particle size of 6.3 μm. .

比較例1〜4
[結晶性樹脂溶液A1]の代わりに表2に記載の[比較用樹脂溶液A’15]〜[比較用樹脂溶液A’18]を各々用いる以外は実施例1と同様にして、体積平均粒径が6.1〜6.3μmの比較の樹脂粒子(C’−17)〜(C’−20)を得た。
Comparative Examples 1-4
In the same manner as in Example 1 except that [Comparative Resin Solution A′15] to [Comparative Resin Solution A′18] shown in Table 2 are used instead of [Crystalline Resin Solution A1], the volume average particle size is set. Comparative resin particles (C′-17) to (C′-20) having a diameter of 6.1 to 6.3 μm were obtained.

物性測定例
本発明の結晶性樹脂粒子(C−1)〜(C−16)、および比較の樹脂粒子(C’−17)〜(C’−20)それぞれの、定着性、耐熱保存安定性、および帯電特性を以下に記載の方法で測定した。その結果を表1および表2に示した。
また、実施例1〜16、および比較例1〜4で使用した、結晶性樹脂A、比較用樹脂A’、およびそれらを構成する結晶性部(b)と非結晶性部(c)をそれぞれ分析した結果を表1および表2に示した。
(A)または(A’)が非結晶性部(c)を持つ場合、非結晶性部の重量平均分子量、ガラス転移温度、および軟化点は、非結晶性部となる樹脂を作製した時点で一部を抜き取り、測定した。ただし非結晶性部がイソシアネート基を持つ場合は、これに当量のメタノールを加えイソシアネート含量を0にしてから測定した。
Measurement Example of Physical Properties Fixing property and heat-resistant storage stability of each of the crystalline resin particles (C-1) to (C-16) of the present invention and the comparative resin particles (C′-17) to (C′-20) The charging characteristics were measured by the method described below. The results are shown in Tables 1 and 2.
In addition, the crystalline resin A, the comparative resin A ′ used in Examples 1 to 16 and Comparative Examples 1 to 4, and the crystalline part (b) and the non-crystalline part (c) constituting them, respectively. The analysis results are shown in Tables 1 and 2.
When (A) or (A ′) has an amorphous part (c), the weight average molecular weight, the glass transition temperature, and the softening point of the amorphous part are as follows when the resin that becomes the amorphous part is produced. A part was extracted and measured. However, when the non-crystalline part had an isocyanate group, the measurement was carried out after adding an equivalent amount of methanol to make the isocyanate content zero.

〔定着性〕
樹脂粒子にアエロジルR972(日本アエロジル社製)を1.0%添加し、よく混ぜて均一にした後、この粉体を紙面上に0.6mg/cm2となるよう均一に載せる(このとき粉体を紙面に載せる方法は、熱定着機を外したプリンターを用いる(上記の重量密度で粉体を均一に載せることができるのであれば他の方法を用いてもよい)。この紙を加圧ローラーに定着速度(加熱ローラ周速)213mm/sec、定着圧力(加圧ローラ圧)5kg/cm2の条件で通した時のMFT(最低定着温度)を測定した。
MFT欄が“×”は定着領域なしである。
[Fixability]
After adding 1.0% Aerosil R972 (manufactured by Nippon Aerosil Co., Ltd.) to the resin particles and mixing well, the powder is uniformly placed on the paper surface so as to be 0.6 mg / cm 2 (at this time As a method for placing the body on the paper surface, a printer from which the heat fixing machine is removed is used (other methods may be used as long as the powder can be placed uniformly at the above-mentioned weight density). The MFT (minimum fixing temperature) was measured when passing through a roller under conditions of a fixing speed (heating roller peripheral speed) of 213 mm / sec and a fixing pressure (pressure roller pressure) of 5 kg / cm 2 .
In the MFT column “x”, there is no fixing area.

〔耐熱保存安定性〕
50℃に温調された乾燥機に樹脂粒子を15時間静置し、ブロッキングの程度により下記の基準で評価した。
○ : ブロッキングが発生しない。
△ : ブロッキングが発生するが、力を加えると容易に分散する。
× : ブロッキングが発生し、力を加えても分散しない。
[Heat resistant storage stability]
Resin particles were allowed to stand for 15 hours in a dryer controlled to 50 ° C., and evaluated according to the following criteria based on the degree of blocking.
○: Blocking does not occur.
Δ: Blocking occurs, but disperses easily when force is applied.
X: Blocking occurs and does not disperse even when force is applied.

〔帯電特性〕
50ccの共栓付ガラス瓶に、樹脂粒子0.5g、鉄粉(日本鉄粉株式会社製「F−150」)10gを精秤し、共栓をして23℃、50%RHの雰囲気下でターブラシェーカミキサー(ウイリー・ア・バショッフェン社製)にセットし、回転数90rpmで2分攪拌する。攪拌後の混合粉体0.2gを目開き20μmステンレス金網がセットされたブローオフ粉体帯電量測定装置(京セラケミカル株式会社製TB−203)に装填し、ブロー圧10KPa,吸引圧5KPaの条件で、残存鉄粉の帯電量を測定し、定法により樹脂粒子の帯電量を算出する。なお、トナー用としてはマイナス帯電量が高いほど帯電特性が優れている。
(Charging characteristics)
In a 50 cc glass bottle with a stopper, 0.5 g of resin particles and 10 g of iron powder (“F-150” manufactured by Nippon Iron Powder Co., Ltd.) are precisely weighed, stoppered and placed in an atmosphere of 23 ° C. and 50% RH. Set in a turbula shaker mixer (manufactured by Willy a Baschofen) and stir for 2 minutes at 90 rpm. 0.2 g of the mixed powder after stirring is loaded into a blow-off powder charge measuring device (TB-203, manufactured by Kyocera Chemical Co., Ltd.) in which a 20 μm stainless steel mesh is set, and the blow pressure is 10 KPa and the suction pressure is 5 KPa. Then, the charge amount of the residual iron powder is measured, and the charge amount of the resin particles is calculated by a conventional method. For toners, the higher the negative charge amount, the better the charging characteristics.

表1および表2に示したように、本発明の結晶性樹脂粒子(実施例1〜16)は、比較例の樹脂粒子と比べて、特にMFTの点で、いずれも著しく良好な結果が得られた。   As shown in Tables 1 and 2, the crystalline resin particles (Examples 1 to 16) of the present invention have significantly better results than the comparative resin particles, particularly in terms of MFT. It was.

本発明の結晶性樹脂粒子は定着性に優れ、また粒度分布がシャープで、帯電性にも優れる。そのため用途としては、塗料用添加剤、接着剤用添加剤、化粧品用添加剤、紙塗工用添加剤、スラッシュ成形用樹脂、粉体塗料、電子部品製造用スペーサー、触媒用担体、電子写真トナー、静電記録トナー、静電印刷トナー、電子測定機器の標準粒子、電子ペーパー用粒子、医療診断用担体、クロマトグラフ充填剤、電気粘性流体用粒子等として有用である。   The crystalline resin particles of the present invention have excellent fixability, a sharp particle size distribution, and excellent chargeability. For this purpose, coating additives, adhesive additives, cosmetic additives, paper coating additives, slush molding resins, powder coatings, spacers for manufacturing electronic components, catalyst carriers, electrophotographic toners It is useful as electrostatic recording toner, electrostatic printing toner, standard particles for electronic measuring instruments, particles for electronic paper, medical diagnostic carriers, chromatographic fillers, particles for electrorheological fluids, and the like.

Claims (11)

結晶性樹脂(A)を含有する樹脂粒子であって、該樹脂粒子が、水系媒体を用いて作製され、融解熱の最大ピーク温度(Ta)が40〜100℃、軟化点とTaの比(軟化点/Ta)が0.8〜1.55であり、かつ以下の条件を満たすことを特徴とする結晶性樹脂粒子。
〔条件1〕 G’(Ta+20)=1×102〜5×105[Pa]
〔条件2〕 G”(Ta+20)=1×102〜5×105[Pa]
[G’:貯蔵弾性率、G”:損失弾性率]
Resin particles containing a crystalline resin (A), wherein the resin particles are prepared using an aqueous medium, the maximum peak temperature (Ta) of heat of fusion is 40 to 100 ° C., and the ratio of softening point to Ta ( A crystalline resin particle having a softening point / Ta) of 0.8 to 1.55 and satisfying the following condition.
[Condition 1] G ′ (Ta + 20) = 1 × 10 2 to 5 × 10 5 [Pa]
[Condition 2] G ″ (Ta + 20) = 1 × 10 2 to 5 × 10 5 [Pa]
[G ′: storage elastic modulus, G ″: loss elastic modulus]
(Ta+30)℃における損失弾性率G”(Ta+30)と、(Ta+70)℃における損失弾性率G”(Ta+70)の比〔G”(Ta+30)/G”(Ta+70)〕が0.05〜50である請求項1記載の結晶性樹脂粒子。   The ratio of loss elastic modulus G ″ (Ta + 30) at (Ta + 30) ° C. to loss elastic modulus G ″ (Ta + 70) at (Ta + 70) ° C. [G ″ (Ta + 30) / G ″ (Ta + 70)] is 0.05 to 50 The crystalline resin particle according to claim 1. 結晶性樹脂(A)の融解熱の最大ピーク温度(Ta’)が40〜100℃、軟化点とTa’の比(軟化点/Ta’)が0.8〜1.55、溶融開始温度(X)が(Ta±30)℃の温度範囲内であり、かつ(A)が以下の条件を満たす請求項1または2記載の結晶性樹脂粒子。
〔条件3〕 G’(Ta’+20)=50〜1×106[Pa]
〔条件4〕 |LogG”(X+20)−LogG”(X)|>2.0
[G’:貯蔵弾性率[Pa]、G”:損失弾性率[Pa]]
The maximum peak temperature (Ta ′) of heat of fusion of the crystalline resin (A) is 40 to 100 ° C., the ratio of the softening point to Ta ′ (softening point / Ta ′) is 0.8 to 1.55, the melting start temperature ( The crystalline resin particles according to claim 1 or 2, wherein X) is within a temperature range of (Ta ± 30) ° C and (A) satisfies the following conditions.
[Condition 3] G ′ (Ta ′ + 20) = 50 to 1 × 10 6 [Pa]
[Condition 4] | LogG ″ (X + 20) −LogG ″ (X) |> 2.0
[G ′: storage elastic modulus [Pa], G ″: loss elastic modulus [Pa]]
結晶性樹脂(A)の含有量が60重量%以上である請求項1〜3のいずれか記載の結晶性樹脂粒子。   The crystalline resin particles according to claim 1, wherein the content of the crystalline resin (A) is 60% by weight or more. 樹脂(d)および/または無機化合物(e)を含有する粒子(D)の水性分散液(W)と結晶性樹脂(A)もしくはその有機溶剤溶液(O)とが混合され、(W)中に(O)が分散されて水性分散液(W)中で(A)を含有する樹脂粒子(C0)が形成されることにより(C0)の表面に(D)が付着されてなる結晶性樹脂粒子(C)の水性分散体(Y)が得られ、(Y)から水性媒体が除去されて得られたものである請求項1〜4のいずれか記載の結晶性樹脂粒子。   The aqueous dispersion (W) of the particles (D) containing the resin (d) and / or the inorganic compound (e) is mixed with the crystalline resin (A) or an organic solvent solution (O) thereof, and (W) (O) is dispersed in the aqueous dispersion liquid (W) to form resin particles (C0) containing (A), so that (D) is attached to the surface of (C0). The crystalline resin particle according to any one of claims 1 to 4, which is obtained by obtaining an aqueous dispersion (Y) of particles (C) and removing an aqueous medium from (Y). 樹脂(d)が、ビニル系樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、およびそれらの複合樹脂から選ばれる樹脂であり、無機化合物(e)が炭酸カルシウムである請求項5記載の結晶性樹脂粒子。   6. The crystalline resin particles according to claim 5, wherein the resin (d) is a resin selected from vinyl resins, polyester resins, polyurethane resins, epoxy resins, and composite resins thereof, and the inorganic compound (e) is calcium carbonate. . 結晶性樹脂(A)が結晶性部(b)と非結晶性部(c)とで構成されるブロック樹脂であり、(b)の重量平均分子量が2000〜80000であり、(A)中の(b)の割合が50重量%以上である請求項1〜6のいずれか記載の結晶性樹脂粒子。   The crystalline resin (A) is a block resin composed of a crystalline part (b) and an amorphous part (c), the weight average molecular weight of (b) is 2000 to 80000, The ratio of (b) is 50 weight% or more, The crystalline resin particle in any one of Claims 1-6. 結晶性樹脂(A)が結晶性部(b)と非結晶性部(c)とが下記の形式で線状に結合された樹脂であり、nが0.9〜3.5である請求項7記載の結晶性樹脂粒子。
(b){−(c)−(b)}n
The crystalline resin (A) is a resin in which a crystalline part (b) and an amorphous part (c) are linearly bonded in the following format, and n is 0.9 to 3.5: 7. The crystalline resin particle according to 7.
(B) {-(c)-(b)} n
結晶性部(b)が、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂、およびそれらの複合樹脂から選ばれる樹脂である請求項7または8記載の結晶性樹脂粒子。   The crystalline resin particles according to claim 7 or 8, wherein the crystalline part (b) is a resin selected from polyester resins, polyurethane resins, polyurea resins, polyamide resins, polyether resins, and composite resins thereof. 非結晶性部(c)が、ポリエステル樹脂、ポリウレタン樹脂、ポリウレア樹脂、ポリアミド樹脂、ポリエーテル樹脂、およびそれらの複合樹脂から選ばれる樹脂である請求項7〜9のいずれか記載の結晶性樹脂粒子。   The crystalline resin particles according to any one of claims 7 to 9, wherein the non-crystalline part (c) is a resin selected from a polyester resin, a polyurethane resin, a polyurea resin, a polyamide resin, a polyether resin, and a composite resin thereof. . 結晶性樹脂(A)が、結晶性基を有するビニルモノマー(m)と、必要により結晶性基を有しないビニルモノマー(n)を構成単位として有する結晶性ビニル樹脂である請求項1〜6のいずれか記載の結晶性樹脂粒子。   The crystalline resin (A) is a crystalline vinyl resin having a vinyl monomer (m) having a crystalline group and, if necessary, a vinyl monomer (n) having no crystalline group as structural units. Any one of the crystalline resin particles.
JP2009196092A 2008-08-26 2009-08-26 Crystalline resin particles Active JP5237902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196092A JP5237902B2 (en) 2008-08-26 2009-08-26 Crystalline resin particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008217336 2008-08-26
JP2008217336 2008-08-26
JP2009196092A JP5237902B2 (en) 2008-08-26 2009-08-26 Crystalline resin particles

Publications (2)

Publication Number Publication Date
JP2010077419A JP2010077419A (en) 2010-04-08
JP5237902B2 true JP5237902B2 (en) 2013-07-17

Family

ID=42208197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196092A Active JP5237902B2 (en) 2008-08-26 2009-08-26 Crystalline resin particles

Country Status (1)

Country Link
JP (1) JP5237902B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9201365B2 (en) 2014-03-17 2015-12-01 Ricoh Company, Ltd. Image forming apparatus

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011237790A (en) * 2010-04-13 2011-11-24 Sanyo Chem Ind Ltd Resin particle and producing method for the same
JP5716293B2 (en) * 2010-05-19 2015-05-13 東洋紡株式会社 Aliphatic polyester polyurethane
JP5456584B2 (en) * 2010-06-01 2014-04-02 花王株式会社 toner
EP2596405B1 (en) * 2010-07-22 2017-12-20 Canon Kabushiki Kaisha Toner
US8877417B2 (en) * 2010-07-22 2014-11-04 Canon Kabushiki Kaisha Toner
JP5533454B2 (en) * 2010-08-31 2014-06-25 株式会社リコー Toner and developer
JP2012051964A (en) * 2010-08-31 2012-03-15 Sanyo Chem Ind Ltd Resin particle and method for producing the same
JP5576223B2 (en) * 2010-09-14 2014-08-20 花王株式会社 Toner for electrophotography
JP5672095B2 (en) * 2010-09-30 2015-02-18 株式会社リコー Toner and developer for developing electrostatic image
JP2012098697A (en) 2010-10-04 2012-05-24 Ricoh Co Ltd Toner and developer
KR101522118B1 (en) * 2010-10-06 2015-05-20 산요가세이고교 가부시키가이샤 Toner binder and toner composition
JP5669544B2 (en) * 2010-12-03 2015-02-12 キヤノン株式会社 Toner production method
JP5742007B2 (en) * 2011-03-08 2015-07-01 株式会社リコー Resin for toner, toner and developer containing the resin for toner, and image forming apparatus, image forming method, and process cartridge using the developer
JP2013080200A (en) 2011-05-02 2013-05-02 Ricoh Co Ltd Electrophotographic toner, developer, and image forming apparatus
JP5769016B2 (en) 2011-09-22 2015-08-26 株式会社リコー Toner for electrophotography, developer using the toner, image forming apparatus, and process cartridge
JP5709065B2 (en) 2011-10-17 2015-04-30 株式会社リコー Toner, developer using the toner, and image forming apparatus
JP5850314B2 (en) 2011-10-26 2016-02-03 株式会社リコー Toner, developer using the toner, and image forming apparatus
JP5850316B2 (en) 2011-11-09 2016-02-03 株式会社リコー Dry electrostatic image developing toner and image forming apparatus
JP5240394B1 (en) 2011-12-01 2013-07-17 株式会社リコー Toner for electrophotography, developer, image forming method, process cartridge, image forming apparatus, toner container
JP5948854B2 (en) 2011-12-20 2016-07-06 株式会社リコー Electrophotographic developer, image forming apparatus, and process cartridge
JP2013148862A (en) 2011-12-20 2013-08-01 Ricoh Co Ltd Toner, developer and image forming apparatus
JP6191134B2 (en) 2012-02-21 2017-09-06 株式会社リコー Toner for electrostatic image development
CN104169805B (en) 2012-03-13 2017-12-19 株式会社理光 Toner, the method for manufacturing the toner, two-component developing agent and image forming apparatus
JP6056483B2 (en) 2012-03-13 2017-01-11 株式会社リコー Developer and image forming apparatus
JP2013218288A (en) 2012-03-15 2013-10-24 Ricoh Co Ltd Toner for electrostatic charge image development, developer using the same, and image forming apparatus
JP6171361B2 (en) * 2012-03-15 2017-08-02 株式会社リコー Toner, developer, process cartridge, and image forming apparatus
JP5900072B2 (en) * 2012-03-21 2016-04-06 株式会社リコー Electrophotographic toner, developer, image forming apparatus, and electrophotographic toner manufacturing method
JP6081259B2 (en) * 2012-03-30 2017-02-15 三洋化成工業株式会社 Toner binder and toner composition
JP2014038169A (en) * 2012-08-14 2014-02-27 Ricoh Co Ltd Production method of toner, and toner
US9176406B2 (en) 2012-08-17 2015-11-03 Ricoh Company, Ltd. Toner, development agent, image forming apparatus, and process cartridge
JP6194601B2 (en) 2012-09-10 2017-09-13 株式会社リコー Toner, developer and image forming apparatus
JP2014167602A (en) 2012-09-18 2014-09-11 Ricoh Co Ltd Electrophotographic toner, two-component developer including the toner, and image forming apparatus
JP2014077973A (en) 2012-09-18 2014-05-01 Ricoh Co Ltd Toner, developer, and image forming apparatus
WO2014046069A1 (en) * 2012-09-18 2014-03-27 三洋化成工業株式会社 Resin particles and method for producing same
JP2014059453A (en) * 2012-09-18 2014-04-03 Ricoh Co Ltd Toner, developer, and image forming apparatus
JP6296478B2 (en) * 2012-10-09 2018-03-20 三洋化成工業株式会社 Toner binder and toner
JP6079145B2 (en) 2012-11-01 2017-02-15 株式会社リコー Toner, developer, image forming apparatus, and process cartridge
JP2014092605A (en) * 2012-11-01 2014-05-19 Ricoh Co Ltd Electrophotographic toner, two-component developer, and image forming apparatus
DE112013006273B4 (en) * 2012-12-28 2020-08-06 Canon Kabushiki Kaisha toner
JP2014149334A (en) * 2013-01-31 2014-08-21 Ricoh Co Ltd Developing device, toner, and image forming apparatus
JP2014178665A (en) * 2013-02-14 2014-09-25 Ricoh Co Ltd Image forming apparatus
JP6079325B2 (en) 2013-03-14 2017-02-15 株式会社リコー toner
JP6375625B2 (en) * 2013-03-15 2018-08-22 株式会社リコー Image forming apparatus
JP2014224843A (en) 2013-05-15 2014-12-04 株式会社リコー Toner for electrostatic charge image development
JP2015078352A (en) * 2013-09-12 2015-04-23 三洋化成工業株式会社 Resin particle
JP6264799B2 (en) * 2013-09-13 2018-01-24 株式会社リコー Resin for toner, toner, developer, image forming apparatus, process cartridge
JP6279895B2 (en) * 2013-11-07 2018-02-14 三洋化成工業株式会社 Toner binder and toner composition
JP6276605B2 (en) * 2014-02-17 2018-02-07 三洋化成工業株式会社 toner
JP6276608B2 (en) * 2014-02-27 2018-02-07 三洋化成工業株式会社 Toner production method
EP3297773B1 (en) 2015-05-22 2021-06-09 BASF Coatings GmbH Aqueous base paint for making a coating
JP6739982B2 (en) * 2015-05-28 2020-08-12 キヤノン株式会社 toner
US9964873B2 (en) 2015-06-22 2018-05-08 Ricoh Company, Ltd. Toner, developer, image forming apparatus and toner housing unit
JP2019133053A (en) 2018-02-01 2019-08-08 株式会社リコー Toner, toner storage unit, image forming apparatus, and method for manufacturing toner
JP7256679B2 (en) * 2018-05-24 2023-04-12 三洋化成工業株式会社 toner binder
WO2021233750A1 (en) * 2020-05-19 2021-11-25 Covestro Deutschland Ag Method of manufacturing colorant-filled polyurethane particles

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040238B2 (en) * 1999-06-30 2008-01-30 キヤノン株式会社 Toner, two-component developer, heat fixing method, image forming method and apparatus unit
JP3455523B2 (en) * 2000-02-16 2003-10-14 三洋化成工業株式会社 Resin particles having a uniform particle size and method for producing the same
JP4192717B2 (en) * 2002-11-29 2008-12-10 富士ゼロックス株式会社 Toner for developing electrostatic image, electrostatic image developer and image forming method using the same
JP4361265B2 (en) * 2002-12-20 2009-11-11 花王株式会社 Binder resin for toner
JP4175122B2 (en) * 2003-01-22 2008-11-05 セイコーエプソン株式会社 Toner manufacturing method and toner
JP4625275B2 (en) * 2004-06-30 2011-02-02 三洋化成工業株式会社 Method for producing resin dispersion and resin particles
JP4468240B2 (en) * 2005-05-26 2010-05-26 花王株式会社 Toner for electrophotography
JP4687380B2 (en) * 2005-10-24 2011-05-25 富士ゼロックス株式会社 Image forming method and method for producing toner for developing electrostatic image
CN101981516B (en) * 2008-03-31 2013-07-10 三洋化成工业株式会社 Toner binder and toner
JP5214535B2 (en) * 2008-05-23 2013-06-19 三洋化成工業株式会社 Resin particles and method for producing the same
EP2305739B1 (en) * 2008-05-23 2012-09-19 Sanyo Chemical Industries, Ltd. Resin Particle and Method of Producing the Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9201365B2 (en) 2014-03-17 2015-12-01 Ricoh Company, Ltd. Image forming apparatus

Also Published As

Publication number Publication date
JP2010077419A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP5237902B2 (en) Crystalline resin particles
JP5291649B2 (en) Resin particles
JP5027842B2 (en) Toner binder and toner
JP5763497B2 (en) Toner binder and toner composition
JP5742412B2 (en) Toner for electrostatic image formation and resin for toner
JP5183519B2 (en) Resin particles
JP6121855B2 (en) Method for producing resin particles
JP2011138120A (en) Toner
JP2013156475A (en) Toner for electrostatic image formation and developer
JP2011237790A (en) Resin particle and producing method for the same
JP6435224B2 (en) Aqueous resin dispersion, resin particles, colored resin particles, and toner
JP6121712B2 (en) Resin particle and method for producing resin particle
JP2009057487A (en) Resin particles and production method of resin particles
JP2011144358A (en) Resin particle
JP2012012481A (en) Method for producing resin particle, the resultant resin particle, and electrophotographic toner using the same
JP4504937B2 (en) Toner binder
JP5705505B2 (en) Resin particles
JP2015078352A (en) Resin particle
JP5442384B2 (en) Crystalline resin particles
JP5101208B2 (en) Resin particle and method for producing resin particle
JP4976228B2 (en) Resin particle and method for producing resin particle
JP6975052B2 (en) Toner binder and toner
JP2019074761A (en) Method for manufacturing toner and toner
JP2016190916A (en) Resin aqueous dispersion, resin particle, colored resin particle and toner
JP4964834B2 (en) Resin particles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5237902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3