JP5236323B2 - Dye-sensitized solar cell - Google Patents

Dye-sensitized solar cell Download PDF

Info

Publication number
JP5236323B2
JP5236323B2 JP2008065702A JP2008065702A JP5236323B2 JP 5236323 B2 JP5236323 B2 JP 5236323B2 JP 2008065702 A JP2008065702 A JP 2008065702A JP 2008065702 A JP2008065702 A JP 2008065702A JP 5236323 B2 JP5236323 B2 JP 5236323B2
Authority
JP
Japan
Prior art keywords
dye
transparent electrode
solar cell
sensitized solar
porous layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008065702A
Other languages
Japanese (ja)
Other versions
JP2009224105A (en
Inventor
敏美 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universal Entertainment Corp
Original Assignee
Universal Entertainment Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universal Entertainment Corp filed Critical Universal Entertainment Corp
Priority to JP2008065702A priority Critical patent/JP5236323B2/en
Publication of JP2009224105A publication Critical patent/JP2009224105A/en
Application granted granted Critical
Publication of JP5236323B2 publication Critical patent/JP5236323B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、色素増感型太陽電池に関する。   The present invention relates to a dye-sensitized solar cell.

近年、環境への配慮などにより太陽電池が注目を浴び、普及しつつある。しかし、透明性及び導電性の双方の性質を併せ持つ透明電極の材料となるSi系材料が高価であるため、太陽電池は依然高価な商品であり、太陽電池を常時作動させるランニングコストなども莫大であり、これらの要因が未だに太陽電池が十分に普及していない理由の1つになっている。   In recent years, solar cells have attracted attention and are becoming popular due to environmental considerations. However, since the Si-based material that is a material for the transparent electrode having both the properties of transparency and conductivity is expensive, the solar cell is still an expensive product, and the running cost for always operating the solar cell is enormous. These factors are one of the reasons why solar cells are not yet widely used.

そこで、近年、湿式の色素増感型(グレッツェルセル)太陽電池や、乾式の有機膜太陽電池など、Si系材料を使用しない太陽電池の改良が進められている(特許文献1,2参照)。   Thus, in recent years, improvements have been made to solar cells that do not use Si-based materials, such as wet dye-sensitized (Gretzel cell) solar cells and dry organic film solar cells (see Patent Documents 1 and 2).

また、特許文献1〜3には、1日の時間帯及び季節による影響を低減して集光効率を高めることで、結果としてコスト低減を図る集光型太陽電池について開示されている(特許文献3〜5)。
特開2002‐324591号公報 特開2007‐287593号公報 特開平6‐37344号公報 特開平9‐199749号公報 特開2004‐47752号公報
Patent Documents 1 to 3 disclose a concentrating solar cell that reduces the influence of the time zone of the day and the season to increase the condensing efficiency, thereby reducing the cost (Patent Document). 3-5).
Japanese Patent Laid-Open No. 2002-324591 JP 2007-287593 A JP-A-6-37344 JP-A-9-199749 JP 2004-47752 A

色素増感型太陽電池の課題は、Si太陽電池に比べて光電変換効率が低いことである。すなわち、最高で20%を超えるSi太陽電池に比べて、色素増感型太陽電池は高いものでもその半分の10%程度の光電変換効率しかない。そして、吸収されない光はそのまま透過してしまう。   The problem of the dye-sensitized solar cell is that the photoelectric conversion efficiency is lower than that of the Si solar cell. That is, compared with Si solar cells exceeding 20% at the maximum, even dye-sensitized solar cells have a photoelectric conversion efficiency of about 10%, which is half of that. And the light which is not absorbed will pass as it is.

このように、色素増感型太陽電池は光電変換効率が元来低いにもかかわらず、時間帯や季節により太陽の位置が低くなると集光効率が低下してしまい、発電能力がさらに低下してしまうという不具合がある。   In this way, although the dye-sensitized solar cell is originally low in photoelectric conversion efficiency, if the position of the sun is lowered due to the time zone or season, the light collection efficiency is reduced, and the power generation capacity is further reduced. There is a problem that it ends up.

そこで、本発明の目的は、時間帯や季節による集光効率の低下を防止することができる色素増感型太陽電池を、簡単な構成を追加するだけで低製造コストにより製造できるようにすることである。   Accordingly, an object of the present invention is to enable a dye-sensitized solar cell capable of preventing a decrease in light collection efficiency due to time zone or season to be manufactured at a low manufacturing cost only by adding a simple configuration. It is.

(1)本発明は、第1の透明電極と、第2の透明電極と、前記第1の透明電極と第2の透明電極との間に設けられた電解質層と、前記電解質層と前記第1の透明電極との間に設けられ、光を吸収して励起する色素を含んでいる多孔質層と、前記第1の透明電極の前記多孔質層側とは反対側と前記第2の透明電極の前記電解質層側とは反対側とのうち一方側に設けられ、前記多孔質層に入射する光を集光する凸レンズと、を備えていることを特徴とする色素増感型太陽電池である。   (1) The present invention provides a first transparent electrode, a second transparent electrode, an electrolyte layer provided between the first transparent electrode and the second transparent electrode, the electrolyte layer, and the first A porous layer provided between the first transparent electrode and containing a dye that absorbs and excites light; a side of the first transparent electrode opposite to the porous layer side; and the second transparent electrode A dye-sensitized solar cell, comprising a convex lens that is provided on one side of the electrode opposite to the electrolyte layer side and collects light incident on the porous layer. is there.

(2)この場合に、前記第1の透明電極の前記多孔質層側とは反対側と前記第2の透明電極の前記電解質層側とは反対側とのうち前記凸レンズが設けられていない側に設けられ、前記多孔質層に向けて光を反射する反射部材をさらに備えていることを特徴とするようにしてもよい。   (2) In this case, the side on which the convex lens is not provided among the side opposite to the porous layer side of the first transparent electrode and the side opposite to the electrolyte layer side of the second transparent electrode And a reflection member that reflects light toward the porous layer may be further provided.

(3)また、この場合に、前記凸レンズの焦点距離は前記反射部材で反射した光が前記各部材の外側で焦点を結ぶ距離であることを特徴とするようにしてもよい。   (3) In this case, the focal length of the convex lens may be a distance at which the light reflected by the reflecting member forms a focal point outside the respective members.

(1)の発明によれば、色素増感型太陽電池に入射する光は凸レンズにより集光されて入射する。これにより、多孔質層への光の集光効率を向上させ、時間帯や季節により太陽の位置が低くなることにより発生する集光効率の低下を防止することができる。このような構成は、色素増感型太陽電池に凸レンズを設けるだけの簡単な構成で実現できるので、製造コストも低く維持することができる。   According to the invention of (1), the light incident on the dye-sensitized solar cell is collected by the convex lens and incident. Thereby, the condensing efficiency of the light to a porous layer can be improved, and the fall of the condensing efficiency generate | occur | produced when the position of the sun becomes low by a time slot | zone or a season can be prevented. Such a configuration can be realized with a simple configuration in which a convex lens is provided in the dye-sensitized solar cell, and thus the manufacturing cost can be kept low.

(2)の発明によれば、色素増感型太陽電池で吸収されずに透過した光は光反射部材で反射され、再度多孔質層に照射され、ある程度多孔質層に吸収されることになるので、時間帯や季節により太陽の位置が低くなることにより発生する集光効率の低下をより一層防止することができる。このような構成は、色素増感型太陽電池にさらに反射部材を設けるだけの簡単な構成で実現できるので、製造コストも低く維持することができる。   According to the invention of (2), the light transmitted without being absorbed by the dye-sensitized solar cell is reflected by the light reflecting member, is irradiated again to the porous layer, and is absorbed by the porous layer to some extent. Therefore, the fall of the condensing efficiency which generate | occur | produces when the position of the sun becomes low by a time zone or a season can be prevented further. Such a configuration can be realized with a simple configuration in which a reflection member is further provided on the dye-sensitized solar cell, so that the manufacturing cost can be kept low.

(3)の発明によれば、反射部材で反射した光は色素増感型太陽電池の外側で焦点を結ぶので、凸レンズで集光された光により過度な熱が色素増感型太陽電池中で発生することがないので、色素増感型太陽電池に塑性変形が発生することを防止することができる。   According to the invention of (3), since the light reflected by the reflecting member is focused outside the dye-sensitized solar cell, excessive heat is generated in the dye-sensitized solar cell by the light collected by the convex lens. Since it does not occur, it is possible to prevent plastic deformation from occurring in the dye-sensitized solar cell.

以下、本発明の一実施の形態について、図面を参照しつつ説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本実施の形態にかかる色素増感型太陽電池パネルの一部を示す部分拡大縦断面図である。   FIG. 1 is a partially enlarged longitudinal sectional view showing a part of a dye-sensitized solar cell panel according to the present embodiment.

この色素増感型太陽電池パネル1は、図1に示す構造がその左右にも連続的に構成されていて、パネル状に形成されている。色素増感型太陽電池パネル1は、透明なガラスやプラスチックなどから構成され、互いに対向している基板2及び基板3を備えている。基板2の内側にはPt蒸着などで形成された透明電極4が設けられ、基板3の内側にはPt蒸着などで形成された透明電極(対向電極)5が設けられている。透明電極4と透明電極5との間には電解質層6が設けられている。電解質層6は例えばホウ素を溶かした電解液である。   The dye-sensitized solar cell panel 1 is formed in a panel shape in which the structure shown in FIG. The dye-sensitized solar cell panel 1 includes a substrate 2 and a substrate 3 which are made of transparent glass, plastic, or the like and face each other. A transparent electrode 4 formed by Pt vapor deposition or the like is provided inside the substrate 2, and a transparent electrode (counter electrode) 5 formed by Pt vapor deposition or the like is provided inside the substrate 3. An electrolyte layer 6 is provided between the transparent electrode 4 and the transparent electrode 5. The electrolyte layer 6 is an electrolytic solution in which, for example, boron is dissolved.

電解質層6と透明電極4との間には多孔質層7が形成されている。この多孔質層7は、例えば酸化チタン層であり、ルテニウム錯体など、光を吸収して励起する色素を含んでいる。この多孔質層7において光電変換が行なわれる。   A porous layer 7 is formed between the electrolyte layer 6 and the transparent electrode 4. The porous layer 7 is, for example, a titanium oxide layer, and contains a dye that absorbs light and excites, such as a ruthenium complex. Photoelectric conversion is performed in the porous layer 7.

基板2の透明電極4側とは反対側の面4aには多数の凸レンズ8aが連続的に形成されたマイクロレンズアレイ8が設けられている。この色素増感型太陽電池パネル1では、太陽光Lを上方から入射させることを想定していて、マイクロレンズアレイ8は太陽光Lを集光して多孔質層7に入射させる。   A microlens array 8 in which a large number of convex lenses 8a are continuously formed is provided on a surface 4a of the substrate 2 opposite to the transparent electrode 4 side. In this dye-sensitized solar cell panel 1, it is assumed that sunlight L is incident from above, and the microlens array 8 collects the sunlight L and makes it incident on the porous layer 7.

反射部材となるミラー9は、基板3の透明電極5が設けられている面とは反対側の面に反射面9aを多孔質層7側として設けられ、色素増感型太陽電池パネル1を透過した太陽光Lを多孔質層7に向けて反射する。   The mirror 9 serving as a reflecting member is provided on the surface opposite to the surface on which the transparent electrode 5 of the substrate 3 is provided with the reflecting surface 9 a as the porous layer 7 side, and is transmitted through the dye-sensitized solar cell panel 1. The reflected sunlight L is reflected toward the porous layer 7.

また、マイクロレンズアレイ8を構成している各凸レンズ8aは、その焦点距離がミラー9の反射面9aで反射した光が色素増感型太陽電池パネル1の前述の各部材の外側で焦点を結ぶような距離に設定されている。前述の構成では、具体的には、マイクロレンズアレイ8、基板2、透明電極4、多孔質層7、電解質層6、透明電極5、及び基板3の合計の厚みの2倍以上の焦点距離があればよい。   Further, each convex lens 8 a constituting the microlens array 8 has a focal length of which the light reflected by the reflecting surface 9 a of the mirror 9 is focused outside the above-described members of the dye-sensitized solar cell panel 1. It is set to such a distance. Specifically, in the above-described configuration, the focal length is more than twice the total thickness of the microlens array 8, the substrate 2, the transparent electrode 4, the porous layer 7, the electrolyte layer 6, the transparent electrode 5, and the substrate 3. I just need it.

次に、色素増感型太陽電池パネル1の動作について説明する。   Next, the operation of the dye-sensitized solar cell panel 1 will be described.

多孔質層7に太陽光Lが入射すると、多孔質層7中の色素が可視光を吸収して励起する。この励起した色素から放出された電子が酸化チタンに移動する。この電子が透明電極4を通過して図示しない外部の回路を通過して電子としての仕事を行い、透明電極5に到達する。そして、電子を放出した多孔質層7中の色素は電解質層6のヨウ素イオンから電子を奪って中和する。この電子を奪われたヨウ素イオンが透明電極5に到達した電子と結合して中和する。以上の動作を繰返すことにより、透明電極4,5間に電力を取り出すことができる。   When sunlight L enters the porous layer 7, the dye in the porous layer 7 absorbs visible light and is excited. Electrons emitted from the excited dye move to titanium oxide. The electrons pass through the transparent electrode 4, pass through an external circuit (not shown), work as electrons, and reach the transparent electrode 5. Then, the dye in the porous layer 7 that has released the electrons is neutralized by taking electrons from the iodine ions in the electrolyte layer 6. The iodine ions deprived of the electrons are combined with the electrons that have reached the transparent electrode 5 and neutralized. By repeating the above operation, electric power can be taken out between the transparent electrodes 4 and 5.

マイクロレンズアレイ8の凸レンズ8aの機能について、図2〜図4を参照して説明する。   The function of the convex lens 8a of the microlens array 8 will be described with reference to FIGS.

図2(a)には、マイクロレンズアレイ8が設けられていない状態の色素増感型太陽電池パネル1の基板2(透明電極4)に太陽光Lが垂直に入射している状態を示している。このように、太陽光Lが垂直に入射しているときが、集光効率が最も高い。ここで、透明電極4に入射する光束Bのうち、光電変換部となる多孔質層7の単位面積当たりの光束をB´とすると、
B´=B/S
となり、通常、この場合が最も効率が良い。
FIG. 2A shows a state in which sunlight L is vertically incident on the substrate 2 (transparent electrode 4) of the dye-sensitized solar cell panel 1 in a state where the microlens array 8 is not provided. Yes. Thus, when the sunlight L is incident vertically, the light collection efficiency is the highest. Here, out of the light beam B incident on the transparent electrode 4, if the light beam per unit area of the porous layer 7 serving as the photoelectric conversion portion is B ′,
B '= B / S
Usually, this is the most efficient.

図2(b)には、マイクロレンズアレイ8が設けられていない状態の色素増感型太陽電池パネル1の基板2(透明電極4)に太陽光Lが鋭角に(入射角θ)入射している状態を示している。このように太陽光Lの入射角をθとすると、太陽光Lの多孔質層7への照度は、cosθとなる(ここでは、全反射しない入射角の範囲で説明する)。この場合に、図2(a)の場合と同様に多孔質層7の単位面積当たりの光束をCとすると、
C=B×cosθ
となる。この関係は、色素増感型太陽電池パネル1の発電効率に直接関係する。ここで、透明電極4に入射する光束Cのうち、光電変換部となる多孔質層7の単位面積当たりの光束をC´とすると、
C´=(B×cosθ)/S
となり、
C´=B´×cosθ
という関係が成立する。
In FIG. 2B, sunlight L is incident at an acute angle (incident angle θ) on the substrate 2 (transparent electrode 4) of the dye-sensitized solar cell panel 1 in a state where the microlens array 8 is not provided. It shows the state. As described above, when the incident angle of the sunlight L is θ, the illuminance of the sunlight L to the porous layer 7 is cos θ (here, description will be made in the range of the incident angle where total reflection is not performed). In this case, when the luminous flux per unit area of the porous layer 7 is C as in the case of FIG.
C = B × cosθ
It becomes. This relationship is directly related to the power generation efficiency of the dye-sensitized solar cell panel 1. Here, out of the light flux C incident on the transparent electrode 4, the light flux per unit area of the porous layer 7 serving as the photoelectric conversion portion is C ′.
C ′ = (B × cos θ) / S
And
C ′ = B ′ × cos θ
The relationship is established.

次に、図2(c)に示すように、本実施の形態の色素増感型太陽電池パネル1のようにマイクロレンズアレイ8を設ける。このときの多孔質層7の単位面積当たりの光束をDとすると、
D=B×cosθ
(θが前記と同じであるとすると、“D−C”である)
となり、ここで、光電変換部となる多孔質層7における単位面積当たりの光束D´は、
D´=(B×cosθ)/S×(f/(f−g))
となる。ここで、図3に示すように、fはマイクロレンズアレイ8の凸レンズ8aの焦点距離であり、gは凸レンズ8aのレンズ面8a1から光電変換面7aまでの距離である。光電変換面7aは多孔質層7中のある面である。
Next, as shown in FIG. 2C, a microlens array 8 is provided as in the dye-sensitized solar cell panel 1 of the present embodiment. If the luminous flux per unit area of the porous layer 7 at this time is D,
D = B × cosθ
(If [theta] is the same as above, it is "DC")
Here, the luminous flux D ′ per unit area in the porous layer 7 serving as the photoelectric conversion portion is:
D ′ = (B × cos θ) / S × (f / (f−g)) 2 )
It becomes. Here, as shown in FIG. 3, f is the focal length of the convex lens 8a of the microlens array 8, and g is the distance from the lens surface 8a1 of the convex lens 8a to the photoelectric conversion surface 7a. The photoelectric conversion surface 7 a is a surface in the porous layer 7.

このように集光倍率分D´は、増加し、光束の断面積は減少する。さらに、透過した光の反射光が多孔質層7に集光するので、多孔質層7の部分E(多孔質層7中で光を受けている部分)全体として光電変換効率が向上する。   Thus, the condensing magnification D ′ increases, and the cross-sectional area of the light beam decreases. Furthermore, since the reflected light of the transmitted light is condensed on the porous layer 7, the photoelectric conversion efficiency is improved as a whole of the portion E of the porous layer 7 (the portion receiving light in the porous layer 7).

そして、この場合の光電変換面7aの凸レンズ8aからの太陽光Lが直接当たる面積Sは、
S=(1−g/f)
となり、光束の集光度lは、
l=(f/(f−g))
となる。
And the area S which the sunlight L from the convex lens 8a of the photoelectric conversion surface 7a in this case directly hits is as follows.
S = (1-g / f) 2
And the concentration l of the luminous flux is
l = (f / (f−g)) 2
It becomes.

図4は、焦点距離fを固定し、距離gを変えて、これらの比g/f、面積S、集光度lをそれぞれ計算したときの各値の一覧表である。図5は、g/fの値に応じて変動する面積S、集光度lの変化を示すグラフである。凸レンズ8aのレンズ面8a1から光電変換面7aまでの距離gが焦点距離fに近づくほど、光電変換面7aの凸レンズ8aからの太陽光Lが直接当たる面積Sの範囲は狭まるが、集光度は向上することがわかる。   FIG. 4 is a list of values when the focal length f is fixed and the distance g is changed, and the ratio g / f, area S, and light concentration l are calculated. FIG. 5 is a graph showing changes in the area S and the light collection degree l that vary depending on the value of g / f. As the distance g from the lens surface 8a1 of the convex lens 8a to the photoelectric conversion surface 7a becomes closer to the focal length f, the range of the area S directly hit by the sunlight L from the convex lens 8a of the photoelectric conversion surface 7a is narrowed, but the light collection degree is improved. I understand that

また、発電に寄与することなく多孔質層7をそのまま通過した太陽光Lは、ミラー9の反射面9aで反射して、再び多孔質層7に戻る。これにより、集光効率が低下することを防止できるので、光電変換効率をさらに高く維持することができる。   The sunlight L that has passed through the porous layer 7 without contributing to power generation is reflected by the reflecting surface 9a of the mirror 9 and returns to the porous layer 7 again. Thereby, since it can prevent that condensing efficiency falls, photoelectric conversion efficiency can be maintained further higher.

よって、色素増感型太陽電池パネル1によれば、マイクロレンズアレイ8とミラー9を設けたことにより、このようなマイクロレンズアレイ8やミラー9を設けない場合に比べ、時間帯や季節により太陽の位置が低くなっても、集光効率が低下することを防止することができて、色素増感型太陽電池パネル1の発電能力を比較的高く維持することができる。しかも、そのためにはマイクロレンズアレイ8やミラー9を設けるだけでよいので、構成が簡単であり、製造コストの増大を招くこともない。   Therefore, according to the dye-sensitized solar cell panel 1, the microlens array 8 and the mirror 9 are provided, so that the sun is changed depending on the time zone and season as compared with the case where the microlens array 8 and the mirror 9 are not provided. Even if the position of is lowered, it is possible to prevent the light collection efficiency from decreasing, and the power generation capacity of the dye-sensitized solar cell panel 1 can be kept relatively high. In addition, for this purpose, only the microlens array 8 and the mirror 9 need be provided, so that the configuration is simple and the manufacturing cost is not increased.

さらに、この場合に、マイクロレンズアレイ8の凸レンズ8aは、その焦点距離がミラー9の反射面9aで反射した光が色素増感型太陽電池パネル1の外側で焦点を結ぶような距離に設定されている。したがって、凸レンズ8aで集光された光により過度な熱が色素増感型太陽電池1中で発生することがないので、色素増感型太陽電池1に塑性変形が発生することを防止することができる。   Further, in this case, the convex lens 8a of the microlens array 8 is set such that the focal length of the light reflected by the reflecting surface 9a of the mirror 9 is focused outside the dye-sensitized solar cell panel 1. ing. Therefore, excessive heat is not generated in the dye-sensitized solar cell 1 due to the light condensed by the convex lens 8a, and therefore it is possible to prevent plastic deformation from occurring in the dye-sensitized solar cell 1. it can.

なお、前述の例では、太陽光Lは図1の上方からマイクロレンズアレイ8に入射することを想定しているが、図1の下方から入射させるようにしてもよい。その場合は、マイクロレンズアレイ8を基板3の透明電極5側とは反対側の面に設け、ミラー9を基板2の多孔質層7側とは反対側の面に反射面9aを多孔質層7側に向けて設ければよい。   In the above example, it is assumed that the sunlight L is incident on the microlens array 8 from above in FIG. 1, but may be incident from below in FIG. 1. In that case, the microlens array 8 is provided on the surface of the substrate 3 opposite to the transparent electrode 5 side, and the mirror 9 is provided on the surface of the substrate 2 opposite to the porous layer 7 side and the reflective surface 9a is provided on the porous layer. What is necessary is just to provide toward the 7 side.

また、ミラー9の反射面9aは、色素増感型太陽電池パネル1の横端面にも設けて良い。これにより、当該横端面のミラー9の反射面9aが色素増感型太陽電池パネル1への入射光や図1に示す最下層のミラー9の反射面9aで反射された光を、当該横端面から漏れるのを防止し、当該光を再度反射させて多孔質層7に戻すことができる。よって、このような色素増感型太陽電池パネル1の横端面から漏れる光も有効活用して、集光効率の低下を防止することができる。   Further, the reflection surface 9 a of the mirror 9 may be provided also on the lateral end surface of the dye-sensitized solar cell panel 1. As a result, the reflecting surface 9a of the mirror 9 on the horizontal end surface receives the light incident on the dye-sensitized solar cell panel 1 or the light reflected by the reflecting surface 9a of the lowermost mirror 9 shown in FIG. It is possible to prevent the light from leaking and reflect the light again to return it to the porous layer 7. Therefore, the light leaking from the lateral end face of the dye-sensitized solar cell panel 1 can be effectively used to prevent the light collection efficiency from being lowered.

本発明の一実施形態である色素増感型太陽電池パネルの一部を示す部分拡大縦断面図であるである。It is a partial expanded longitudinal cross-sectional view which shows a part of dye-sensitized solar cell panel which is one Embodiment of this invention. マイクロレンズアレイの凸レンズの機能について説明する説明図である。It is explanatory drawing explaining the function of the convex lens of a micro lens array. マイクロレンズアレイの凸レンズの機能について説明する説明図である。It is explanatory drawing explaining the function of the convex lens of a micro lens array. マイクロレンズアレイの凸レンズの機能について説明する表である。It is a table | surface explaining the function of the convex lens of a micro lens array. マイクロレンズアレイの凸レンズの機能について説明するグラフである。It is a graph explaining the function of the convex lens of a micro lens array.

符号の説明Explanation of symbols

1 色素増感型太陽電池パネル
4 透明電極
5 透明電極
6 電解質層
7 多孔質層
8a 凸レンズ
9 ミラー
DESCRIPTION OF SYMBOLS 1 Dye-sensitized solar cell panel 4 Transparent electrode 5 Transparent electrode 6 Electrolyte layer 7 Porous layer 8a Convex lens 9 Mirror

Claims (1)

第1の透明電極と、
第2の透明電極と、
前記第1の透明電極と第2の透明電極との間に設けられた電解質層と、
前記電解質層と前記第1の透明電極との間に設けられ、光を吸収して励起する色素を含んでいる多孔質層と、
前記第1の透明電極の前記多孔質層側とは反対側と前記第2の透明電極の前記電解質層側とは反対側とのうち一方側に設けられ、前記多孔質層に入射する光を集光する凸レンズと、
前記第1の透明電極の前記多孔質層側とは反対側と前記第2の透明電極の前記電解質層側とは反対側とのうち前記凸レンズが設けられていない側に設けられ、前記多孔質層に向けて光を反射する反射部材とを備え
前記凸レンズの焦点距離は前記反射部材で反射した光が前記各部材の外側で焦点を結ぶ距離であることを特徴とする色素増感型太陽電池。
A first transparent electrode;
A second transparent electrode;
An electrolyte layer provided between the first transparent electrode and the second transparent electrode;
A porous layer provided between the electrolyte layer and the first transparent electrode and containing a dye that absorbs and excites light;
Light that is provided on one side of the first transparent electrode opposite to the porous layer side and the second transparent electrode opposite to the electrolyte layer side and that is incident on the porous layer. A converging convex lens;
Provided on the side of the first transparent electrode opposite to the porous layer side and on the side of the second transparent electrode opposite to the electrolyte layer side on which the convex lens is not provided, the porous A reflective member that reflects light toward the layer ,
2. The dye-sensitized solar cell according to claim 1, wherein the focal length of the convex lens is a distance at which the light reflected by the reflecting member focuses on the outside of each member .
JP2008065702A 2008-03-14 2008-03-14 Dye-sensitized solar cell Expired - Fee Related JP5236323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008065702A JP5236323B2 (en) 2008-03-14 2008-03-14 Dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008065702A JP5236323B2 (en) 2008-03-14 2008-03-14 Dye-sensitized solar cell

Publications (2)

Publication Number Publication Date
JP2009224105A JP2009224105A (en) 2009-10-01
JP5236323B2 true JP5236323B2 (en) 2013-07-17

Family

ID=41240679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008065702A Expired - Fee Related JP5236323B2 (en) 2008-03-14 2008-03-14 Dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP5236323B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5689190B1 (en) 2014-01-27 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
JP5689202B1 (en) * 2014-08-26 2015-03-25 株式会社昭和 Dye-sensitized solar cell provided with a condensing device
KR20180008454A (en) * 2015-05-14 2018-01-24 가부시키가이샤 쇼와 A dye-sensitized solar cell having a collector electrode on a counter electrode
KR101816220B1 (en) * 2016-02-02 2018-01-09 부산대학교 산학협력단 High Power Solar Energy Generation System Using Lense Substrate With Self-cleaning Function
JP6538018B2 (en) * 2016-10-28 2019-07-03 株式会社昭和 Dye-sensitized solar cell module
CN109378353A (en) * 2018-12-04 2019-02-22 厦门乾照半导体科技有限公司 A kind of solar battery structure and preparation method thereof
KR102542113B1 (en) * 2018-12-18 2023-06-09 한국전기연구원 Dye-sensitized solar cell using light trapping layer and patterned photoanode, and dye-sensitized solar cell module using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221643B2 (en) * 2002-05-27 2009-02-12 ソニー株式会社 Photoelectric conversion device
JP4509498B2 (en) * 2003-07-09 2010-07-21 株式会社エンプラス Solar cell substrate and solar cell using the same
KR100995073B1 (en) * 2004-04-23 2010-11-18 삼성에스디아이 주식회사 Module of dye-sensitized solar cell and fabrication method thereof
JP2006147344A (en) * 2004-11-19 2006-06-08 Nitto Denko Corp Transparent conducting plate and method for manufacturing the same, and photoelectric conversion device equipped with the same
JP2007258120A (en) * 2006-03-25 2007-10-04 Sekisui Jushi Co Ltd Dye-sensitized solar cell, and road sign

Also Published As

Publication number Publication date
JP2009224105A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5236323B2 (en) Dye-sensitized solar cell
JP5562238B2 (en) Solar cell structure
ES2774573T3 (en) Photovoltaic module
JP6416333B2 (en) Solar cell module
TW200946775A (en) Concentrators for solar power generating systems
US20100071768A1 (en) Enhanced solar collector
JP2010028120A (en) Electric lamp-type condensing solar cell module
KR101099375B1 (en) The collection structure of solar light with multiple reflection type
JP2009117446A (en) Light-collecting sheet solar power generating device
JP4612739B2 (en) Variable condensing lens device and solar cell device
JP2007073774A (en) Solar battery
JP2011003834A (en) Solar cell module
JP2007287997A (en) Solar cell module
US20120260970A1 (en) Device for concentrating and converting solar energy
JP4776578B2 (en) Solar cell and solar cell module
JP2008159799A (en) Photoelectromotive force device
KR20090118133A (en) Solar photovoltaic device with solar energy collecting board
JP2008084763A (en) Photoelectric conversion element
RU2773716C1 (en) Concentrator photoelectric module with planar elements
JP3468069B2 (en) Photoelectric conversion device
AU2007101016A4 (en) A method to utilize solar radiation energy
KR200450225Y1 (en) Solar Cell Focusing Device
JP2004273223A (en) Dye-sensitized solar cell module
JP2015015336A (en) Condensation type solar cell
WO2016097199A9 (en) Solar energy collector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5236323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees