JP5235737B2 - Pulse Doppler radar device - Google Patents

Pulse Doppler radar device Download PDF

Info

Publication number
JP5235737B2
JP5235737B2 JP2009061799A JP2009061799A JP5235737B2 JP 5235737 B2 JP5235737 B2 JP 5235737B2 JP 2009061799 A JP2009061799 A JP 2009061799A JP 2009061799 A JP2009061799 A JP 2009061799A JP 5235737 B2 JP5235737 B2 JP 5235737B2
Authority
JP
Japan
Prior art keywords
frequency
pulse
target
signal
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009061799A
Other languages
Japanese (ja)
Other versions
JP2010216884A (en
Inventor
尚志 吉子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009061799A priority Critical patent/JP5235737B2/en
Publication of JP2010216884A publication Critical patent/JP2010216884A/en
Application granted granted Critical
Publication of JP5235737B2 publication Critical patent/JP5235737B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

この発明は、例えば航空機等に搭載され、目標物までの距離を測定する高PRF(Pulse Repetition Frequency:パルス繰り返し周波数)パルスドップラレーダ装置に関する。   The present invention relates to a high PRF (Pulse Repetition Frequency) pulse Doppler radar apparatus that is mounted on, for example, an aircraft and measures a distance to a target.

従来の高PRFパルスドップラレーダ装置(以下、「パルスドップラレーダ装置」と略称する)では、FM(Frequency Modulation)レンジング方式によって目標物までの距離を測定している。FMレンジング方式は、目標物のドップラ周波数を測定する検出フェーズ後、目標物までの距離を測定するフェーズで用いられる。なお、検出フェーズにおけるドップラ周波数は、変調されずにレーダ装置から送信される送信信号と、この送信信号に対して、目標物で反射してレーダ装置に受信される受信信号との周波数差として測定される。   In a conventional high PRF pulse Doppler radar apparatus (hereinafter abbreviated as “pulse Doppler radar apparatus”), the distance to a target is measured by an FM (Frequency Modulation) ranging method. The FM ranging method is used in the phase of measuring the distance to the target after the detection phase of measuring the Doppler frequency of the target. The Doppler frequency in the detection phase is measured as a frequency difference between the transmission signal transmitted from the radar apparatus without being modulated and the reception signal reflected by the target and received by the radar apparatus with respect to this transmission signal. Is done.

FMレンジング方式では、送信信号に対して連続的に周波数変調を施して送信する。また、目標物で反射して受信された受信信号を、送信信号に対する周波数変調と同一の傾き(周波数変調速度)で変調を施した信号で検波する。これにより、距離遅延による周波数遷移成分のみを抽出し、周波数変調速度に基づいて、目標物までの距離を測定している(例えば、非特許文献1参照)。   In the FM ranging method, the transmission signal is continuously subjected to frequency modulation and transmitted. In addition, the reception signal reflected and received by the target is detected with a signal that has been modulated with the same slope (frequency modulation speed) as the frequency modulation for the transmission signal. Thereby, only the frequency transition component due to the distance delay is extracted, and the distance to the target is measured based on the frequency modulation speed (for example, see Non-Patent Document 1).

また、従来のパルスドップラレーダ装置として、距離分解能を向上させるために、送信信号の送信パルス幅内で位相変調を施すものがある。また、PRI(Pulse Repetition Interval:パルス繰り返し周期)内の距離を距離遅延によって測定し、PRI間の距離アンビギュイティ(ambiguity:あいまいさ)をFMレンジング方式によって解くものがある。なお、PRI内の距離とは、直前の送信パルスに対する受信パルスに対応した距離を示し、PRI間の距離とは、直前の送信パルスよりも前の送信パルスに対する受信パルスに対応した距離を示している。   Some conventional pulse Doppler radar devices perform phase modulation within the transmission pulse width of a transmission signal in order to improve distance resolution. In addition, there is a method in which a distance in a PRI (Pulse Repetition Interval) is measured by a distance delay, and a distance ambiguity (PRI) between the PRIs is solved by an FM ranging method. The distance in the PRI indicates a distance corresponding to the reception pulse with respect to the previous transmission pulse, and the distance between the PRIs indicates a distance corresponding to the reception pulse with respect to the transmission pulse before the previous transmission pulse. Yes.

図3は、従来のパルスドップラレーダ装置を示すブロック構成図である。
図3において、このパルスドップラレーダ装置は、送信機51、周波数変調制御器52、位相変調制御器53、アンテナ54、受信機55、A/D変換器56、パルス圧縮部57、周波数分析部58、目標物検出部59および距離測定部60を備えている。
FIG. 3 is a block diagram showing a conventional pulse Doppler radar apparatus.
In FIG. 3, the pulse Doppler radar apparatus includes a transmitter 51, a frequency modulation controller 52, a phase modulation controller 53, an antenna 54, a receiver 55, an A / D converter 56, a pulse compression unit 57, and a frequency analysis unit 58. A target detection unit 59 and a distance measurement unit 60 are provided.

以下、目標物のドップラ周波数fa(Hz)を測定した後、目標物までの距離を測定するフェーズにおけるパルスドップラレーダ装置の動作について説明する。ドップラ周波数fa(Hz)は、送信機51で発生して変調されずに送信される送信信号と、この送信信号に対して、目標物で反射して受信機55に受信された受信信号との周波数差として測定される。   Hereinafter, the operation of the pulse Doppler radar apparatus in the phase of measuring the distance to the target after measuring the Doppler frequency fa (Hz) of the target will be described. The Doppler frequency fa (Hz) is a transmission signal generated by the transmitter 51 and transmitted without being modulated, and a reception signal reflected by the target and received by the receiver 55 with respect to the transmission signal. Measured as frequency difference.

まず、周波数変調制御器52は、送信機51に周波数変調速度ΔF(Hz/s)を出力し、送信機51で発生する送信信号に対して直線周波数変調を施す。周波数変調速度ΔF(Hz/s)は、PRI間の距離アンビギュイティを解くために、目標物検出時の周波数分解能をΔf(Hz)、PRIの時間をtpri(s)として、次式(1)で表される。   First, the frequency modulation controller 52 outputs a frequency modulation speed ΔF (Hz / s) to the transmitter 51 and performs linear frequency modulation on a transmission signal generated by the transmitter 51. In order to solve the distance ambiguity between PRIs, the frequency modulation speed ΔF (Hz / s) is expressed by the following equation (1), where the frequency resolution at the time of target detection is Δf (Hz) and the PRI time is tpri (s). ).

ΔF=Δf/tpri (1)     ΔF = Δf / tpri (1)

続いて、位相変調制御器53は、距離分解能を向上させるために、送信機51に位相変調間隔τ(s)を出力し、送信機51で発生する送信信号に対して、送信パルス幅内でのパルス圧縮のための位相変調を施す。位相変調間隔τ(s)は、例えば符号を用いた位相変調の場合には、所望の距離分解能Δr(m)に基づいて、次式(2)で表される。式(2)において、Cは光速(m/s)を示している。また、位相変調後の送信パルスを図4に示す。   Subsequently, the phase modulation controller 53 outputs the phase modulation interval τ (s) to the transmitter 51 in order to improve the distance resolution, and the transmission signal generated by the transmitter 51 is within the transmission pulse width. Phase modulation for pulse compression is performed. For example, in the case of phase modulation using a code, the phase modulation interval τ (s) is expressed by the following equation (2) based on a desired distance resolution Δr (m). In the formula (2), C represents the speed of light (m / s). FIG. 4 shows the transmission pulse after phase modulation.

τ=2・Δr/C (2)     τ = 2 · Δr / C (2)

次に、送信機51は、周波数変調および位相変調が施された送信信号を出力する。また、送信機51は、周波数変調が施された送信信号を受信機55に出力する。アンテナ54は、送信機51からの送信信号を空間に放射する。また、アンテナ54は、目標物で反射した反射信号を受信信号として受信する。アンテナ54から放射される送信信号の周波数と、アンテナ54で受信される受信信号の周波数との関係を図5に示す。   Next, the transmitter 51 outputs a transmission signal subjected to frequency modulation and phase modulation. Further, the transmitter 51 outputs a transmission signal subjected to frequency modulation to the receiver 55. The antenna 54 radiates a transmission signal from the transmitter 51 into space. The antenna 54 receives a reflected signal reflected by the target as a received signal. The relationship between the frequency of the transmission signal radiated from the antenna 54 and the frequency of the reception signal received by the antenna 54 is shown in FIG.

続いて、受信機55は、受信信号を、送信機51からの周波数変調が施された送信信号で検波し、距離遅延による周波数遷移成分を含むビデオ信号に変換する。
A/D(Analog to Digital)変換器56は、受信機55からのビデオ信号をA/D変換し、デジタルビデオ信号として出力する。PRI毎のレンジ方向のデジタルビデオ信号を図6に示す。図6において、目標物を示す目標信号は、送信信号に位相変調が施されたことにより、レンジ方向に位相変調がかかっている。
Subsequently, the receiver 55 detects the received signal with the transmission signal subjected to frequency modulation from the transmitter 51 and converts the received signal into a video signal including a frequency transition component due to distance delay.
An A / D (Analog to Digital) converter 56 performs A / D conversion on the video signal from the receiver 55 and outputs it as a digital video signal. FIG. 6 shows a digital video signal in the range direction for each PRI. In FIG. 6, the target signal indicating the target is subjected to phase modulation in the range direction because the transmission signal is subjected to phase modulation.

パルス圧縮部57は、A/D変換器56からのデジタルビデオ信号に対して、レンジ方向の位相変調を利用してパルス圧縮処理を実行し、パルス圧縮後信号を生成する。パルス圧縮処理後のデジタルビデオ信号(パルス圧縮後信号)を図7に示す。図7において、パルス圧縮後信号上では、目標信号は、レンジ方向に圧縮された状態になっている。   The pulse compression unit 57 performs pulse compression processing on the digital video signal from the A / D converter 56 using phase modulation in the range direction, and generates a pulse-compressed signal. FIG. 7 shows a digital video signal after pulse compression processing (signal after pulse compression). In FIG. 7, on the signal after pulse compression, the target signal is in a state compressed in the range direction.

周波数分析部58は、パルス圧縮部57からのパルス圧縮後信号に対して、レンジサンプル毎に、PRI相当のサンプリング周期でPRI方向に、周波数分析時間分の信号に対して周波数分析を実行し、レンジ−周波数の2次元マップ信号を生成する。周波数分析後のパルス圧縮後信号(2次元マップ信号)を図8に示す。図8において、2次元マップ信号上では、目標信号は、周波数的に単一の成分しか持たないので、特定の1点に積分される。   The frequency analysis unit 58 performs frequency analysis on the signal for the frequency analysis time in the PRI direction with a sampling period equivalent to PRI for each range sample with respect to the signal after pulse compression from the pulse compression unit 57, A range-frequency two-dimensional map signal is generated. FIG. 8 shows a signal after pulse compression after frequency analysis (two-dimensional map signal). In FIG. 8, since the target signal has only a single component in terms of frequency on the two-dimensional map signal, it is integrated into a specific point.

目標物検出部59は、周波数分析部58からのレンジ−周波数の2次元マップ信号に対して、例えば非特許文献1に示されているようなCFAR(Constant False Alarm Rate)方式によって目標物を検出し、目標物のPRI内の距離Rpri(m)および目標物の周波数fb(Hz)を検出する。   The target detection unit 59 detects a target with respect to the range-frequency two-dimensional map signal from the frequency analysis unit 58 by, for example, a CFAR (Constant False Alarm Rate) method as shown in Non-Patent Document 1. Then, the distance Rpri (m) in the PRI of the target and the frequency fb (Hz) of the target are detected.

距離測定部60は、FMレンジング方式によってPRI間の距離アンビギュイティを解き、次式(3)で表されるように、目標物のPRI間の距離Rfm(m)を算出する。   The distance measuring unit 60 solves the distance ambiguity between the PRIs by the FM ranging method, and calculates the distance Rfm (m) between the PRIs of the target as represented by the following equation (3).

Rfm=(fa−fb)・C/(2・ΔF) (3)     Rfm = (fa−fb) · C / (2 · ΔF) (3)

また、距離測定部60は、目標物のPRI間の距離Rfm(m)と、目標物検出部59で検出された目標物のPRI内の距離Rpri(m)とを加算して、次式(4)で表されるように、目標物までの距離Rtgt(m)を算出して出力する。なお、この場合の距離分解能は、上述したようにΔr(m)となる。   The distance measuring unit 60 adds the distance Rfm (m) between the PRIs of the target object and the distance Rpri (m) within the PRI of the target object detected by the target object detecting unit 59 to obtain the following formula ( As represented by 4), the distance Rtgt (m) to the target is calculated and output. Note that the distance resolution in this case is Δr (m) as described above.

Rtgt=Rfm+Rpri (4)     Rtgt = Rfm + Rpri (4)

Guy V.Morris著、「AIRBORNE PULSED DOPPLER RADAR」、Artech House出版、1989年、p.77−80、p.391−408Guy V. Morris, “AIRBORNE PULSED DOPPLER RADAR”, Arttech House Publishing, 1989, p. 77-80, p. 391-408

しかしながら、従来技術には、以下のような課題がある。
従来のパルスドップラレーダ装置では、距離分解能を向上させるために送信信号に対して位相変調を施しているので、送信パルス幅内の全ての位相変調成分を通過させるために、1/τ(Hz)以上の受信帯域幅を確保する必要がある。
そのため、位相変調を施して目標物を検出するときのノイズレベルは、1/τ(Hz)をPRF(Hz)で折り返したものとなり、位相変調しない場合のノイズレベルの(1/τ)/PRF倍となる。送信信号に対して位相変調を施す場合のノイズレベルと、位相変調しない場合(受信帯域幅がPRF)のノイズレベルとの関係を図9に示す。
これにより、受信信号の信号対雑音比が劣化し、距離分解能は向上するものの、目標物の検出精度が低下し、目標物までの距離を正確に測定することができないという問題があった。
However, the prior art has the following problems.
In the conventional pulse Doppler radar device, the phase modulation is performed on the transmission signal in order to improve the distance resolution. Therefore, in order to pass all the phase modulation components within the transmission pulse width, 1 / τ (Hz) It is necessary to secure the above reception bandwidth.
Therefore, the noise level when the target is detected by performing the phase modulation is obtained by folding 1 / τ (Hz) with PRF (Hz), and (1 / τ) / PRF of the noise level when the phase is not modulated. Doubled. FIG. 9 shows the relationship between the noise level when phase modulation is performed on a transmission signal and the noise level when phase modulation is not performed (reception bandwidth is PRF).
Thereby, although the signal-to-noise ratio of the received signal is deteriorated and the distance resolution is improved, there is a problem that the detection accuracy of the target is lowered and the distance to the target cannot be accurately measured.

この発明は、上記のような課題を解決するためになされたものであり、高い距離分解能と目標物検出精度とを有し、目標物までの距離を高精度に測定することができるパルスドップラレーダ装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and has a high distance resolution and a target detection accuracy, and a pulse Doppler radar capable of measuring the distance to the target with high accuracy. The object is to obtain a device.

この発明に係るパルスドップラレーダ装置は、パルス状の送信信号に周波数変調および位相変調を施して放射し、目標物で反射して受信される受信信号を、送信信号に対する周波数変調と同一の傾きで変調された信号で検波するとともに、レンジ方向にパルス圧縮して生成される、距離遅延による周波数遷移成分を含むパルス圧縮後信号に基づいて、目標物までの距離を測定するパルスドップラレーダ装置であって、パルス圧縮後信号に対して、パルス繰り返し周期をサンプリング周期とする周波数分析を実行し、レンジ−周波数の2次元マップ信号を生成する第1周波数分析手段と、パルス圧縮後信号に対して、パルス繰り返し周波数以下の範囲に通過帯域を制限するフィルタと、フィルタで通過帯域が制限されたパルス圧縮後信号に対して、パルス繰り返し周期をサンプリング周期とする周波数分析を実行する第2周波数分析手段と、第2周波数分析手段で周波数分析されたパルス圧縮後信号に対して周波数検出処理を実行し、目標物の周波数を検出する周波数検出手段と、レンジ−周波数の2次元マップ信号において周波数を目標物の周波数に固定し、目標物の周波数におけるレンジ方向の振幅の最も大きい点を、目標物のパルス繰り返し周期内の距離として検出する距離検出手段とを備えたものである。   The pulse Doppler radar device according to the present invention radiates a pulsed transmission signal by performing frequency modulation and phase modulation, and receives a reception signal reflected by a target with the same inclination as the frequency modulation with respect to the transmission signal. This is a pulse Doppler radar device that measures the distance to a target based on a signal after pulse compression including a frequency transition component due to distance delay, which is generated by pulse compression in the range direction while detecting with a modulated signal. The first frequency analysis means for generating a range-frequency two-dimensional map signal by performing frequency analysis with the pulse repetition period as the sampling period for the post-pulse compression signal, and for the post-pulse compression signal, For filters that limit the passband to a range below the pulse repetition frequency, and for post-pulse-compressed signals whose passband is limited by the filter Second frequency analysis means for performing frequency analysis with the pulse repetition period as the sampling period; and frequency detection processing for the pulse-compressed signal frequency-analyzed by the second frequency analysis means, and determining the frequency of the target The frequency detection means to detect and the frequency in the range-frequency two-dimensional map signal are fixed to the target frequency, and the point having the largest amplitude in the range direction at the target frequency is the distance within the pulse repetition period of the target. And a distance detecting means for detecting as follows.

この発明に係るパルスドップラレーダ装置によれば、フィルタは、パルス圧縮後信号に対して、パルス繰り返し周波数以下の範囲に通過帯域を制限する。また、第2周波数分析手段は、フィルタで通過帯域が制限されたパルス圧縮後信号に対して、パルス繰り返し周期をサンプリング周期とする周波数分析を実行する。また、周波数検出手段は、第2周波数分析手段で周波数分析されたパルス圧縮後信号に対して周波数検出処理を実行し、目標物の周波数を検出する。また、距離検出手段は、レンジ−周波数の2次元マップ信号において周波数を目標物の周波数に固定し、目標物の周波数におけるレンジ方向の振幅の最も大きい点を、目標物のパルス繰り返し周期内の距離として検出する。
そのため、高い距離分解能と目標物検出精度とを有し、目標物までの距離を高精度に測定することができるパルスドップラレーダ装置を得ることができる。
According to the pulse Doppler radar device according to the present invention, the filter limits the passband to a range equal to or lower than the pulse repetition frequency for the pulse-compressed signal. The second frequency analysis means performs frequency analysis with the pulse repetition period as the sampling period for the pulse-compressed signal whose pass band is limited by the filter. Further, the frequency detection means performs frequency detection processing on the pulse-compressed signal subjected to frequency analysis by the second frequency analysis means, and detects the frequency of the target. Further, the distance detection means fixes the frequency to the frequency of the target in the range-frequency two-dimensional map signal, and sets the point having the largest amplitude in the range direction at the frequency of the target as the distance within the pulse repetition period of the target. Detect as.
Therefore, it is possible to obtain a pulse Doppler radar apparatus that has high distance resolution and target detection accuracy and can measure the distance to the target with high accuracy.

この発明の実施の形態1に係るパルスドップラレーダ装置を示すブロック構成図である。It is a block block diagram which shows the pulse Doppler radar apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る狭帯域フィルタの通過帯域を示す説明図である。It is explanatory drawing which shows the pass band of the narrow-band filter which concerns on Embodiment 1 of this invention. 従来のパルスドップラレーダ装置を示すブロック構成図である。It is a block block diagram which shows the conventional pulse Doppler radar apparatus. 従来のパルスドップラレーダ装置における位相変調後の送信パルスを示す説明図である。It is explanatory drawing which shows the transmission pulse after the phase modulation in the conventional pulse Doppler radar apparatus. 従来のパルスドップラレーダ装置における送信信号の周波数と受信信号の周波数との関係を示す説明図である。It is explanatory drawing which shows the relationship between the frequency of the transmission signal in the conventional pulse Doppler radar apparatus, and the frequency of a received signal. 従来のパルスドップラレーダ装置におけるPRI毎のレンジ方向のデジタルビデオ信号を示す説明図である。It is explanatory drawing which shows the digital video signal of the range direction for every PRI in the conventional pulse Doppler radar apparatus. 従来のパルスドップラレーダ装置におけるパルス圧縮後信号を示す説明図である。It is explanatory drawing which shows the signal after a pulse compression in the conventional pulse Doppler radar apparatus. 従来のパルスドップラレーダ装置における2次元マップ信号を示す説明図である。It is explanatory drawing which shows the two-dimensional map signal in the conventional pulse Doppler radar apparatus. 従来のパルスドップラレーダ装置における位相変調を施す場合のノイズレベルと位相変調しない場合のノイズレベルとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the noise level when not performing phase modulation, and the noise level when performing phase modulation in the conventional pulse Doppler radar apparatus.

以下、この発明のパルスドップラレーダ装置の好適な実施の形態につき図面を用いて説明するが、各図において同一、または相当する部分については、同一符号を付して説明する。   Hereinafter, a preferred embodiment of a pulse Doppler radar apparatus according to the present invention will be described with reference to the drawings. In the drawings, the same or corresponding parts will be described with the same reference numerals.

実施の形態1.
図1は、この発明の実施の形態1に係るパルスドップラレーダ装置を示すブロック構成図である。
図1において、このパルスドップラレーダ装置は、送信機1、周波数変調制御器2、位相変調制御器3、アンテナ4、受信機5、A/D変換器6、パルス圧縮部7(パルス圧縮手段)、第1周波数分析部8(第1周波数分析手段)、狭帯域フィルタ9、第2周波数分析部10(第2周波数分析手段)、周波数検出部11(周波数検出手段)、距離検出部12(距離検出手段)および距離測定部13(距離測定手段)を備えている。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a pulse Doppler radar apparatus according to Embodiment 1 of the present invention.
1, this pulse Doppler radar apparatus includes a transmitter 1, a frequency modulation controller 2, a phase modulation controller 3, an antenna 4, a receiver 5, an A / D converter 6, and a pulse compression unit 7 (pulse compression means). , First frequency analysis unit 8 (first frequency analysis unit), narrowband filter 9, second frequency analysis unit 10 (second frequency analysis unit), frequency detection unit 11 (frequency detection unit), distance detection unit 12 (distance Detection means) and a distance measurement unit 13 (distance measurement means).

以下、目標物のドップラ周波数fa(Hz)を測定した後、目標物までの距離を測定するフェーズにおけるパルスドップラレーダ装置の動作について説明する。なお、送信機1から第1周波数分析部8まで、および距離測定部13の動作は、図3に示した送信機51から周波数分析部58まで、および距離測定部60の動作と同一なので、説明を省略する。また、第1周波数分析部8は周波数分析部58と対応している。   Hereinafter, the operation of the pulse Doppler radar apparatus in the phase of measuring the distance to the target after measuring the Doppler frequency fa (Hz) of the target will be described. The operations from the transmitter 1 to the first frequency analysis unit 8 and the distance measurement unit 13 are the same as the operations from the transmitter 51 to the frequency analysis unit 58 and the distance measurement unit 60 shown in FIG. Is omitted. The first frequency analysis unit 8 corresponds to the frequency analysis unit 58.

狭帯域フィルタ9は、パルス圧縮部7からのパルス圧縮後信号に対して、フィルタ処理による周波数帯域制限を実行し、帯域制限信号を出力する。ここで、狭帯域フィルタ9の通過帯域は、PRF以下の範囲に設定される。
第2周波数分析部10は、狭帯域フィルタ9からの帯域制限信号に対して、レンジサンプル毎に、PRI相当のサンプリング周期でPRI方向に周波数分析を実行し、レンジ−周波数の2次元マップ信号を生成する。
The narrowband filter 9 performs frequency band limitation on the post-pulse-compressed signal from the pulse compression unit 7 by filter processing, and outputs a band-limited signal. Here, the pass band of the narrow band filter 9 is set to a range equal to or less than the PRF.
The second frequency analysis unit 10 performs frequency analysis in the PRI direction with respect to the band limited signal from the narrowband filter 9 in the PRI direction at a sampling period corresponding to PRI for each range sample, and generates a range-frequency two-dimensional map signal. Generate.

周波数検出部11は、第2周波数分析部10からのレンジ−周波数の2次元マップ信号に対して、例えば上述したCFAR方式によって目標物を検出し(目標物検出処理)、目標物の周波数fb(Hz)を検出する。
距離検出部12は、第1周波数分析部8からのレンジ−周波数の2次元マップ信号において周波数を周波数検出部11で検出した目標物の周波数fb(Hz)に固定し、目標物の周波数fb(Hz)におけるレンジ方向の振幅の最も大きい点を、目標物のPRI内の距離Rpri(m)として検出する。
The frequency detection unit 11 detects a target by the above-described CFAR method (target detection processing) with respect to the range-frequency two-dimensional map signal from the second frequency analysis unit 10, and the target frequency fb ( Hz).
The distance detection unit 12 fixes the frequency in the range-frequency two-dimensional map signal from the first frequency analysis unit 8 to the frequency fb (Hz) of the target detected by the frequency detection unit 11, and the target frequency fb ( Hz) is detected as a distance Rpri (m) within the PRI of the target.

ここで、周波数検出部11におけるノイズレベルは、狭帯域フィルタ9の通過成分のみとなる。また、狭帯域フィルタ9の通過帯域がPRF以下の範囲に設定されているので、周波数検出部11におけるノイズレベルは、図9に示された位相変調しない場合(受信帯域幅がPRF)のノイズレベルと同等または低いレベルとなる。そのため、所望の距離分解能Δr(m)を維持しつつ、高い検出精度で目標物を検出することができる。   Here, the noise level in the frequency detection unit 11 is only the passing component of the narrowband filter 9. Further, since the pass band of the narrow band filter 9 is set to a range equal to or less than the PRF, the noise level in the frequency detection unit 11 is the noise level when the phase modulation shown in FIG. 9 is not performed (the reception bandwidth is PRF). It will be the same or lower level. Therefore, it is possible to detect the target with high detection accuracy while maintaining the desired distance resolution Δr (m).

以上のように、実施の形態1によれば、フィルタは、パルス圧縮後信号に対して、パルス繰り返し周波数以下の範囲に通過帯域を制限する。また、第2周波数分析手段は、フィルタで通過帯域が制限されたパルス圧縮後信号に対して、パルス繰り返し周期をサンプリング周期とする周波数分析を実行する。また、周波数検出手段は、第2周波数分析手段で周波数分析されたパルス圧縮後信号に対して周波数検出処理を実行し、目標物の周波数を検出する。また、距離検出手段は、レンジ−周波数の2次元マップ信号において周波数を目標物の周波数に固定し、目標物の周波数におけるレンジ方向の振幅の最も大きい点を、目標物のパルス繰り返し周期内の距離として検出する。
これにより、目標物の検出精度が高い信号を用いて目標物の周波数を検出し、この検出された目標物の周波数に基づいて、距離分解能が高い信号から、レンジ方向の振幅の最も大きい点を抽出することで、目標物のパルス繰り返し周期内の距離を高精度に測定することができる。
そのため、高い距離分解能と目標物検出精度とを有し、目標物までの距離を高精度に測定することができるパルスドップラレーダ装置を得ることができる。
As described above, according to the first embodiment, the filter limits the passband to a range equal to or lower than the pulse repetition frequency with respect to the signal after pulse compression. The second frequency analysis means performs frequency analysis with the pulse repetition period as the sampling period for the pulse-compressed signal whose pass band is limited by the filter. Further, the frequency detection means performs frequency detection processing on the pulse-compressed signal subjected to frequency analysis by the second frequency analysis means, and detects the frequency of the target. Further, the distance detection means fixes the frequency to the frequency of the target in the range-frequency two-dimensional map signal, and sets the point having the largest amplitude in the range direction at the frequency of the target as the distance within the pulse repetition period of the target. Detect as.
Thereby, the frequency of the target is detected using a signal with high detection accuracy of the target, and the point having the largest amplitude in the range direction is determined from the signal with high distance resolution based on the detected frequency of the target. By extracting, the distance within the pulse repetition period of the target can be measured with high accuracy.
Therefore, it is possible to obtain a pulse Doppler radar apparatus that has high distance resolution and target detection accuracy and can measure the distance to the target with high accuracy.

なお、上記実施の形態1では、狭帯域フィルタ9の通過帯域がPRF以下の範囲に設定されると説明したが、これに限定されない。狭帯域フィルタ9の通過帯域を、目標物のドップラ周波数成分および距離遅延による周波数遷移成分のみを通過させるような帯域に設定してもよい。このとき、目標物のドップラ周波数成分および距離遅延による周波数遷移成分は、目標物の周波数fb(Hz)の近傍に存在するので、狭帯域フィルタ9の通過帯域は、図2に示すような帯域となる。これにより、受信信号の信号対雑音比をさらに向上させて、より高い検出精度で目標物を検出することができる。   In the first embodiment, it has been described that the passband of the narrowband filter 9 is set to a range equal to or less than the PRF. However, the present invention is not limited to this. The pass band of the narrow band filter 9 may be set to a band that passes only the Doppler frequency component of the target and the frequency transition component due to the distance delay. At this time, the Doppler frequency component of the target and the frequency transition component due to the distance delay are present in the vicinity of the frequency fb (Hz) of the target. Therefore, the passband of the narrowband filter 9 is as shown in FIG. Become. Thereby, the signal to noise ratio of the received signal can be further improved, and the target can be detected with higher detection accuracy.

1 送信機、2 周波数変調制御器、3 位相変調制御器、4 アンテナ、5 受信機、6 A/D変換器、7 パルス圧縮部(パルス圧縮手段)、8 第1周波数分析部(第1周波数分析手段)、9 狭帯域フィルタ、10 第2周波数分析部(第2周波数分析手段)、11 周波数検出部(周波数検出手段)、12 距離検出部(距離検出手段)、13 距離測定部(距離測定手段)。   DESCRIPTION OF SYMBOLS 1 Transmitter, 2 Frequency modulation controller, 3 Phase modulation controller, 4 Antenna, 5 Receiver, 6 A / D converter, 7 Pulse compression part (pulse compression means), 8 1st frequency analysis part (1st frequency) Analysis means), 9 narrow band filter, 10 second frequency analysis section (second frequency analysis means), 11 frequency detection section (frequency detection means), 12 distance detection section (distance detection means), 13 distance measurement section (distance measurement) means).

Claims (2)

パルス状の送信信号に周波数変調および位相変調を施して放射し、目標物で反射して受信される受信信号を、前記送信信号に対する周波数変調と同一の傾きで変調された信号で検波するとともに、レンジ方向にパルス圧縮して生成される、距離遅延による周波数遷移成分を含むパルス圧縮後信号に基づいて、前記目標物までの距離を測定するパルスドップラレーダ装置であって、
前記パルス圧縮後信号に対して、パルス繰り返し周期をサンプリング周期とする周波数分析を実行し、レンジ−周波数の2次元マップ信号を生成する第1周波数分析手段と、
前記パルス圧縮後信号に対して、パルス繰り返し周波数以下の範囲に通過帯域を制限するフィルタと、
前記フィルタで通過帯域が制限されたパルス圧縮後信号に対して、前記パルス繰り返し周期をサンプリング周期とする周波数分析を実行する第2周波数分析手段と、
前記第2周波数分析手段で周波数分析されたパルス圧縮後信号に対して周波数検出処理を実行し、前記目標物の周波数を検出する周波数検出手段と、
前記レンジ−周波数の2次元マップ信号において周波数を前記目標物の周波数に固定し、前記目標物の周波数におけるレンジ方向の振幅の最も大きい点を、前記目標物のパルス繰り返し周期内の距離として検出する距離検出手段と、
を備えたことを特徴とするパルスドップラレーダ装置。
The pulsed transmission signal is subjected to frequency modulation and phase modulation and radiated, and the reception signal reflected and received by the target is detected with a signal modulated with the same slope as the frequency modulation with respect to the transmission signal, and A pulse Doppler radar device that measures a distance to the target based on a pulse-compressed signal including a frequency transition component due to a distance delay generated by pulse compression in a range direction,
First frequency analysis means for generating a range-frequency two-dimensional map signal by performing frequency analysis using the pulse repetition period as a sampling period for the pulse-compressed signal;
A filter that restricts the passband to a range below the pulse repetition frequency for the pulse-compressed signal;
Second frequency analysis means for performing frequency analysis with the pulse repetition period as a sampling period for a signal after pulse compression whose pass band is limited by the filter;
Frequency detection means for performing frequency detection processing on the pulse-compressed signal frequency-analyzed by the second frequency analysis means, and detecting the frequency of the target;
The frequency is fixed to the frequency of the target in the range-frequency two-dimensional map signal, and the point having the largest amplitude in the range direction at the frequency of the target is detected as a distance within the pulse repetition period of the target. A distance detection means;
A pulse Doppler radar device comprising:
前記フィルタは、前記パルス繰り返し周波数以下の通過帯域として、前記目標物のドップラ周波数および前記距離遅延による周波数遷移成分を通過させる帯域を設定することを特徴とする請求項1に記載のパルスドップラレーダ装置。   2. The pulse Doppler radar device according to claim 1, wherein the filter sets a band that allows a Doppler frequency of the target and a frequency transition component due to the distance delay to pass as a pass band equal to or less than the pulse repetition frequency. 3. .
JP2009061799A 2009-03-13 2009-03-13 Pulse Doppler radar device Active JP5235737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061799A JP5235737B2 (en) 2009-03-13 2009-03-13 Pulse Doppler radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061799A JP5235737B2 (en) 2009-03-13 2009-03-13 Pulse Doppler radar device

Publications (2)

Publication Number Publication Date
JP2010216884A JP2010216884A (en) 2010-09-30
JP5235737B2 true JP5235737B2 (en) 2013-07-10

Family

ID=42975901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061799A Active JP5235737B2 (en) 2009-03-13 2009-03-13 Pulse Doppler radar device

Country Status (1)

Country Link
JP (1) JP5235737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102444198B1 (en) * 2022-05-09 2022-09-16 국방과학연구소 Apparatus and method for removing clutter in a radar system

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5460290B2 (en) * 2008-12-26 2014-04-02 三菱電機株式会社 Radar equipment
JP5791381B2 (en) * 2011-06-13 2015-10-07 三菱電機株式会社 Target tracking device
JP5871559B2 (en) * 2011-10-20 2016-03-01 三菱電機株式会社 Radar equipment
JP5904775B2 (en) * 2011-12-07 2016-04-20 三菱電機株式会社 Target tracking device
JP5464724B1 (en) * 2013-09-10 2014-04-09 耕司 西村 Receiving apparatus, receiving method, and transmitting / receiving system
KR101498615B1 (en) 2014-03-20 2015-03-04 한국전자통신연구원 Apparatus and method for estimating direction of relaying radio signal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05333141A (en) * 1991-06-24 1993-12-17 Harutaka Hirozawa Highly sensitive search signal detecting radar system
JP2008101997A (en) * 2006-10-18 2008-05-01 Mitsubishi Electric Corp Radar system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102444198B1 (en) * 2022-05-09 2022-09-16 국방과학연구소 Apparatus and method for removing clutter in a radar system

Also Published As

Publication number Publication date
JP2010216884A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5235737B2 (en) Pulse Doppler radar device
US7567204B2 (en) Method for determining noise floor level and radar using the same
JP5871559B2 (en) Radar equipment
KR101092567B1 (en) Frequency modulated continuous wave rader and detecting method for distance and velocity of moving object using it
US20160154104A1 (en) Method for operating a surroundings-detection system of a vehicle
JP2008111743A5 (en)
KR102646313B1 (en) How to determine the distance and speed of an object
JP2008014837A (en) Radar system and its signal processing method
JP6164918B2 (en) Radar equipment
US8884814B2 (en) Processing method for FMCW radar signal with dual pulse repetition frequency
JP6279193B2 (en) Object detection device and sensor device
JP2012242288A (en) Radar device
JP2012042214A (en) Radar device
JP5398838B2 (en) Radar equipment
JP4781382B2 (en) Pulse Doppler radar device
JP2015148577A (en) Radio wave sensor and detection method
US8639462B2 (en) Method and system for determining the time-of-flight of a signal
JP5484291B2 (en) Radar equipment
JP3799337B2 (en) FM-CW radar apparatus and interference wave removing method in the apparatus
JP5553970B2 (en) Radar equipment
RU2612201C1 (en) Method of determining distance using sonar
KR100643939B1 (en) Radar and distance measuring method thereof
JP2013113723A (en) Radar system
CN113687344B (en) Triangular wave modulation linear frequency modulation continuous wave radar speed measuring method
JP2012107925A (en) Radar device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5235737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250