JP5233271B2 - Steel pipe excellent in workability and manufacturing method thereof - Google Patents

Steel pipe excellent in workability and manufacturing method thereof Download PDF

Info

Publication number
JP5233271B2
JP5233271B2 JP2007326046A JP2007326046A JP5233271B2 JP 5233271 B2 JP5233271 B2 JP 5233271B2 JP 2007326046 A JP2007326046 A JP 2007326046A JP 2007326046 A JP2007326046 A JP 2007326046A JP 5233271 B2 JP5233271 B2 JP 5233271B2
Authority
JP
Japan
Prior art keywords
steel pipe
pipe
steel
transformation point
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007326046A
Other languages
Japanese (ja)
Other versions
JP2008174834A (en
Inventor
好男 寺田
真也 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007326046A priority Critical patent/JP5233271B2/en
Publication of JP2008174834A publication Critical patent/JP2008174834A/en
Application granted granted Critical
Publication of JP5233271B2 publication Critical patent/JP5233271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、伸管、曲げ、ハイドロフォーミング等によって成形する構造用鋼管、配管等に適する加工性に優れた鋼管及びその製造方法に関する。   The present invention relates to a structural steel pipe formed by drawing, bending, hydroforming or the like, a steel pipe excellent in workability suitable for piping, and the like, and a method for manufacturing the same.

工程の省略及び部品点数の削減による自動車の製造コスト低減を目的として、鋼管から複雑な形状の部品を製造するハイドロフォーミング技術が開示されている(特許文献1を参照)。このようなハイドロフォーミング技術のメリットを十分に活用するためには、塑性異方性の指標であるr値(ランクフォード値)の高い鋼管が望ましく、ハイドロフォーミング用鋼管及びその製造方法が開示されている(特許文献2〜6を参照)。しかしながら、これらの鋼管は、いずれも鋼管を素管として該素管を加熱した後、比較的高温で縮径加工することによって鋼管の集合組織を制御してr値を高める方法であることから、製造設備が高価となり、製造コストが上昇するという問題点があった。   For the purpose of reducing the manufacturing cost of automobiles by omitting processes and reducing the number of parts, a hydroforming technique for manufacturing parts having a complicated shape from a steel pipe has been disclosed (see Patent Document 1). In order to fully utilize the merits of such hydroforming technology, a steel pipe having a high r value (Rankford value), which is an index of plastic anisotropy, is desirable, and a steel pipe for hydroforming and a method for manufacturing the same are disclosed. (See Patent Documents 2 to 6). However, since these steel pipes are methods of increasing the r value by controlling the texture of the steel pipe by heating the raw pipe as a raw pipe and then reducing the diameter at a relatively high temperature. There is a problem that the manufacturing equipment becomes expensive and the manufacturing cost increases.

一方、圧延方向及び圧延方向に直交する方向のr値が高い冷延鋼板を用いて造管した後、鋼管を熱処理する方法が開示されている(特許文献7を参照)。しかしながら、鋼管を製造する時、シーム溶接部において溶融した部分とAc1変態点以上に再加熱されオーステナイトへ変態した部分のr値が低下し、加工性に劣るという問題点があった。さらに、この方法は素材となる冷間圧延鋼板の製造コストが高いので、鋼管の製造コストも上昇するという問題点があった。   On the other hand, a method of heat-treating a steel pipe after pipe forming using a cold rolled steel sheet having a high r value in a rolling direction and a direction orthogonal to the rolling direction is disclosed (see Patent Document 7). However, when manufacturing a steel pipe, there was a problem that the r value of the melted part in the seam welded part and the part reheated to the Ac1 transformation point or more and transformed to austenite was lowered, and the workability was inferior. Furthermore, this method has a problem that the manufacturing cost of the steel pipe also increases because the manufacturing cost of the cold-rolled steel sheet as the material is high.

一方、引張強度が350MPa以上であり、管軸方向及び円周方向のr値がともに1.3以上であって、管軸方向のn値「n」と引張強度「TS[MPa]」がTS+3285×n>1082の関係を満たす加工性に優れた鋼管、及びその製造法として冷間圧延鋼板を素材として造管し、その後、加熱する方法が開示されている(特許文献8を参照)。しかしながら、鋼管を製造する時のシーム溶接部において溶融した部分とAc1変態点以上に再加熱されオーステナイトへ変態した部分は、鋼管を単に加熱するだけではr値の向上は認められず、加工性に劣るという問題点があった。さらに、この方法は冷間圧延鋼板を素材として鋼管を製造し、該鋼管を加熱することによって鋼管の集合組織を制御してr値を高める方法であることから、素材となる冷間圧延鋼板の製造コストが高くなり、鋼管の製造コストも上昇するという問題点があった。
特開平10−175026号公報 特開2001−348643号公報 特開2001−348647号公報 特開2001−348648号公報 特開2002−20841号公報 特開2002−115029号公報 特開2002−115780号公報 特開2004−68040号公報
On the other hand, the tensile strength is 350 MPa or more, the r values in the tube axis direction and the circumferential direction are both 1.3 or more, and the n value “n” and the tensile strength “TS [MPa]” in the tube axis direction are TS + 3285. A steel pipe excellent in workability satisfying the relationship of xn> 1082 and a method of producing a steel pipe using a cold-rolled steel sheet as a raw material and then heating the steel pipe are disclosed (see Patent Document 8). However, the melted part in the seam welded part when manufacturing the steel pipe and the part reheated to the Ac1 transformation point or more and transformed to austenite are not recognized to improve the r value by simply heating the steel pipe. There was a problem of being inferior. Further, this method is a method of manufacturing a steel pipe using a cold rolled steel sheet as a raw material, and controlling the texture of the steel pipe by heating the steel pipe to increase the r value. There was a problem that the manufacturing cost increased and the manufacturing cost of the steel pipe also increased.
JP-A-10-175026 JP 2001-348643 A JP 2001-348647 A JP 2001-348648 A JP 2002-20841 A JP 2002-115029 A JP 2002-115780 A JP 2004-68040 A

そこで、本発明は、このような従来の事情に鑑みて提案されたものであり、安価で加工性に優れた鋼管及びその製造方法を提供することを目的とする。   Then, this invention is proposed in view of such a conventional situation, and it aims at providing the cheap steel pipe excellent in workability, and its manufacturing method.

上記課題を解決することを目的とした本発明の要旨は以下の通りである。
(1) 鋼成分が質量%で、C:0.035〜0.350%、Si:0.13〜0.34%、Mn:0.40〜1.35%、P:0.0065〜0.0150%、S:0.0016〜0.0043%、Al:0.002〜0.033%、N:0.0019〜0.0048%、O:0.0019〜0.0034%、残部鉄および不可避不純物からなる鋼管を素管として、該素管を冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲に加熱して製造する鋼管において、シーム溶接部を含む鋼管全域で鋼管の軸方向のr値(rL)が1.2以上、鋼管の円周方向のr値(rC)が1.2以上で、且つ、前記鋼管の1/2板厚における板面の{111}のX線反射面ランダム強度比が2.0以上7.0以下、{110}のX線反射面ランダム強度比が1.0以上5.0以下、{100}のX線反射面ランダム強度比が3.0以下であることを特徴とする加工性に優れた鋼管。
(2) 更に鋼成分が質量%で、Cr:0.24%、Mo:0.20%、Ti:0.011〜0.012%、B:0.0010%、のいずれか1種以上を含むことを特徴とする前記(1)に記載の加工性に優れた鋼管。
(3) 請求項1または請求項2に記載の鋼成分からなり、シーム溶接部を含む素管を減面率10%以上60%以下、且つ減肉率1%以上となるように冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲に30秒以上加熱し、その後、冷却することを特徴とする加工性に優れた鋼管の製造方法。
(4) 前記素管を冷間で伸管加工する前に、Ac3変態点以上の温度に加熱し、圧延することなく、冷却する工程を付加することを特徴とする前記(3)に記載の加工性に優れた鋼管の製造方法。
The gist of the present invention aimed at solving the above problems is as follows.
(1) Steel component is mass%, C: 0.035 to 0.350%, Si: 0.13 to 0.34%, Mn: 0.40 to 1.35%, P: 0.0065 to 0 0.150%, S: 0.0016-0.0043%, Al: 0.002-0.033%, N: 0.0019-0.0048%, O: 0.0019-0.0034%, balance iron And a steel pipe made of inevitable impurities, the steel pipe is cold drawn and then heated to a temperature range from Ac1 transformation point -70 ° C. to Ac1 transformation point. The steel pipe has an r-value (rL) in the axial direction of 1.2 or more, a steel pipe circumferential r-value (rC) of 1.2 or more, and a half-thickness of the steel pipe. The {111} X-ray reflecting surface random intensity ratio of the surface is 2.0 or more and 7.0 or less, the {110} X-ray reflecting surface Random intensity ratio of 1.0 or more and 5.0 or less, excellent workability, wherein the X-ray reflection surfaces random intensity ratio of {100} is 3.0 or less steel.
(2) Further, the steel component is mass%, and one or more of Cr: 0.24%, Mo: 0.20%, Ti: 0.011 to 0.012%, B: 0.0010%. The steel pipe excellent in workability as described in said (1) characterized by including.
(3) The steel component according to claim 1 or claim 2, wherein the raw pipe including the seam weld is cold so that the area reduction rate is 10% or more and 60% or less and the wall thickness reduction rate is 1% or more. A method for producing a steel pipe excellent in workability, characterized by heating the tube to a temperature range from Ac1 transformation point -70 ° C. to Ac1 transformation point for 30 seconds or more after cooling and then cooling.
(4) Before the tube is cold drawn, the step of heating to a temperature not lower than the Ac3 transformation point and cooling without rolling is added. A method of manufacturing steel pipes with excellent workability.

以上のように、本発明によれば、安価で加工性に優れた鋼管を伸管、曲げ、ハイドロフォーミングなどで加工する構造用鋼管、配管等に適用することにより、安全性が著しく向上するとともに工程の省略及び部品点数の削減による製造コストの低減が可能となり、資源の有効利用が可能となる。   As described above, according to the present invention, by applying an inexpensive and excellent workability steel pipe to a structural steel pipe, piping, etc. processed by drawing, bending, hydroforming, etc., the safety is remarkably improved. Manufacturing costs can be reduced by omitting processes and reducing the number of parts, and resources can be used effectively.

以下に、本発明の加工性に優れた鋼管及びその製造方法について詳細に説明する。
本発明者らは、鋼管を素管として該素管を加熱した後、直ちに縮径加工するような高価な製造設備を必要とすることなく、また、高価な冷間圧延鋼板を素材として造管することなく、安価に製造可能できる、シーム溶接部も含めた全域で加工性に優れた鋼管について鋭意検討を行った。その結果、鋼管を素管として、素管を減面率10%以上60%以下、且つ減肉率1%以上となるように冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲に30秒以上加熱し、その後、冷却することによって、鋼管の1/2板厚における板面の{111}のX線反射面ランダム強度比が2.0以上7.0以下、{110}のX線反射面ランダム強度比が1.0以上5.0以下、{100}のX線反射面ランダム強度比が3.0以下とすることが可能となり、シーム溶接部を含む鋼管全域で鋼管の軸方向のr値(rL)及び鋼管の円周方向のr値(rC)を高くして、曲げ加工やハイドロフォーミングなどの加工性を向上させることを見出し、本発明を完成するに至った。
Below, the steel pipe excellent in the workability of this invention and its manufacturing method are demonstrated in detail.
The inventors of the present invention do not need an expensive manufacturing facility that uses a steel pipe as a raw pipe and heats the raw pipe and then immediately reduces the diameter, and also uses an expensive cold-rolled steel sheet as a raw material. Steel pipes that can be manufactured inexpensively and that have excellent workability throughout the entire seam welded area, including seam welds, were intensively studied. As a result, the steel pipe was used as a raw pipe, and the raw pipe was cold-drawn so that the area reduction rate was 10% or more and 60% or less and the thickness reduction ratio was 1% or more, and then the Ac1 transformation point from -70 ° C to Ac1. By heating to the temperature range of the transformation point for 30 seconds or more and then cooling, the X-ray reflecting surface random intensity ratio of {111} of the plate surface at 1/2 plate thickness of the steel pipe is 2.0 or more and 7.0 or less. , {110} X-ray reflection surface random intensity ratio can be 1.0 or more and 5.0 or less, and {100} X-ray reflection surface random intensity ratio can be 3.0 or less, including a seam weld. The present invention has been completed by increasing the axial r value (rL) of the steel pipe and the circumferential r value (rC) of the steel pipe to improve workability such as bending and hydroforming. It came to do.

すなわち、本発明の特徴は、鋼管を素管として、該素管を冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲に加熱して製造する鋼管において、シーム溶接部を含む鋼管円周方向全域で特定の集合組織を形成させることによってrL、rCを高くし、加工性を向上させる鋼管であること、並びにその製造方法として、素管を特定の減面率及び減肉率で冷間の伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲に加熱し、その後、冷却することにある。   That is, a feature of the present invention is that in a steel pipe manufactured using a steel pipe as a raw pipe, the raw pipe is cold-drawn and then heated to a temperature range from Ac1 transformation point -70 ° C. to Ac1 transformation point. By forming a specific texture in the entire circumferential direction of the steel pipe including the welded portion, it is a steel pipe that increases rL and rC and improves workability. And after cold-drawing at a thinning rate, the temperature is from the Ac1 transformation point -70 ° C. to the temperature range of the Ac1 transformation point, followed by cooling.

鋼管を素管として、該素管を冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲に加熱して製造する鋼管において、曲げ加工やハイドロフォーミングなどの加工性を向上させるためには、シーム溶接部を含む鋼管全域でrL、rCがそれぞれ1.2以上である必要がある。一般的にr値が高くなると加工性は向上することが知られているが、シーム溶接部を含めて円周方向全域でrL及びrCが高くなる場合、rL及びrCが1.2以上であれば、曲げ加工やハイドロフォーミングなどの加工性が十分であることを見出した。なお、45゜方向のr値(rD)は加工性に大きな効果をおよぼさないので特に問わないが、このような鋼管の製造条件において、rDは1.2未満となる。   For steel pipes that are manufactured by using a steel pipe as a raw pipe, and after the pipe is cold-drawn and then heated to a temperature range from Ac1 transformation point -70 ° C to Ac1 transformation point, workability such as bending and hydroforming In order to improve the above, it is necessary that rL and rC are 1.2 or more in the entire steel pipe including the seam weld. In general, it is known that workability improves as the r value increases. However, when rL and rC increase in the entire circumferential direction including the seam weld, rL and rC should be 1.2 or more. For example, it has been found that workability such as bending and hydroforming is sufficient. The r value (rD) in the 45 ° direction is not particularly limited because it does not have a significant effect on the workability. However, under such steel pipe manufacturing conditions, rD is less than 1.2.

鋼管のrLの測定方法については、先ず、鋼管からJIS Z 2201に準拠して、管軸方向を長手方向として12号円弧状試験片を採取し、試験片平行部に標点をマーキングして標点間の距離を測定する。次に、標点間の中央部にひすみゲージを幅方向に貼付した後、伸び計を取り付けて引張試験機で10%の引張ひずみを与え、標点距離の変化とひずみゲージにより測定した幅方向のひずみ変化からrLを算出した。   Regarding the measurement method of rL of steel pipes, first, in accordance with JIS Z 2201, a No. 12 arc-shaped specimen is taken with the pipe axis direction as the longitudinal direction, and a test mark is marked on the parallel part of the specimen. Measure the distance between points. Next, after applying a strain gauge to the center between the gauge points in the width direction, attach an extensometer, give a tensile strain of 10% with a tensile tester, and change the gauge distance and the width measured with the strain gauge. RL was calculated from the strain change in the direction.

鋼管のrCの測定方法については、先ず、鋼管を切断してプレス等で平板状とし、円周方向を長手としてJIS Z 2201の13B号試験片を採取し、試験片平行部に標点をマーキングして標点距離ならびに試験片平行部の板厚及び板幅を測定した。次に、試験片に伸び計を取り付けて、引張試験機にて10%の引張ひずみを与え、引張ひずみ導入前後の試験片の板幅及び標点間距離からrCを算出した。   Regarding the measurement method of rC of steel pipe, first cut the steel pipe and make it flat with a press etc., sample the JIS Z 2201 No. 13B test piece with the circumferential direction as the longitudinal direction, and mark the test mark on the parallel part of the test piece Then, the gauge distance and the plate thickness and plate width of the parallel part of the test piece were measured. Next, an extensometer was attached to the test piece, 10% tensile strain was applied with a tensile tester, and rC was calculated from the plate width of the test piece before and after introduction of the tensile strain and the distance between the gauge points.

鋼管のr値を高めるためには集合組織を制御する必要がある。すなわち、rC及びrLを高くして優れた加工性を得るためには、鋼管の1/2板厚における板面の{111}のX線反射面ランダム強度比が2.0以上7.0以下、{110}のX線反射面ランダム強度比が1.0以上5.0以下、{100}のX線反射面ランダム強度比が3.0以下であることが必要である。これらのランダム強度比が規定する範囲内でない場合、rC及びrLをそれぞれ1.2以上にすることができない。特定の方位のみランダム強度比を高めると、他の方位のランダム強度比が低くなるので、それぞれの方位のランダム強度比について、その上限を規定した。   In order to increase the r value of the steel pipe, it is necessary to control the texture. That is, in order to obtain excellent workability by increasing rC and rL, the {111} X-ray reflecting surface random intensity ratio of the plate surface at 1/2 plate thickness of the steel pipe is 2.0 or more and 7.0 or less. , {110} has an X-ray reflection surface random intensity ratio of 1.0 to 5.0, and {100} has an X-ray reflection surface random intensity ratio of 3.0 or less. If these random intensity ratios are not within the specified range, rC and rL cannot be 1.2 or more, respectively. When the random intensity ratio is increased only in a specific orientation, the random intensity ratio in the other orientation is lowered. Therefore, the upper limit is defined for the random intensity ratio in each orientation.

各方位のX線ランダム強度比はX線回折によって測定した。すなわち、鋼管から弧状試験片を切り出して、これをプレスして平板としてX線解析を行った。また弧状試験片から平板とするときは試験片加工による結晶回転の影響を避けるため、極力低ひずみで行うものとし、加工により導入されるひずみ量の上限を10%以下で行った。   The X-ray random intensity ratio in each direction was measured by X-ray diffraction. That is, an arc-shaped test piece was cut out from the steel pipe, and this was pressed to perform X-ray analysis as a flat plate. In addition, in order to avoid the influence of crystal rotation due to the processing of the test piece when the arc-shaped test piece is used as a flat plate, it was performed with as low a strain as possible, and the upper limit of the strain amount introduced by the processing was 10% or less.

このようにして得られた板状の試料について、機械研磨や化学研磨などによって板厚中心付近まで研磨し、バフ研磨によって鏡面に仕上げた後、電解研磨や化学研磨によってひずみを除去すると同時に、板厚中心層が測定面となるように調整する。なお、鋼板の板厚中心層に偏析帯が観察される場合には、板厚の3/8〜5/8の範囲で偏析帯のない場所を測定すればよい。さらにX線測定が困難な場合、EBSP法によって測定しても差し支えない。   The plate-like sample thus obtained is polished to the vicinity of the center of the plate thickness by mechanical polishing, chemical polishing, etc., finished to a mirror surface by buffing, and then strain is removed by electrolytic polishing or chemical polishing. Adjust the thickness center layer to be the measurement surface. In addition, when a segregation zone is observed in the thickness center layer of the steel plate, a place without a segregation zone may be measured in the range of 3/8 to 5/8 of the plate thickness. Further, when X-ray measurement is difficult, measurement by the EBSP method may be performed.

次に、鋼管の製造条件について説明する。素管は減面率10%以上60%以下、且つ減肉率1%以上となるように冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲に30秒以上加熱し、その後、冷却する必要がある。   Next, the manufacturing conditions of the steel pipe will be described. The tube is cold-drawn so that the area reduction rate is 10% or more and 60% or less and the wall thickness reduction rate is 1% or more, and then the temperature range from Ac1 transformation point to 70 ° C to Ac1 transformation point is 30 seconds or more. It needs to be heated and then cooled.

素管の減面率が10%未満の場合、十分な結晶回転が起こらず、熱処理後の再結晶集合組織が特定の方位に制御できないため、C及びL方向のr値が高くならない。また、減面率が60%を超えると冷間加工時に破断するため、減面率は60%以下と制限した。なお、減面率は、(伸管加工前の断面積−伸管加工後の断面積)/(伸管加工前の断面積)で表すものとする。   When the area reduction ratio of the tube is less than 10%, sufficient crystal rotation does not occur, and the recrystallized texture after the heat treatment cannot be controlled to a specific orientation, so the r values in the C and L directions do not increase. Further, if the area reduction rate exceeds 60%, the area is reduced during cold working, so the area reduction rate is limited to 60% or less. The area reduction ratio is expressed by (cross-sectional area before tube drawing-cross-sectional area after tube drawing) / (cross-sectional area before tube drawing).

減肉率が1%未満の場合、熱処理後の再結晶集合組織が特定の方位に制御できないため、C及びL方向のr値が高くならない。減肉率を1%以上にするためには、冷間での伸管加工時に鋼管内部にプラグを差込み、板厚を制御する方法が望ましい。なお、減肉率は、(伸管加工前の肉厚−伸管加工後の肉厚)/(伸管加工前の肉厚)で表すものとする。   When the thinning ratio is less than 1%, the recrystallized texture after the heat treatment cannot be controlled to a specific orientation, and therefore the r values in the C and L directions do not increase. In order to make the thickness reduction rate 1% or more, a method of controlling the plate thickness by inserting a plug into the steel pipe at the time of cold drawing is desirable. The thickness reduction rate is expressed as (thickness before tube drawing-thickness after tube drawing) / (wall thickness before tube drawing).

冷間で伸管加工した後、加熱温度がAc1変態点−70℃未満の場合、再結晶が十分に進行しないので狙いとする再結晶集合組織が得られず、C及びL方向のr値が高くならない。加熱温度がAc1変態点を超えると、オーステナイト変態が起こり、狙いとする集合組織が得られず、C及びL方向のr値が高くならない。また、Ac1変態点−70℃からAc1変態点の温度範囲に加熱する際、30秒未満であると、再結晶が十分に進行せず、特定の再結晶集合組織が得られないのでC及びL方向のr値が高くならない。鋼管を加熱した後の冷却は空冷或いは水冷でも構わない。   When the heating temperature is less than Ac1 transformation point −70 ° C. after cold drawing, the target recrystallization texture cannot be obtained because the recrystallization does not proceed sufficiently, and the r values in the C and L directions are It will not be high. When the heating temperature exceeds the Ac1 transformation point, austenite transformation occurs, the targeted texture cannot be obtained, and the r values in the C and L directions do not increase. Further, when heating to a temperature range from Ac1 transformation point -70 ° C. to Ac1 transformation point, if it is less than 30 seconds, recrystallization does not proceed sufficiently, and a specific recrystallization texture cannot be obtained. The r value in the direction does not increase. The cooling after heating the steel pipe may be air cooling or water cooling.

冷間で伸管加工する前にAc3変態点以上の温度に加熱し、圧延することなく、冷却することによってシーム溶接部を含めた鋼管の集合組織がランダム化され、その後の冷間での伸管加工と熱処理によってさらに高いr値が得られる。加熱温度がAc3変態点未満では集合組織のランダム化が不十分となるので、加熱温度の上限をAc3変態点未満とした。また、素管を加熱し、圧延した場合、表面形状が劣化し、加工性が劣化するために、圧延せずに冷却する。冷却は、空冷あるいは水冷のどちらでも構わない。   Prior to cold drawing, the texture of the steel pipe including the seam weld is randomized by heating to a temperature above the Ac3 transformation point and cooling without rolling, and the subsequent cold drawing. Higher r values can be obtained by tube processing and heat treatment. If the heating temperature is less than the Ac3 transformation point, the randomization of the texture becomes insufficient. Therefore, the upper limit of the heating temperature is set to be less than the Ac3 transformation point. In addition, when the raw tube is heated and rolled, the surface shape deteriorates and the workability deteriorates, so that cooling is performed without rolling. Cooling may be either air cooling or water cooling.

鋼管の化学成分については特に規定しない。通常の構造用鋼管、自動車用鋼板に使用される材料であれば、鋼成分にかかわらず所定の効果を発揮する。鋼成分によってAc1変態点が異なるので、熱処理条件を設定する際、Ac1変態点を測定する必要がある。Ac1変態点はフォ−マスター試験等によって測定することが可能である。   The chemical composition of steel pipes is not specified. If it is the material used for the normal structural steel pipe and the steel plate for automobiles, a predetermined effect is exhibited regardless of the steel components. Since the Ac1 transformation point differs depending on the steel component, it is necessary to measure the Ac1 transformation point when setting the heat treatment conditions. The Ac1 transformation point can be measured by a Formaster test or the like.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適宜変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples, and is implemented with appropriate modifications within a scope that can meet the gist of the present invention. These are all included in the technical scope of the present invention.

本実施例では、先ず、鋼管サイズが63.5φ×2.2mmtになるように冷間加工前の母管を準備して、伸管加工を行い、その後、熱処理した鋼管を表1〜表3に示す。なお、表1には、鋼管の化学成分を示し、表2には、鋼管の製造条件を示し、表3には、鋼管の機械的性質を示した。伸管前の熱処理は950℃加熱のノルマを施した。鋼管の加工性の評価は以下の方法で行った。すなわち、鋼管に10mmφのスクライブドサークルを転写して、内圧と軸押し量を制御して、円周方向への張り出し成形を行った。バースト直前での最大拡管率を示す部位(拡管率=成形後の最大周長/母管の周長)の軸方向のひずみと円周方向のひずみを測定した。この2つのひずみの比ρと最大拡管率をプロットして、ρ=−0.5となる拡管率Reをもってハイドロフォームの成形性指標とした。   In this embodiment, first, a mother pipe before cold working is prepared so that the steel pipe size is 63.5φ × 2.2 mmt, pipe drawing is performed, and then the heat-treated steel pipe is shown in Tables 1 to 3 below. Shown in Table 1 shows the chemical composition of the steel pipe, Table 2 shows the manufacturing conditions of the steel pipe, and Table 3 shows the mechanical properties of the steel pipe. The heat treatment before drawing was performed with a 950 ° C. heating normal. The workability of the steel pipe was evaluated by the following method. That is, a scribed circle of 10 mmφ was transferred to the steel pipe, the internal pressure and the axial push amount were controlled, and overhanging was performed in the circumferential direction. Strain in the axial direction and strain in the circumferential direction of the portion showing the maximum tube expansion rate immediately before the burst (tube expansion rate = maximum circumferential length after molding / circumferential length of the mother tube) were measured. The ratio ρ of the two strains and the maximum pipe expansion ratio are plotted, and the pipe expansion ratio Re at which ρ = −0.5 is used as the formability index of the hydroform.

Figure 0005233271
Figure 0005233271

Figure 0005233271
Figure 0005233271

Figure 0005233271
Figure 0005233271

表3から明らかなように、No.1〜7の鋼管(本発明例)は、何れも良好な集合組織とr値を有し、ハイドロフォーム加工時の最大拡管率が高く、良好な加工性を有する。これに対して、No.8〜13の鋼管(比較例)は、具備すべき条件が適切でなく、加工性が劣る。具体的に、No.8の鋼管は、減面率が低いため、r値が低く最大拡管率が低い。No.9の鋼管は、減面率が高すぎるため、伸管加工時に破断した。No.10の鋼管は、減肉率が小さいため、r値が低く最大拡管率が低い。No.11の鋼管は、熱処理温度が低いため、r値が低く最大拡管率が低い。No.12の鋼管は、熱処理温度が高いため、r値が低く最大拡管率が低い。No.13の鋼管は、熱処理時間が短いため、r値が低く最大拡管率が低い。No.14の鋼管は、伸管加工前の熱処理において加熱後に圧延を行ったために、表面性状が劣化し、最大拡管率が低く、加工性が劣化した。   As is apparent from Table 3, No. The steel pipes 1 to 7 (examples of the present invention) all have a good texture and an r value, have a high maximum tube expansion ratio during hydroforming, and have good workability. In contrast, no. The steel pipes of 8 to 13 (comparative examples) are not suitable for the conditions to be provided and are inferior in workability. Specifically, no. Since the steel pipe No. 8 has a low area reduction rate, the r value is low and the maximum pipe expansion rate is low. No. The steel pipe No. 9 was broken at the time of drawing because the area reduction rate was too high. No. Since the steel pipe No. 10 has a small thickness reduction rate, the r value is low and the maximum pipe expansion rate is low. No. Since the steel tube No. 11 has a low heat treatment temperature, the r value is low and the maximum tube expansion rate is low. No. Since the steel pipe No. 12 has a high heat treatment temperature, the r value is low and the maximum tube expansion ratio is low. No. Since the steel pipe No. 13 has a short heat treatment time, the r value is low and the maximum pipe expansion rate is low. No. Since the steel pipe No. 14 was rolled after heating in the heat treatment before drawing, the surface properties were deteriorated, the maximum tube expansion ratio was low, and the workability was deteriorated.

本発明の鋼管は、安価で加工性に優れているので、伸管、曲げ、ハイドロフォーミングなどで加工する構造用鋼管や配管などに広く適用することができる。   Since the steel pipe of the present invention is inexpensive and excellent in workability, it can be widely applied to structural steel pipes and pipes processed by drawing, bending, hydroforming and the like.

Claims (4)

鋼成分が質量%で、
C:0.035〜0.350%、
Si:0.13〜0.34%、
Mn:0.40〜1.35%、
P:0.0065〜0.0150%、
S:0.0016〜0.0043%、
Al:0.002〜0.033%、
N:0.0019〜0.0048%、
O:0.0019〜0.0034%、
残部鉄および不可避不純物からなる鋼管を素管として、該素管を冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲に加熱して製造する鋼管において、シーム溶接部を含む鋼管全域で鋼管の軸方向のr値(rL)が1.2以上、鋼管の円周方向のr値(rC)が1.2以上で、且つ、
前記鋼管の1/2板厚における板面の{111}のX線反射面ランダム強度比が2.0以上7.0以下、{110}のX線反射面ランダム強度比が1.0以上5.0以下、{100}のX線反射面ランダム強度比が3.0以下であることを特徴とする加工性に優れた鋼管。
Steel component is mass%,
C: 0.035 to 0.350%,
Si: 0.13-0.34%,
Mn: 0.40 to 1.35%,
P: 0.0065 to 0.0150%,
S: 0.0016 to 0.0043%,
Al: 0.002 to 0.033%,
N: 0.0019 to 0.0048%,
O: 0.0019 to 0.0034%,
In a steel pipe manufactured by heating a steel pipe made of the remaining iron and inevitable impurities as a raw pipe and then cold-drawing the raw pipe to a temperature range of Ac1 transformation point -70 ° C. to Ac1 transformation point. In the entire steel pipe including the portion, the r value (rL) in the axial direction of the steel pipe is 1.2 or more, the r value (rC) in the circumferential direction of the steel pipe is 1.2 or more , and
{111} X-ray reflecting surface random intensity ratio of {111} of the plate surface at 1/2 plate thickness of the steel pipe is 2.0 to 7.0, and {110} X-ray reflecting surface random intensity ratio is 1.0 to 5 2.0 or less, excellent workability, characterized in der Rukoto X-ray reflection surfaces random intensity ratio of 3.0 or less for {100} steel.
更に鋼成分が質量%で、
Cr:0.24%、Mo:0.20%、Ti:0.011〜0.012%、B:0.0010%、のいずれか1種以上を含むことを特徴とする請求項1に記載の加工性に優れた鋼管。
Furthermore, the steel component is mass%,
It contains any one or more of Cr: 0.24%, Mo: 0.20%, Ti: 0.011-0.012%, B: 0.0010%. Steel pipe with excellent workability.
請求項1または請求項2に記載の鋼成分からなり、シーム溶接部を含む素管を減面率10%以上60%以下、且つ減肉率1%以上となるように冷間で伸管加工した後、Ac1変態点−70℃からAc1変態点の温度範囲に30秒以上加熱し、その後、冷却することを特徴とする加工性に優れた鋼管の製造方法。 3. The pipe comprising the steel component according to claim 1 or 2 and including a seam welded portion is cold-drawn so that the area reduction rate is 10% or more and 60% or less and the wall thickness reduction rate is 1% or more. After that, a method of manufacturing a steel pipe excellent in workability, characterized by heating to a temperature range from Ac1 transformation point -70 ° C to Ac1 transformation point for 30 seconds or more and then cooling. 前記素管を冷間で伸管加工する前に、Ac3変態点以上の温度に加熱し、圧延することなく、冷却する工程を付加することを特徴とする請求項3に記載の加工性に優れた鋼管の製造方法。   The excellent workability according to claim 3, further comprising a step of heating the base pipe to a temperature not lower than the Ac3 transformation point and cooling without rolling before the base pipe is cold-drawn. Steel pipe manufacturing method.
JP2007326046A 2006-12-18 2007-12-18 Steel pipe excellent in workability and manufacturing method thereof Active JP5233271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007326046A JP5233271B2 (en) 2006-12-18 2007-12-18 Steel pipe excellent in workability and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006340070 2006-12-18
JP2006340070 2006-12-18
JP2007326046A JP5233271B2 (en) 2006-12-18 2007-12-18 Steel pipe excellent in workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008174834A JP2008174834A (en) 2008-07-31
JP5233271B2 true JP5233271B2 (en) 2013-07-10

Family

ID=39702053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007326046A Active JP5233271B2 (en) 2006-12-18 2007-12-18 Steel pipe excellent in workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5233271B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2537633C1 (en) * 2013-09-10 2015-01-10 Открытое акционерное общество "Синарский трубный завод" (ОАО "СинТЗ") Heat treatment method of weld joint zone of drill pipes (versions)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887155B2 (en) * 2000-09-18 2007-02-28 新日本製鐵株式会社 Steel pipe excellent in formability and manufacturing method thereof
JP3549483B2 (en) * 2000-12-28 2004-08-04 新日本製鐵株式会社 Hydroform forming steel pipe excellent in processability and manufacturing method
JP2003328079A (en) * 2002-05-14 2003-11-19 Nippon Steel Corp Steel pipe superior in workability for cold forging, and manufacturing method therefor
JP3950384B2 (en) * 2002-08-01 2007-08-01 新日本製鐵株式会社 High-strength steel pipe with excellent workability and manufacturing method thereof
JP4485148B2 (en) * 2003-05-28 2010-06-16 Jfeスチール株式会社 High carbon steel pipe excellent in cold forging workability and rolling workability, and manufacturing method thereof
JP2005002385A (en) * 2003-06-10 2005-01-06 Sumitomo Metal Ind Ltd Steel tube having excellent formability and toughness, and its production method
JP4701687B2 (en) * 2004-03-02 2011-06-15 Jfeスチール株式会社 Steel pipe with excellent electromagnetic characteristics and method for producing the same

Also Published As

Publication number Publication date
JP2008174834A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
JP5862051B2 (en) High-strength cold-rolled steel sheet excellent in workability and manufacturing method thereof
WO2001096624A1 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
JP5796351B2 (en) High strength sour line pipe excellent in crush resistance and manufacturing method thereof
JP5803270B2 (en) High strength sour line pipe excellent in crush resistance and manufacturing method thereof
JP2009173959A (en) High-strength steel sheet and producing method therefor
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
JP2022500553A (en) Austenitic stainless steel with excellent tube expansion workability and aging crack resistance
JP2004043856A (en) Low yield ratio type steel pipe
JP3794230B2 (en) Manufacturing method of high workability steel pipe
CN103261451A (en) Process for producing steel pipe for air bag
CN106917041A (en) A kind of cold rolling hot-dip aluminizing zincium steel plate of think gauge and its manufacture method
JP5031644B2 (en) Steel pipe excellent in workability and manufacturing method thereof
JP5233271B2 (en) Steel pipe excellent in workability and manufacturing method thereof
CN103882305A (en) High strength boat deck with low-temperature strain aging brittleness resistant property and production method thereof
JP2008138231A (en) Hot-rolled composite structure steel sheet excellent in hole-expanding property, and method of producing therefor
JP4932570B2 (en) Steel pipe excellent in workability and manufacturing method thereof
CN109750227A (en) A kind of tensile strength 400MPa grades of double-deck welded tube cold-rolled steel sheets
JP3937998B2 (en) Manufacturing method of steel pipe with excellent buckling resistance
JP4932571B2 (en) High-strength steel pipe with excellent workability and manufacturing method thereof
WO2020080015A1 (en) Ferritic stainless-steel sheet and method for manufacturing same
JP4788302B2 (en) Highly workable steel pipe and manufacturing method thereof
TWI711706B (en) Automobile steel material with high yield strength and method of manufacturing the same
EP1437422A1 (en) Steel pipe having high formability and method for production thereof
JP7167648B2 (en) Steel plate manufacturing method
EP4206338A1 (en) Electric resistance welded steel pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

R151 Written notification of patent or utility model registration

Ref document number: 5233271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350