JP5229579B2 - Artificial lung device with safety mechanism against pressure rise - Google Patents

Artificial lung device with safety mechanism against pressure rise Download PDF

Info

Publication number
JP5229579B2
JP5229579B2 JP2009204798A JP2009204798A JP5229579B2 JP 5229579 B2 JP5229579 B2 JP 5229579B2 JP 2009204798 A JP2009204798 A JP 2009204798A JP 2009204798 A JP2009204798 A JP 2009204798A JP 5229579 B2 JP5229579 B2 JP 5229579B2
Authority
JP
Japan
Prior art keywords
pressure
oxygenator
circuit
limit value
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009204798A
Other languages
Japanese (ja)
Other versions
JP2011050687A (en
Inventor
友和 新妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Original Assignee
JMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd filed Critical JMS Co Ltd
Priority to JP2009204798A priority Critical patent/JP5229579B2/en
Publication of JP2011050687A publication Critical patent/JP2011050687A/en
Application granted granted Critical
Publication of JP5229579B2 publication Critical patent/JP5229579B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Description

本発明は、血液に対するガス交換(酸素の供給、二酸化炭素の排出)を行うための人工肺装置に関し、特に、人工肺に起因する血液循環回路中の圧力上昇に対して安全機構を備えた人工肺装置に関する。   The present invention relates to an artificial lung device for performing gas exchange (supply of oxygen, discharge of carbon dioxide) to blood, and in particular, an artificial device equipped with a safety mechanism against a pressure increase in a blood circulation circuit caused by the artificial lung. Relates to lung apparatus.

心臓手術においては、患者の心臓を停止させ、その間の呼吸及び循環機能を代行するために、人工心肺装置が用いられる。人工肺は、患者の肺に代わって血液に酸素を供給し、二酸化炭素を排出させる機能を提供するものである。人工肺の例としては、例えば、多孔質中空糸膜を使用した膜型人工肺が知られている。すなわち、酸素を含むガス及び血液を多孔質中空糸膜を挟んで流動させ、血液とガスとの間でガス交換が行われるように構成された装置である。   In cardiac surgery, a heart-lung machine is used to stop the patient's heart and perform the respiratory and circulatory functions during that time. The artificial lung provides a function of supplying oxygen to blood instead of a patient's lung and discharging carbon dioxide. As an example of an oxygenator, for example, a membrane oxygenator using a porous hollow fiber membrane is known. That is, it is an apparatus configured such that gas containing oxygen and blood are made to flow with a porous hollow fiber membrane interposed therebetween, and gas exchange is performed between blood and gas.

人工心肺では、手術の侵襲や薬剤投与、血液の異物接触などの影響により、血栓の形成や血球の凝集が発生する場合がある。人工心肺の構成部品の中で膜型人工肺は、最も血液との接触面積が大きいことや、血液が通過する流路が狭いという点から、血栓の形成や血球の凝集が生じた場合、人工肺流路の目詰りによる人工肺圧力損失の増大につながる。   In an artificial heart-lung machine, thrombus formation and blood cell aggregation may occur due to the effects of surgical invasion, drug administration, blood foreign body contact, and the like. Among the components of the heart-lung machine, the membrane oxygenator has the largest contact area with blood and the narrow flow path through which blood passes. This leads to an increase in artificial lung pressure loss due to clogging of the lung flow path.

人工肺の圧力損失が上昇した場合、回路内圧の増大により、患者ヘの危害としては溶血が発生し、また、人工心肺回路接続部からの血液の漏れによる出血に至る場合も想定される。このような状況下に至った場合では、人工肺の交換を余儀なくされることとなる。   When the pressure loss of the oxygenator rises, hemolysis occurs as a harm to the patient due to an increase in the pressure in the circuit, and it is also assumed that bleeding may occur due to leakage of blood from the cardiopulmonary circuit connection. In such a situation, the artificial lung is forced to be replaced.

人工肺交換までの判断に至ってから、新しい人工肺を手術室ヘ持ち込み、開封などの準備を実施しなければならず、交換までの時間として5〜10分程度は要する。その間、人工肺の目詰りの程度が増加していき、人工肺の圧力損失は継続的に増加していく場合もある。そのため、体外循環技士は人工心肺の監視・操作に、通常よりもはるかに注意が必要となり、多大な負担を抱えることになる。   After reaching the decision to replace the oxygenator, a new oxygenator must be brought into the operating room and preparations such as opening must be made, and it takes about 5 to 10 minutes to replace it. Meanwhile, the degree of clogging of the oxygenator increases, and the pressure loss of the oxygenator may increase continuously. For this reason, extracorporeal circulation engineers are required to pay much more attention than usual for monitoring and operation of the cardiopulmonary bypass, and have a great burden.

人工肺交換までの間、体外循環技士は、回路内圧力の監視を行い、回路破裂による大量の出血や循環停止を第一優先として防止しなければならない。人工心肺回路の製品耐圧としては通常、500mmHg以下を推奨している。これに従って回路上限圧を定め(各施設によって異なる)、それ以上の圧になった場合には、例えば、ポンプの流量を低下させて対処する。非特許文献1には、センサによる回路内圧力の検出値に応じて、ローラーポンプの流量を制御する装置が開示されている。   Until the artificial lung exchange, the extracorporeal circulation engineer must monitor the pressure in the circuit and prevent a large amount of bleeding and circulatory arrest due to circuit rupture as the first priority. The recommended pressure resistance of the artificial cardiopulmonary circuit is usually 500 mmHg or less. In accordance with this, the circuit upper limit pressure is determined (differs depending on each facility), and when the pressure becomes higher than that, for example, the flow rate of the pump is reduced to cope with it. Non-Patent Document 1 discloses a device that controls the flow rate of a roller pump in accordance with a detected value of a pressure in a circuit by a sensor.

しかし、回路内圧力の上昇に対処するためにポンプの流量を低下させる方法の場合、一時的な圧力上昇は回避できても、即効性が低い。また、使用を継続すると、灌流量不足により十分な還流圧を与えることができず、抹消循環ヘ血液を送り込むことが不十分になる恐れがある。そのため、抹消の組織や臓器(脳、腎臓)などヘの酸素の運搬不足や血流の停滞が発生し、微小血栓等の発生も懸念される。さらに、低下させた血液流量でガス交換するので、酸素付加量が低下してしまい、患者ヘの酸素供給が不足する惧れもある。   However, in the case of a method of reducing the flow rate of the pump in order to cope with an increase in the pressure in the circuit, even if a temporary pressure increase can be avoided, the immediate effect is low. Moreover, if the use is continued, a sufficient reflux pressure cannot be applied due to insufficient perfusion rate, and there is a risk that blood will not be fed to the peripheral circulation. For this reason, insufficient transport of oxygen to peripheral tissues and organs (brain, kidney) and stagnation of blood flow occur, and there are concerns about the occurrence of microthrombi and the like. Furthermore, since the gas is exchanged at a reduced blood flow rate, the oxygen addition amount is reduced, and there is a possibility that the oxygen supply to the patient is insufficient.

このような問題を回避して、回路内圧力の上昇に対処するために、人工肺を短絡させるシャント回路を組み込んでおき、シャント回路を開放させて、回路内圧を下げる方法も知られている。シャント回路を使用した方法は、図7に示すように行われる。   In order to avoid such a problem and cope with an increase in the pressure in the circuit, a method is known in which a shunt circuit for short-circuiting the artificial lung is incorporated and the shunt circuit is opened to lower the circuit pressure. A method using a shunt circuit is performed as shown in FIG.

図7に示す人工肺装置では、人工肺1に接続された脱血回路2と返血回路3により血液循環回路が構成されている。脱血回路2に設けられたポンプ4により血液が駆動される。脱血回路2には更に貯血槽5が配置され、返血回路3には動脈フィルタ6が配置されている。さらに、シャント回路7が、人工肺1をバイパスするように脱血回路2及び返血回路3から分岐して設けられている。シャント回路7のチューブ7aは通常、鉗子8により遮断されている。回路内圧力が上限圧を超えた場合には、鉗子8を外してシャント回路7のチューブ7aを開放する。   In the oxygenator shown in FIG. 7, a blood circulation circuit is constituted by a blood removal circuit 2 and a blood return circuit 3 connected to the oxygenator 1. Blood is driven by a pump 4 provided in the blood removal circuit 2. A blood reservoir 5 is further arranged in the blood removal circuit 2, and an arterial filter 6 is arranged in the blood return circuit 3. Further, a shunt circuit 7 is provided to branch from the blood removal circuit 2 and the blood return circuit 3 so as to bypass the oxygenator 1. The tube 7 a of the shunt circuit 7 is normally blocked by the forceps 8. When the pressure in the circuit exceeds the upper limit pressure, the forceps 8 is removed and the tube 7a of the shunt circuit 7 is opened.

シャント回路7の流路が追加されることにより、回路内圧力を低下させる効果に即効性が得られる。また、体外循環血液量の欠乏、及び低血液流量でのガス交換に起因する酸素付加量の低下も抑制することができる。   By adding the flow path of the shunt circuit 7, an immediate effect is obtained for the effect of reducing the pressure in the circuit. Moreover, it is possible to suppress a decrease in the amount of oxygen added due to lack of extracorporeal blood volume and gas exchange at a low blood flow rate.

「回路内圧によるローラーポンプの回転制御装置の開発」、百瀬直樹他、人工臓器27巻2号、1998年"Development of a roller pump rotation control device using internal circuit pressure", Naoki Momose et al., Artificial organ Vol.27, No.2, 1998

しかし、シャント回路を使用した方法の場合、シャント回路7側には、チューブ7aの径によっても異るが、酸素化されていない静脈血が大量に流れ込むので、患者の血液が酸素欠乏に至る惧れがある。通常、人工肺1で酸素加された血液に静脈血が混合されると、患者ヘ送られる血液の酸素飽和度は、酸素加血液と静脈血の混合比により決定される。例えば、酸素加血液(100%)と静脈血(65%)の混合比が1:1の場合は、酸表飽和度80%程度の血液を患者へ送り込むことになる。   However, in the case of a method using a shunt circuit, a large amount of non-oxygenated venous blood flows into the shunt circuit 7 side depending on the diameter of the tube 7a. There is. Normally, when venous blood is mixed with blood oxygenated by the oxygenator 1, the oxygen saturation of the blood sent to the patient is determined by the mixing ratio of oxygenated blood and venous blood. For example, when the mixing ratio of oxygenated blood (100%) and venous blood (65%) is 1: 1, blood with acid surface saturation of about 80% is sent to the patient.

そのため、なるべく静脈血は混合させない方が患者への酸素供給を維持できることになる。しかし、シャント回路を設けただけの回路構成では、人工肺への流量は、灌流量及びシャントチューブ径により異なり、制御することは困難である。   Therefore, the oxygen supply to the patient can be maintained without mixing venous blood as much as possible. However, in a circuit configuration in which only a shunt circuit is provided, the flow rate to the artificial lung varies depending on the perfusion rate and the shunt tube diameter and is difficult to control.

従って本発明は、人工肺に起因する圧上昇が生じた場合の人工肺交換までの準備の間、血液循環回路の内圧上昇に伴う回路の破裂による大量出血及び循環停止を防止し、患者への適正灌流量を維持したまま、可能な限り酸素加した血液を患者へ供給することを可能とする人工肺装置を提供することを目的とする。   Therefore, the present invention prevents mass bleeding and circulatory arrest due to the rupture of the circuit due to the increase in the internal pressure of the blood circulation circuit during the preparation until the oxygenation replacement when the pressure increase due to the oxygenation occurs. It is an object of the present invention to provide an oxygenator capable of supplying oxygenated blood as much as possible to a patient while maintaining an appropriate perfusion rate.

上記課題を解決するために、本発明の第1構成の人工肺装置は、脱血部と返血部を有する血液循環回路と、前記血液循環回路中に挿入された人工肺と、前記人工肺の入口側で前記血液循環回路中に挿入された血液ポンプと、前記血液循環回路から分岐して前記人工肺をバイパスするシャント回路と、前記シャント回路の流路の開放度を調整する開放度調整装置と、前記人工肺の入口側と前記血液ポンプの間の前記血液循環回路における圧力である入口圧P1を検出する入口圧センサと、前記入口圧センサが検出する前記入口圧P1に基づき、前記開放度調整装置の動作を制御する制御部とを備える。前記制御部は、所定の値に設定された制御上限値に基づく制御を行い、前記入口圧P1が前記制御上限値を超えた場合に、前記入口圧P1が前記制御上限値以下にに維持されるように前記開放度調整装置を制御することを特徴とする。   In order to solve the above-described problem, an oxygenator of the first configuration according to the present invention includes a blood circulation circuit having a blood removal part and a blood return part, an artificial lung inserted into the blood circulation circuit, and the oxygenator. A blood pump inserted into the blood circulation circuit on the inlet side, a shunt circuit that branches from the blood circulation circuit and bypasses the artificial lung, and an openness adjustment that adjusts the openness of the flow path of the shunt circuit An inlet pressure sensor for detecting an inlet pressure P1 which is a pressure in the blood circulation circuit between the inlet side of the oxygenator and the blood pump, and the inlet pressure P1 detected by the inlet pressure sensor, And a control unit for controlling the operation of the opening degree adjusting device. The control unit performs control based on a control upper limit value set to a predetermined value, and when the inlet pressure P1 exceeds the control upper limit value, the inlet pressure P1 is maintained below the control upper limit value. The opening degree adjusting device is controlled as described above.

また、本発明の第2構成の人工肺装置は、脱血部と返血部を有する血液循環回路と、前記血液循環回路中に挿入された人工肺と、前記人工肺の入口側で前記血液循環回路中に挿入された血液ポンプと、前記血液循環回路から分岐して前記人工肺をバイパスするシャント回路と、前記シャント回路の開放度を調整する差圧応動弁装置とを備え、前記差圧応動弁装置は、前記シャント回路の流路中に挿入された弁支持枠と、前記弁支持枠に支持されて前記シャント回路の流路を封鎖する差圧応動弁により構成され、前記差圧応動弁は、前記人工肺の入口側の圧力である入口圧P1を受ける面と、その裏面である前記人工肺の出口側の圧力である出口圧P2を受ける面とを備え、前記入口圧P1と前記出口圧P2の差圧(P1−P2)が所定値未満であるときは、前記流路を閉塞し、前記差圧(P1−P2)が所定値以上の陽圧になったときに、前記流路を開放するように構成されたことを特徴とする。   The oxygenator of the second configuration of the present invention includes a blood circulation circuit having a blood removal part and a blood return part, an artificial lung inserted into the blood circulation circuit, and the blood on the inlet side of the artificial lung. A blood pump inserted into the circulation circuit; a shunt circuit that branches from the blood circulation circuit and bypasses the artificial lung; and a differential pressure responsive valve device that adjusts an open degree of the shunt circuit, the differential pressure The responsive valve device includes a valve support frame inserted into the flow path of the shunt circuit, and a differential pressure responsive valve supported by the valve support frame and sealing the flow path of the shunt circuit. The valve includes a surface that receives an inlet pressure P1 that is a pressure on the inlet side of the oxygenator and a surface that receives an outlet pressure P2 that is a pressure on the outlet side of the oxygenator that is the back surface of the valve, and the inlet pressure P1 The differential pressure (P1-P2) of the outlet pressure P2 is less than a predetermined value Some time, closes the passage, when the differential pressure (P1-P2) becomes a positive pressure above a predetermined value, characterized in that it is configured to open the flow path.

上記構成の人工肺装置によれば、入口圧P1に応じてシャント回路の開放度が自動的に調整され、急激な圧力上昇に対しても、回路破裂による大量の出血及び循環停止を防止できる。しかも、シャント回路により人工肺をバイパスして送血される静脈血を最小限に抑制して、人工肺への適正な灌流量を維持し、可能な限り酸素加された血液を供給することが可能である。従って、人工肺の圧力上昇時には、人工肺の交換の準備など多くの業務を伴う体外循環技士の負担を軽減できる。   According to the oxygenator of the above configuration, the degree of opening of the shunt circuit is automatically adjusted according to the inlet pressure P1, and a large amount of bleeding and circulation stoppage due to circuit rupture can be prevented even when the pressure rises rapidly. In addition, the venous blood that is sent by bypassing the oxygenator by the shunt circuit is minimized, the proper perfusion rate to the oxygenator is maintained, and oxygenated blood is supplied as much as possible. Is possible. Therefore, when the pressure of the artificial lung is increased, the burden on the extracorporeal circulation engineer accompanied with many tasks such as preparation for replacement of the artificial lung can be reduced.

本発明の実施の形態1における人工肺装置を示す概略構成図1 is a schematic configuration diagram showing an oxygenator according to Embodiment 1 of the present invention. 同人工肺装置の要部を示す正面図Front view showing the main part of the oxygenator 同人工肺装置の動作を示すタイミング図Timing chart showing the operation of the oxygenator 本発明の実施の形態2における人工肺装置を示す概略構成図Schematic configuration diagram showing an oxygenator in Embodiment 2 of the present invention 同人工肺装置のシャント回路の一部を示す断面図Sectional drawing which shows a part of shunt circuit of the oxygenator 図5のシャント回路の要部を拡大して示す断面図Sectional drawing which expands and shows the principal part of the shunt circuit of FIG. 従来例の人工肺装置を示す概略構成図Schematic configuration diagram showing a conventional oxygenator

本発明の人工肺装置は上記構成を基本として、以下のような態様をとることができる。   The oxygenator of the present invention can take the following aspects based on the above configuration.

すなわち、第1構成の人工肺装置において、前記制御部は、所定の値に設定された制御下限値及び前記制御上限値に基づく制御を行い、前記血液循環回路を介した前記人工肺への灌流開始から、前記入口圧P1が最初に前記制御上限値を超えるまでは、前記シャント回路が完全に閉鎖された状態を維持するように前記開放度調整装置を制御し、前記入口圧P1が一旦前記制御上限値を超えた後には、前記入口圧P1が前記制御下限値と前記制御上限値の間の範囲に維持されるように前記開放度調整装置を制御する構成とすることができる。   That is, in the oxygenator of the first configuration, the control unit performs control based on the control lower limit value and the control upper limit value set to predetermined values, and perfuses the oxygenator via the blood circulation circuit. From the start, until the inlet pressure P1 first exceeds the control upper limit value, the opening degree adjusting device is controlled so as to maintain the shunt circuit in a completely closed state, and the inlet pressure P1 is temporarily After the control upper limit value is exceeded, the opening degree adjusting device may be controlled such that the inlet pressure P1 is maintained in a range between the control lower limit value and the control upper limit value.

また、前記血液循環回路における前記人工肺を経由する流路である主回路を流れる液体流量をQmとし、前記シャント回路を流れる液体流量をQsとしたとき、両流量の比率Qs/Qmを、前記入口圧P1に基づき前記開放度調整装置によって制御する構成とすることができる。   Further, when the liquid flow rate flowing through the main circuit, which is a flow path through the artificial lung in the blood circulation circuit, is Qm, and the liquid flow rate flowing through the shunt circuit is Qs, the ratio Qs / Qm of both flow rates is calculated as follows. It can be set as the structure controlled by the said opening degree adjustment apparatus based on the inlet pressure P1.

また、前記制御部は、前記入口圧P1が前記制御上限値を超えたときは、前記シャント回路の開放度を増大させるように前記開放度調整装置を制御し、前記入口圧P1が一旦前記制御上限値を超えた後に前記制御下限値以上で前記制御上限値以下の範囲となったときは、そのときの前記シャント回路の開放度を維持するように前記開放度調整装置を制御し、前記入口圧P1が一旦前記制御上限値を超えた後に前記制御下限値未満となったときは、前記シャント回路の開放度を減少させるように前記開放度調整装置を制御する構成とすることができる。   Further, when the inlet pressure P1 exceeds the control upper limit value, the control unit controls the opening degree adjusting device so as to increase the opening degree of the shunt circuit, and the inlet pressure P1 is temporarily controlled. When the upper limit value is exceeded and the control lower limit value is reached and the control upper limit value is not reached, the opening degree adjusting device is controlled to maintain the opening degree of the shunt circuit at that time, and the inlet When the pressure P1 once exceeds the control upper limit value and then becomes less than the control lower limit value, the opening degree adjusting device may be controlled so as to reduce the opening degree of the shunt circuit.

また、前記制御部は、前記シャント回路の開放度の増大または減少を所定の速度で行うように前記開放度調整装置を制御する構成とすることができる。   Further, the control unit may control the open degree adjusting device so as to increase or decrease the open degree of the shunt circuit at a predetermined speed.

また、前記シャント回路の流路はチューブにより形成され、前記開放度調整装置による前記シャント回路の開放度の調整は、前記チューブに対する押圧力を変化させることにより行われる構成とすることができる。   Further, the flow path of the shunt circuit is formed by a tube, and the adjustment of the opening degree of the shunt circuit by the opening degree adjusting device can be performed by changing the pressing force on the tube.

また、前記人工肺の出口側の前記血液循環回路における圧力である出口圧P2を検出する出口圧センサを備え、前記制御部は、前記入口圧P1と前記出口圧P2の差圧である人工肺圧力損失(P1−P2)を算出して、前記人工肺圧力損失(P1−P2)が所定の大きさを超えたときのみ、前記開放度調整装置による前記シャント回路の開放度の調整を行う構成とすることが好ましい。   In addition, an outlet pressure sensor that detects an outlet pressure P2 that is a pressure in the blood circulation circuit on the outlet side of the oxygenator is provided, and the control unit is an oxygenator that is a differential pressure between the inlet pressure P1 and the outlet pressure P2. A configuration in which the pressure loss (P1-P2) is calculated and the openness of the shunt circuit is adjusted by the openness adjusting device only when the artificial lung pressure loss (P1-P2) exceeds a predetermined magnitude. It is preferable that

以下、本発明の実施形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1は、本発明の実施の形態1における人工肺装置を示す概略構成図である。この人工肺装置の基本的な構成は、図7に示した従来例の装置と同様であり、図7に示した要素と同様の要素については同一の参照符号を付して説明する。
(Embodiment 1)
FIG. 1 is a schematic configuration diagram showing an oxygenator according to Embodiment 1 of the present invention. The basic configuration of this oxygenator is the same as that of the conventional apparatus shown in FIG. 7, and the same elements as those shown in FIG.

図1に示す人工肺装置では、人工肺1の入口側及び出口側にそれぞれ接続された脱血回路2と返血回路3により血液循環回路が構成されている。脱血回路2には、ポンプ4及び貯血槽5が配置され、返血回路3には動脈フィルタ6が配置されている。血液循環回路から分岐して、人工肺1の入口側と出口側の間をバイパスするシャント回路7が設けられている。開放度調整装置9は、シャント回路7の流路の開放度を調整するために設けられ、後述するようにチューブ7aに装着されている。   In the oxygenator shown in FIG. 1, a blood circulation circuit is constituted by a blood removal circuit 2 and a blood return circuit 3 connected to the inlet side and the outlet side of the artificial lung 1, respectively. The blood removal circuit 2 is provided with a pump 4 and a blood reservoir 5, and the blood return circuit 3 is provided with an arterial filter 6. A shunt circuit 7 that branches off from the blood circulation circuit and bypasses between the inlet side and the outlet side of the artificial lung 1 is provided. The opening degree adjusting device 9 is provided to adjust the opening degree of the flow path of the shunt circuit 7, and is attached to the tube 7a as will be described later.

また、人工肺1の入口側とポンプ4の間には入口圧センサ10が配置され、人工肺1の入口側における圧力である入口圧(送血圧)P1を検出する。また、人工肺1の出口側には出口圧センサ11が配置され、出口側における圧力である出口圧P2を検出する。入口圧P1及び出口圧P2の検出値は制御部12に供給され、制御部12はそれらの検出値に基づき開放度調整装置9の動作を制御する。   An inlet pressure sensor 10 is arranged between the inlet side of the oxygenator 1 and the pump 4 to detect an inlet pressure (blood pressure supply) P1 that is a pressure on the inlet side of the oxygenator 1. In addition, an outlet pressure sensor 11 is disposed on the outlet side of the oxygenator 1, and detects an outlet pressure P2 that is a pressure on the outlet side. The detected values of the inlet pressure P1 and the outlet pressure P2 are supplied to the control unit 12, and the control unit 12 controls the operation of the opening degree adjusting device 9 based on the detected values.

開放度調整装置9の構造の一例を、図2に示す。この開放度調整装置9は、シャント回路7のチューブ7aを上下方向に挟んで配置された固定板13と可動板14を有する。可動板14は支持部材15に固定されており、支持部材15の上下動に伴って変位し、固定板13との間の間隔を変化させる。支持部材15は、案内部材16に摺動可能に装着されており、上下動を案内される。支持部材15にはボールネジ17が取り付けられており、モータ18の回転による上下方向の駆動力が、ボールネジ17を介して支持部材15に伝達される。   An example of the structure of the opening degree adjusting device 9 is shown in FIG. The opening degree adjusting device 9 includes a fixed plate 13 and a movable plate 14 that are arranged with the tube 7a of the shunt circuit 7 sandwiched in the vertical direction. The movable plate 14 is fixed to the support member 15, and is displaced as the support member 15 moves up and down to change the interval between the movable plate 14 and the fixed plate 13. The support member 15 is slidably mounted on the guide member 16 and is guided to move up and down. A ball screw 17 is attached to the support member 15, and a vertical driving force due to the rotation of the motor 18 is transmitted to the support member 15 through the ball screw 17.

モータ18は、図1に示した制御部12によって、その回転方向及び回転速度の制御を受ける。モータ18の回転を制御して固定板13と可動板14の間の間隔を変化させることにより、チューブ7aの内腔の開放度、従ってシャント回路7の流路の開放度を調整することができる。   The motor 18 is controlled by the control unit 12 shown in FIG. By controlling the rotation of the motor 18 to change the distance between the fixed plate 13 and the movable plate 14, the degree of opening of the lumen of the tube 7a and hence the degree of opening of the flow path of the shunt circuit 7 can be adjusted. .

制御部12によるシャント回路7の流路の開放度の制御について、図3を参照して説明する。図3は制御方法の一例を示すものであり、横軸は時間、縦軸は入口圧P1である。入口圧P1の制御下限値及び制御上限値は、制御部12に設定された所定値である。t1〜t6は、入口圧P1の変化点を示す。変化点t1〜t6の各時点間における線分は、入口圧P1の変動に応じた一定の制御が行われている状態を表す。なお、制御上限値は、人工心肺回路の製品耐圧としての回路上限圧に対して適切に設定される。すなわち、人工肺交換までの準備の間、血液循環回路の内圧上昇に伴う回路の破裂を防止できるように設定される。   Control of the opening degree of the flow path of the shunt circuit 7 by the control unit 12 will be described with reference to FIG. FIG. 3 shows an example of the control method. The horizontal axis represents time, and the vertical axis represents the inlet pressure P1. The control lower limit value and the control upper limit value of the inlet pressure P1 are predetermined values set in the control unit 12. t1 to t6 indicate changing points of the inlet pressure P1. A line segment between the time points of the change points t1 to t6 represents a state in which constant control is performed according to the fluctuation of the inlet pressure P1. The control upper limit value is appropriately set with respect to the circuit upper limit pressure as the product pressure resistance of the artificial cardiopulmonary circuit. That is, the circuit is set so as to prevent the circuit from being ruptured due to an increase in the internal pressure of the blood circulation circuit during the preparation up to the oxygenator replacement.

まずt0は、血液循環回路を介した人工肺1への灌流開始時点である。t0からt1までは、入口圧P1は通常値を維持する。使用時間の経過とともに、何らかの原因で人工肺1の目詰りが生じ、時点t1から入口圧P1が上昇を開始し、t2では制御上限値を超える。その後、t3からt6に示すように、開放度調整装置9の制御に応じて入口圧P1が変化し、各線分が示す期間において、それぞれの状態に応じた制御が行われる。   First, t0 is a perfusion start time to the oxygenator 1 through the blood circulation circuit. From t0 to t1, the inlet pressure P1 maintains a normal value. As the usage time elapses, the artificial lung 1 is clogged for some reason, and the inlet pressure P1 starts to rise from the time point t1, and exceeds the control upper limit value at t2. Thereafter, as shown from t3 to t6, the inlet pressure P1 changes according to the control of the opening degree adjusting device 9, and the control corresponding to each state is performed in the period indicated by each line segment.

入口圧センサ10が検出する入口圧P1に基づく、制御部12による開放度調整装置9の動作の制御は、基本的には次のとおりである。まず、血液循環回路を介した人工肺1への灌流開始(t0)から、入口圧P1が最初に制御上限値を超えるまで(t2)の期間には、シャント回路7が完全に閉鎖された状態を維持するように開放度調整装置9を制御する。すなわち、図2に示すモーター18を正回転させて可動板14を下方に移動させ、固定板13との間でチューブ7aを挟んで完全に閉塞させた状態を維持する。   Control of the operation of the opening degree adjusting device 9 by the controller 12 based on the inlet pressure P1 detected by the inlet pressure sensor 10 is basically as follows. First, the shunt circuit 7 is completely closed during the period from the start of perfusion to the oxygenator 1 via the blood circulation circuit (t0) until the inlet pressure P1 first exceeds the control upper limit (t2). The opening degree adjusting device 9 is controlled so as to maintain the above. That is, the motor 18 shown in FIG. 2 is rotated forward to move the movable plate 14 downward, and the state in which the tube 7a is sandwiched between the movable plate 14 and the fixed plate 13 is completely closed.

そして、入口圧P1が一旦制御上限値を超えた後(t2以降)には、入口圧P1を制御下限値と制御上限値の間の範囲に維持するように開放度調整装置9を制御する。そのための制御の一例は、以下のとおりである。   Then, after the inlet pressure P1 once exceeds the control upper limit value (after t2), the opening degree adjusting device 9 is controlled so as to maintain the inlet pressure P1 in a range between the control lower limit value and the control upper limit value. An example of the control for that is as follows.

すなわち制御部12は、入口圧P1が制御上限値を超えたとき(t2)に、シャント回路7の開放度を増大させるように開放度調整装置9を制御する。すなわち、図2に示すモータ18を逆回転させ、可動板14を上方に移動させて、チューブ7aを開放する方向に調整する。その結果、シャント回路7を流動する血流により、入口圧P1が降下し始める。   That is, the controller 12 controls the opening degree adjusting device 9 so as to increase the opening degree of the shunt circuit 7 when the inlet pressure P1 exceeds the control upper limit value (t2). That is, the motor 18 shown in FIG. 2 is rotated in the reverse direction, and the movable plate 14 is moved upward to adjust the direction in which the tube 7a is opened. As a result, the inlet pressure P1 begins to drop due to the blood flow flowing through the shunt circuit 7.

入口圧P1が制御下限値と制御上限値の間の範囲となったとき(t3)に、そのときのシャント回路7の開放度を維持するように開放度調整装置9が制御される。すなわち、モータ18は一旦待機エリアへ移行し、停止する。それにより暫時、入口圧P1が一定の値に維持される。その後、再び入口圧P1が上昇し始め(t4)、制御上限値を超えたとき(t5)に、シャント回路7の開放度を増大させるように開放度調整装置9が制御される。   When the inlet pressure P1 is in a range between the control lower limit value and the control upper limit value (t3), the opening degree adjusting device 9 is controlled so as to maintain the opening degree of the shunt circuit 7 at that time. That is, the motor 18 temporarily moves to the standby area and stops. Thereby, the inlet pressure P1 is maintained at a constant value for a while. Thereafter, the inlet pressure P1 starts to increase again (t4), and when the control upper limit value is exceeded (t5), the opening degree adjusting device 9 is controlled so as to increase the opening degree of the shunt circuit 7.

その結果、シャント回路7を流動する血流が更に増大して、入口圧P1が再度降下し始める。この場合、入口圧P1の上昇が、可逆的な血液の変性に伴う人工肺1の目詰まりに起因していた場合には、人工肺の目詰まりが解消されていく場合もある。そのため、入口圧P1が制御下限値未満となる場合(t6)も発生する。そのような場合には、シャント回路7の開放度を減少させるように開放度調整装置9を制御する。すなわち、モータ18を正回転させて可動板14を下方に移動させ、チューブ7aを閉塞させる。それにより、入口圧P1は上昇し始める。この動作は、可能な限りシャント流量を少なくすることで、酸素加した血液を患者へ供給する利点をもたらす。完全にチューブ7aが閉塞された状態になれば、入口圧P1が再び制御上限値を超えない限り、上記の制御動作は停止する。   As a result, the blood flow flowing through the shunt circuit 7 further increases, and the inlet pressure P1 begins to drop again. In this case, when the increase in the inlet pressure P1 is caused by clogging of the artificial lung 1 due to reversible blood degeneration, the clogging of the artificial lung may be resolved. Therefore, the case where the inlet pressure P1 is less than the control lower limit value (t6) also occurs. In such a case, the opening degree adjusting device 9 is controlled so as to reduce the opening degree of the shunt circuit 7. That is, the motor 18 is rotated forward to move the movable plate 14 downward to close the tube 7a. Thereby, the inlet pressure P1 starts to rise. This action provides the advantage of supplying oxygenated blood to the patient by reducing the shunt flow as much as possible. If the tube 7a is completely closed, the control operation is stopped unless the inlet pressure P1 again exceeds the control upper limit value.

以上のような、入口圧P1が一旦制御上限値を超えた後の制御部12の動作は、以下のように記述できる。すなわち制御部12は、入口圧P1が制御上限値を超えたときに、シャント回路7の開放度を増大させるように開放度調整装置9を制御する。また、入口圧P1が一旦制御上限値を超えた後に制御下限値以上で制御上限値以下の範囲となったときは、そのときのシャント回路7の開放度を維持するように開放度調整装置9を制御する。更に、入口圧P1が一旦制御上限値を超えた後に制御下限値未満となったときは、シャント回路7の開放度を減少させるように開放度調整装置9を制御する。   The operation of the control unit 12 after the inlet pressure P1 once exceeds the control upper limit value as described above can be described as follows. That is, the controller 12 controls the opening degree adjusting device 9 so as to increase the opening degree of the shunt circuit 7 when the inlet pressure P1 exceeds the control upper limit value. Further, when the inlet pressure P1 once exceeds the control upper limit value and falls within the range between the control lower limit value and the control upper limit value, the opening degree adjusting device 9 is maintained so as to maintain the opening degree of the shunt circuit 7 at that time. To control. Further, when the inlet pressure P1 once exceeds the control upper limit value and becomes less than the control lower limit value, the opening degree adjusting device 9 is controlled so as to reduce the opening degree of the shunt circuit 7.

なお、制御部12が、所定の値に設定された制御上限値に基づく制御を行い、入口圧P1が制御上限値を超えた場合に、入口圧P1が制御上限値以下に維持されるように開放度調整装置9を制御する構成とした場合でも、相応の効果を得ることが可能である。   In addition, when the control part 12 performs control based on the control upper limit value set to the predetermined value and the inlet pressure P1 exceeds the control upper limit value, the inlet pressure P1 is maintained below the control upper limit value. Even when the opening degree adjusting device 9 is controlled, a corresponding effect can be obtained.

また、血液循環回路における人工肺1を経由する流路である主回路を流れる液体流量をQmとし、シャント回路7を流れる液体流量をQsとしたとき、両流量の比率Qs/Qmを、入口圧P1に基づき開放度調整装置9によって制御する構成とすれば、より良好な効果を得ることが可能である。   Further, when the liquid flow rate flowing through the main circuit, which is a flow path through the artificial lung 1 in the blood circulation circuit, is Qm, and the liquid flow rate flowing through the shunt circuit 7 is Qs, the ratio Qs / Qm of both flow rates is determined as the inlet pressure. If the configuration is controlled by the opening degree adjusting device 9 based on P1, a better effect can be obtained.

なお、制御部12は、シャント回路7の開放度の増大または減少を所定の速度で行うように開放度調整装置9を制御することが望ましい。   It is desirable that the control unit 12 controls the opening degree adjusting device 9 so that the opening degree of the shunt circuit 7 is increased or decreased at a predetermined speed.

本実施の形態の人工肺装置によれば、急激な圧力上昇に対しても、シャント回路が開放されて自動的に圧力を調整する為、回路破裂による大量の出血及び循環停止を防止できる。しかも、シャント回路により人工肺をバイパスして送血される静脈血を最小限に抑制して、人工肺1への適正な灌流量を維持し、可能な限り酸素加された血液を供給することが可能である。従って、人工肺1の圧力上昇時に、人工肺の交換の準備など多くの業務を伴う体外循環技士の負担を軽減できる。   According to the oxygenator of the present embodiment, even when the pressure rises suddenly, the shunt circuit is opened and the pressure is automatically adjusted, so that a large amount of bleeding and circulation stoppage due to circuit rupture can be prevented. In addition, the venous blood sent by bypassing the oxygenator by the shunt circuit is minimized to maintain the proper perfusion to the oxygenator 1 and supply oxygenated blood as much as possible. Is possible. Therefore, when the pressure of the artificial lung 1 is increased, it is possible to reduce the burden on the extracorporeal circulation engineer accompanied with many tasks such as preparation for replacement of the artificial lung.

以上のような、本実施の形態の人工肺装置を構成するための開放度調整装置9及び制御部12は、通常の人工心肺回路に組み込むことが可能である。それにより、人工肺入口圧(送血圧)P1を常時監視し、人工肺の過度な圧力上昇が生じた場合に、シャント回路7を開放させ回路内圧を調整し、可能な限り酸素加された血液を患者へ送り込むことが可能となる。   The openness adjusting device 9 and the control unit 12 for configuring the oxygenator of the present embodiment as described above can be incorporated in a normal oxygenator circuit. Thereby, the oxygenator inlet pressure (blood pressure supply) P1 is constantly monitored, and when an excessive pressure rise in the oxygenator occurs, the shunt circuit 7 is opened to adjust the circuit pressure, and oxygenated blood as much as possible. Can be sent to the patient.

なお、人工肺1に関わる要因以外の、動脈フィルターの目詰りや送血カニューレの送血部閉塞等により圧力が上昇した場合でも、入口圧P1は増加する。そこで、入口圧P1に加えて、出口圧センサ11が検出する出口圧P2も用いた制御を行うことが望ましい。すなわち、入口圧P1と出口圧P2を用いて、人工肺圧力損失(P1−P2)を算出する。そして、入口圧P1は増加しても人工肺圧力損失(P1−P2)が増大していない場合には、人工肺1以外の要因が寄与しているため、上述の制御動作が行われないようにする。例えば、人工肺圧力損失(P1−P2)が所定の大きさを超えたときのみ、開放度調整装置によるシャント回路の開放度の調整を行う構成とする。   The inlet pressure P1 increases even when the pressure rises due to clogging of the arterial filter or blockage of the blood feeding part of the blood feeding cannula other than the factors relating to the artificial lung 1. Therefore, it is desirable to perform control using the outlet pressure P2 detected by the outlet pressure sensor 11 in addition to the inlet pressure P1. That is, the artificial lung pressure loss (P1-P2) is calculated using the inlet pressure P1 and the outlet pressure P2. If the artificial lung pressure loss (P1-P2) does not increase even though the inlet pressure P1 is increased, factors other than the artificial lung 1 contribute to the above-described control operation. To. For example, the open degree of the shunt circuit is adjusted by the open degree adjusting device only when the artificial lung pressure loss (P1-P2) exceeds a predetermined magnitude.

なお、上記構成において、人工肺圧力上昇が生じた場合の安全確保の観点から、シャント回路7に用いられるチューブ7aの径は、人工肺1が完全に閉塞した場合に、チューブ7aが完全に開放された開放度最大の状態で、入口圧P1が人工心肺回路の製品耐圧としての回路上限圧を超えないように選択される。   In the above configuration, from the viewpoint of ensuring safety when an artificial lung pressure rise occurs, the diameter of the tube 7a used for the shunt circuit 7 is set so that the tube 7a is completely opened when the artificial lung 1 is completely occluded. In the opened maximum state, the inlet pressure P1 is selected so as not to exceed the circuit upper limit pressure as the product pressure resistance of the oxygenator circuit.

(実施の形態2)
図4は、本発明の実施の形態2における人工肺装置を示す概略構成図である。本実施の形態の人工肺装置は、実施の形態1の人工肺装置における開放度調整装置9及び制御部12により構成される制御システムに代えて、シャント回路の流路中に差圧応動弁を挿入してシャント回路の開放度を調整するように構成したものである。従って、図1に示した実施の形態1の人工肺装置と同様の要素については、同一の参照符号を付して説明の繰り返しを省略する。
(Embodiment 2)
FIG. 4 is a schematic configuration diagram showing the oxygenator according to Embodiment 2 of the present invention. The oxygenator of the present embodiment has a differential pressure responsive valve in the flow path of the shunt circuit in place of the control system configured by the opening degree adjusting device 9 and the control unit 12 in the oxygenator of Embodiment 1. It is configured to be inserted to adjust the openness of the shunt circuit. Accordingly, the same elements as those of the oxygenator of Embodiment 1 shown in FIG. 1 are denoted by the same reference numerals, and the description thereof will not be repeated.

図4において、シャント回路7を形成するチューブ7aには、差圧応動弁装置19が挿入されている。差圧応動弁装置19は、図5に示すように、弁支持枠20と差圧応動弁21からなる。チューブ7aが中央部で切断され、弁支持枠20の両端にそれぞれ接続されている。図5に破線枠Aで示した部分の拡大図を、図6に示す。   In FIG. 4, a differential pressure responsive valve device 19 is inserted into a tube 7 a forming the shunt circuit 7. As shown in FIG. 5, the differential pressure responsive valve device 19 includes a valve support frame 20 and a differential pressure responsive valve 21. The tubes 7a are cut at the center and connected to both ends of the valve support frame 20, respectively. FIG. 6 shows an enlarged view of a portion indicated by a broken line frame A in FIG.

図6に示すように、弁支持枠20の内腔には、軸方向中央にフランジ部22により径小部23が形成されている。この径小部23の流路を封鎖するように差圧応動弁21が装着されている。差圧応動弁21は、弁部21aと係止突起21bを有し、いずれも径小部23の径より径大である。弁部21aと係止突起21bがフランジ部22の両側に位置することにより、差圧応動弁21はフランジ部22に保持される。   As shown in FIG. 6, a small-diameter portion 23 is formed in the lumen of the valve support frame 20 by a flange portion 22 at the center in the axial direction. A differential pressure responsive valve 21 is mounted so as to block the flow path of the small diameter portion 23. The differential pressure responsive valve 21 has a valve portion 21 a and a locking projection 21 b, both of which are larger in diameter than the small diameter portion 23. Since the valve portion 21 a and the locking projection 21 b are positioned on both sides of the flange portion 22, the differential pressure responsive valve 21 is held by the flange portion 22.

差圧応動弁21は、図の左側の面が入口圧P1を受け、その裏面である右側の面が出口圧P2を受ける。弁支持枠20の軸方向における弁部21aと係止突起21bの寸法の関係が適切に設定されることにより、弁部21aの円Cで示す箇所がフランジ部22に向かって押圧されている。従って、入口圧P1と出口圧P2の差圧(P1−P2)が所定値未満であるときは、流路を閉塞し、差圧(P1−P2)が所定値以上の陽圧になったときに、流路を開放するように構成されている。   The differential pressure responsive valve 21 receives the inlet pressure P1 on the left side in the drawing and receives the outlet pressure P2 on the right side which is the back side. By appropriately setting the dimensional relationship between the valve portion 21 a and the locking projection 21 b in the axial direction of the valve support frame 20, the portion indicated by the circle C of the valve portion 21 a is pressed toward the flange portion 22. Therefore, when the differential pressure (P1-P2) between the inlet pressure P1 and the outlet pressure P2 is less than a predetermined value, the flow path is closed and the differential pressure (P1-P2) becomes a positive pressure equal to or higher than the predetermined value. In addition, the flow path is opened.

この差圧応動弁装置19の動作は次のとおりである。すなわち、入口圧P1が上昇すると差圧応動弁21が矢印Bの方向へと押される。押されることで円Cで示す箇所の面圧が緩み、その箇所が開放されて血液が出口圧P2側へ移行していく。この開放は、入口圧P1と出口圧P2の圧力差により生じる。差圧応動弁21の面圧の強度(材料硬度、寸法)を調整することで、開放される上限圧を規定することができる。   The operation of this differential pressure responsive valve device 19 is as follows. That is, when the inlet pressure P1 rises, the differential pressure responsive valve 21 is pushed in the direction of arrow B. When pressed, the surface pressure at the location indicated by the circle C is loosened, the location is released, and blood moves toward the outlet pressure P2. This opening is caused by a pressure difference between the inlet pressure P1 and the outlet pressure P2. By adjusting the strength (material hardness, dimensions) of the surface pressure of the differential pressure responsive valve 21, the upper limit pressure to be released can be defined.

このようにして、差圧応動弁21により、所定の一定以上の圧力差が生じた場合に流路を開放する機能を、シャント回路7に組み込むことができる。それにより、人工肺に起因する急激な圧力上昇に対して、シャント回路7が開放されて自動的に圧力を調整する為、回路破裂による大量の出血及び循環停止を防止できる。   In this manner, the function of opening the flow path when a pressure difference greater than a predetermined value is generated by the differential pressure responsive valve 21 can be incorporated in the shunt circuit 7. As a result, the shunt circuit 7 is opened and the pressure is automatically adjusted in response to a rapid pressure increase caused by the artificial lung, so that a large amount of bleeding and circulation stop due to circuit rupture can be prevented.

本実施の形態の人工肺装置によれば、急激な圧力上昇に対しても、シャント回路が開放されて自動的に圧力を調整し、しかも、シャント回路により人工肺をバイパスして送血される静脈血を最小限に抑制した適正な灌流量を維持して、可能な限り酸素加された血液を供給することが可能である。従って、膜型人工肺を用いた人工肺装置として好適である。   According to the oxygenator of the present embodiment, the shunt circuit is opened and the pressure is automatically adjusted even when sudden pressure rises, and blood is fed by bypassing the oxygenator by the shunt circuit. It is possible to supply the oxygenated blood as much as possible while maintaining a proper perfusion rate with minimal venous blood. Therefore, it is suitable as an oxygenator using a membrane oxygenator.

1 人工肺
2 脱血回路
3 返血回路
4 ポンプ
5 貯血槽
6 動脈フィルタ
7 シャント回路
7a チューブ
8 鉗子
9 開放度調整装置
10 入口圧センサ
11 出口圧センサ
12 制御部
13 固定板
14 可動板
15 支持部材
16 案内部材
17 ボールネジ
18 モータ
19 差圧応動弁装置
20 弁支持枠
21 差圧応動弁
21a 弁部
21b 係止突起
22 フランジ部
23 径小部
DESCRIPTION OF SYMBOLS 1 Artificial lung 2 Blood removal circuit 3 Blood return circuit 4 Pump 5 Blood reservoir 6 Arterial filter 7 Shunt circuit 7a Tube 8 Forceps 9 Opening degree adjustment apparatus 10 Inlet pressure sensor 11 Outlet pressure sensor 12 Control part 13 Fixed plate 14 Movable plate 15 Support Member 16 Guide member 17 Ball screw 18 Motor 19 Differential pressure responsive valve device 20 Valve support frame 21 Differential pressure responsive valve 21a Valve portion 21b Locking protrusion 22 Flange portion 23 Small diameter portion

Claims (8)

脱血部と返血部を有する血液循環回路と、
前記血液循環回路中に挿入された人工肺と、
前記人工肺の入口側で前記血液循環回路中に挿入された血液ポンプと、
前記血液循環回路から分岐して前記人工肺をバイパスするシャント回路と、
前記シャント回路の流路の開放度を調整する開放度調整装置と、
前記人工肺の入口側と前記血液ポンプの間の前記血液循環回路における圧力である入口圧P1を検出する入口圧センサと、
前記入口圧センサが検出する前記入口圧P1に基づき、前記開放度調整装置の動作を制御する制御部とを備え、
前記制御部は、所定の値に設定された制御上限値に基づく制御を行い、
前記入口圧P1が前記制御上限値を超えた場合に、前記入口圧P1が前記制御上限値以下に維持されるように前記開放度調整装置を制御することを特徴とする人工肺装置。
A blood circulation circuit having a blood removal part and a blood return part;
An oxygenator inserted into the blood circulation circuit;
A blood pump inserted into the blood circulation circuit on the inlet side of the oxygenator;
A shunt circuit that branches from the blood circulation circuit and bypasses the oxygenator;
An openness adjusting device for adjusting the openness of the flow path of the shunt circuit;
An inlet pressure sensor that detects an inlet pressure P1 that is a pressure in the blood circulation circuit between the inlet side of the oxygenator and the blood pump;
A controller that controls the operation of the opening degree adjusting device based on the inlet pressure P1 detected by the inlet pressure sensor;
The control unit performs control based on a control upper limit value set to a predetermined value,
When the inlet pressure P1 exceeds the control upper limit value, the open degree adjusting device is controlled so that the inlet pressure P1 is maintained below the control upper limit value.
前記制御部は、所定の値に設定された制御下限値及び前記制御上限値に基づく制御を行い、
前記血液循環回路を介した前記人工肺への灌流開始から、前記入口圧P1が最初に前記制御上限値を超えるまでは、前記シャント回路が完全に閉鎖された状態を維持するように前記開放度調整装置を制御し、
前記入口圧P1が一旦前記制御上限値を超えた後には、前記入口圧P1が前記制御下限値と前記制御上限値の間の範囲に維持されるように前記開放度調整装置を制御する請求項1に記載の人工肺装置。
The control unit performs control based on the control lower limit value and the control upper limit value set to a predetermined value,
From the start of perfusion to the oxygenator via the blood circulation circuit, until the inlet pressure P1 first exceeds the control upper limit value, the open degree is maintained so that the shunt circuit is kept completely closed. Control the regulating device,
The opening degree adjusting device is controlled so that the inlet pressure P1 is maintained in a range between the control lower limit value and the control upper limit value once the inlet pressure P1 exceeds the control upper limit value. 1. The oxygenator according to 1.
前記血液循環回路における前記人工肺を経由する流路である主回路を流れる液体流量をQmとし、前記シャント回路を流れる液体流量をQsとしたとき、両流量の比率Qs/Qmを、前記入口圧P1に基づき前記開放度調整装置によって制御する請求項1または2に記載の人工肺装置。   When the flow rate of liquid flowing through the main circuit, which is a flow path through the artificial lung in the blood circulation circuit, is Qm, and the flow rate of liquid flowing through the shunt circuit is Qs, the ratio Qs / Qm of both flows is the inlet pressure. The oxygenator according to claim 1 or 2, which is controlled by the opening degree adjusting device based on P1. 前記制御部は、
前記入口圧P1が前記制御上限値を超えたときは、前記シャント回路の開放度を増大させるように前記開放度調整装置を制御し、
前記入口圧P1が一旦前記制御上限値を超えた後に前記制御下限値以上で前記制御上限値以下の範囲となったときは、そのときの前記シャント回路の開放度を維持するように前記開放度調整装置を制御し、
前記入口圧P1が一旦前記制御上限値を超えた後に前記制御下限値未満となったときは、前記シャント回路の開放度を減少させるように前記開放度調整装置を制御する請求項1に記載の人工肺装置。
The controller is
When the inlet pressure P1 exceeds the control upper limit value, the opening degree adjusting device is controlled to increase the opening degree of the shunt circuit,
When the inlet pressure P1 once exceeds the control upper limit value and falls within the range between the control lower limit value and the control upper limit value, the open degree is maintained so as to maintain the open degree of the shunt circuit at that time. Control the regulating device,
2. The opening degree adjusting device according to claim 1, wherein when the inlet pressure P <b> 1 once exceeds the control upper limit value and becomes less than the control lower limit value, the opening degree adjusting device is controlled so as to reduce the opening degree of the shunt circuit. Artificial lung device.
前記制御部は、前記シャント回路の開放度の増大または減少を所定の速度で行うように前記開放度調整装置を制御する請求項4に記載の人工肺装置。   The artificial lung device according to claim 4, wherein the control unit controls the openness adjusting device so as to increase or decrease the openness of the shunt circuit at a predetermined speed. 前記シャント回路の流路はチューブにより形成され、前記開放度調整装置による前記シャント回路の開放度の調整は、前記チューブに対する押圧力を変化させることにより行われる請求項1〜5のいずれか1項に記載の人工肺装置。   The flow path of the shunt circuit is formed by a tube, and adjustment of the opening degree of the shunt circuit by the opening degree adjusting device is performed by changing a pressing force on the tube. The oxygenator as described in 1. 前記人工肺の出口側の前記血液循環回路における圧力である出口圧P2を検出する出口圧センサを備え、
前記制御部は、前記入口圧P1と前記出口圧P2の差圧である人工肺圧力損失(P1−P2)を算出して、前記人工肺圧力損失(P1−P2)が所定の大きさを超えたときのみ、前記開放度調整装置による前記シャント回路の開放度の調整を行う請求項1〜6のいずれか1項に記載の人工肺装置。
An outlet pressure sensor that detects an outlet pressure P2 that is a pressure in the blood circulation circuit on the outlet side of the oxygenator;
The controller calculates an artificial lung pressure loss (P1-P2) that is a differential pressure between the inlet pressure P1 and the outlet pressure P2, and the artificial lung pressure loss (P1-P2) exceeds a predetermined magnitude. The artificial lung device according to any one of claims 1 to 6, wherein the openness of the shunt circuit is adjusted by the openness adjusting device only when the openness is adjusted.
脱血部と返血部を有する血液循環回路と、
前記血液循環回路中に挿入された人工肺と、
前記人工肺の入口側で前記血液循環回路中に挿入された血液ポンプと、
前記血液循環回路から分岐して前記人工肺をバイパスするシャント回路と、
前記シャント回路の開放度を調整する差圧応動弁装置とを備え、
前記差圧応動弁装置は、前記シャント回路の流路中に挿入された弁支持枠と、前記弁支持枠に支持されて前記シャント回路の流路を封鎖する差圧応動弁により構成され、
前記差圧応動弁は、前記人工肺の入口側の圧力である入口圧P1を受ける面と、その裏面である前記人工肺の出口側の圧力である出口圧P2を受ける面とを備え、前記入口圧P1と前記出口圧P2の差圧(P1−P2)が所定値未満であるときは、前記流路を閉塞し、前記差圧(P1−P2)が所定値以上の陽圧になったときに、前記流路を開放するように構成されたことを特徴とする人工肺装置。
A blood circulation circuit having a blood removal part and a blood return part;
An oxygenator inserted into the blood circulation circuit;
A blood pump inserted into the blood circulation circuit on the inlet side of the oxygenator;
A shunt circuit that branches from the blood circulation circuit and bypasses the oxygenator;
A differential pressure responsive valve device for adjusting the degree of opening of the shunt circuit,
The differential pressure responsive valve device includes a valve support frame inserted into the flow path of the shunt circuit, and a differential pressure responsive valve supported by the valve support frame and sealing the flow path of the shunt circuit,
The differential pressure responsive valve includes a surface that receives an inlet pressure P1 that is a pressure on the inlet side of the oxygenator, and a surface that receives an outlet pressure P2 that is a pressure on the outlet side of the oxygenator that is the back surface thereof. When the differential pressure (P1-P2) between the inlet pressure P1 and the outlet pressure P2 is less than a predetermined value, the flow path is closed, and the differential pressure (P1-P2) becomes a positive pressure equal to or higher than the predetermined value. Sometimes, the oxygenator is configured to open the flow path.
JP2009204798A 2009-09-04 2009-09-04 Artificial lung device with safety mechanism against pressure rise Active JP5229579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009204798A JP5229579B2 (en) 2009-09-04 2009-09-04 Artificial lung device with safety mechanism against pressure rise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009204798A JP5229579B2 (en) 2009-09-04 2009-09-04 Artificial lung device with safety mechanism against pressure rise

Publications (2)

Publication Number Publication Date
JP2011050687A JP2011050687A (en) 2011-03-17
JP5229579B2 true JP5229579B2 (en) 2013-07-03

Family

ID=43940316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009204798A Active JP5229579B2 (en) 2009-09-04 2009-09-04 Artificial lung device with safety mechanism against pressure rise

Country Status (1)

Country Link
JP (1) JP5229579B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6382005B2 (en) * 2014-07-15 2018-08-29 テルモ株式会社 Extracorporeal circuit
WO2016092913A1 (en) * 2014-12-12 2016-06-16 テルモ株式会社 Extracorporeal circulation device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61143068A (en) * 1984-12-18 1986-06-30 日本メデイカルエンジニアリング株式会社 Blood dialytic method and apparatus
JPS61228870A (en) * 1985-04-03 1986-10-13 泉工医科工業株式会社 Irrigation circuit
JPH0653162B2 (en) * 1986-12-01 1994-07-20 旭メデイカル株式会社 Blood processing apparatus provided with blood collecting means
JP3011298U (en) * 1994-06-21 1995-05-23 清重 乾 Extracorporeal circulation safety bypass circuit
JPH0910302A (en) * 1995-06-26 1997-01-14 Terumo Corp Blood collecting device and blood processing device provided with this device
JP2002089455A (en) * 2000-09-12 2002-03-27 Teikku Kk Blood pump
JP2006314343A (en) * 2005-05-10 2006-11-24 Noiesu:Kk Blood purifier

Also Published As

Publication number Publication date
JP2011050687A (en) 2011-03-17

Similar Documents

Publication Publication Date Title
JP5980284B2 (en) Apparatus for establishing venous inflow into a blood reservoir of an extracorporeal blood circulation system
KR102013471B1 (en) Device and system for treating the blood of a patient
US20140200391A1 (en) Method and apparatus for monitoring and optimizing blood circulation generated by a pump
JPS62233166A (en) Blood circulation treatment apparatus
US10322220B2 (en) Method and device for extracorporeal blood treatment
JP2015512731A (en) Safety device for extracorporeal blood treatment
JP5229579B2 (en) Artificial lung device with safety mechanism against pressure rise
JPH11221275A (en) Blood treating device
CA2768351C (en) Method and apparatus for mitigating acute reoxygenation injury during percutaneous coronary intervention
JP3256157B2 (en) Heart-lung machine
EP3377143B1 (en) System for controlling blood flow rate in an extracorporeal blood oxygenation circuit
KR20110025177A (en) Universally applicable, optimized perfusion system
JPS6024849A (en) Treatment of single lumen catheter liquid
WO2021059818A1 (en) Blood purification device
WO2024090508A1 (en) Blood purification system and intermediate system
WO2024009994A1 (en) Intermediate system and blood purification system
EP3873561B1 (en) Vent interlock
US20240181148A1 (en) Extracorporeal life support system
JP2024007878A (en) Intermediate system and blood purification system
Momose et al. A new cardiopulmonary bypass operating system permitting regulation by the surgeon in the operation field
EP2893944A1 (en) Extracorporeal circulation device and control method therefor
JP3664901B2 (en) Blood purification equipment
JP2006006433A (en) Method and device for autotransfusion of hemodialyzer
WO2024105360A1 (en) System and method for controlling blood oxygenation
WO2024105362A1 (en) Gas supply apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5229579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250