JP5216510B2 - Vacuum insulation material and equipment using the same - Google Patents

Vacuum insulation material and equipment using the same Download PDF

Info

Publication number
JP5216510B2
JP5216510B2 JP2008252162A JP2008252162A JP5216510B2 JP 5216510 B2 JP5216510 B2 JP 5216510B2 JP 2008252162 A JP2008252162 A JP 2008252162A JP 2008252162 A JP2008252162 A JP 2008252162A JP 5216510 B2 JP5216510 B2 JP 5216510B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
vacuum
core material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008252162A
Other languages
Japanese (ja)
Other versions
JP2010084805A (en
Inventor
大五郎 嘉本
孝行 中川路
恒 越後屋
克美 福田
俊光 鶴賀
久男 横倉
邦成 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2008252162A priority Critical patent/JP5216510B2/en
Publication of JP2010084805A publication Critical patent/JP2010084805A/en
Application granted granted Critical
Publication of JP5216510B2 publication Critical patent/JP5216510B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Description

本発明は、熱影響を遮断する真空断熱材に関し、特に断熱性能の優れる真空断熱材と、それを用いた機器に関する。   The present invention relates to a vacuum heat insulating material that blocks heat influence, and particularly relates to a vacuum heat insulating material having excellent heat insulating performance and a device using the same.

近年、地球温暖化に対する観点から、家電品を含め種々の製品に対し消費電力等のエネルギー削減が望まれている。例えば、冷蔵庫の消費電力は庫内の負荷量が一定であれば、冷却用圧縮機の効率や熱漏洩量に関与する断熱材の断熱性能を向上させることにより、消費するエネルギーが削減できる。   In recent years, from the viewpoint of global warming, energy reduction such as power consumption is desired for various products including home appliances. For example, if the amount of power consumed by the refrigerator is constant, the energy consumed can be reduced by improving the heat insulation performance of the heat insulating material involved in the efficiency of the cooling compressor and the amount of heat leakage.

これまで、熱伝導率を低減した真空断熱材が開発され、冷蔵庫や冷凍庫等に多く使用されてきた。特に、真空断熱材は発泡ウレタン等の断熱材に比べ熱伝導率が非常に優れる。真空断熱材は、形状を保持するための芯材とアウトガスを吸着するゲッター剤を外包材に入れ、内部を減圧して作製するものである。現在用いられている外包材は、有機フィルムを用いてガスバリア層の全面に接着剤で接着したラミネート法により作製している。ガスバリア層としてアルミ箔,アルミ蒸着,エバールフィルム,ポリエステルフィルム等を貼り合わせ、オーバーコート層にナイロンフィルムを貼り付けるものである。溶着層にはポリエチレンフィルムやポリプロピレンフィルムが用いられている。ガスバリア性の高い有機樹脂としては、ポリビニルアルコール(PVA),ポリエチレンビニルアルコール(EVOH),ポリ塩化ビニリデン(PVDC)等があげられる。また、給湯器,電気温水器,保温浴槽,インバータモジュール,太陽集熱装置等の高温(100℃)部分へも真空断熱材の適用が望まれている。これらの高温部分向けの真空断熱材については、2軸延伸ポリプロピレン(CPP)を溶着層とした外包材が用いられている。形状を保持するための芯材としては、気泡を連続させた連通ウレタン,グラスウール,ポリエチレンテレフタレート繊維等が用いられている。   Until now, vacuum heat insulating materials with reduced thermal conductivity have been developed and used in many applications such as refrigerators and freezers. In particular, the vacuum heat insulating material has a much higher thermal conductivity than a heat insulating material such as urethane foam. The vacuum heat insulating material is prepared by putting a core material for maintaining a shape and a getter agent that adsorbs outgas in an outer packaging material, and reducing the pressure inside. The outer packaging material currently used is produced by a laminating method in which an organic film is used and adhered to the entire surface of the gas barrier layer with an adhesive. As the gas barrier layer, aluminum foil, aluminum vapor deposition, Eval film, polyester film, etc. are bonded together, and a nylon film is bonded to the overcoat layer. A polyethylene film or a polypropylene film is used for the welding layer. Examples of the organic resin having a high gas barrier property include polyvinyl alcohol (PVA), polyethylene vinyl alcohol (EVOH), and polyvinylidene chloride (PVDC). Moreover, application of a vacuum heat insulating material is desired also to high temperature (100 degreeC) parts, such as a water heater, an electric water heater, a heat retention bathtub, an inverter module, a solar heat collecting device. As the vacuum heat insulating material for these high temperature portions, an outer packaging material using biaxially oriented polypropylene (CPP) as a welding layer is used. As the core material for maintaining the shape, continuous urethane, glass wool, polyethylene terephthalate fiber, etc. in which bubbles are continuous are used.

近年、冷蔵庫の内容積は増加の傾向を示しており、真空断熱材にはより優れた断熱性が要求されるようになってきている。冷蔵庫の内容積は外形寸法を同一とした場合、断熱材すなわち壁の厚さを薄くすることで大きくなるが、壁の厚さを薄くすると断熱性能が低くなってしまう、この断熱性能の低下を補うため真空断熱材にはより低い熱伝導率が求められている。   In recent years, the internal volume of refrigerators has been increasing, and vacuum insulation has been required to have better heat insulation. If the external dimensions of the refrigerator are the same, the heat insulating material, that is, the wall thickness increases by reducing the thickness of the heat insulating material, but if the wall thickness is reduced, the heat insulating performance decreases. In order to compensate, the vacuum heat insulating material is required to have a lower thermal conductivity.

特許文献1は、ガラス繊維を芯材に使用した真空断熱材が記載されている。   Patent Document 1 describes a vacuum heat insulating material using glass fiber as a core material.

特許文献2は、樹脂繊維を絡み合わせた断熱材が記載されている。   Patent Document 2 describes a heat insulating material in which resin fibers are entangled with each other.

特開2007−155082号公報JP 2007-155082 A 特開2001−329630号公報JP 2001-329630 A

例えば、冷蔵庫,断熱箱体に使用する真空断熱材は熱伝導率を小さくすることが必要である。また、その熱伝導率を長時間保持する必要があるためガスバリア層としてアルミの蒸着層または薄箔を用いることが必要となる。しかし、アルミニウム金属は熱伝導率が非常に大きいため、熱がアルミニウム部分を伝わって移動するところでヒートブリッジが発生し、断熱性能の熱漏洩量に悪影響を及ぼすことが知られている。一方、真空断熱材の熱伝導は外包材内部の固体の熱伝導とガスの熱伝導の和であらわされる。真空断熱材内部は減圧されていることから、ガスの熱伝導はほぼ無視できる状態にあるため、固体の熱伝導が重要となる。従来の真空断熱材に用いられる芯材は繊維の集合体であることから、繊維の接触状態により熱伝導が変化するが、繊維の断面形状が円形であるため接触面積が大きく、接触熱抵抗が低くなることから、固体の熱伝導が大きくなるという課題を有している。   For example, a vacuum heat insulating material used for a refrigerator and a heat insulating box needs to reduce the thermal conductivity. Further, since it is necessary to maintain the thermal conductivity for a long time, it is necessary to use an aluminum vapor deposition layer or a thin foil as the gas barrier layer. However, since aluminum metal has a very high thermal conductivity, it is known that a heat bridge is generated where heat travels through the aluminum portion and adversely affects the amount of heat leakage of heat insulation performance. On the other hand, the heat conduction of the vacuum heat insulating material is expressed as the sum of the heat conduction of the solid inside the outer packaging material and the heat conduction of the gas. Since the inside of the vacuum heat insulating material is depressurized, the heat conduction of the gas is almost negligible, so the heat conduction of the solid is important. Since the core material used in the conventional vacuum heat insulating material is an aggregate of fibers, the heat conduction changes depending on the contact state of the fibers, but since the cross-sectional shape of the fibers is circular, the contact area is large and the contact thermal resistance is low. Since it becomes low, it has the subject that the heat conduction of solid becomes large.

特許文献1記載の真空断熱材は、芯材として円形断面を有するガラス繊維および吸着剤を外被材で覆い、内部を減圧したものである。繊維断面の形状は円形であり、接触熱抵抗が低いという課題を有している。   The vacuum heat insulating material described in Patent Document 1 is obtained by covering a glass fiber having a circular cross section and an adsorbent as a core material with an outer covering material and reducing the pressure inside. The cross-sectional shape of the fiber is circular and has a problem that the contact thermal resistance is low.

特許文献2記載の断熱材は、再生熱可塑性樹脂を線状,螺旋状に無秩序に絡まり合い部分的に熱溶着した三次元網目構造を有するものである。繊維を形成する際の口金形状は円形となっており、繊維断面の形状も円形となることから、接触熱抵抗が低いという課題を有している。   The heat insulating material described in Patent Document 2 has a three-dimensional network structure in which recycled thermoplastic resin is randomly entangled linearly and spirally and partially thermally welded. The shape of the die when forming the fiber is circular, and the shape of the fiber cross section is also circular, which has a problem of low contact thermal resistance.

本発明は、このような従来の構成が有していた課題を解決するものであり、その目的の一つは、冷蔵庫,断熱箱体等へ用いるため熱伝導率を低くした真空断熱材を提供することにある。   The present invention solves the problems of such a conventional configuration, and one of its purposes is to provide a vacuum heat insulating material having a low thermal conductivity for use in refrigerators, heat insulating boxes and the like. There is to do.

上記課題を解決する本発明は、ガラスまたは有機樹脂の少なくとも一種類である繊維状芯材をガスバリア性を有する外包材中に入れ、内部を減圧した真空断熱材において、前記芯材の一部もしくは全部が異型断面形状であって繊維中心から放射線状に突起が張り出したY形,T形または+形の形状を有し、前記繊維同士が支えあって大気による圧力に反発していることを特徴とする真空断熱材である。

The present invention that solves the above-mentioned problems is a vacuum heat insulating material in which a fibrous core material that is at least one of glass or organic resin is placed in an outer packaging material having gas barrier properties, and the inside is decompressed. entirely have a modified cross-section shape is a by Y-shaped projections protruding radially from the fiber center, T-shaped or + form of shape, characterized that you have rebounded to the pressure by the air there the fibers are supported It is a vacuum heat insulating material.

本発明は、優れた熱伝導率を有する真空断熱材を実現すると共に、該真空断熱材を冷蔵庫,断熱箱体に採用することで、熱漏洩量を低減することができる。また、冷蔵庫以外にも給湯器,電気温水器,保温浴槽,インバータモジュール等の機器または機器内発熱部の熱影響を遮断することにより、消費電力量を低減することが可能となる。   The present invention can reduce the amount of heat leakage by realizing a vacuum heat insulating material having excellent thermal conductivity and adopting the vacuum heat insulating material in a refrigerator and a heat insulating box. In addition to the refrigerator, it is possible to reduce the amount of power consumption by shutting off the thermal effects of equipment such as a water heater, electric water heater, heat insulation bathtub, inverter module, etc. or a heat generating part in the equipment.

本発明の真空断熱材および真空断熱材を挿入した機器例の構造と作製方法について、図面を参照して説明する。図1(a)は、従来の真空断熱材の構造、図1(b)は従来の真空断熱材に用いられている、繊維状芯材の断面形状および繊維の接触状態を示す。断面形状が円形の繊維状芯材とゲッター剤を袋状外包材に入れ減圧封止される構成の真空断熱材である。   A structure and a manufacturing method of an example of a device including the vacuum heat insulating material and the vacuum heat insulating material of the present invention will be described with reference to the drawings. FIG. 1A shows the structure of a conventional vacuum heat insulating material, and FIG. 1B shows the cross-sectional shape of the fibrous core material and the contact state of the fibers used in the conventional vacuum heat insulating material. A vacuum heat insulating material having a configuration in which a fibrous core material having a circular cross-sectional shape and a getter agent are placed in a bag-like outer packaging material and sealed under reduced pressure.

図2(a)は本発明の真空断熱材の構造、図2(b)に本発明の繊維状芯材の断面形状および繊維の接触状態を示す。繊維状芯材とゲッター剤を袋状外包材に入れ減圧封止される構成の真空断熱材である。   2A shows the structure of the vacuum heat insulating material of the present invention, and FIG. 2B shows the cross-sectional shape of the fibrous core material of the present invention and the contact state of the fibers. It is a vacuum heat insulating material having a configuration in which a fibrous core material and a getter agent are placed in a bag-like outer packaging material and sealed under reduced pressure.

その一手段として、繊維状芯材の断面形状を異形断面とすることである。真空断熱材中の伝熱は断熱材中の固体および気体によりおこる。通常、真空断熱材中は減圧されており気体による伝熱は無視できることから、固体中を伝わる熱に大きな影響を受ける。真空断熱材は内部を減圧して作製することから、大気による圧力を受けている。圧力を受けた状態では、芯材内部では繊維同士が接触し支えあって大気による圧力に反発している。このとき、繊維断面形状が円形であると繊維同士の接触面積が大きくなり、熱の伝達が起こる。繊維断面形状を円形以外とすることで、繊維同士が接触する際の接触面積を低減し、接触熱抵抗を増大させることが可能となると推察し、繊維状芯材の検討を行った。繊維の断面形状としては、円形,偏平等以外で接触面積を低減可能な形状が好ましく、特に繊維作製が比較的容易なY形,T形または+形等の繊維中心から放射線状に突起が張り出した形状を用いることが望ましい。繊維状芯材の材質は問わないが、ガラス繊維,樹脂繊維等が挙げられ、特に熱伝導率の小さい材質が好ましく、これらを複合して用いることも可能である。そこで、本発明ではガラスおよび有機樹脂を用いて異形断面を有する繊維を作製し、真空断熱材を作製した。その結果、繊維状芯材を形成する繊維が異形断面を有することで熱伝導率を低減できることを見出した。   One means is to make the cross-sectional shape of the fibrous core material an irregular cross-section. Heat transfer in the vacuum heat insulating material is caused by solids and gas in the heat insulating material. Normally, the vacuum heat insulating material is depressurized and heat transfer by gas is negligible, so it is greatly affected by the heat transferred in the solid. Since the vacuum heat insulating material is produced by reducing the pressure inside, it receives pressure from the atmosphere. In a state where pressure is applied, the fibers are in contact with each other and supported inside the core material, and repels the pressure from the atmosphere. At this time, if the fiber cross-sectional shape is circular, the contact area between the fibers increases, and heat transfer occurs. By making the fiber cross-sectional shape other than circular, it was speculated that it would be possible to reduce the contact area when the fibers contact each other and increase the contact thermal resistance, and examined the fibrous core material. As the cross-sectional shape of the fiber, a shape other than circular, flat, etc. that can reduce the contact area is preferable. In particular, a protrusion protrudes radially from the center of the fiber such as a Y shape, T shape, or + shape, which is relatively easy to fabricate. It is desirable to use a different shape. The material of the fibrous core material is not limited, but examples thereof include glass fiber and resin fiber, and a material with particularly low thermal conductivity is preferable, and these can be used in combination. Therefore, in the present invention, a fiber having an irregular cross section is produced using glass and an organic resin, and a vacuum heat insulating material is produced. As a result, it has been found that the fiber forming the fibrous core material has a modified cross section, whereby the thermal conductivity can be reduced.

このことから、本発明では繊維状芯材を形成する繊維の断面形状を異形断面としている。なお、異形断面を有する繊維を形成する際には、ガラス,有機樹脂を溶融紡糸する際のノズル形状を異形形状とすることで比較的容易に実施することが可能である。上記の構成により作製した繊維状芯材は繊維同士の接触面積が減少し結果として、接触熱抵抗を増大させ、真空断熱材の熱伝導率を低くすることができた。   For this reason, in the present invention, the cross-sectional shape of the fiber forming the fibrous core material is an irregular cross-section. In addition, when forming the fiber which has a deformed cross section, it can carry out comparatively easily by making the nozzle shape at the time of melt-spinning glass and organic resin into a deformed shape. The fibrous core material produced by the above configuration has a reduced contact area between the fibers, and as a result, the contact thermal resistance can be increased and the thermal conductivity of the vacuum heat insulating material can be lowered.

繊維状芯材の断面形状は円形,偏平等以外で接触面積を低減可能な形状が好ましく、特に繊維作製が比較的容易なY形,T形または+形等の繊維中心から放射線状に突起が張り出した形状を用いることが望ましい。また、これらの形状に限定されるものではなく、円形,偏平以外で繊維同士の接触面積を低下させることができる形状であれば適用することができる。作製した繊維の断面については、光学顕微鏡,走査型電子顕微鏡等で形状を確認することが可能である。また、繊維状芯材を構成する繊維の繊維径は5〜50μmが好ましく、これ以上細いと作製が困難となる。逆にこれ以上太い場合は、繊維による熱伝導が増大することから好ましくない。   The cross-sectional shape of the fibrous core material is preferably a shape that can reduce the contact area other than circular, flat, etc., and in particular, the protrusions are radially formed from the fiber center such as Y-shaped, T-shaped, or + -shaped, which is relatively easy to fabricate It is desirable to use an overhanging shape. Moreover, it is not limited to these shapes, It can apply if it is a shape which can reduce the contact area of fibers other than circular and flat. About the cross section of the produced fiber, it is possible to confirm the shape with an optical microscope, a scanning electron microscope, or the like. Moreover, the fiber diameter of the fiber which comprises a fibrous core material has preferable 5-50 micrometers, and when it is thinner than this, manufacture will become difficult. Conversely, if it is thicker than this, the heat conduction by the fibers increases, which is not preferable.

繊維を形成する材料については、任意に設定することが可能であるが、溶融紡糸が可能でかつ、熱伝導率の低い材料が挙げられる。特に、有機樹脂としてはポリスチレン,ポリプロピレン,ポリエチレンテレフタレート等が挙げられる。   The material forming the fiber can be arbitrarily set, and examples thereof include materials that can be melt-spun and have low thermal conductivity. In particular, examples of the organic resin include polystyrene, polypropylene, and polyethylene terephthalate.

繊維状芯材は、材料を紡糸して得られるものである。有機樹脂を紡糸する方法としては、溶融紡糸法が挙げられ、紡糸に用いるノズルを加工することで、任意の断面形状を作製することが可能である。ガラスを紡糸する方法としては、溶融遠心法が挙げられ、この際にも、ノズルを加工することで任意の断面形状を作製することが可能である。   The fibrous core material is obtained by spinning a material. Examples of the method of spinning the organic resin include a melt spinning method, and it is possible to produce an arbitrary cross-sectional shape by processing a nozzle used for spinning. As a method of spinning glass, a melt centrifugation method can be mentioned, and also in this case, it is possible to produce an arbitrary cross-sectional shape by processing a nozzle.

外包材はガスバリア性を有するフィルム材を用いることが望ましい。有機樹脂フィルムにアルミを蒸着した後、複数のフィルムを積層ラミネートして作製することが可能である。ガスバリア性を付与するため、アルミ箔を用いることも可能であるが、アルミ箔を用いると熱の回り込みが発生することがあることから、アルミ蒸着を施した有機樹脂フィルムを用いることが好ましい。   As the outer packaging material, it is desirable to use a film material having gas barrier properties. After aluminum is vapor-deposited on the organic resin film, a plurality of films can be laminated and laminated. In order to provide gas barrier properties, it is possible to use an aluminum foil. However, if an aluminum foil is used, heat wraparound may occur. Therefore, it is preferable to use an organic resin film on which aluminum is deposited.

ゲッター剤は真空工程以前の乾燥により、水分やガス成分を除去することが熱伝導率の低減に寄与することが知られており、外部からの水分等が再び吸着しにくい疎水性モリキュアシーブスが好ましい。また、適宜、モレキュラーシーブス,シリカゲル,酸化カルシウム,合成ゼオライト,活性炭等を混合して使用することもできる。   It is known that the removal of moisture and gas components by drying before the vacuum process contributes to the reduction of thermal conductivity, and the getter agent has a hydrophobic molecular cure sieve that hardly absorbs moisture from the outside again. preferable. In addition, molecular sieves, silica gel, calcium oxide, synthetic zeolite, activated carbon, and the like can be appropriately mixed and used.

以上を纏めると、第1に本発明は、ガスバリア性を有する外包材中に繊維状芯材をいれ、内部を減圧した真空断熱材において、前記芯材の一部もしくは全部が異型断面形状を有することを特徴とする真空断熱材である。   In summary, according to the first aspect of the present invention, in a vacuum heat insulating material in which a fibrous core material is placed in an outer packaging material having gas barrier properties and the inside is decompressed, a part or all of the core material has an atypical cross-sectional shape. It is the vacuum heat insulating material characterized by this.

第2に本発明は、前記異型断面形状を有する芯材がガラスまたは有機樹脂の少なくとも一種類であることを特徴とする真空断熱材である。   2ndly, this invention is a vacuum heat insulating material characterized by the core material which has the said unusual cross-sectional shape being at least 1 sort (s) of glass or organic resin.

第3に本発明は、前記異型断面形状を有する芯材が有機樹脂からなることを特徴とする真空断熱材である。   3rdly, this invention is a vacuum heat insulating material characterized by the core material which has the said unusual cross-sectional shape consisting of organic resin.

第4に本発明は、前記有機樹脂がポリスチレン,ポリプロピレン,ポリエチレンテレフタレートの少なくともひとつからなることを特徴とする真空断熱材である。   Fourthly, the present invention provides the vacuum heat insulating material, wherein the organic resin is made of at least one of polystyrene, polypropylene, and polyethylene terephthalate.

第5に本発明は、前記異型断面を有する芯材の繊維径が5〜50μmであることを特徴とする真空断熱材である。   5thly this invention is a vacuum heat insulating material characterized by the fiber diameter of the core material which has the said atypical cross section being 5-50 micrometers.

第6に本発明は、被保温部と、前記被保温部の温度状態を保つための断熱部材とを有する断熱箱体であって、前記断熱部材に第1から第5の真空断熱材を用いたことを特徴とする断熱箱体および冷蔵庫である。   6thly this invention is a heat insulation box which has a to-be-heated part and the heat insulation member for maintaining the temperature state of the said to-be-heated part, Comprising: The 1st-5th vacuum heat insulating material is used for the said heat insulation member. It is the heat insulation box and the refrigerator characterized by having existed.

本発明の真空断熱材は冷蔵庫にも使用できるが、その他に給湯器,電気温水器,保温浴槽等にも使用可能であり、その例を以下に示す。   Although the vacuum heat insulating material of this invention can be used also for a refrigerator, it can be used also for a water heater, an electric water heater, a heat insulation bathtub, etc., The example is shown below.

図3は、本発明の真空断熱材を挿入した冷蔵庫の断面模式図を示す。冷蔵庫の庫内スペースの周辺に使用した例である。   FIG. 3 shows a schematic sectional view of a refrigerator into which the vacuum heat insulating material of the present invention is inserted. It is the example used around the space in the refrigerator compartment.

図4は、本発明の真空断熱材を挿入した給湯器の断面模式図を示す。給湯器の庫内スペースの周辺に使用した例である。   FIG. 4 shows a schematic sectional view of a water heater into which the vacuum heat insulating material of the present invention is inserted. It is the example used around the space in the warehouse of a water heater.

図5は、本発明の真空断熱材を挿入した電気温水器の断面模式図を示す。電気温水器の庫内スペースの周辺に使用した例である。   FIG. 5: shows the cross-sectional schematic diagram of the electric water heater which inserted the vacuum heat insulating material of this invention. It is the example used around the space in the warehouse of an electric water heater.

図6は、本発明の真空断熱材を挿入した保温浴槽の断面模式図を示す。保温浴槽の周辺に使用した例である。   FIG. 6: shows the cross-sectional schematic diagram of the heat insulation bathtub which inserted the vacuum heat insulating material of this invention. It is an example used around the hot tub.

本発明の実施例として使用した繊維状芯材の断面形状,真空断熱材の作製および熱伝導率の評価、それを用いた機器等について以下詳細に説明する。   The cross-sectional shape of the fibrous core material used as an example of the present invention, production of a vacuum heat insulating material, evaluation of thermal conductivity, equipment using the same, and the like will be described in detail below.

実施例においては、熱伝導指数は英弘精機(株)製のAUTO−Λを用いて20℃の条件で測定した熱伝導率を指数で示す。   In the examples, the thermal conductivity index indicates the thermal conductivity measured by using an AUTO-Λ manufactured by Eihiro Seiki Co., Ltd. at 20 ° C. as an index.

本発明の繊維状芯材として、スパンボンド法を用いて溶融紡糸したポリプロピレン樹脂を用いた。繊維の断面形状はY形とした。   A polypropylene resin melt-spun using a spunbond method was used as the fibrous core material of the present invention. The cross-sectional shape of the fiber was Y-shaped.

上記方法で作製した繊維状芯材(サイズ:300×350×50mm)と、ゲッター剤としてモレキュラーシーブを袋状外包材に挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプで10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   After the fibrous core material (size: 300 × 350 × 50 mm) prepared by the above method and the molecular sieve as a getter agent are inserted into the bag-like outer packaging material, the pressure is set to 1.3 Pa in the vacuum chamber. It was evacuated for 10 minutes with a rotary pump of the vacuum packaging machine until 10 minutes and with a diffusion pump for 10 minutes. Then, the edge part was sealed by heat sealing.

また、比較として同様にポリプロピレン樹脂で円形断面を有する繊維状芯材を作製し、真空断熱材を作製した。   For comparison, a fibrous core material having a circular cross section was similarly produced from a polypropylene resin, and a vacuum heat insulating material was produced.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定したところ、円形断面を有する場合の熱伝導指数を100とした場合、Y形断面を有する繊維状芯材の熱伝導指数は75となった。このように、円形以外の断面形状を有する繊維状芯材を用いると熱伝導率を低くすることが可能であることが明らかとなった。   When the thermal conductivity of the vacuum heat insulating material thus obtained (thickness: about 10 mm) was measured, when the thermal conductivity index in the case of having a circular cross section was taken as 100, the fibrous core material having a Y-shaped cross section The thermal conductivity index was 75. Thus, it has become clear that the thermal conductivity can be lowered by using a fibrous core material having a cross-sectional shape other than circular.

(実施例1の真空断熱材を用いた冷蔵庫例)
冷蔵庫の箱体中に、実施例1の真空断熱材を冷蔵庫の断熱部に挿入して使用した。真空断熱材を設けない場合と比較して、消費電力量が約15%削減された。また、真空断熱材を用いることにより、従来の断熱材よりも断熱層を薄くでき、装置容積に対して庫内スペースを広くすることができた。
(Refrigerator example using the vacuum heat insulating material of Example 1)
The vacuum heat insulating material of Example 1 was inserted into the heat insulating part of the refrigerator and used in the refrigerator box. Compared to the case where no vacuum heat insulating material is provided, the power consumption is reduced by about 15%. Moreover, by using the vacuum heat insulating material, the heat insulating layer can be made thinner than the conventional heat insulating material, and the space in the cabinet can be widened with respect to the device volume.

本発明の繊維状芯材として、スパンボンド法を用いて溶融紡糸したポリスチレン樹脂を用いた。繊維の断面形状はT形とした。   As the fibrous core material of the present invention, a polystyrene resin melt-spun using a spunbond method was used. The cross-sectional shape of the fiber was T-shaped.

上記方法で作製した繊維状芯材(サイズ:300×350×50mm)およびゲッター剤としてモレキュラーシーブを袋状外包材に挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプ10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   After the fibrous core material (size: 300 × 350 × 50 mm) prepared by the above method and the molecular sieve as a getter agent are inserted into the bag-shaped outer packaging material, it is placed in a vacuum chamber and the pressure in the chamber becomes 1.3 Pa. The vacuum pump of the vacuum packaging machine was evacuated for 10 minutes and the diffusion pump for 10 minutes. Then, the edge part was sealed by heat sealing.

また、比較として同様にポリスチレン樹脂で円形断面を有する繊維状芯材を作製し、真空断熱材を作製した。   For comparison, a fibrous core material having a circular cross section was similarly produced from polystyrene resin, and a vacuum heat insulating material was produced.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定したところ、円形断面を有する場合の熱伝導指数を100とした場合、Y形断面を有する繊維状芯材の熱伝導指数は74となった。このように、円形以外の断面形状を有する繊維状芯材を用いると熱伝導率を低くすることが可能であることが明らかとなった。   When the thermal conductivity of the vacuum heat insulating material thus obtained (thickness: about 10 mm) was measured, when the thermal conductivity index in the case of having a circular cross section was taken as 100, the fibrous core material having a Y-shaped cross section The thermal conductivity index was 74. Thus, it has become clear that the thermal conductivity can be lowered by using a fibrous core material having a cross-sectional shape other than circular.

(実施例2の真空断熱材を用いた冷蔵庫例)
冷蔵庫の箱体中に、実施例2の真空断熱材を冷蔵庫の断熱部に挿入して使用した。真空断熱材を設けない場合と比較して、消費電力量が約15%削減された。また、真空断熱材を用いることにより、従来の断熱材よりも断熱層を薄くでき、装置容積に対して庫内スペースを広くすることができた。
(Refrigerator example using the vacuum heat insulating material of Example 2)
The vacuum heat insulating material of Example 2 was inserted into the heat insulating part of the refrigerator and used in the refrigerator box. Compared to the case where no vacuum heat insulating material is provided, the power consumption is reduced by about 15%. Moreover, by using the vacuum heat insulating material, the heat insulating layer can be made thinner than the conventional heat insulating material, and the space in the cabinet can be widened with respect to the device volume.

本発明の繊維状芯材として、遠心法を用いて紡糸したガラスを用いた。繊維の断面形状は+形とした。   As the fibrous core material of the present invention, glass spun using a centrifugal method was used. The cross-sectional shape of the fiber was a + shape.

上記方法で作製した繊維状芯材(サイズ:300×350×50mm)と、ゲッター剤としてモレキュラーシーブを袋状外包材に挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプ10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   After the fibrous core material (size: 300 × 350 × 50 mm) prepared by the above method and the molecular sieve as a getter agent are inserted into the bag-like outer packaging material, the pressure is set to 1.3 Pa in the vacuum chamber. The vacuum pump of the vacuum packaging machine was evacuated for 10 minutes and the diffusion pump for 10 minutes until it was. Then, the edge part was sealed by heat sealing.

また、比較として同様に円形断面を有する繊維状芯材を作製し、真空断熱材を作製した。   Moreover, the fibrous core material which similarly has a circular cross section was produced as a comparison, and the vacuum heat insulating material was produced.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定したところ、円形断面を有する場合の熱伝導指数を100とした場合、Y形断面を有する繊維状芯材の熱伝導指数は72となった。このように、円形以外の断面形状を有する繊維状芯材を用いると熱伝導率を低くすることが可能であることが明らかとなった。   When the thermal conductivity of the vacuum heat insulating material thus obtained (thickness: about 10 mm) was measured, when the thermal conductivity index in the case of having a circular cross section was taken as 100, the fibrous core material having a Y-shaped cross section The thermal conductivity index was 72. Thus, it has become clear that the thermal conductivity can be lowered by using a fibrous core material having a cross-sectional shape other than circular.

(実施例3の真空断熱材を用いた給湯器,電気温水器例)
給湯器の貯湯タンク辺部に、実施例3で作製した真空断熱材を配置して使用した。
(Example of water heater and electric water heater using the vacuum heat insulating material of Example 3)
The vacuum heat insulating material produced in Example 3 was disposed and used on the side of the hot water storage tank of the water heater.

真空断熱パネルを設けない場合と比較して、消費電力量が約5%削減された。また、真空断熱材を用いることにより、従来の断熱材よりも断熱層を薄くでき、装置容積に対して貯湯タンクの容量を大きくすることが可能となった。   Compared to the case where no vacuum insulation panel is provided, the power consumption is reduced by about 5%. Further, by using a vacuum heat insulating material, the heat insulating layer can be made thinner than the conventional heat insulating material, and the capacity of the hot water storage tank can be increased with respect to the device volume.

更に、電気温水器の貯湯タンク辺部に、実施例3で作製した真空断熱材を配置して使用した。真空断熱材を設けない場合と比較して、消費電力量が約5%削減された。また、真空断熱材を用いることにより、従来の断熱材よりも断熱層を薄くでき、装置容積に対して貯湯タンクの容量を大きくすることが可能となった。   Furthermore, the vacuum heat insulating material produced in Example 3 was arrange | positioned and used for the hot water storage tank side part of an electric water heater. Compared to the case where no vacuum heat insulating material is provided, the power consumption is reduced by about 5%. Further, by using a vacuum heat insulating material, the heat insulating layer can be made thinner than the conventional heat insulating material, and the capacity of the hot water storage tank can be increased with respect to the device volume.

本発明の繊維状芯材として、スパンボンド法を用いて溶融紡糸したポリエチレンテレフタレート樹脂を用いた。繊維の断面形状はY形とした。   A polyethylene terephthalate resin melt-spun using a spunbond method was used as the fibrous core material of the present invention. The cross-sectional shape of the fiber was Y-shaped.

上記方法で作製した繊維状芯材(サイズ:300×350×50mm)およびゲッター剤としてモレキュラーシーブを袋状外包材に挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプ10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   After the fibrous core material (size: 300 × 350 × 50 mm) prepared by the above method and the molecular sieve as a getter agent are inserted into the bag-shaped outer packaging material, it is placed in a vacuum chamber and the pressure in the chamber becomes 1.3 Pa. The vacuum pump of the vacuum packaging machine was evacuated for 10 minutes and the diffusion pump for 10 minutes. Then, the edge part was sealed by heat sealing.

また、比較として同様に円形断面を有する繊維状芯材を作製し、真空断熱材を作製した。   Moreover, the fibrous core material which similarly has a circular cross section was produced as a comparison, and the vacuum heat insulating material was produced.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定したところ、Y形断面を有する繊維状芯材の熱伝導指数は74となった(円形断面を有する場合の熱伝導指数を100とした場合)。このように、円形以外の断面形状を有する繊維状芯材を用いると熱伝導率を低くすることが可能であることが明らかとなった。   When the thermal conductivity of the vacuum heat insulating material thus obtained (thickness: about 10 mm) was measured, the thermal conductivity index of the fibrous core material having a Y-shaped cross section was 74 (in the case of having a circular cross section). When the heat conduction index is 100). Thus, it has become clear that the thermal conductivity can be lowered by using a fibrous core material having a cross-sectional shape other than circular.

(実施例4の真空断熱材を用いた冷蔵庫例)
冷蔵庫の箱体中に、真空断熱材実施例4を冷蔵庫の断熱部に挿入して使用した。真空断熱材を設けない場合と比較して、消費電力量が約18%削減された。また、真空断熱材を用いることにより、従来の断熱材よりも断熱層を薄くでき、装置容積に対して庫内スペースを広くすることができた。
(Refrigerator example using the vacuum heat insulating material of Example 4)
The vacuum heat insulating material Example 4 was inserted into the heat insulating part of the refrigerator and used in the refrigerator box. Compared with the case where no vacuum heat insulating material is provided, the power consumption is reduced by about 18%. Moreover, by using the vacuum heat insulating material, the heat insulating layer can be made thinner than the conventional heat insulating material, and the space in the cabinet can be widened with respect to the device volume.

〔比較例1〕
比較例1の外包材として、ナイロンフィルム(厚さ15μm),アルミ蒸着ポリエチレンテレフタレート(厚さ12μm),エチレンビニルアルコール共重合体フィルム(厚さ15μm),高密度ポリエチレンフィルム(厚さ100μm)をラミネートして作製した外包材を用いた。
[Comparative Example 1]
As the outer packaging material of Comparative Example 1, a nylon film (thickness 15 μm), aluminum vapor-deposited polyethylene terephthalate (thickness 12 μm), ethylene vinyl alcohol copolymer film (thickness 15 μm), and high-density polyethylene film (thickness 100 μm) are laminated. The outer packaging material produced in this way was used.

真空断熱材は、上記外包材の3辺部をヒートシーラーで熱溶着後、平均繊維径3μmのグラスウール(サイズ:250mm×250mm×100mm)およびゲッター剤としてモレキュウラシーブを挿入後、真空チャンバー内に設置してチャンバー内の圧力が1.3Paになるまで真空包装機のロータリーポンプ10分間、拡散ポンプで10分間排気させた。その後、端部をヒートシールで封止した。   The vacuum heat insulating material is made by heat-sealing the three sides of the outer packaging material with a heat sealer, and after inserting glass wool (size: 250 mm x 250 mm x 100 mm) with an average fiber diameter of 3 µm and a molecular sieve as a getter agent in the vacuum chamber The vacuum pump was evacuated for 10 minutes and the diffusion pump for 10 minutes until the pressure in the chamber reached 1.3 Pa. Then, the edge part was sealed by heat sealing.

このようにして得られた真空断熱材(厚み:約10mm)の熱伝導率を測定したところ、熱伝導指数は100であった。   The heat conductivity of the vacuum heat insulating material (thickness: about 10 mm) thus obtained was measured, and the heat conduction index was 100.

本発明によれば、繊維状芯材の繊維断面形状を円形以外とすることで接触熱抵抗を増大し、熱伝導率の優れる真空断熱材が作製可能となる。さらに、前記真空断熱材を機器に適用することで、熱影響を遮断し、消費電力量を低減した省エネ機器を提供することができる。   According to the present invention, by making the fiber cross-sectional shape of the fibrous core material other than circular, the contact heat resistance is increased, and a vacuum heat insulating material having excellent thermal conductivity can be manufactured. Furthermore, by applying the vacuum heat insulating material to the device, it is possible to provide an energy saving device that cuts off the heat effect and reduces the amount of power consumption.

従来真空断熱パネルの断面模式図。The cross-sectional schematic diagram of the conventional vacuum heat insulation panel. 本発明真空断熱パネルの断面模式図。The cross-sectional schematic diagram of this invention vacuum heat insulation panel. 本発明の真空断熱パネルを備えた冷蔵庫。The refrigerator provided with the vacuum heat insulation panel of this invention. 本発明の真空断熱パネルを備えた給湯機。The water heater provided with the vacuum heat insulation panel of this invention. 本発明の真空断熱パネルを備えた電気温水器。The electric water heater provided with the vacuum heat insulation panel of this invention. 本発明真空断熱パネルを備えた保温浴槽。The heat insulation bathtub provided with the vacuum heat insulation panel of the present invention.

符号の説明Explanation of symbols

1 従来真空断熱材
2 外包材
3 従来繊維状芯材
4 ゲッター剤
5 真空断熱材
6 繊維状芯材
7 硬質ウレタンフォーム
8 箱体
9 冷蔵庫内箱
10 貯湯タンク
11 逃し弁
12 漏電遮断器
13 逃し弁操作バルブ
14 排水操作バルブ
15 排水管
16 元栓
17 給水管
18 止水バルブ
19 給湯配管
20 ヒートポンプユニット
21 貯湯タンクユニット
22 浴槽
DESCRIPTION OF SYMBOLS 1 Conventional vacuum heat insulating material 2 Outer packaging material 3 Conventional fiber core material 4 Getter agent 5 Vacuum heat insulating material 6 Fiber core material 7 Hard urethane foam 8 Box 9 Refrigerator inner box 10 Hot water storage tank 11 Relief valve 12 Earth leakage breaker 13 Relief valve Operation valve 14 Drainage operation valve 15 Drainage pipe 16 Main plug 17 Water supply pipe 18 Water stop valve 19 Hot water supply pipe 20 Heat pump unit 21 Hot water storage tank unit 22 Bathtub

Claims (3)

ガラスまたは有機樹脂の少なくとも一種類である繊維状芯材をガスバリア性を有する外包材中に入れ、内部を減圧した真空断熱材において、前記芯材の一部もしくは全部が異型断面形状であって繊維中心から放射線状に突起が張り出したY形,T形または+形の形状を有し、前記繊維同士が支えあって大気による圧力に反発していることを特徴とする真空断熱材。 In a vacuum heat insulating material in which a fibrous core material that is at least one kind of glass or organic resin is put in an outer packaging material having gas barrier properties, and the inside is decompressed, a part or all of the core material has an irregular cross-sectional shape, and a fiber Y-shaped projections protruding radially from the center, have a T-shaped or + -type shape, the vacuum heat insulating material, characterized that you have rebounded to the pressure by the air there the fibers is supported. 請求項1に記載の真空断熱材において、前記芯材の繊維径が5〜50μmであることを特徴とする真空断熱材。   The vacuum heat insulating material according to claim 1, wherein a fiber diameter of the core material is 5 to 50 µm. 被保温部と、前記被保温部の温度状態を保つための断熱部材とを有する断熱箱体であって、前記断熱部材に請求項1に記載の真空断熱材を用いたことを特徴とする断熱箱体。   A heat insulation box having a heat-retained part and a heat-insulating member for maintaining the temperature state of the heat-retained part, wherein the heat-insulating member uses the vacuum heat-insulating material according to claim 1. Box.
JP2008252162A 2008-09-30 2008-09-30 Vacuum insulation material and equipment using the same Expired - Fee Related JP5216510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252162A JP5216510B2 (en) 2008-09-30 2008-09-30 Vacuum insulation material and equipment using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252162A JP5216510B2 (en) 2008-09-30 2008-09-30 Vacuum insulation material and equipment using the same

Publications (2)

Publication Number Publication Date
JP2010084805A JP2010084805A (en) 2010-04-15
JP5216510B2 true JP5216510B2 (en) 2013-06-19

Family

ID=42248973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252162A Expired - Fee Related JP5216510B2 (en) 2008-09-30 2008-09-30 Vacuum insulation material and equipment using the same

Country Status (1)

Country Link
JP (1) JP5216510B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093129B2 (en) * 2009-01-21 2012-12-05 三菱電機株式会社 Vacuum heat insulating material, manufacturing apparatus and manufacturing method thereof
FR3005465B1 (en) * 2013-05-07 2015-04-17 Saint Gobain Isover DEVICE AND METHOD FOR MANUFACTURING MINERAL FIBERS BY INTERNAL CENTRIFUGATION

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211963A (en) * 2006-02-13 2007-08-23 Ibiden Co Ltd Inorganic fiber block
JP4814684B2 (en) * 2006-04-20 2011-11-16 日立アプライアンス株式会社 Vacuum heat insulating material, refrigerator and vehicle using the same

Also Published As

Publication number Publication date
JP2010084805A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
JP3544653B2 (en) refrigerator
KR101164306B1 (en) Vacuum heat insulating material, heat-insulating box body using the same and refrigerator
CN101526165B (en) PU vacuum insulation panel and preparation method thereof
CN201787277U (en) Super vacuum insulation panel
WO2010087039A1 (en) Vacuum insulation material and insulation box using the same
JP4969436B2 (en) Vacuum insulation material and equipment using the same
JP2013002484A (en) Vacuum thermal insulation material and refrigerator using the same
JP5193713B2 (en) Freezer refrigerator
JP2011058537A (en) Vacuum heat insulating material, and cooling equipment or insulated container using the same
JP4778996B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2011153721A (en) Refrigerator
JP5111331B2 (en) Vacuum heat insulating material and heat insulating box using this vacuum heat insulating material
JP2010065711A (en) Vacuum heat insulating material and refrigerator using the same
JP2014228135A (en) Method of manufacturing vacuum heat insulation material, and the vacuum heat insulation material
JP5216510B2 (en) Vacuum insulation material and equipment using the same
JP2004245258A (en) Vacuum heat insulating material, and refrigerating equipment and chilled/hot equipment using the same
JP2004003534A (en) Vacuum heat insulating material and refrigerator using vacuum heat insulating material
JP2012092870A (en) Vacuum heat insulating material and heat insulating box using the same
JP2009228886A (en) Vacuum heat insulating material and heat insulating box using the same
JP2011038574A (en) Vacuum heat insulating material and refrigerator using this
JP2013053722A (en) Vacuum heat insulating material and heat insulating apparatus using the same
JP4997198B2 (en) Vacuum heat insulating material, heat insulating box using the same, and refrigerator
JP2011089740A (en) Bag body and vacuum heat insulating material
JP2010127421A (en) Vacuum thermal-insulating material and thermal insulation box
JP2013019475A (en) Insulating container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130304

R150 Certificate of patent or registration of utility model

Ref document number: 5216510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees