JP5214278B2 - HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM CONTROL METHOD - Google Patents

HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM CONTROL METHOD Download PDF

Info

Publication number
JP5214278B2
JP5214278B2 JP2008052166A JP2008052166A JP5214278B2 JP 5214278 B2 JP5214278 B2 JP 5214278B2 JP 2008052166 A JP2008052166 A JP 2008052166A JP 2008052166 A JP2008052166 A JP 2008052166A JP 5214278 B2 JP5214278 B2 JP 5214278B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
heat source
effective
storage areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008052166A
Other languages
Japanese (ja)
Other versions
JP2009210170A (en
Inventor
透 和泉
和人 平林
義輝 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2008052166A priority Critical patent/JP5214278B2/en
Publication of JP2009210170A publication Critical patent/JP2009210170A/en
Application granted granted Critical
Publication of JP5214278B2 publication Critical patent/JP5214278B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、熱源機および蓄熱槽を有する熱源システムに関する。   The present invention relates to a heat source system having a heat source machine and a heat storage tank.

従来、蓄熱された熱を利用する日の空調負荷を予測し、予測された負荷に見合う蓄熱が完了したと予測された時点で蓄熱を完了する、空調用蓄熱槽の蓄熱運転方法がある(特許文献1を参照)。   Conventionally, there is a heat storage operation method for a heat storage tank for air conditioning that predicts the air conditioning load on the day using the stored heat and completes the heat storage when it is predicted that the heat storage corresponding to the predicted load is completed (patent) Reference 1).

また、トラップを設けて対流を抑制し、蓄熱槽内の熱損失を抑制する蓄熱システムであって、昼間のピーク負荷時には冷熱温熱発生器を追いかけ運転する蓄熱システムがあり(特許文献2を参照)、隣接する縦型貯留槽同士を連通する連通管が、高温側の貯留槽の底部と低温側の貯留槽の上部とを連通する蓄熱槽があり(特許文献3を参照)、蓄熱槽の槽内温度、蓄熱槽への還水温度、および還水流量に基づいてアルキメデス数を演算し、このアルキメデス数に基づいて蓄熱槽から空調機への送水量を制御する空調システムの運転制御方法があり(特許文献4を参照)、蓄熱槽の上側に高温熱源を接続し、蓄熱槽の下側に中温熱源を接続して、蓄熱槽内に三層の温度層を形成する状態で液を貯める蓄熱システムがある(特許文献5を参照)。
特許第3217113号公報 特開平11−118373号公報 特開平6−117665号公報 特開平10−148374号公報 特開2005−147494号公報
Moreover, there is a heat storage system that suppresses convection by providing a trap and suppresses heat loss in the heat storage tank, and has a heat storage system that chases the cold / hot temperature generator during peak load during the daytime (see Patent Document 2). There is a heat storage tank in which a communication pipe that connects adjacent vertical storage tanks communicates the bottom of the high temperature side storage tank and the upper part of the low temperature side storage tank (see Patent Document 3), and the tank of the heat storage tank There is an operation control method for the air conditioning system that calculates the Archimedes number based on the internal temperature, the return water temperature to the heat storage tank, and the return water flow rate, and controls the amount of water fed from the heat storage tank to the air conditioner based on this Archimedes number (Refer patent document 4), a high temperature heat source is connected to the upper side of a heat storage tank, an intermediate temperature heat source is connected to the lower side of a heat storage tank, and a liquid is stored in the state which forms a three-layer temperature layer in a heat storage tank. There is a heat storage system (see Patent Document 5).
Japanese Patent No. 3217113 JP 11-118373 A JP-A-6-117665 JP-A-10-148374 JP 2005-147494 A

従来、安価な夜間電力を利用して蓄熱を行うことで熱製造コストを下げ、昼間の電力逼迫時における負荷への熱源供給を蓄熱槽から行うことで、熱源機の運転に用いられる電力を低減させる、蓄熱式の熱源システムがある。このような熱源システムを効率的に運転するために、過不足のない蓄熱が行われること、即ち、蓄熱量は、電力需要がピークとなる時間帯でも負荷を賄うために十分な熱量であり、且つ蓄熱運転が開始される時間帯(例えば22時)までに使い切られる熱量であることが好ましい。しかし、実際には、負荷側の需要量が予定された熱量または予測された熱量を超えることがあり、この場合、昼間の蓄熱利用時に熱源機を運転する、所謂追いかけ運転が必要となる。   Conventionally, heat production costs are reduced by using inexpensive nighttime electricity to reduce heat production costs, and heat source supply to the load during daytime power tightness is performed from the heat storage tank, reducing the power used to operate the heat source machine There is a heat storage type heat source system. In order to efficiently operate such a heat source system, heat storage without excess or deficiency is performed, that is, the heat storage amount is a sufficient amount of heat to cover the load even during a time period when the power demand reaches a peak, And it is preferable that it is the amount of heat used up by the time slot | zone (for example, 22:00) when a thermal storage driving | operation is started. However, in practice, the load-side demand amount may exceed the planned heat amount or the predicted heat amount, and in this case, a so-called chasing operation is required in which the heat source unit is operated during heat storage use in the daytime.

ここで、熱源システムを制御する方法として次のような方法が考えられる。例えば、蓄熱槽内の熱源水の温度を複数個所で計測することで得られた平均温度と放熱後の熱源水の温度との差を算出し、この温度差と蓄熱槽内の水量とを乗ずることによって蓄熱量を算出する。そして、算出された蓄熱量に別途計測した放熱量を加味したものと以降の計画蓄熱量とを比較して負荷を予測する負荷予測処理を行い、この負荷予測処理の結果に基づいて熱源機の運転(例えば、追いかけ運転の要不要等)を決定する。   Here, the following method can be considered as a method of controlling the heat source system. For example, calculate the difference between the average temperature obtained by measuring the temperature of the heat source water in the heat storage tank at multiple locations and the temperature of the heat source water after heat dissipation, and multiply this temperature difference by the amount of water in the heat storage tank. To calculate the amount of heat storage. Then, a load prediction process for predicting a load is performed by comparing the calculated heat storage amount with a separately measured heat release amount and the subsequent planned heat storage amount, and based on the result of the load prediction process, A driving | operation (For example, the necessity of a chase driving | running | working is required) is determined.

しかし、このような従来の熱源システムの制御方法では、蓄熱槽内の熱源水の平均温度を利用するため、蓄熱槽内に実際に負荷側で有効に利用できる温度の熱源水がどの程度存在しているかを把握することは困難である。例えば、実際には負荷における処理(空調、給湯等)に利用できる熱源水(以下、「有効熱源水」と称する)が一部に残っていても、平均温度が高いために有効な熱源水がないと判断されたり、逆に、実際には有効熱源水が殆ど残っていない場合でも、平均温度が低いために有効な熱源水が残っていると判断され
てしまう可能性がある。即ち、従来の熱源システムの制御方法では、制御のための条件を算出する負荷予測処理等の処理が複雑で、且つ誤差が大きいという問題があった。
However, in such a conventional heat source system control method, since the average temperature of the heat source water in the heat storage tank is used, how much heat source water has a temperature that can actually be effectively used on the load side in the heat storage tank. It is difficult to figure out whether For example, even if some heat source water (hereinafter referred to as “effective heat source water”) that can actually be used for processing (air conditioning, hot water supply, etc.) at the load remains, effective heat source water cannot be obtained because the average temperature is high. It may be judged that there is no effective heat source water, or conversely, even if practically no effective heat source water remains, it may be determined that effective heat source water remains because the average temperature is low. That is, the conventional heat source system control method has a problem that the processing such as the load prediction processing for calculating the control condition is complicated and the error is large.

本発明は、上記した問題に鑑み、簡易且つ正確に追いかけ運転の要否を判断する、簡便且つ効果的な熱源システムの制御を提供することを課題とする。   In view of the above-described problems, an object of the present invention is to provide a simple and effective control of a heat source system that can easily and accurately determine whether or not a chasing operation is necessary.

本発明は、上記した課題を解決するために、蓄熱槽内に複数の蓄熱区域を定義し、有効熱源水が存する蓄熱区域の数に従って追加運転の要不要を判定することで、簡便且つ効果的な熱源システムの制御を提供することを可能にした。   In order to solve the above-described problems, the present invention defines a plurality of heat storage areas in the heat storage tank, and determines whether or not additional operation is necessary according to the number of heat storage areas where the effective heat source water exists, and is simple and effective. Made it possible to provide a control of various heat source systems.

詳細には、本発明は、熱源機および蓄熱槽を有する熱源システムであって、前記熱源機によって温度調節された熱源水を前記蓄熱槽に貯留することで蓄熱する蓄熱運転を行う蓄熱手段と、前記蓄熱運転において蓄熱された熱を前記蓄熱槽内の熱源水を介して負荷側へ供給する放熱運転を行う熱供給手段であって、前記蓄熱槽内に定義された複数の蓄熱区域のうち、前記負荷側への熱供給に有効な温度の熱源水が存する有効蓄熱区域の、前記放熱運転の開始後の各所定時点における予定数を定めた、前記放熱運転の放熱スケジュールに従って、前記負荷側への熱供給を行う熱供給手段と、前記複数の蓄熱区域の夫々における熱源水の温度に基づいて、前記有効蓄熱区域の実際の数を取得する区域数取得手段と、前記放熱運転の開始後の所定時点において、前記区域数取得手段によって取得された前記有効蓄熱区域の実際の数が、前記放熱スケジュールに定められた前記有効蓄熱区域の予定数に基づく所定の数未満となった場合に、前記放熱運転中に前記熱源機を運転して熱源水を温度調節する追加運転を開始する追加運転制御手段と、を備える、熱源システムである。   Specifically, the present invention is a heat source system having a heat source unit and a heat storage tank, and a heat storage unit that performs a heat storage operation for storing heat by storing heat source water temperature-controlled by the heat source unit in the heat storage tank; Heat supply means for performing a heat radiation operation for supplying heat stored in the heat storage operation to the load side through heat source water in the heat storage tank, and among the plurality of heat storage areas defined in the heat storage tank, To the load side according to the heat radiation schedule of the heat radiation operation, the planned number at each predetermined time point after the start of the heat radiation operation of the effective heat storage area where the heat source water having a temperature effective for supplying heat to the load side exists. A heat supply means for supplying the heat, an area number acquisition means for acquiring the actual number of the effective heat storage areas based on the temperature of the heat source water in each of the plurality of heat storage areas, and after the start of the heat radiation operation Predetermined time In this case, when the actual number of the effective heat storage areas acquired by the number of areas acquisition unit is less than a predetermined number based on the planned number of the effective heat storage areas defined in the heat dissipation schedule, the heat dissipation It is a heat source system provided with the additional operation control means which starts the additional operation which operates the said heat source machine during operation | movement, and adjusts temperature of heat source water.

本発明に係る熱源システムは、蓄熱運転において蓄熱された熱を、放熱運転において負荷側へ供給する熱源システムである。そして、本発明に係る熱源システムは、放熱運転中に、蓄熱運転において蓄熱された熱量では負荷側の需要を賄いきれないと推測された場合、熱源機を稼動することで供給不足分を補う追加運転を行う。   The heat source system according to the present invention is a heat source system that supplies the heat stored in the heat storage operation to the load side in the heat dissipation operation. And when the heat source system according to the present invention is presumed that the amount of heat stored in the heat storage operation cannot cover the load side demand during the heat dissipation operation, the heat source system is operated to supplement the supply shortage Do the driving.

追加運転の要不要は、有効蓄熱区域の数に基づいて判定される。ここで、有効蓄熱区域とは、蓄熱槽内に定義された複数の蓄熱区域のうち、負荷側への熱供給に有効な温度の熱源水が存する蓄熱区域をいう。即ち、本発明では、有効熱源水を有する蓄熱区域の数によって、蓄熱槽内における、利用可能な熱源水の量、または蓄熱量を把握する。このため、前記複数の蓄熱区域は、互いに同一の容積を有してもよい。蓄熱区域が互いに同一の容積を有することで、有効蓄熱区域の数と、残り有効熱源水の量との関係が略比例関係となり、蓄熱槽内における利用可能な熱源水の量または蓄熱量を、簡易且つ正確に把握することが出来る。   Whether or not the additional operation is necessary is determined based on the number of effective heat storage areas. Here, the effective heat storage area refers to a heat storage area where heat source water having a temperature effective for supplying heat to the load side is present among the plurality of heat storage areas defined in the heat storage tank. That is, in the present invention, the amount of heat source water that can be used or the amount of heat storage in the heat storage tank is grasped based on the number of heat storage zones having effective heat source water. For this reason, the plurality of heat storage areas may have the same volume. Since the heat storage areas have the same volume, the relationship between the number of effective heat storage areas and the amount of remaining effective heat source water is approximately proportional, and the amount of heat source water or heat storage amount available in the heat storage tank is It can be grasped simply and accurately.

例えば、前記区域数取得手段は、前記複数の蓄熱区域の夫々において計測された熱源水の温度と、前記負荷側への熱供給に有効な温度を定めた所定の閾値とを比較することで、各蓄熱区域が前記有効蓄熱区域であるか否かを判定し、前記有効蓄熱区域と判定された蓄熱区域の数をカウントすることで、前記有効蓄熱区域の実際の数を取得してもよい。   For example, the number-of-zones acquisition unit compares the temperature of the heat source water measured in each of the plurality of heat storage zones with a predetermined threshold value that defines a temperature effective for supplying heat to the load side. It may be determined whether or not each heat storage area is the effective heat storage area, and the actual number of the effective heat storage areas may be acquired by counting the number of heat storage areas determined as the effective heat storage area.

ここで、所定の閾値とは、負荷側への熱供給に有効な温度を定めた閾値であり、即ち、負荷側において用いられる設備が必要とする熱源水の温度に応じて定められる閾値である。例えば、負荷側に接続される設備が冷房設備である場合、冷房に供給するに適した熱源水の上限温度等が所定の閾値として定められる。   Here, the predetermined threshold value is a threshold value that determines a temperature effective for supplying heat to the load side, that is, a threshold value that is determined according to the temperature of the heat source water required by the equipment used on the load side. . For example, when the facility connected to the load side is a cooling facility, the upper limit temperature of the heat source water suitable for supplying to the cooling is determined as the predetermined threshold.

また、本発明にかかる熱源システムでは、放熱運転における放熱スケジュールが定められている。この放熱スケジュールは、所定時点における残り有効蓄熱区域の予定数を有す
る情報であり、熱供給手段は、この放熱スケジュールに従って、所定時点に予定数どおりの有効蓄熱区域が残るように放熱運転を行う。そして、追加運転制御手段は、放熱スケジュールに定められた所定時点における残り有効蓄熱区域の予定数と、実際の残り有効蓄熱区域の数とを比較することで、追加運転の要不要を判定し、追加運転が必要な場合には追加運転を行う。即ち、有効蓄熱区域の予定数と実際の数とを比較して、蓄熱量が不足してきていると判定された場合には、追加運転が開始される。
In the heat source system according to the present invention, a heat release schedule in the heat release operation is defined. This heat release schedule is information having the expected number of remaining effective heat storage areas at a predetermined time, and the heat supply means performs a heat release operation so that the number of effective heat storage areas at the predetermined time remains according to this heat release schedule. Then, the additional operation control means determines whether or not the additional operation is necessary by comparing the planned number of remaining effective heat storage areas at a predetermined time determined in the heat radiation schedule with the actual number of remaining effective heat storage areas, If additional operation is required, additional operation is performed. That is, when the estimated number of effective heat storage areas is compared with the actual number and it is determined that the amount of heat storage is insufficient, the additional operation is started.

なお、追加運転が開始される条件は、残り有効蓄熱区域の実際の数が予定数に基づく所定の数未満となったことであるが、この所定の数は、予定数よりも少ない数や多い数であってもよいし、予定数と同一の数であってもよい。所定の数が予定数よりも少ない数とされる場合、例えば、予定数よりも熱源機の時間あたり製造熱量に相当する蓄熱区域数分少ない数を用いることが出来る。所定の数を予定数よりも熱源機の時間あたり製造熱量に相当する蓄熱区域数分少ない数とすることで、不足分の熱量が熱源機の時間当たり製造熱量を越えた時点で追加運転を開始することが出来、熱源機を運転するための電力コストを節約することが出来る。   The condition for starting the additional operation is that the actual number of remaining effective heat storage areas is less than a predetermined number based on the planned number, but this predetermined number is smaller or larger than the planned number. The number may be the same as the planned number. When the predetermined number is smaller than the planned number, for example, a number smaller than the planned number by the number of heat storage areas corresponding to the amount of production heat per hour of the heat source machine can be used. By setting the predetermined number to be less than the planned number by the number of heat storage areas corresponding to the amount of heat produced per hour of the heat source unit, additional operation starts when the shortage of heat exceeds the amount of heat produced per unit time of the heat source unit. It is possible to save power costs for operating the heat source machine.

また、前記追加運転において、前記熱源機は、前記蓄熱槽に貯留される熱源水、および前記蓄熱槽を介さずに前記負荷側へ供給される熱源水のうち、少なくとも何れかを温度調節してもよい。前記蓄熱槽に貯留される熱源水、および前記蓄熱槽を介さずに前記負荷側へ供給される熱源水のうち、何れの熱源水を温度調節しても、追加運転によって蓄熱量の不足分を賄うことが出来る。   Further, in the additional operation, the heat source device adjusts the temperature of at least one of heat source water stored in the heat storage tank and heat source water supplied to the load without passing through the heat storage tank. Also good. Regardless of the heat source water stored in the heat storage tank and the heat source water supplied to the load without passing through the heat storage tank, even if the temperature of any heat source water is adjusted, a shortage of the heat storage amount can be obtained by additional operation. I can cover it.

また、前記追加運転における前記熱源機の温度調節能力は、前記有効蓄熱区域の予定数と実際の数との差に応じて調整されてもよい。これは、予定数と実際の数との差が大きいほど、追加運転による大きな製造熱量が必要となるためである。これによって、追加運転の制御内容を簡易にすることができ、また、蓄熱の不足分に対して正確に追加運転量を定めることが可能となる。なお、ここで、前記追加運転における前記熱源機の温度調節能力は、熱源機がインバータ機であるなど、能力制御が可能な熱源機である場合には、熱源機の能力制御によって調整されてもよいし、熱源機が定容量機である場合には、前記熱源機の運転台数によって調整されてもよい。   Moreover, the temperature adjustment capability of the heat source device in the additional operation may be adjusted according to a difference between the expected number and the actual number of the effective heat storage areas. This is because the larger the difference between the planned number and the actual number, the larger the amount of production heat required for the additional operation. Thereby, the control content of the additional operation can be simplified, and the additional operation amount can be accurately determined for the shortage of heat storage. Here, the temperature adjustment capability of the heat source machine in the additional operation may be adjusted by the capacity control of the heat source machine when the heat source machine is a heat source machine capable of capacity control, such as an inverter machine. Alternatively, when the heat source machine is a constant capacity machine, it may be adjusted according to the number of operating heat source machines.

また、前記追加運転制御手段は、前記追加運転が開始された後の所定時点において、前記区域数取得手段によって取得された前記有効蓄熱区域の実際の数が、前記放熱スケジュールに定められた前記有効蓄熱区域の予定数以上となった場合に、前記追加運転を終了してもよい。即ち、追加運転によって蓄熱の不足分を賄い、以降蓄熱分のみで負荷側の需要を賄うことが出来る状態となった場合には、放熱運転が放熱スケジュール通りに進んでいるか、または蓄熱過多であるため、熱源機を停止して追加運転を終了することで、電力消費量および電力コストを抑制することが出来る。   Further, the additional operation control means is configured such that, at a predetermined time after the additional operation is started, the actual number of the effective heat storage areas acquired by the number of areas acquisition means is the effective number determined in the heat radiation schedule. The additional operation may be terminated when the number of heat storage areas exceeds the planned number. That is, if the additional operation covers the shortage of heat storage, and then the load side demand can be covered only by the heat storage, the heat radiation operation is proceeding according to the heat radiation schedule, or the heat storage is excessive. Therefore, the power consumption and the power cost can be suppressed by stopping the heat source machine and ending the additional operation.

なお、本発明は、制御方法の発明としても把握することが出来る。即ち、本発明は、熱源機および蓄熱槽を有する熱源システムの制御方法であって、前記熱源機によって温度調節された熱源水を前記蓄熱槽に貯留することで蓄熱する蓄熱運転を行う蓄熱ステップと、前記蓄熱運転において蓄熱された熱を前記蓄熱槽内の熱源水を介して負荷側へ供給する放熱運転を行う熱供給ステップであって、前記蓄熱槽内に定義された複数の蓄熱区域のうち、前記負荷側への熱供給に有効な温度の熱源水が存する有効蓄熱区域の、前記放熱運転の開始後の各所定時点における予定数を定めた、前記放熱運転の放熱スケジュールに従って、前記負荷側への熱供給を行う熱供給ステップと、前記複数の蓄熱区域の夫々における熱源水の温度に基づいて、前記有効蓄熱区域の実際の数を取得する区域数取得ステップと、前記放熱運転の開始後の所定時点において、前記区域数取得ステップで取得された前記有効蓄熱区域の実際の数が、前記放熱スケジュールに定められた前記有効蓄熱区域の予定数
に基づく所定の数未満となった場合に、前記放熱運転中に前記熱源機を運転して熱源水を温度調節する追加運転を開始する追加運転制御ステップと、を備える、熱源システムの制御方法である。
Note that the present invention can also be understood as an invention of a control method. That is, the present invention is a control method of a heat source system having a heat source device and a heat storage tank, and a heat storage step for performing a heat storage operation for storing heat by storing heat source water adjusted in temperature by the heat source device in the heat storage tank; A heat supply step of performing a heat radiation operation of supplying heat stored in the heat storage operation to a load side via a heat source water in the heat storage tank, and among a plurality of heat storage areas defined in the heat storage tank In accordance with the heat radiation schedule of the heat radiation operation, the planned number at each predetermined time after the start of the heat radiation operation is determined in the effective heat storage area where the heat source water having a temperature effective for supplying heat to the load side exists. A heat supply step of supplying heat to the heat source, a zone number acquisition step of acquiring an actual number of the effective heat storage zones based on the temperature of the heat source water in each of the plurality of heat storage zones, and the heat dissipation At a predetermined time after the start of turning, the actual number of the effective heat storage areas acquired in the section number acquisition step is less than a predetermined number based on the planned number of the effective heat storage areas defined in the heat release schedule. An additional operation control step of starting an additional operation of adjusting the temperature of the heat source water by operating the heat source device during the heat radiation operation.

本発明によって、簡便且つ効果的な熱源システムの制御を提供することが可能となる。   According to the present invention, it is possible to provide a simple and effective control of a heat source system.

本発明に係る、蓄熱式の熱源システムの実施の形態について、図面に基づいて説明する。   An embodiment of a heat storage type heat source system according to the present invention will be described based on the drawings.

図1は、本実施形態に係る熱源システム1の構成を示す図である。本実施形態に係る熱
源システム1は、熱源水の温度調節を行う4台の熱源機2と、熱源機2によって温度調節された熱源水が貯留される蓄熱槽3と、熱源システム1に設けられた各種センサ類(温度センサ、流量センサ等)から計測結果を受信し、熱源機2や後述するポンプ類を制御することでシステム全体を制御する制御部9と、を備える。また、蓄熱槽3と熱源機2は、蓄熱槽3から熱源機2へ熱源水を送るための往管4および熱源機2によって温度調節された熱源水を蓄熱槽3へ送るための還管5で接続され、蓄熱槽3と負荷側は、蓄熱槽3から負荷側へ熱源水を送るための往管6および負荷側で利用された熱源水を蓄熱槽3へ戻すための還管7で接続されている。往管4、6には、夫々送水用のポンプ41、61が設けられている。但し、ポンプは還管5、7に設けられてもよい。また、往管4および還管5は、熱源機2の台数に応じて、熱源機2の前後でヘッダ42、52を介して分流・合流する。なお、往管6および還管7は、負荷の系統の数に応じて夫々複数設けられてもよい(図示は省略する)。また、往管4と往管6とを直結する管路、および還管5と還管7とを直結する管路が設けられてもよい(図示は省略する)。これによって、熱源機で温度調節された熱源水の一部または全部を、蓄熱槽を通さずに負荷との間で循環させることが可能となる。
FIG. 1 is a diagram illustrating a configuration of a heat source system 1 according to the present embodiment. The heat source system 1 according to the present embodiment is provided in the four heat source units 2 that adjust the temperature of the heat source water, the heat storage tank 3 in which the heat source water temperature-controlled by the heat source unit 2 is stored, and the heat source system 1. And a control unit 9 that receives measurement results from various sensors (temperature sensor, flow rate sensor, etc.) and controls the entire system by controlling the heat source device 2 and pumps described later. In addition, the heat storage tank 3 and the heat source unit 2 include an outgoing pipe 4 for sending the heat source water from the heat storage tank 3 to the heat source unit 2 and a return pipe 5 for sending the heat source water adjusted in temperature by the heat source unit 2 to the heat storage tank 3. The heat storage tank 3 and the load side are connected by a forward pipe 6 for sending heat source water from the heat storage tank 3 to the load side and a return pipe 7 for returning the heat source water used on the load side to the heat storage tank 3. Has been. The outgoing pipes 4 and 6 are provided with pumps 41 and 61 for water supply, respectively. However, the pump may be provided in the return pipes 5 and 7. Further, the outgoing pipe 4 and the return pipe 5 are diverted and merged via the headers 42 and 52 before and after the heat source unit 2 according to the number of the heat source units 2. A plurality of outgoing pipes 6 and return pipes 7 may be provided according to the number of load systems (not shown). Further, a pipe line directly connecting the outgoing pipe 4 and the outgoing pipe 6 and a pipe line directly connecting the return pipe 5 and the return pipe 7 may be provided (not shown). As a result, part or all of the heat source water whose temperature is adjusted by the heat source device can be circulated with the load without passing through the heat storage tank.

本実施形態に係る熱源システム1は、夜間に冷熱を蓄熱する蓄熱運転を行い、昼間に蓄熱された冷熱を負荷側へ供給する放熱運転を行う熱源システム1であり、熱源機2は、所謂冷凍機である。この冷凍機は、冷却塔等からの冷却水を得て冷水(熱源水)を生成する冷凍機であってもよい。また、蓄熱槽3に蓄熱したい熱が冷熱であるか温熱であるかの違い等、実施の形態における様々な条件に応じて、ボイラやヒートポンプ等、冷凍機以外の熱源機2が用いられてもよい。   The heat source system 1 according to the present embodiment is a heat source system 1 that performs a heat storage operation for storing cold energy at night and performs a heat radiation operation for supplying the cold energy stored in the daytime to a load side. Machine. This refrigerator may be a refrigerator that obtains cooling water from a cooling tower or the like and generates cold water (heat source water). Further, even if a heat source device 2 other than a refrigerator, such as a boiler or a heat pump, is used depending on various conditions in the embodiment such as whether the heat to be stored in the heat storage tank 3 is cold or warm. Good.

本実施形態では、負荷側には冷房設備等の空調負荷が接続され、蓄熱槽3には冷熱が蓄熱される。このため、負荷側への往管6の蓄熱槽3からの取水口は、蓄熱槽3の下部(より具体的には、底部近傍)に設けられ、また、還管7の蓄熱槽3への返水口は、蓄熱槽3の上部(より具体的には、蓄熱槽の頂部近傍)に設けられる。但し、実施の形態に応じて、負荷側には、暖房設備や給湯設備等、蓄熱槽3に蓄熱された熱を利用する様々な負荷が接続されてよい。蓄熱槽3に蓄熱される熱が温熱である場合、上記取水口は蓄熱槽3の上部に、返水口は蓄熱槽3の下部に設けられる。   In the present embodiment, an air conditioning load such as a cooling facility is connected to the load side, and cold heat is stored in the heat storage tank 3. For this reason, the water intake from the heat storage tank 3 of the outgoing pipe 6 to the load side is provided in the lower part of the heat storage tank 3 (more specifically, near the bottom), and the return pipe 7 is connected to the heat storage tank 3. The water return port is provided in the upper part of the heat storage tank 3 (more specifically, near the top of the heat storage tank). However, depending on the embodiment, various loads that use the heat stored in the heat storage tank 3, such as a heating facility or a hot water supply facility, may be connected to the load side. When the heat stored in the heat storage tank 3 is warm, the intake port is provided in the upper part of the heat storage tank 3 and the water return port is provided in the lower part of the heat storage tank 3.

本実施形態における蓄熱槽3は、竪型の蓄熱槽3であり、蓄熱槽3内には、高さ方向に積層されるように区画された、20の蓄熱区域31−1〜31−20(以下、何れの蓄熱区域であるかを特定しない場合には、「蓄熱区域31」とする)が定義されている。蓄熱区域31は、夫々が同一の容積を有するように、高さ方向に等分されている。本実施形態では、深さ4000mmの蓄熱槽3が20等分され、各蓄熱区域31は夫々200mmの高さを有する。これらの蓄熱区域31は、蓄熱槽3内における負荷側への熱供給に有効な温度の熱源水の量を把握するために定義された区域であり、物理的に仕切られなくてもよ
い。蓄熱槽3内には、温度差のある熱源水の層が形成されるため、竪型の蓄熱槽3を高さ方向に等分することで、蓄熱槽3内を物理的に仕切ることなく、蓄熱区域31を定義することが出来る。但し、蓄熱槽3内の対流による温度の異なる熱源水の混合を防止するために、各蓄熱区域31を完全に分割しない程度の仕切り壁等が設けられてもよい。なお、本実施形態において蓄熱槽3は20等分されるが、分割される数は、実施の形態に応じて適宜決定されることが好ましい。
The heat storage tank 3 in the present embodiment is a vertical heat storage tank 3, and 20 heat storage areas 31-1 to 31-20 (in the heat storage tank 3 are partitioned so as to be stacked in the height direction. Hereinafter, when it is not specified which heat storage area, it is defined as “heat storage area 31”). The heat storage areas 31 are equally divided in the height direction so that each has the same volume. In this embodiment, the heat storage tank 3 having a depth of 4000 mm is divided into 20 equal parts, and each heat storage area 31 has a height of 200 mm. These heat storage areas 31 are areas defined for grasping the amount of heat source water having a temperature effective for supplying heat to the load side in the heat storage tank 3, and may not be physically partitioned. Since a layer of heat source water having a temperature difference is formed in the heat storage tank 3, dividing the vertical heat storage tank 3 in the height direction without physically partitioning the heat storage tank 3, A heat storage area 31 can be defined. However, in order to prevent mixing of heat source water having different temperatures due to convection in the heat storage tank 3, partition walls or the like that do not completely divide each heat storage area 31 may be provided. In addition, in this embodiment, although the heat storage tank 3 is equally divided, it is preferable that the number divided | segmented is suitably determined according to embodiment.

また、蓄熱槽3内に定義された夫々の蓄熱区域31には、この蓄熱区域31における熱源水の温度を計測するための温度センサ32−1〜32−20(以下、何れの温度センサであるかを特定しない場合には、「温度センサ32」とする)が設けられている。温度センサ32は、防水処理が施され、蓄熱槽3の上部から吊るされる等の方法で設置され、蓄熱槽3内の各蓄熱区域31における熱源水温度を計測する。制御部9は、温度センサ32から各蓄熱区域31の熱源水の温度を取得し、取得された熱源水の温度に基づいて、蓄熱槽3内における、負荷側への熱供給に有効な温度(例えば、摂氏9度以下)の熱源水(有効熱源水)が存する蓄熱区域31(以下、「有効蓄熱区域」と称する)の数を把握する。本実施形態では、蓄熱時点における熱源水の温度は摂氏6度であり、負荷側から還水した熱源水の温度は概ね摂氏12度であるものとする。このため、蓄熱槽3から負荷側へ熱を供給する放熱運転が行われるに従って、摂氏9度以下の有効熱源水を有する有効蓄熱区域の数は減少していく。   Each of the heat storage areas 31 defined in the heat storage tank 3 includes temperature sensors 32-1 to 32-20 (hereinafter, any temperature sensors) for measuring the temperature of the heat source water in the heat storage area 31. If it is not specified, “temperature sensor 32” is provided. The temperature sensor 32 is waterproofed and installed by a method such as hanging from the upper part of the heat storage tank 3, and measures the heat source water temperature in each heat storage area 31 in the heat storage tank 3. The control part 9 acquires the temperature of the heat source water of each heat storage area 31 from the temperature sensor 32, and based on the acquired temperature of the heat source water, the temperature (in the heat storage tank 3 effective for supplying heat to the load side ( For example, the number of heat storage areas 31 (hereinafter referred to as “effective heat storage areas”) where heat source water (effective heat source water) of 9 degrees Celsius or less exists is grasped. In the present embodiment, the temperature of the heat source water at the time of heat storage is 6 degrees Celsius, and the temperature of the heat source water returned from the load side is approximately 12 degrees Celsius. For this reason, as the heat radiation operation for supplying heat from the heat storage tank 3 to the load side is performed, the number of effective heat storage areas having effective heat source water of 9 degrees Celsius or less decreases.

例えば、本実施形態では、蓄熱区域31は、蓄熱槽3を20区画に容積において等分したものであるため、1の蓄熱区域31に蓄熱される熱量は、全体の蓄熱量の1/20である。即ち、本実施形態によれば、有効蓄熱区域の数によって、蓄熱槽3内にある負荷側への熱供給に有効な温度の熱源水の大まかな量を簡易に把握することが出来る。換言すれば、本実施形態において、蓄熱槽3は、蓄熱区域31に分割されて有効蓄熱区域の数が取得されることで、一種の熱計量器として利用される。   For example, in this embodiment, since the heat storage area 31 is obtained by equally dividing the heat storage tank 3 into 20 sections, the amount of heat stored in one heat storage area 31 is 1/20 of the total amount of heat stored. is there. That is, according to the present embodiment, it is possible to easily grasp the approximate amount of heat source water having a temperature effective for supplying heat to the load side in the heat storage tank 3 according to the number of effective heat storage zones. In other words, in the present embodiment, the heat storage tank 3 is divided into the heat storage areas 31 and acquired as the number of effective heat storage areas, thereby being used as a kind of heat meter.

また、制御部9は、蓄熱運転時には、熱源機2等を制御することによって蓄熱槽3への蓄熱量を制御し、放熱運転時には、負荷を満足するように負荷側への管路に設けられた弁(図示は省略する)等が制御され、結果として放熱量が調整される。ここで、制御部9は、予め定められた放熱スケジュールに従って、蓄熱量および放熱量を制御する。   Further, the control unit 9 controls the amount of heat stored in the heat storage tank 3 by controlling the heat source device 2 and the like during the heat storage operation, and is provided on the pipeline to the load side so as to satisfy the load during the heat radiation operation. The valve (not shown) and the like are controlled, and as a result, the heat radiation amount is adjusted. Here, the control unit 9 controls the heat storage amount and the heat release amount according to a predetermined heat release schedule.

本実施形態に係る熱源システム1は、安価な夜間電力を利用して熱製造コストを下げ、かつ昼間の電力逼迫時には蓄熱槽3からの放熱のみで負荷を賄うことで熱源機2の運転を極力行わずに消費電力を低減するためのシステムである。このため、蓄熱運転では、放熱運転において必要な熱の量に対して過不足が生じないように蓄熱が行われ、放熱運転では、負荷側の負荷がピークとなる時間帯にも熱源機2が極力運転されないようなスケジューリングで放熱が行われることが好ましい。そこで、本実施形態では、季節や電力逼迫時の運転等を考慮して、大負荷用、中負荷用、小負荷用、ピークカット用等の、様々な放熱スケジュールを予め用意し、季節や外気温、省エネ目的等に合わせた放熱スケジュールを適用して熱源システム1を運転することとしている。   The heat source system 1 according to the present embodiment reduces the heat production cost by using inexpensive nighttime electric power, and covers the load only by radiating heat from the heat storage tank 3 at the time of daytime power shortage, thereby operating the heat source apparatus 2 as much as possible. This is a system for reducing power consumption without performing the operation. For this reason, in the heat storage operation, heat is stored so that there is no excess or deficiency with respect to the amount of heat required in the heat radiation operation, and in the heat radiation operation, the heat source device 2 is also in the time zone when the load on the load side peaks. It is preferable that the heat radiation is performed with a schedule that does not operate as much as possible. Therefore, in this embodiment, various heat release schedules for heavy loads, medium loads, small loads, peak cuts, etc. are prepared in advance in consideration of the season and operation when power is tight. The heat source system 1 is operated by applying a heat release schedule according to the temperature, energy saving purpose, and the like.

図2は、本実施形態で用いられる放熱スケジュールの例を示すグラフである。制御部9は、制御部9に接続された記憶装置(図示は省略する)に記憶された放熱スケジュールを読み出して利用する。具体的には、放熱スケジュールは、放熱運転の開始時刻、終了時刻、蓄熱運転の開始時刻、終了時刻、および放熱運転中の各時刻(本実施形態では、1時間毎)における残り有効蓄熱区域の予定数、を含む情報である。   FIG. 2 is a graph showing an example of a heat release schedule used in the present embodiment. The control unit 9 reads and uses the heat release schedule stored in a storage device (not shown) connected to the control unit 9. Specifically, the heat release schedule includes the start time and end time of the heat release operation, the start time and end time of the heat storage operation, and the remaining effective heat storage area at each time during the heat release operation (every hour in this embodiment). Information including the planned number.

通常運転放熱スケジュールに従って運転される場合には、放熱運転が開始される時刻(ここでは8時)までに全ての蓄熱区域31(20区域)が有効蓄熱区域となるように蓄熱
運転が行われ、その後、負荷側の需要が収束する時刻(ここでは18時)まで、一定のペースで有効蓄熱領域の数が減少していくように放熱運転が行われる。
When operated according to the normal operation heat radiation schedule, the heat storage operation is performed so that all the heat storage areas 31 (20 areas) become effective heat storage areas by the time when heat radiation operation is started (here, 8:00), Thereafter, the heat radiation operation is performed so that the number of effective heat storage regions decreases at a constant pace until the load side demand converges (here, 18:00).

また、ピークカット運転放熱スケジュールに従って運転される場合には、放熱運転が開始される時刻までに全ての蓄熱区域31が有効蓄熱区域となるように蓄熱運転が行われ、その後、電力消費がピークとなる時刻の手前(ここでは13時)まで、ピーク時に十分な量の有効熱源水が残るように、通常運転放熱スケジュールよりも遅いペースで放熱運転が行われる。ピーク時(ここでは13時から16時の間)には、通常運転放熱スケジュールよりも速いペースで有効蓄熱区域の数が減少するように放熱運転が行われる。   In addition, when the operation is performed according to the peak cut operation heat radiation schedule, the heat storage operation is performed so that all the heat storage areas 31 become effective heat storage areas by the time when the heat radiation operation is started. The heat radiation operation is performed at a slower pace than the normal operation heat radiation schedule so that a sufficient amount of effective heat source water remains at the peak time before the time (here, 13:00). At the peak time (here, from 13:00 to 16:00), the heat radiation operation is performed so that the number of effective heat storage areas decreases at a faster pace than the normal operation heat radiation schedule.

また、小負荷運転放熱スケジュールに従って運転される場合には、放熱運転が開始される時刻までに半分の蓄熱区域31(10区域)が有効蓄熱区域となるように蓄熱運転が行われ、その後、負荷側の需要が収束する時刻まで、一定のペースで有効蓄熱領域の数が減少していくように放熱運転が行われる。   Further, when the operation is performed according to the small load operation heat radiation schedule, the heat storage operation is performed so that half of the heat storage area 31 (10 areas) becomes the effective heat storage area by the time when the heat radiation operation is started, and then the load The heat radiation operation is performed so that the number of effective heat storage regions decreases at a constant pace until the time when the demand on the side converges.

このようにして、本実施形態に係る熱源システム1では、放熱運転において必要な熱の量に対して過不足が生じないように蓄熱運転が行われ、熱源機2の追いかけ運転(以下、本実施形態に係る熱源システム1で、放熱運転中に負荷側の需要に対する熱供給の不足分を補う目的で熱源機2の追いかけ運転が行われることを、「追加運転」と称する)が発生しないように放熱運転が行われる。しかし、実際の運転では、負荷側の熱需要が予定や予測を上回ってしまう等の状況が発生することがあるため、放熱運転中の追加運転を行う必要が生じる場合がある。以下に、本実施形態における追加運転制御処理の詳細について説明する。   Thus, in the heat source system 1 according to the present embodiment, the heat storage operation is performed so that the amount of heat necessary for the heat radiation operation does not become excessive or insufficient, and the chasing operation of the heat source device 2 (hereinafter referred to as the present operation). In the heat source system 1 according to the embodiment, the chasing operation of the heat source unit 2 for the purpose of compensating for the shortage of heat supply for the demand on the load side during the heat radiation operation is referred to as “additional operation”). A heat dissipation operation is performed. However, in actual operation, there may be a situation in which the heat demand on the load side exceeds the schedule or prediction, and therefore it may be necessary to perform additional operation during the heat radiation operation. Details of the additional operation control process in the present embodiment will be described below.

図3は、本実施形態における追加運転制御処理の流れを示すフローチャートである。本フローチャートに示された処理は、熱源システム1が放熱運転を行っている間、定期的(本実施形態では、1時間毎)に、制御部9によって実行される。なお、本実施形態では、熱源機2の運転インターバルを1時間とすることで、熱源機2が頻繁に発停を行うことを防止しつつ、放熱スケジュールと実際の蓄熱量との整合性を高めている。   FIG. 3 is a flowchart showing the flow of additional operation control processing in the present embodiment. The process shown in this flowchart is executed by the control unit 9 periodically (every hour in the present embodiment) while the heat source system 1 performs the heat radiation operation. In the present embodiment, by setting the operation interval of the heat source unit 2 to 1 hour, it is possible to improve the consistency between the heat radiation schedule and the actual heat storage amount while preventing the heat source unit 2 from frequently starting and stopping. ing.

ステップS101からステップS103では、現時点における有効蓄熱区域の数が取得される。制御部9は、各蓄熱区域31に設けられた温度センサ32から、各蓄熱区域31における熱源水の温度を取得し(ステップS101)、取得した蓄熱区域31ごとの熱源水温度を、予め定められた負荷側への熱供給に有効な温度を示す閾値(本実施形態では、摂氏9度)と比較することで、夫々の蓄熱区域31が有効蓄熱区域であるか否かを判定する(ステップS102)。そして、制御部9は、有効蓄熱区域であると判定された蓄熱区域31の数をカウントすることで、温度センサ32による温度計測時点における有効蓄熱区域の数を取得する(ステップS103)。   In step S101 to step S103, the number of effective heat storage zones at the present time is acquired. The control unit 9 acquires the temperature of the heat source water in each heat storage area 31 from the temperature sensor 32 provided in each heat storage area 31 (step S101), and the acquired heat source water temperature for each heat storage area 31 is determined in advance. It is determined whether each heat storage area 31 is an effective heat storage area by comparing with a threshold value (in this embodiment, 9 degrees Celsius) indicating a temperature effective for supplying heat to the load side (step S102). ). And the control part 9 acquires the number of the effective thermal storage area at the time of the temperature measurement by the temperature sensor 32 by counting the number of the thermal storage areas 31 determined to be an effective thermal storage area (step S103).

ステップS104では、温度計測時点における有効蓄熱区域の数が、放熱スケジュールに定められた予定数未満であるか否かが判定される。制御部9は、ステップS103において取得された有効蓄熱区域の数と、放熱スケジュールに定められた、温度計測時点に対応する時刻の残り有効蓄熱区域の予定数とを比較する。ここで、残り有効蓄熱区域の実際の数が、放熱スケジュールにおける予定数未満であった場合、処理はステップS105へ進む。残り有効蓄熱区域の実際の数が予定数以上であった場合、処理はステップS111へ進む。   In step S104, it is determined whether or not the number of effective heat storage zones at the time of temperature measurement is less than the predetermined number set in the heat radiation schedule. The control unit 9 compares the number of effective heat storage areas acquired in step S103 with the expected number of remaining effective heat storage areas at the time corresponding to the time point of temperature measurement determined in the heat release schedule. If the actual number of remaining effective heat storage areas is less than the planned number in the heat release schedule, the process proceeds to step S105. If the actual number of remaining effective heat storage areas is greater than or equal to the planned number, the process proceeds to step S111.

ステップS105およびステップS106では、追加運転において稼動される熱源機2の台数が決定され、追加運転が開始される。制御部9は、予め求められた、1台の熱源機2による時間あたり製造熱量と、1の有効蓄熱区域に蓄熱可能な熱量との関係に基づいて
、追加運転において稼動される熱源機2の台数を算出する(ステップS105)。より具体的には、1台の熱源機2を1時間運転したときの製造熱量が、何区画分の有効蓄熱区域に蓄熱された熱量に相当するかを予め求めておき、これを記憶装置等に記憶しておく。ここで、求められる値は整数である必要はなく、端数があってもよい。そして、残り有効蓄熱区域の実際の数と予定数との差に応じて、追加運転で必要な熱源機2の台数を決定し、決定された台数分の熱源機2に運転開始の指示を出すことで、追加運転を開始する(ステップS106)。
In Step S105 and Step S106, the number of heat source machines 2 that are operated in the additional operation is determined, and the additional operation is started. Based on the relationship between the amount of heat produced per time by one heat source unit 2 and the amount of heat that can be stored in one effective heat storage area, the control unit 9 determines the heat source unit 2 operated in the additional operation. The number is calculated (step S105). More specifically, the amount of production heat when one heat source unit 2 is operated for 1 hour corresponds to the amount of heat stored in the effective heat storage area for each section in advance, and this is stored in a storage device or the like. Remember it. Here, the obtained value does not need to be an integer, and may have a fraction. And according to the difference between the actual number of the remaining effective heat storage areas and the planned number, the number of heat source units 2 necessary for the additional operation is determined, and an instruction to start the operation is issued to the determined number of heat source units 2 Thus, the additional operation is started (step S106).

例えば、1台の熱源機2による時間あたり製造熱量が315kWであり、1の蓄熱区域31に蓄熱される熱量が567kWである場合、1台の熱源機2による時間あたり製造熱量は、0.556区画分の有効蓄熱区域に蓄熱された熱量に相当する。ここで、残り有効蓄熱区域の実際の数と予定数との差が1である場合、1/0.556=1.8台が、追加運転における熱源機2の運転台数として算出される。即ち、本実施形態では、以下の数式を用いることで、追加運転における熱源機2の運転台数が算出される。
追加運転で稼動する熱源機の台数=(有効蓄熱区域の予定数−実際の数)/(1熱源機による製造熱量/1有効蓄熱区域の蓄熱量)
For example, when the heat production amount per hour by one heat source device 2 is 315 kW and the heat amount stored in one heat storage area 31 is 567 kW, the heat production amount per hour by one heat source device 2 is 0.556. It corresponds to the amount of heat stored in the effective heat storage area for the section. Here, when the difference between the actual number of the remaining effective heat storage areas and the planned number is 1, 1 / 0.556 = 1.8 is calculated as the number of operating heat source units 2 in the additional operation. That is, in the present embodiment, the number of operating heat source devices 2 in the additional operation is calculated by using the following mathematical formula.
Number of heat source units operating in additional operation = (scheduled number of effective heat storage areas-actual number) / (production heat amount by one heat source unit / heat storage amount in one effective heat storage area)

算出された運転台数が少数値を有している場合には、四捨五入または切り上げ等によって整数の運転台数が決定される。なお、熱源機2がインバータ機である場合、熱源機2の能力制御によって少数値分の運転を実現してもよい。そして、制御部9は、決定された台数の熱源機2に運転開始の指示を出し、必要であれば熱源機2の能力制御を行って、追加運転を開始する。即ち、本実施形態に係る熱源システム1によれば、複数の熱源機2の能力から、各熱源機2が単位時間当たりに復元可能な蓄熱区域の数を求めて、不足する区域の数に応じて、容易に追加運転の熱源機2の選択を行うことが可能である。その後、本フローチャートに示された処理は終了する。   When the calculated operation number has a decimal value, an integer operation number is determined by rounding or rounding up. In addition, when the heat source unit 2 is an inverter unit, an operation for a small number of values may be realized by the capability control of the heat source unit 2. And the control part 9 gives the instruction | indication of an operation start to the determined number of heat source units 2, performs the capacity control of the heat source unit 2 if necessary, and starts an additional operation. That is, according to the heat source system 1 according to the present embodiment, the number of heat storage areas that each heat source apparatus 2 can restore per unit time is obtained from the capabilities of the plurality of heat source apparatuses 2, and according to the number of insufficient areas. Thus, it is possible to easily select the heat source device 2 for additional operation. Thereafter, the processing shown in this flowchart ends.

また、本実施形態では、1の蓄熱区域31における蓄熱量として、以下のようにして求められた蓄熱量が使用される。1台による時間あたり製造熱量が315kWである4台の熱源機2が10時間稼動した場合の蓄熱量を、315kW*4台*0.9*10時間=11340kWhと推定する。なお、係数0.9は、蓄熱時と放熱時とのタイムラグ等による熱ロスを考慮したものである。本実施形態では、1の蓄熱区域31は蓄熱槽3の1/20の容積を有するため、1の蓄熱区域31における蓄熱量は、11340kWh/20=567kWと推定される。但し、1の蓄熱区域31における蓄熱量は、蓄熱完了時の熱源水温度と放熱完了時の熱源水温度との差を用いる方法等、その他の方法を用いて求められてもよい。   Moreover, in this embodiment, the heat storage amount calculated | required as follows is used as a heat storage amount in the one heat storage area 31. FIG. The amount of heat stored when four heat source units 2 having a production heat amount per unit time of 315 kW operated for 10 hours is estimated as 315 kW * 4 units * 0.9 * 10 hours = 1113 kWh. The coefficient 0.9 takes into consideration heat loss due to a time lag between heat storage and heat dissipation. In this embodiment, since the 1 heat storage area 31 has 1/20 volume of the heat storage tank 3, the heat storage amount in the 1 heat storage area 31 is estimated to be 11340 kWh / 20 = 567 kW. However, the heat storage amount in one heat storage area 31 may be obtained using other methods such as a method using a difference between the heat source water temperature at the time of completion of heat storage and the heat source water temperature at the time of completion of heat dissipation.

なお、本実施形態では、各熱源機2の能力が概ね等しい場合について説明したが、熱源機2の能力は夫々異なっていてもよい。この場合、熱源機2毎に、1時間運転したときの製造熱量が、何区画分の有効蓄熱区域に蓄熱された熱量に相当するかを予め求めておき、これを記憶装置等に記憶しておくことで、追加運転に必要な熱源機2の個体および組み合わせを決定することが可能となる。   In addition, although this embodiment demonstrated the case where the capability of each heat-source equipment 2 was substantially equal, the capability of the heat-source equipment 2 may each differ. In this case, for each heat source unit 2, the amount of heat produced when operated for 1 hour corresponds to the amount of heat stored in the effective heat storage area for each section in advance, and this is stored in a storage device or the like. Thus, it becomes possible to determine the individual and combination of the heat source devices 2 necessary for the additional operation.

ステップS111およびステップS112では、残り有効蓄熱区域の実際の数が予定数以上であって、追加運転が行われている場合に、追加運転が終了される。制御部9は、ステップS104において残り有効蓄熱区域の実際の数が予定数以上であると判定された場合、熱源システム1が現在追加運転中であるか否かを判定し(ステップS111)、追加運転が行われている場合には、熱源機2に運転終了の指示を出すことで追加運転を終了する(ステップS112)。その後、本フローチャートに示された処理は終了する。   In Step S111 and Step S112, when the actual number of remaining effective heat storage areas is equal to or greater than the predetermined number and the additional operation is being performed, the additional operation is terminated. When it is determined in step S104 that the actual number of remaining effective heat storage areas is greater than or equal to the predetermined number, the control unit 9 determines whether or not the heat source system 1 is currently in an additional operation (step S111). If the operation is being performed, the additional operation is ended by issuing an instruction to end the operation to the heat source unit 2 (step S112). Thereafter, the processing shown in this flowchart ends.

上記追加運転制御処理が1時間毎に実行されることで、本実施形態によれば、簡便かつ
正確に、定期的に実際の残り蓄熱量と放熱スケジュールとを比較し、蓄熱量が不足しているか否かを判定して、不足している場合には、適切な量の追加運転を行うことが出来る。
By performing the additional operation control process every hour, according to the present embodiment, the actual remaining heat storage amount is periodically compared with the heat release schedule simply and accurately, and the heat storage amount is insufficient. If it is determined that there is a shortage, an appropriate amount of additional operation can be performed.

図4は、本実施形態における、放熱スケジュールに対する実際の残り有効蓄熱区域の数の推移の一例を示すグラフである。図4に示すグラフによれば、10時に実行された追加運転制御処理(図3を参照)において、残り有効蓄熱区域の数が予定数を所定数下回ったために追加運転が開始され、11時に実行された追加運転制御処理において、残り有効蓄熱区域の数が予定数を上回ったために追加運転が終了されたことが分かる。   FIG. 4 is a graph showing an example of the transition of the actual number of remaining effective heat storage areas with respect to the heat release schedule in the present embodiment. According to the graph shown in FIG. 4, in the additional operation control process (see FIG. 3) executed at 10:00, the additional operation is started because the number of remaining effective heat storage areas falls below the predetermined number, and is executed at 11:00 In the additional operation control process performed, it can be seen that the additional operation was terminated because the number of remaining effective heat storage areas exceeded the planned number.

本発明のような蓄熱式の熱源システム1においては、放熱運転中の負荷側の需要は蓄熱によって全て賄い、追加運転が行われないことが理想であるが、本実施形態に係る熱源システム1によれば、負荷側の需要が予定や予測を上回る等の状況が発生した場合にも、簡易且つ正確に追加運転の要否判断を行い、蓄熱の不足を賄うとともに、蓄熱分を最大限利用することが可能となる。また、本実施形態に係る熱源システム1によれば、蓄熱区域に蓄熱された熱量が、放熱スケジュールの予定数に従って使い切られていくことで、安価な夜間電力で蓄熱された熱量を、昼間の放熱運転で使い切ることが可能である。更に、上記追加運転制御処理によって、熱源機を過不足なく運転することが可能となり、容易にピークカット運転を行うことが出来る。   In the heat storage type heat source system 1 as in the present invention, it is ideal that the demand on the load side during the heat radiation operation is entirely covered by the heat storage, and no additional operation is performed, but the heat source system 1 according to the present embodiment According to this, even when the demand on the load side exceeds the schedule or forecast, the necessity of additional operation is determined easily and accurately, to cover the shortage of heat storage, and to make maximum use of the heat storage It becomes possible. In addition, according to the heat source system 1 according to the present embodiment, the amount of heat stored in the heat storage area is used up according to the planned number of heat release schedules, so that the amount of heat stored with inexpensive nighttime power is dissipated during the daytime. It can be used up by driving. Furthermore, the additional operation control process makes it possible to operate the heat source machine without excess or deficiency, and easily perform peak cut operation.

なお、本実施形態では、蓄熱槽3として竪型の蓄熱槽3を用いたが、平型の蓄熱槽3が用いられてもよい。平型の蓄熱槽3を、蓄熱区域31が横方向に並ぶように区画する場合には、隣接する蓄熱区域31間で温度の異なる熱源水の混合が発生しないように、夫々の蓄熱区域31は、連通孔を有する仕切りによって仕切られることが好ましい。   In the present embodiment, the bowl-shaped heat storage tank 3 is used as the heat storage tank 3, but a flat heat storage tank 3 may be used. When the flat heat storage tank 3 is partitioned so that the heat storage areas 31 are arranged in the horizontal direction, each heat storage area 31 is configured so that mixing of heat source water having different temperatures does not occur between the adjacent heat storage areas 31. The partition is preferably partitioned by a partition having a communication hole.

また、昼間の電力逼迫時等、電気料金が高く設定されている時間帯がある場合には、この時間帯の追加運転を抑制することとしてもよい。即ち、追加運転制御処理において、時間帯の判定を行い、夜間電力の時間帯(例えば、13時から16時の間)には、残り有効蓄熱区域の実際の数が放熱スケジュールの予定数を下回った場合でも、追加運転を開始せずに、追加運転制御処理を終了することとしてもよい。このようにすることで、追加運転が電気料金が高い時間帯を避けて実行され、電力ピークカットに貢献し、且つ電力コストを削減することが可能となる。   In addition, when there is a time zone in which the electricity rate is set high, such as when the power of the daytime is tight, additional operation during this time zone may be suppressed. That is, in the additional operation control process, when the time zone is determined, and the actual number of remaining effective heat storage areas falls below the scheduled number of heat release schedules during the nighttime power time zone (for example, between 13:00 and 16:00) However, the additional operation control process may be terminated without starting the additional operation. By doing in this way, additional operation is performed avoiding the time slot | zone when an electricity bill is high, it becomes possible to contribute to electric power peak cut, and to reduce electric power cost.

実施形態に係る熱源システムの構成を示す図である。It is a figure showing the composition of the heat source system concerning an embodiment. 実施形態で用いられる放熱スケジュールの例を示すグラフである。It is a graph which shows the example of the heat dissipation schedule used by embodiment. 実施形態における追加運転制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the additional operation control process in embodiment. 実施形態における、放熱スケジュールに対する実際の残り有効蓄熱区域の数の推移の一例を示すグラフである。It is a graph which shows an example of transition of the number of the actual remaining effective heat storage area with respect to the heat dissipation schedule in embodiment.

符号の説明Explanation of symbols

1 熱源システム
2 熱源機
3 蓄熱槽
9 制御部
31 蓄熱区域
32 温度センサ
DESCRIPTION OF SYMBOLS 1 Heat source system 2 Heat source machine 3 Thermal storage tank 9 Control part 31 Thermal storage area 32 Temperature sensor

Claims (8)

複数の熱源機および蓄熱槽を有する熱源システムであって、
前記熱源機によって温度調節された熱源水を前記蓄熱槽に貯留することで蓄熱する蓄熱運転を行う蓄熱手段と、
前記蓄熱運転において蓄熱された熱を前記蓄熱槽内の熱源水を介して負荷側へ供給する放熱運転を行う熱供給手段であって、前記蓄熱槽内に定義された互いに同一の容積を有する複数の蓄熱区域のうち、前記負荷側への熱供給に有効な温度の熱源水が存する有効蓄熱区域の、前記放熱運転の開始後の各所定時点における予定数を定めた、前記放熱運転の放熱スケジュールに従って、前記負荷側への熱供給を行う熱供給手段と、
前記複数の蓄熱区域の夫々における熱源水の温度に基づいて、前記有効蓄熱区域の実際の数を取得する区域数取得手段と、
前記放熱運転の開始後の所定時点において、前記区域数取得手段によって取得された前記有効蓄熱区域の実際の数が、前記放熱スケジュールに定められた前記有効蓄熱区域の予定数に基づく所定の数未満となった場合に、前記放熱運転中に、前記複数の熱源機のうち、前記有効蓄熱区域の予定数と前記実際の数との差、および各熱源機が単位時間あたりに復元可能な蓄熱区域の数、に基づいて選択された熱源機を運転して熱源水を温度調節する追加運転を開始する追加運転制御手段と、
を備える、熱源システム。
A heat source system having a plurality of heat source apparatuses, and the heat storage tank,
Heat storage means for performing a heat storage operation for storing heat by storing heat source water whose temperature is adjusted by the heat source unit in the heat storage tank;
Heat supply means for performing a heat radiation operation for supplying heat stored in the heat storage operation to a load side through heat source water in the heat storage tank, and having a plurality of identical volumes defined in the heat storage tank The heat radiation schedule of the heat radiation operation in which the number of effective heat storage areas in which heat source water having a temperature effective for supplying heat to the load exists is determined at each predetermined time after the start of the heat radiation operation. And heat supply means for supplying heat to the load side,
An area number acquisition means for acquiring the actual number of the effective heat storage areas based on the temperature of the heat source water in each of the plurality of heat storage areas;
At a predetermined time after the start of the heat radiation operation, the actual number of the effective heat storage areas acquired by the section number acquisition unit is less than a predetermined number based on the planned number of the effective heat storage areas determined in the heat dissipation schedule. In the case of the heat dissipation operation, among the plurality of heat source units, the difference between the expected number of the effective heat storage zones and the actual number, and the heat storage zones in which each heat source unit can be restored per unit time. An additional operation control means for operating the selected heat source unit based on the number of the heat source unit and starting an additional operation for adjusting the temperature of the heat source water;
A heat source system comprising:
前記複数の熱源機は、互いに能力の略等しい熱源機であり、  The plurality of heat source machines are heat source machines having substantially the same capacity.
前記追加運転制御手段は、前記有効蓄熱区域の予定数と前記実際の数との差を1熱源機による単位時間あたり製造熱量に相当する有効蓄熱区域の数で割ることで算出された台数の前記熱源機による追加運転を開始する、  The additional operation control means is configured to divide the difference between the planned number of the effective heat storage areas and the actual number by the number of effective heat storage areas corresponding to the amount of heat produced per unit time by one heat source unit. Start additional operation with heat source machine,
請求項1に記載の熱源システム。  The heat source system according to claim 1.
前記追加運転において、前記熱源機は、前記蓄熱槽に貯留される熱源水、および前記蓄熱槽を介さずに前記負荷側へ供給される熱源水のうち、少なくとも何れかを温度調節する、
請求項1または2に記載の熱源システム。
In the additional operation, the heat source machine adjusts the temperature of at least one of heat source water stored in the heat storage tank and heat source water supplied to the load without passing through the heat storage tank.
The heat source system according to claim 1 or 2 .
前記区域数取得手段は、前記複数の蓄熱区域の夫々において計測された熱源水の温度と、前記負荷側への熱供給に有効な温度を定めた所定の閾値とを比較することで、各蓄熱区域が前記有効蓄熱区域であるか否かを判定し、前記有効蓄熱区域と判定された蓄熱区域の数をカウントすることで、前記有効蓄熱区域の実際の数を取得する、
請求項1から3の何れか一項に記載の熱源システム。
The number-of-zones acquisition means compares each heat storage temperature by comparing the temperature of the heat source water measured in each of the plurality of heat storage zones with a predetermined threshold value that determines the temperature effective for supplying heat to the load side. Determining whether the area is the effective heat storage area, and obtaining the actual number of the effective heat storage areas by counting the number of heat storage areas determined as the effective heat storage area;
The heat source system according to any one of claims 1 to 3 .
前記追加運転制御手段は、前記追加運転が開始された後の所定時点において、前記区域数取得手段によって取得された前記有効蓄熱区域の実際の数が、前記放熱スケジュールに定められた前記有効蓄熱区域の予定数以上となった場合に、前記追加運転を終了する、
請求項1から4の何れか一項に記載の熱源システム。
The additional operation control means is configured such that, at a predetermined time after the additional operation is started, the actual number of the effective heat storage areas acquired by the area number acquisition means is the effective heat storage area determined in the heat radiation schedule. When the number exceeds the planned number, the additional operation is terminated.
The heat source system according to any one of claims 1 to 4 .
前記放熱運転の開始後の所定時点において、前記区域数取得手段によって取得された前記有効蓄熱区域の実際の数が、前記放熱スケジュールに定められた前記有効蓄熱区域の予定数に基づく所定の数以上である場合に、前記追加運転を行わずに前記放熱運転を続行する、
請求項1から5の何れか一項に記載の熱源システム。
At a predetermined time after the start of the heat radiation operation, the actual number of the effective heat storage areas acquired by the section number acquisition unit is equal to or greater than a predetermined number based on the planned number of the effective heat storage areas defined in the heat dissipation schedule. In the case of, the heat dissipation operation is continued without performing the additional operation,
The heat source system according to any one of claims 1 to 5 .
複数の熱源機および蓄熱槽を有する熱源システムの制御方法であって、
前記熱源機によって温度調節された熱源水を前記蓄熱槽に貯留することで蓄熱する蓄熱運転を行う蓄熱ステップと、
前記蓄熱運転において蓄熱された熱を前記蓄熱槽内の熱源水を介して負荷側へ供給する放熱運転を行う熱供給ステップであって、前記蓄熱槽内に定義された互いに同一の容積を有する複数の蓄熱区域のうち、前記負荷側への熱供給に有効な温度の熱源水が存する有効蓄熱区域の、前記放熱運転の開始後の各所定時点における予定数を定めた、前記放熱運転の放熱スケジュールに従って、前記負荷側への熱供給を行う熱供給ステップと、
前記複数の蓄熱区域の夫々における熱源水の温度に基づいて、前記有効蓄熱区域の実際の数を取得する区域数取得ステップと、
前記放熱運転の開始後の所定時点において、前記区域数取得ステップで取得された前記有効蓄熱区域の実際の数が、前記放熱スケジュールに定められた前記有効蓄熱区域の予定数に基づく所定の数未満となった場合に、前記放熱運転中に、前記複数の熱源機のうち、前記有効蓄熱区域の予定数と前記実際の数との差、および各熱源機が単位時間あたりに復元可能な蓄熱区域の数、に基づいて選択された熱源機を運転して熱源水を温度調節する追加運転を開始する追加運転制御ステップと、
を備える、熱源システムの制御方法。
A plurality of heat source apparatuses, and a control method of a heat source system having a heat storage tank,
A heat storage step for performing a heat storage operation for storing heat by storing the heat source water temperature-controlled by the heat source unit in the heat storage tank;
A heat supply step for performing a heat radiation operation for supplying heat stored in the heat storage operation to a load side through a heat source water in the heat storage tank, and having a plurality of identical volumes defined in the heat storage tank The heat radiation schedule of the heat radiation operation in which the number of effective heat storage areas in which heat source water having a temperature effective for supplying heat to the load exists is determined at each predetermined time after the start of the heat radiation operation. According to the heat supply step for supplying heat to the load side,
An area number acquisition step of acquiring an actual number of the effective heat storage areas based on the temperature of the heat source water in each of the plurality of heat storage areas;
At a predetermined time after the start of the heat radiation operation, the actual number of the effective heat storage areas acquired in the section number acquisition step is less than a predetermined number based on the planned number of the effective heat storage areas defined in the heat dissipation schedule. In the case of the heat dissipation operation, among the plurality of heat source units, the difference between the expected number of the effective heat storage zones and the actual number, and the heat storage zones in which each heat source unit can be restored per unit time. An additional operation control step of starting an additional operation of operating the selected heat source unit based on the number of the
A method for controlling a heat source system.
前記複数の熱源機は、互いに能力の略等しい熱源機であり、  The plurality of heat source machines are heat source machines having substantially the same capacity.
前記追加運転制御ステップでは、前記有効蓄熱区域の予定数と前記実際の数との差を1熱源機による単位時間あたり製造熱量に相当する有効蓄熱区域の数で割ることで算出された台数の前記熱源機による追加運転を開始する、  In the additional operation control step, the number of units calculated by dividing the difference between the expected number of the effective heat storage areas and the actual number by the number of effective heat storage areas corresponding to the amount of heat produced per unit time by one heat source machine. Start additional operation with heat source machine,
請求項7に記載の熱源システムの制御方法。  The method for controlling a heat source system according to claim 7.
JP2008052166A 2008-03-03 2008-03-03 HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM CONTROL METHOD Active JP5214278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008052166A JP5214278B2 (en) 2008-03-03 2008-03-03 HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008052166A JP5214278B2 (en) 2008-03-03 2008-03-03 HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM CONTROL METHOD

Publications (2)

Publication Number Publication Date
JP2009210170A JP2009210170A (en) 2009-09-17
JP5214278B2 true JP5214278B2 (en) 2013-06-19

Family

ID=41183509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008052166A Active JP5214278B2 (en) 2008-03-03 2008-03-03 HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM CONTROL METHOD

Country Status (1)

Country Link
JP (1) JP5214278B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5919116B2 (en) * 2012-07-19 2016-05-18 株式会社日立製作所 Thermal storage controller

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525942A (en) * 1975-07-04 1977-01-18 Hitachi Ltd Heat storing device by utilizing midnight electric power
JPS5320644A (en) * 1976-08-11 1978-02-25 Taikisha Ltd Apparatus for accumulating heat
JP2528823B2 (en) * 1985-12-06 1996-08-28 株式会社日立製作所 Operation control device for heat storage air conditioner
JPS62206337A (en) * 1986-03-05 1987-09-10 Taikisha Ltd Heat accumulating type air conditioner
JPH0418604A (en) * 1990-05-11 1992-01-22 Toshiba Corp Operation controller for heat source equipment
JP2848716B2 (en) * 1991-04-16 1999-01-20 高砂熱学工業株式会社 Water heat source air conditioning method
JP3309282B2 (en) * 1992-06-09 2002-07-29 清水建設株式会社 Design method of air conditioning system with heat storage tank
JPH0886492A (en) * 1994-09-14 1996-04-02 Ebara Corp Heat supply device
JP3690294B2 (en) * 2001-03-14 2005-08-31 ダイキン工業株式会社 AIR CONDITIONER AND ITS CONTROL METHOD, AIR CONDITIONING SYSTEM, AND PROGRAM

Also Published As

Publication number Publication date
JP2009210170A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
US10295199B2 (en) Water heater controller or system
JP4600235B2 (en) Cogeneration facility control system and cogeneration facility control method
CN105144014B (en) The method that desired value for the air adjustment to IT environment is adjusted
JP4875387B2 (en) Cogeneration system
KR102132174B1 (en) A central heating and cooling system according to the prediction of damage of a heat exchanger, and it's control method
JP5214278B2 (en) HEAT SOURCE SYSTEM AND HEAT SOURCE SYSTEM CONTROL METHOD
JP2007085663A (en) Heat pump water heater
JP4117565B2 (en) Hybrid hot water supply system
JP4525744B2 (en) Operation control device for hot water storage type water heater
JP4916197B2 (en) Cogeneration system
JP5937034B2 (en) Operation control method for cold / hot water supply system
JP2008025914A (en) Control method of hot water supply system and controller for hot water supply system used therefor
JP2005223964A (en) Operation control system for cogeneration system
JP4841994B2 (en) Cogeneration system
JP7035969B2 (en) Hot water storage type hot water supply device
JP6906164B2 (en) Cogeneration system and its operation method
JP6116093B2 (en) Heat source system
JP4994108B2 (en) Thermal storage control device
JP6513498B2 (en) Hot water supply system
JP2010032212A (en) Control device for storage type water heater
JP2018159526A (en) Hot water supply system
JP7101487B2 (en) Heat supply system
JP2010175143A (en) Operating method of water heater
JP3217113B2 (en) Thermal storage operation method for thermal storage tank
EP2171359B1 (en) Heat storage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Ref document number: 5214278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3