JP5214183B2 - Converter refractory repair material and converter refractory repair method - Google Patents

Converter refractory repair material and converter refractory repair method Download PDF

Info

Publication number
JP5214183B2
JP5214183B2 JP2007166975A JP2007166975A JP5214183B2 JP 5214183 B2 JP5214183 B2 JP 5214183B2 JP 2007166975 A JP2007166975 A JP 2007166975A JP 2007166975 A JP2007166975 A JP 2007166975A JP 5214183 B2 JP5214183 B2 JP 5214183B2
Authority
JP
Japan
Prior art keywords
converter
slag
refractory
repair material
repair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007166975A
Other languages
Japanese (ja)
Other versions
JP2009001892A (en
Inventor
法明 温品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2007166975A priority Critical patent/JP5214183B2/en
Publication of JP2009001892A publication Critical patent/JP2009001892A/en
Application granted granted Critical
Publication of JP5214183B2 publication Critical patent/JP5214183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、転炉耐火物補修材および転炉耐火物補修方法に関する。   The present invention relates to a converter refractory repair material and a converter refractory repair method.

製鋼工程のうちの一工程である精錬において転炉が汎用されている。転炉は、鋼などから成る殻体の内壁にレンガなどの耐火物を内張りして構成される。転炉は、その内部に高温の溶鋼を収容し、さらに酸素ガスなどが溶鋼中へ吹き込まれて吹錬されるので、厳しい熱負荷を繰返し受けることになる。したがって、転炉で溶鋼が精錬される回数(いわゆるチャージ数)が増すのに伴って耐火物が損耗し、耐火物の厚みが薄くなるという現象がある。   Converters are widely used in refining, which is one of the steelmaking processes. The converter is configured by lining a refractory material such as brick on the inner wall of a shell made of steel or the like. The converter accommodates high-temperature molten steel in its interior, and oxygen gas or the like is blown into the molten steel and blown, so that a severe heat load is repeatedly received. Therefore, there is a phenomenon that the refractory is worn out and the thickness of the refractory is reduced as the number of times the molten steel is refined in the converter (so-called charge number) increases.

耐火物の厚みが薄くなると、殻体に対して伝導する熱量が大きくなり、殻体が熱損傷を受けるおそれがあるので、通常内張り耐火物の損傷を受けて薄くなった部位の補修が行われる。耐火物の補修方法としては、従来、不定形耐火物を吹付ガンによって吹付ける熱間吹付補修法、またはピッチ含有不定形耐火物を損傷部位に投入し、転炉の保有熱等で焼付ける焼付補修法などが行われているけれども、これらは接着強度が低く残存寿命が短い、気孔率が高くて耐用性が低いなどの問題があり、また不定形耐火物が比較的高いのでコスト増になるという問題がある。   If the thickness of the refractory is reduced, the amount of heat conducted to the shell increases and the shell may be damaged by heat, so repair of the thinned part is usually performed due to damage to the lining refractory. . As a refractory repair method, conventionally, a hot blast repair method in which an irregular refractory is sprayed with a spray gun, or a pitch-containing refractory refractory is injected into the damaged part and baked by the heat held by the converter, etc. Although repair methods are being used, these have problems such as low adhesive strength and short remaining life, high porosity and low durability, and high costs due to relatively high amorphous refractories. There is a problem.

このような問題に対して、溶鋼を出鋼した後、転炉内にスラグを残留し、残留させたスラグを転炉内壁の補修部分にコーティングして補修する方法が提案されている。しかしながら、この方法においても、転炉内の所望の位置に、所望の厚さでスラグを付着させることが難しいという問題がある。この問題に対して、転炉内の所望の位置にスラグを付着させる方法として、転炉内に残留された溶融スラグに対して、転炉上方からランスを介して高圧ガスを噴射する方法が提案されている(特許文献1参照)。   To solve such a problem, a method has been proposed in which slag remains in the converter after the molten steel is discharged, and the repaired portion of the inner wall of the converter is coated and repaired. However, even in this method, there is a problem that it is difficult to deposit slag with a desired thickness at a desired position in the converter. To solve this problem, a method of injecting high-pressure gas from the top of the converter via the lance is proposed as a method of attaching slag to the desired position in the converter. (See Patent Document 1).

特許文献1に開示される方法では、出鋼後の転炉内に残留させた溶融スラグに、乾燥ドロマイト、軽焼ドロマイトまたは生石灰などのMgOまたはCaOを含有する調整剤を投入後、ランスから噴射する高圧ガスの圧力/流量を調整することによって、前記溶融スラグに与える吹付け/吹上げのエネルギを制御し、転炉内の所望の位置に前記溶融スラグをコーティングするというものである。   In the method disclosed in Patent Document 1, a molten slag remaining in a converter after steelmaking is injected with a regulator containing MgO or CaO such as dry dolomite, light calcined dolomite or quicklime, and then injected from the lance. By adjusting the pressure / flow rate of the high-pressure gas, the energy of spraying / blowing applied to the molten slag is controlled, and the molten slag is coated at a desired position in the converter.

しかしながら、特許文献1に開示されるCaOを主成分とし、MgOで調整したスラグは、空気中の水分と反応して消化現象が発生し、その結果安定した耐用性のある補修ができないという問題がある。すなわち、転炉耐火物の補修に際して用いられる補修材の組成が、その耐用性向上に極めて重要であるにも関らず、従来技術では明確にされていない。   However, the slag mainly composed of CaO disclosed in Patent Document 1 and adjusted with MgO reacts with moisture in the air to cause a digestion phenomenon, and as a result, there is a problem that stable durable repair cannot be performed. is there. That is, although the composition of the repair material used for repairing the converter refractory is extremely important for improving the durability, it has not been clarified in the prior art.

特開平5−331518号公報JP-A-5-331518

本発明の目的は、転炉耐火物に対する付着性に優れ、補修性能を向上することができる転炉耐火物補修材および該補修材を用いる転炉耐火物補修方法を提供することである。   The objective of this invention is providing the converter refractory repair material which is excellent in the adhesiveness with respect to a converter refractory, and can improve repair performance, and the converter refractory repair method using this repair material.

本発明は、吹錬されたステンレス鋼の溶鋼を出鋼した後の転炉内に残留するスラグにMgOを含むスラグ調整剤を添加することによって得られる転炉耐火物補修材であって、
重量%で、
MgO:10〜30%
CaO:10〜30%
Cr:5〜60%
を含有することを特徴とする転炉耐火物補修材である。
The present invention is a converter refractory repair material obtained by adding a slag adjusting agent containing MgO to the slag remaining in the converter after the molten steel of blown stainless steel is produced,
% By weight
MgO: 10-30%
CaO: 10-30%
Cr 2 O 3: 5~60%
It is a converter refractory repair material characterized by containing.

また本発明は、吹錬されたステンレス鋼の溶鋼を出鋼した後の転炉の内張り耐火物を補修する転炉耐火物補修方法において、
吹錬された溶鋼を出鋼した後の転炉内にスラグを残留させるステップと、
残留されるスラグにMgOを含むスラグ調整剤を添加し、スラグにスラグ調整剤を添加することによって得られる転炉耐火物補修材が、重量%で、MgO:10〜30%、CaO:10〜30%、Cr:5〜60%を含有する組成になるように調整するステップと、
組成調整された転炉耐火物補修材を転炉耐火物の損傷部位で静置し固化させるステップとを含むことを特徴とする転炉耐火物補修方法である。
The present invention also relates to a converter refractory repairing method for repairing a refractory lining of a converter after the molten steel of blown stainless steel is produced,
A step of leaving slag in the converter after producing the blown molten steel;
The converter refractory repair material obtained by adding a slag adjusting agent containing MgO to the remaining slag and adding the slag adjusting agent to the slag is MgO: 10-30%, CaO: 10 Adjusting to a composition containing 30%, Cr 2 O 3 : 5-60%,
The converter refractory repair material comprising the step of allowing the composition-adjusted converter refractory repair material to stand at a damaged portion of the converter refractory and solidifying.

また本発明は、吹錬されたステンレス鋼の溶鋼を出鋼した後の転炉内に残留されるスラグであって、MgOを含むスラグ調整剤が添加される前のスラグの塩基度(CaO/SiO)が、1〜2であることを特徴とする The present invention also relates to slag remaining in the converter after the molten steel of blown stainless steel is produced, and the basicity of the slag before the addition of the slag adjusting agent containing MgO (CaO / SiO 2 ) is 1-2 .

本発明によれば、ステンレス鋼の溶鋼出鋼後のスラグに、MgOを含有するスラグ調整剤、たとえばMgOを含むれんが屑などを添加して所望の組成を有する補修材とすることによって、転炉内壁の耐火物に対する付着性に優れ、かつ耐用に優れる転炉耐火物補修材を得ることができ、この補修材を用いて補修することによって転炉炉体寿命を延長し、耐火物コストを削減することができる。
また、転炉で吹錬される溶鋼をステンレス鋼とすることによって、転炉耐火物補修材の必須成分であるCr を、特別材料を添加することなく含有させることができるので、補修コストを低減することができる。
According to the present invention, by adding a slag adjusting agent containing MgO, for example, brick waste containing MgO, to the slag after the molten steel is discharged from the stainless steel, a repair material having a desired composition is obtained. It is possible to obtain a converter refractory repair material with excellent adhesion to the refractory of the inner wall and excellent durability, and by repairing using this repair material, the life of the converter furnace body is extended and the refractory cost is reduced. can do.
In addition, by making the molten steel blown in the converter into stainless steel, Cr 2 O 3 which is an essential component of the converter refractory repair material can be contained without adding any special material, so repair Cost can be reduced.

また本発明によれば、吹錬されたステンレス鋼の溶鋼を出鋼した後の転炉内に残留されるスラグの塩基度を好適な範囲とすることによって、転炉耐火物補修後の転炉炉体の耐用を向上することができる。 Further, according to the present invention, the converter after the refractory repair of the converter is obtained by setting the basicity of the slag remaining in the converter after the molten steel of the blown stainless steel is produced. The durability of the furnace body can be improved.

図1は、本発明の転炉耐火物補修方法の概要を説明する図である。本発明の転炉耐火物補修方法は、吹錬されたステンレス鋼の溶鋼を出鋼した後の転炉1の殻体2の内壁に内張りされた耐火物3の損傷部位7を補修するものである。 FIG. 1 is a diagram for explaining the outline of the converter refractory repairing method of the present invention. The converter refractory repairing method of the present invention repairs the damaged portion 7 of the refractory 3 lined on the inner wall of the shell 2 of the converter 1 after the molten steel of blown stainless steel is discharged. is there.

転炉耐火物補修方法では、まず転炉1中で吹錬された溶鋼を出鋼した後、転炉内にスラグ4を残留させる。本実施の態様では、溶鋼はステンレス鋼である。ステンレス鋼を吹錬対象材とすることによって、後述する転炉耐火物補修材6の必須成分であるCrを、吹錬を通じてスラグ中へ供給することができるからである。 In the converter refractory repairing method, first, the molten steel blown in the converter 1 is discharged, and then the slag 4 is left in the converter. In this embodiment, the molten steel Ru Oh stainless steel. This is because by using stainless steel as the material to be blown, Cr 2 O 3 which is an essential component of the converter refractory repair material 6 described later can be supplied into the slag through blowing.

また、転炉1内に残留されるスラグ4は、吹錬を通じてその塩基度(CaO/SiO)が、1.0〜2.0の範囲内に調整される。塩基度の高いスラグ4が転炉1内に残留すると、そのスラグ4が耐火物3の表面に付着し、耐火物3を保護するため、転炉炉体の耐用寿命が長くなる。しかしながら、スラグ4の塩基度が2.0を超えるような転炉の操業では、吹錬中に飛散する溶鋼のスプラッシュが、転炉1の開口部およびフードまわりに付着しやすくなる。そのため飛散する溶鋼のスプラッシュが転炉1の開口部を閉塞する場合があり、転炉の操業が阻害される。 Further, the basicity (CaO / SiO 2 ) of the slag 4 remaining in the converter 1 is adjusted within a range of 1.0 to 2.0 through blowing. When the slag 4 having a high basicity remains in the converter 1, the slag 4 adheres to the surface of the refractory 3 and protects the refractory 3, thereby extending the useful life of the converter furnace body. However, in the operation of the converter in which the basicity of the slag 4 exceeds 2.0, the splash of molten steel that is scattered during blowing is likely to adhere to the opening of the converter 1 and around the hood. Therefore, the splash of molten steel that is scattered may block the opening of the converter 1, which hinders the operation of the converter.

また、耐火物3の表面に付着したスラグ4は、CaOが添加されて、塩基度が2.0を超えると、体積膨張が大きくなって耐火物3から剥離する。このような場合、スラグ4が耐火物3から完全に剥離するまで待機したあと、耐火物3を補修することになり、そのため補修時間が少なくなる。また塩基度が1.0未満となり、含有されるCaO量が低いスラグ4から作成される補修材6は、転炉の操業における熱負荷に対して損耗が大きく、補修材6の残存寿命が短くなる。以上のことから、スラグ4の塩基度は、溶鋼を吹錬する作業性およびスラグ4の含有成分を考慮して設定する必要があり、塩基度を1.0〜2.0の範囲で設定する。   Further, the slag 4 attached to the surface of the refractory 3 is exfoliated from the refractory 3 due to an increase in volume expansion when CaO is added and the basicity exceeds 2.0. In such a case, after waiting until the slag 4 completely peels from the refractory 3, the refractory 3 is repaired, and therefore the repair time is reduced. Further, the repair material 6 made from the slag 4 having a basicity of less than 1.0 and containing a low amount of CaO has a large wear against the heat load in the operation of the converter, and the remaining life of the repair material 6 is short. Become. From the above, it is necessary to set the basicity of the slag 4 in consideration of the workability of blowing molten steel and the components contained in the slag 4, and the basicity is set in the range of 1.0 to 2.0. .

次に、転炉1内に残留されるスラグ4にMgOを含むスラグ調整剤5を添加して得られる転炉耐火物補修材6(以後、単に補修材6と略称する)が、重量%で、MgO:10〜30%、CaO:10〜30%、Cr:5〜60%を含有する組成になるように調整する。この組成を有する補修材6は、本発明の一実施形態である。 Next, a converter refractory repair material 6 (hereinafter simply referred to as repair material 6) obtained by adding a slag adjusting agent 5 containing MgO to the slag 4 remaining in the converter 1 is expressed in weight%. MgO: 10 to 30%, CaO: 10 to 30%, and Cr 2 O 3 : 5 to 60%. The repair material 6 having this composition is an embodiment of the present invention.

MgOを含むスラグ調整剤5としては、MgOのみが用いられてもよいけれども、たとえばマグネシアれんがの廃材であるれんが屑などが好適に用いられる。マグネシアれんがは、製鋼工程において使用される耐火材料であり、製鋼の操業に伴う使用劣化によって、その廃材は必然的に発生するものである。したがって、マグネシアれんがの廃材をスラグ調整剤5として用いることによって、廃材の有効利用が可能になり、かつスラグ調整剤のコストを安価にすることができる。   Although only MgO may be used as the slag adjusting agent 5 containing MgO, for example, brick waste which is a waste material of magnesia brick is preferably used. The magnesia brick is a refractory material used in the steelmaking process, and the waste material is inevitably generated due to the use deterioration accompanying the operation of steelmaking. Therefore, by using the waste material of magnesia brick as the slag adjusting agent 5, the waste material can be effectively used and the cost of the slag adjusting agent can be reduced.

以下に補修材6の組成範囲限定理由について説明する。
MgO:10〜30%
MgOは、補修材6の流動性を高め、転炉耐火物の補修を必要とする所望の部位に対する付着性を向上し、転炉炉体の耐用寿命を長くすることができる。図2は、MgO含有量が異なる補修材を用いて補修した転炉耐火物の損耗速度とMgO含有量との関係を示す図である。ここで、損耗速度とは、転炉で溶鋼の吹錬を繰返し行った後、転炉内壁の耐火物厚さの減少量を測定し、1チャージ(ch)当たりの厚さ減少量[mm/ch]で表すものである。転炉耐火物の厚さ減少は、たとえば転炉を構築したときの転炉内壁を構成する耐火物のプロフィールをレーザ測定装置などで測定して、パーソナルコンピュータなどの記憶部にストアしておき、吹錬終了後に測定した転炉耐火物のプロフィールとを比較し、その変化量から求めることができる。図2に示すように、MgO含有量が10%未満では、損耗速度の抑制効果が充分に発現されない。また、MgO含有量が10%未満では、補修材6の耐火物3に対する付着性が充分ではない。MgO含有量が30%を超えると、損耗速度の抑制効果が充分に発現されない。
The reason for limiting the composition range of the repair material 6 will be described below.
MgO: 10-30%
MgO can improve the fluidity of the repair material 6, improve adhesion to a desired part that requires repair of the converter refractory, and extend the useful life of the converter furnace body. FIG. 2 is a diagram showing the relationship between the wear rate of the converter refractory repaired using repair materials having different MgO contents and the MgO content. Here, the wear rate refers to the reduction in thickness of the refractory on the inner wall of the converter after repeated blowing of molten steel in the converter, and the reduction in thickness per charge (ch) [mm / ch]. The thickness reduction of the converter refractory is measured by, for example, measuring the profile of the refractory constituting the converter inner wall when the converter is constructed with a laser measuring device or the like, and storing it in a storage unit such as a personal computer, It can be obtained from the amount of change by comparing the profile of the converter refractory measured after the end of blowing. As shown in FIG. 2, when the MgO content is less than 10%, the effect of suppressing the wear rate is not sufficiently exhibited. If the MgO content is less than 10%, the adhesion of the repair material 6 to the refractory 3 is not sufficient. When the MgO content exceeds 30%, the effect of suppressing the wear rate is not sufficiently exhibited.

CaO:10〜30%
CaOは、MgOと同様に、補修材6の流動性を高め、転炉耐火物の補修を必要とする所望の部位に対する付着性を向上し、転炉炉体の耐用寿命を長くすることができる。図3は、CaO含有量が異なる補修材を用いて補修した転炉耐火物の損耗速度とCaO含有量との関係を示す図である。図3に示すように、CaO含有量が10%未満では、損耗速度の抑制効果が充分に発現されない。また、CaO含有量が10%未満では、補修材6の塩基度が低くなるため、補修材6の残存寿命が短くなる。CaO含有量が30%を超えると、損耗速度の抑制効果が充分に発現されない。
CaO: 10-30%
CaO, like MgO, can improve the fluidity of the repair material 6, improve the adhesion to a desired part that requires repair of the converter refractory, and can extend the useful life of the converter furnace body. . FIG. 3 is a diagram showing the relationship between the wear rate of the converter refractory repaired using repair materials having different CaO contents and the CaO content. As shown in FIG. 3, when the CaO content is less than 10%, the effect of suppressing the wear rate is not sufficiently exhibited. Further, when the CaO content is less than 10%, the basicity of the repair material 6 becomes low, and thus the remaining life of the repair material 6 is shortened. When the CaO content exceeds 30%, the effect of suppressing the wear rate is not sufficiently exhibited.

Cr:5〜60%
Crは、補修材6の融点を高くして流動性と付着性とを向上するとともに、補修材6の耐熱性を向上することを目的として含有させる。なお、Crは、より好ましくは20〜40%の範囲で含有される。図4は、Cr含有量が異なる補修材を用いて補修した転炉耐火物の損耗速度とCr含有量との関係を示す図である。図4に示すように、5%未満では、損耗速度の抑制効果が充分に発現されない。60%を超えても、特に弊害等は生じないけれども、高価なCrを多量に含有させるにも関らず、より一層の損耗速度の抑制効果が発現される訳でもないので、補修材コストの観点から一応の上限を60%とした。
Cr 2 O 3: 5~60%
Cr 2 O 3 is added for the purpose of increasing the melting point of the repair material 6 to improve fluidity and adhesion, and improving the heat resistance of the repair material 6. Incidentally, Cr 2 O 3 is more preferably contained in the range of 20-40%. Figure 4 is a diagram showing the relationship between wear rate and Cr 2 O 3 content of the converter refractories repaired using Cr 2 O 3 content of different repair materials. As shown in FIG. 4, when it is less than 5%, the effect of suppressing the wear rate is not sufficiently exhibited. Even if it exceeds 60%, no adverse effects occur. However, even though a large amount of expensive Cr is contained, the effect of further reducing the wear rate is not manifested. From the viewpoint, the upper limit is set to 60%.

次に、転炉1を所定の状態に傾動させることによって、組成調整された補修材6を転炉耐火物の損傷部位7へ流動させ、該位置で静置し固化させる。このようにして、補修材6を転炉1の損傷部位に強固に付着させ、耐用性に優れた補修を実現することができる。   Next, by tilting the converter 1 to a predetermined state, the repair material 6 whose composition has been adjusted flows to the damaged portion 7 of the converter refractory, and is allowed to stand and solidify at that position. In this way, the repair material 6 can be firmly attached to the damaged portion of the converter 1 and a repair with excellent durability can be realized.

以下本発明の実施例について説明する。本実施例では、日本工業規格(JIS)G4304、G4305などに規定されるステンレス鋼(SUS304)を製鋼するべく、電気炉で約80トンの溶鋼を粗溶製し、転炉での精錬を繰返し実行し、精錬操業の所定のインターバルにおいて補修を行い、転炉炉体寿命を求める試験を行った。   Examples of the present invention will be described below. In this example, in order to produce stainless steel (SUS304) defined in Japanese Industrial Standards (JIS) G4304, G4305, etc., approximately 80 tons of molten steel is roughly melted in an electric furnace, and refining in a converter is repeated. The test was carried out, repaired at a predetermined interval of the refining operation, and the life of the converter furnace was obtained.

(転炉耐火物補修のタイミング)
転炉耐火物補修は、100チャージ(ch)、700ch、1200ch、1600chを終了した各時点において行った。
(Timing for repairing refractories in converters)
Converter refractory repair was performed at each time point when 100 charge (ch), 700 ch, 1200 ch, and 1600 ch were completed.

(転炉残留スラグ)
転炉耐火物補修時において、補修材の生成に用いた転炉内の残留スラグの組成を表1に示す。補修材としては、実施例1、実施例2および比較例の3種類を使用した。したがって、残留スラグの組成も、3種類の補修材それぞれに対応して示す。
(Converter residual slag)
Table 1 shows the composition of residual slag in the converter used for generating the repair material during repair of the converter refractory. Three types of repair materials, Example 1, Example 2 and Comparative Example, were used. Therefore, the composition of residual slag is also shown for each of the three types of repair materials.

Figure 0005214183
Figure 0005214183

(補修材の組成)
表1に示す組成の残留スラグ1に、スラグ調整剤としてMgO(純分で746kg)を添加して成分調整し、実施例1の補修材とした。表1に示す組成の残留スラグ2に、スラグ調整剤としてマグネシアれんが屑(MgO純分で984kg)を添加して成分調整し、実施例2の補修材とした。表1に示す組成の残留スラグ3に、スラグ調整剤としてマグネシアれんが屑(MgO純分で806kg)を添加して成分調整し、比較例の補修材とした。実施例1,2および比較例の各補修材の組成を表2に合わせて示す。なお、比較例では、コークス投入または転炉終点温度を高めとして、Crの含有量を本発明範囲外の組成とした。
(Composition of repair material)
MgO (pure 746 kg) was added to the residual slag 1 having the composition shown in Table 1 as a slag adjuster to adjust the components, and the repair material of Example 1 was obtained. A magnesia brick scrap (984 kg in terms of pure MgO) was added to the residual slag 2 having the composition shown in Table 1 as a slag adjusting agent to prepare a repair material of Example 2. A magnesia brick scrap (806 kg pure MgO) was added to the residual slag 3 having the composition shown in Table 1 as a slag adjusting agent to prepare a repair material of a comparative example. Table 2 shows the compositions of the repair materials of Examples 1 and 2 and the comparative example. In the comparative example, the coke charging or converter end point temperature was increased, and the content of Cr 2 O 3 was set to a composition outside the scope of the present invention.

Figure 0005214183
Figure 0005214183

(転炉炉体寿命の試験結果)
実施例1,2および比較例の補修材を使用して、所定のチャージ終了後に補修を行い、100ch終了ごとに転炉内壁を構成する耐火物の厚さを測定した。転炉耐火物の厚さは、前述したように、転炉耐火物のプロフィールを測定し、初期プロフィールと比較することによって求めた。転炉耐火物は、転炉の操業を行うのに伴って損耗し、初期状態に比較して除除に薄くなるので、測定した転炉耐火物の厚さをれんが残寸と呼ぶことにする。転炉炉体寿命を定める方法は特に限定されるものではないけれども、本実施例では、れんが残寸が200mmになった時点を一応寿命とした。
(Test result of converter furnace life)
The repair materials of Examples 1 and 2 and the comparative example were used for repair after completion of the predetermined charge, and the thickness of the refractory constituting the converter inner wall was measured every 100 ch. The thickness of the converter refractory was determined by measuring the profile of the converter refractory and comparing it with the initial profile, as described above. The converter refractory wears away as the converter is operated, and becomes thinner than the initial state. Therefore, the thickness of the measured converter refractory is called the remaining size of the brick. . Although the method for determining the converter furnace life is not particularly limited, in this embodiment, the point in time when the remaining size of the brick reaches 200 mm is defined as the life.

図5は、各補修材を用いた場合のれんが残寸を測定した結果を示す図である。本発明外の組成を有する比較例の補修材を用いた場合、補修をしても約1400chで、れんが残寸が200mmに達し、転炉炉体寿命となった。一方、本発明の組成を有する実施例1,2の補修材を用いた場合、ほぼ1900ch以上で漸くれんが残寸が200mmに達し、比較例に比べて500ch以上の転炉炉体寿命が延長された。なお、実施例2では、実施例1と比較して、残留スラグの塩基度が低いので、転炉炉体寿命の一層の延長が実現されている。   FIG. 5 is a diagram showing the result of measuring the remaining size of the brick when each repair material is used. When the repair material of the comparative example having a composition outside the present invention was used, even after repairing, the remaining size of brick reached 200 mm in about 1400 ch, and the life of the converter furnace was reached. On the other hand, when the repair materials of Examples 1 and 2 having the composition of the present invention were used, the remaining size gradually reached 200 mm at about 1900 ch or more, and the converter furnace life of 500 ch or more was extended compared to the comparative example. It was. In Example 2, since the basicity of the residual slag is lower than that in Example 1, further extension of the converter furnace life is realized.

本発明の転炉耐火物補修方法の概要を説明する図である。It is a figure explaining the outline | summary of the converter refractory repair method of this invention. MgO含有量が異なる補修材を用いて補修した転炉耐火物の損耗速度とMgO含有量との関係を示す図である。It is a figure which shows the relationship between the wear rate of the converter refractory repaired using the repair material from which MgO content differs, and MgO content. CaO含有量が異なる補修材を用いて補修した転炉耐火物の損耗速度とCaO含有量との関係を示す図である。It is a figure which shows the relationship between the wear rate of the converter refractory repaired using the repair material from which CaO content differs, and CaO content. Cr含有量が異なる補修材を用いて補修した転炉耐火物の損耗速度とCr含有量との関係を示す図である。Cr 2 O 3 content is a diagram showing the relationship between wear rate and Cr 2 O 3 content of the converter refractories repaired using different repair material. 各補修材を用いた場合のれんが残寸を測定した結果を示す図である。It is a figure which shows the result of having measured the remaining size of the brick at the time of using each repair material.

符号の説明Explanation of symbols

1 転炉
2 殻体
3 耐火物
4 スラグ
5 スラグ調整剤
6 転炉耐火物補修材
7 損傷部位
DESCRIPTION OF SYMBOLS 1 Converter 2 Shell 3 Refractory material 4 Slag 5 Slag regulator 6 Converter refractory repair material 7 Damaged part

Claims (3)

吹錬されたステンレス鋼の溶鋼を出鋼した後の転炉内に残留するスラグにMgOを含むスラグ調整剤を添加することによって得られる転炉耐火物補修材であって、
重量%で、
MgO:10〜30%
CaO:10〜30%
Cr:5〜60%
を含有することを特徴とする転炉耐火物補修材。
A converter refractory repair material obtained by adding a slag adjusting agent containing MgO to slag remaining in the converter after the molten steel of blown stainless steel is produced,
% By weight
MgO: 10-30%
CaO: 10-30%
Cr 2 O 3: 5~60%
A refractory repair material for converters, which contains
吹錬されたステンレス鋼の溶鋼を出鋼した後の転炉の内張り耐火物を補修する転炉耐火物補修方法において、
吹錬された溶鋼を出鋼した後の転炉内にスラグを残留させるステップと、
残留されるスラグにMgOを含むスラグ調整剤を添加し、スラグにスラグ調整剤を添加することによって得られる転炉耐火物補修材が、重量%で、MgO:10〜30%、CaO:10〜30%、Cr:5〜60%を含有する組成になるように調整するステップと、
組成調整された転炉耐火物補修材を転炉耐火物の損傷部位で静置し固化させるステップとを含むことを特徴とする転炉耐火物補修方法。
In the converter refractory repair method of repairing the lining refractory of the converter after the molten steel of blown stainless steel is produced,
A step of leaving slag in the converter after producing the blown molten steel;
The converter refractory repair material obtained by adding a slag adjusting agent containing MgO to the remaining slag and adding the slag adjusting agent to the slag is MgO: 10-30%, CaO: 10 Adjusting to a composition containing 30%, Cr 2 O 3 : 5-60%,
And a step of allowing the composition-adjusted converter refractory repair material to stand and solidify at a damaged portion of the converter refractory.
吹錬されたステンレス鋼の溶鋼を出鋼した後の転炉内に残留されるスラグであって、MgOを含むスラグ調整剤が添加される前のスラグの塩基度(CaO/SiO)が、1.0〜2.0であることを特徴とする請求項2記載の転炉耐火物補修方法。 The slag remaining in the converter after the molten steel of blown stainless steel is produced, and the basicity (CaO / SiO 2 ) of the slag before the addition of the slag adjusting agent containing MgO, It is 1.0-2.0, The converter refractory repair method of Claim 2 characterized by the above-mentioned.
JP2007166975A 2007-06-25 2007-06-25 Converter refractory repair material and converter refractory repair method Active JP5214183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007166975A JP5214183B2 (en) 2007-06-25 2007-06-25 Converter refractory repair material and converter refractory repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007166975A JP5214183B2 (en) 2007-06-25 2007-06-25 Converter refractory repair material and converter refractory repair method

Publications (2)

Publication Number Publication Date
JP2009001892A JP2009001892A (en) 2009-01-08
JP5214183B2 true JP5214183B2 (en) 2013-06-19

Family

ID=40318591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007166975A Active JP5214183B2 (en) 2007-06-25 2007-06-25 Converter refractory repair material and converter refractory repair method

Country Status (1)

Country Link
JP (1) JP5214183B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959165A (en) * 2022-05-18 2022-08-30 玉溪新兴钢铁有限公司 Converter steelmaking furnace protecting method
CN115433798B (en) * 2022-10-24 2024-01-09 中冶节能环保有限责任公司 Converter dry dedusting ash f-CaO digestion device and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222511A (en) * 1983-05-30 1984-12-14 Nisshin Steel Co Ltd Production of high chromium steel by composite blowing converter
JPS602616A (en) * 1983-06-16 1985-01-08 Nisshin Steel Co Ltd Method for protecting refractory in converter for manufacturing high chromium steel by refining
JPH0835008A (en) * 1994-07-22 1996-02-06 Nkk Corp Smelting reduction method for chromium oxide-containing raw material
JPH08165507A (en) * 1994-12-12 1996-06-25 Nippon Steel Corp Slag-coating method for high chromium steel refining furnace
JPH09316522A (en) * 1996-05-31 1997-12-09 Nippon Steel Corp Method for repairing furnace bottom of converter
JP3764543B2 (en) * 1996-11-19 2006-04-12 新日本製鐵株式会社 Method of melting iron-containing cold material

Also Published As

Publication number Publication date
JP2009001892A (en) 2009-01-08

Similar Documents

Publication Publication Date Title
WO2022001874A1 (en) Slag-splashing fettling method
CN109136458A (en) A kind of quick-acting fettling methods of converter
CN107083469A (en) The method for reducing steelmaking converter furnace bottom
CN103397133A (en) Method for protecting converter with vanadium slag
CN111304400B (en) Method for protecting converter by splashing slag
CN113913583B (en) Slag modification and slag splashing furnace protection method
JP5214183B2 (en) Converter refractory repair material and converter refractory repair method
CN110643780A (en) Converter bottom repairing method
TW202041680A (en) Method for modifying steelmaking slag, and lance
CN111876549A (en) Converter high-iron ratio smelting process
JP5769170B2 (en) How to extend the life of converter refractories
CN106148635B (en) Converter segment part repairing method
CN102952916A (en) Slag-splashing process method of converter
JPH11229020A (en) Method for protecting lining refractory of furnace for refining and melting metal
JP2003193123A (en) Method for repairing converter lining refractory
JPWO2009028416A1 (en) Iron bath smelting reduction furnace
JP2000313912A (en) Slag coating method in converter
JP3764543B2 (en) Method of melting iron-containing cold material
RU2606351C2 (en) Method of protective scull forming on oxygen converter lining surface and magnesian briquetted flux (mbf) for its implementation
JP2003155512A (en) Method for coating refractory in furnace
JPH0382705A (en) Method for repairing converter in hot-state
JP4516934B2 (en) Refining vessel repair method
JP3825312B2 (en) Slag coating method
JPH05331518A (en) Method for hot-repairing converter
JP2006336077A (en) Method for repairing refractory in converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Ref document number: 5214183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250