JP5213200B2 - Surgery support system insertion device - Google Patents

Surgery support system insertion device Download PDF

Info

Publication number
JP5213200B2
JP5213200B2 JP2008045330A JP2008045330A JP5213200B2 JP 5213200 B2 JP5213200 B2 JP 5213200B2 JP 2008045330 A JP2008045330 A JP 2008045330A JP 2008045330 A JP2008045330 A JP 2008045330A JP 5213200 B2 JP5213200 B2 JP 5213200B2
Authority
JP
Japan
Prior art keywords
instrument
marker
arm
support system
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008045330A
Other languages
Japanese (ja)
Other versions
JP2009201617A (en
Inventor
清二 山本
利久 高井
悦一 林本
曜 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu University School of Medicine NUC
Pulstec Industrial Co Ltd
Original Assignee
Hamamatsu University School of Medicine NUC
Pulstec Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu University School of Medicine NUC, Pulstec Industrial Co Ltd filed Critical Hamamatsu University School of Medicine NUC
Priority to JP2008045330A priority Critical patent/JP5213200B2/en
Priority to PCT/JP2009/053507 priority patent/WO2009107703A1/en
Publication of JP2009201617A publication Critical patent/JP2009201617A/en
Application granted granted Critical
Publication of JP5213200B2 publication Critical patent/JP5213200B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/24Surgical instruments, devices or methods, e.g. tourniquets for use in the oral cavity, larynx, bronchial passages or nose; Tongue scrapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Robotics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)

Description

本発明は、手術支援システムで用いられる、体内挿入器具(手術器具、硬性内視鏡、等)に関する。   The present invention relates to an intracorporeal instrument (surgical instrument, rigid endoscope, etc.) used in a surgery support system.

MRI、X線CT等の3次元断層撮影装置を用いた手術支援システムについては研究が進んでおり、既にいくつかの装置は実用化されている。多くの手術支援システムは、MRIやX線CT等で3次元断層像を撮像しながら手術対象部位や手術器具のモニタリングを行うものであるが、MRIを用いた場合は手術室内での磁性体や電子機器の使用に制限があり、また、X線CTを用いた場合は術者の被爆の問題がある。さらに、手術をしながら3次元断層像を撮像する場合は、撮像及び画像処理に十分に時間を取ることができないので解像度や精度に問題がある。加えてMRIやX線CTの装置内で手術を行う手術支援システムでは、使用できる器具の制限、手術スペースの制限などの問題がある。これとは別に、手術前にMRIやX線CTにより患者の3次元断層像を撮像しておき、手術中は患者を固定しておいて手術前に撮像した3次元断層画像と患者との位置合わせを行う技術も知られている。   Research on a surgical support system using a three-dimensional tomography apparatus such as MRI or X-ray CT has been advanced, and some apparatuses have already been put into practical use. Many surgical support systems monitor a surgical target site and a surgical instrument while taking a three-dimensional tomographic image by MRI, X-ray CT or the like, but when using MRI, The use of electronic devices is limited, and when using X-ray CT, there is a problem of exposure to the surgeon. Furthermore, when taking a three-dimensional tomographic image while performing surgery, there is a problem in resolution and accuracy because sufficient time cannot be taken for imaging and image processing. In addition, in a surgery support system that performs surgery in an MRI or X-ray CT apparatus, there are problems such as limitations on instruments that can be used and limitations on surgical space. Separately, a 3D tomographic image of a patient is captured by MRI or X-ray CT before surgery, and the patient is fixed during surgery and the position of the patient and the 3D tomographic image captured before surgery. Techniques for matching are also known.

しかしこの手術支援システムでは、患者を動かないように固定する必要があり、患者の負担が大きく、また、固定器具が邪魔になるため手術野を制限してしまう。本発明者らはこれらの問題を解決するために、特許文献1のような手術支援システムを開発している。   However, in this surgery support system, it is necessary to fix the patient so as not to move, which places a heavy burden on the patient and restricts the surgical field because the fixing device becomes an obstacle. In order to solve these problems, the present inventors have developed a surgical operation support system as disclosed in Patent Document 1.

特許文献1には、本発明者らが開発した手術支援システムが記載されている。この手術支援システムでは、事前にMRIやX線CT等で3次元断層像を撮像しておき、手術中には非接触の光学式(格子投影式)3次元形状測定装置により患者の形状及び位置を測定する。そして患者の形状及び位置をリアルタイムで測定しながら、事前に撮像した3次元断層像と位置合わせを行い、手術支援に用いる。この手術支援システムによれば手術中は、非接触の光学式3次元形状測定装置を用いるだけなので、使用できる器具の制限、手術野の制限などの問題はほとんど無く、さらにX線等の被爆の心配も無い。また、患者が動いても、3次元形状測定装置で追従できるので、患者を固定する必要もない。   Patent Document 1 describes a surgery support system developed by the present inventors. In this surgical operation support system, a three-dimensional tomographic image is captured in advance by MRI, X-ray CT, etc., and the shape and position of the patient are measured by a non-contact optical (grid projection) three-dimensional shape measuring device during the operation. Measure. Then, while measuring the shape and position of the patient in real time, the patient is aligned with a pre-imaged three-dimensional tomogram and used for surgical support. According to this operation support system, since only a non-contact optical three-dimensional shape measuring device is used during the operation, there are almost no problems such as limitation of instruments that can be used and limitation of the surgical field, and further exposure of X-rays and the like. There is no worry. Further, even if the patient moves, it can be followed by the three-dimensional shape measuring apparatus, so there is no need to fix the patient.

このような手術支援システムにおいては、手術中に使用する体内挿入器具(手術器具、硬性内視鏡、等)の位置及び姿勢も正確に測定する必要がある。体内挿入器具の位置を検出する装置を、3次元形状測定装置とは別に設けることも考えられるが、新たな装置を設置するとシステムが複雑になり、また複数の3次元測定装置間のデータの座標合わせも必要になり、実用的ではない。このため特許文献1の手術支援システムでは、患者の表面形状を測定する光学式3次元形状測定装置を用いて、体内挿入器具の位置及び姿勢も測定している。   In such a surgery support system, it is necessary to accurately measure the position and posture of an intracorporeal instrument (surgical instrument, rigid endoscope, etc.) used during surgery. Although it is conceivable to provide a device for detecting the position of the in-vivo insertion tool separately from the three-dimensional shape measuring device, the installation of a new device complicates the system, and the coordinates of data among a plurality of three-dimensional measuring devices. Matching is also required and is not practical. For this reason, in the surgery support system of Patent Document 1, the position and posture of the intracorporeal instrument are also measured using an optical three-dimensional shape measuring apparatus that measures the surface shape of the patient.

患者の表面形状を測定する光学式3次元形状測定装置を用いて体内挿入器具の位置及び姿勢を測定する場合、光学式3次元形状測定装置の精度が高ければ、体内挿入器具そのものの形状及び位置を測定することは理論上は可能である。しかしながら、体内挿入器具は複雑で細かい形状をしており、この形状を正確に測定しようとすると、測定及び演算に非常に時間が掛かってしまい、リアルタイム性を損なってしまう。また、手術器具の先端位置を正確に検出しないと手術において患部を損傷するという危険があるため、特に手術器具の先端位置の検出は高精度で行う必要があるが、3次元形状測定は表面の多数の点の座標データ(点群データ)を取得する測定であり、手術器具における体内に挿入される箇所は細長いため、この細長い箇所で取得される点群データは少なく、細長い箇所の先端の点の座標データを取得するには、取得する点群データを通常より何倍も多くする測定が必要になる。   When measuring the position and posture of an in-vivo insertion instrument using an optical three-dimensional shape measuring apparatus that measures the surface shape of a patient, if the accuracy of the optical three-dimensional shape measuring apparatus is high, the shape and position of the in-vivo insertion instrument itself It is theoretically possible to measure However, the intracorporeal insertion instrument has a complicated and fine shape, and if it is attempted to accurately measure this shape, it takes a very long time for measurement and calculation, thereby impairing real-time performance. In addition, if the tip position of the surgical instrument is not accurately detected, there is a risk of damaging the affected part in the operation. Therefore, it is particularly necessary to detect the tip position of the surgical instrument with high accuracy. It is a measurement that acquires coordinate data (point cloud data) of a large number of points, and since the part inserted into the body in a surgical instrument is elongated, there is little point cloud data obtained at this elongated part, and the point at the tip of the elongated part In order to obtain the coordinate data, it is necessary to measure the point cloud data to be obtained many times more than usual.

そこで適度の測定精度でも体内挿入器具の位置及び姿勢を正確に測定できるようにし、演算も簡単にするため、特許文献1に示される手術支援システムの体内挿入器具には、器具の位置及び姿勢検出用の複数の標識体が設けられている。これらの標識体は、光学式3次元形状測定装置で測定しやすいような大きさ及び形状を有しており、標識体間の相対位置、標識体の形状、及び標識体と体内挿入器具の3次元相対位置関係は事前に登録されている。したがって、光学式3次元形状測定装置で各標識体の位置及び形状を測定すればそれぞれの標識体を識別したうえで各標識体の位置を測定でき、体内挿入器具の位置及び姿勢を測定できる。そして光学式3次元形状測定装置で検出しやすい標識体を用いることで、体内挿入器具の位置及び姿勢の測定及び演算がしやすくなり、リアルタイムに位置及び姿勢を測定できるようになる。標識体の材質や形状は手術のための滅菌操作(たとえば摂氏120度15分間などオートクレーブ処理)に耐えうるものであれば特に限定されないが、白色テフロン球などが用いられる。また、標識体は少なくとも3個あれば、体内挿入器具の位置及び姿勢の測定が可能である。   Therefore, in order to make it possible to accurately measure the position and posture of the in-vivo insertion instrument with moderate measurement accuracy and to simplify the calculation, the in-body insertion instrument of the surgical support system disclosed in Patent Document 1 includes detection of the position and orientation of the instrument. A plurality of markers are provided. These markers have sizes and shapes that are easy to measure with an optical three-dimensional shape measuring device. The relative positions between the markers, the shapes of the markers, and the 3 The dimension relative positional relationship is registered in advance. Therefore, if the position and shape of each marker are measured by the optical three-dimensional shape measuring apparatus, each marker can be identified, the position of each marker can be measured, and the position and posture of the intracorporeal instrument can be measured. By using a marker that can be easily detected by the optical three-dimensional shape measuring apparatus, it becomes easy to measure and calculate the position and posture of the in-vivo insertion instrument, and the position and posture can be measured in real time. The material and shape of the marker are not particularly limited as long as they can withstand sterilization operations for surgery (for example, autoclaving such as 120 degrees Celsius for 15 minutes), but white Teflon spheres or the like are used. Further, if there are at least three markers, the position and posture of the intracorporeal instrument can be measured.

類似の技術が書かれている特許文献1以外の従来技術として、特許文献2〜5が挙げられる。これらの文献には、手術支援システム下で用いる器具に位置検出用の標識体(マーカー)を設けることが記載されている。しかし、これらの標識体(マーカー)を検出するために、標識体(マーカー)自体が発光体であったり、患者の表面形状を測定するための3次元形状測定装置とは別にこれらの標識体(マーカー)の位置を検出する装置を設けているので、患者の表面形状を測定するための3次元形状測定装置により標識体の位置検出を行っている特許文献1の手術支援システムとは異なるものであり、前述したように3次元形状測定装置とは別に位置を検出する装置を設置することによりシステムが複雑になり、また複数の3次元測定装置間のデータの座標合わせも必要になるため実用的ではない。
特開2007−209531号公報 特表平9−511430号公報 特表2003−528688号公報 特表2005−518264号公報 特開2007−260404号公報
Patent documents 2-5 are mentioned as conventional technology other than patent documents 1 in which a similar technique is written. These documents describe providing a marker (marker) for position detection on an instrument used under a surgery support system. However, in order to detect these labeled bodies (markers), the labeled bodies (markers) themselves are light emitters, or these labeled bodies (separate from a three-dimensional shape measuring apparatus for measuring the surface shape of a patient). Since the device for detecting the position of the marker is provided, it is different from the surgical support system of Patent Document 1 in which the position of the marker is detected by a three-dimensional shape measuring device for measuring the surface shape of the patient. In addition, as described above, the installation of a device for detecting the position separately from the three-dimensional shape measuring device complicates the system, and it is also necessary to coordinate the coordinates of data among a plurality of three-dimensional measuring devices. is not.
JP 2007-209531 A JP 9-511430 A Special table 2003-528688 gazette JP-T-2005-518264 JP 2007-260404 A

上述のように、特許文献1に示される3次元形状測定装置を用いた手術支援システムにおいて、3次元形状測定装置により体内挿入器具の位置及び姿勢を測定するためには、体内挿入器具に少なくとも3個の位置検出用の標識体を設ける必要がある。この場合、位置及び姿勢を精度良く測るには、標識体間の距離が大きく、標識体自体もできるだけ大きいほうが望ましい。一方で、手術時に使用する器具であるので、できるだけ視界や動作の妨げになるものは取り付けないほうが望ましく、さらにバランスが悪く操作性を損なうものであってはならない。また、標識体は、大きいもので直径が数cm程度あり、mm単位の精度が必要な手術においては邪魔な存在である。そのため、できるだけ視界や動作の妨げにならないように、複数の標識体の配置を工夫することが考えられる。例えば、右手で使う器具の場合は、患者に向かって左側に左手用の器具を挿入することがあるので、患者に向かって左側をできるだけ開放するように標識体を配置するなどが考えられる。しかしながら、このように配置すると、複数の標識体全体の重心が体内挿入器具の軸心から大きく外れてしまうことがある。標識体自体はそんなに重いものではないが、手術器具等の体内挿入器具は非常に細かい作業で用いられるものであるので、ちょっとの重心位置のずれでも作業に影響を与えてしまう可能性がある。なぜなら手術器具の大きさ、形状、バランスなどは長年の経験に基づいて確立されてきたものであり、バランスが悪い器具は著しく操作性を損なってしまう可能性があるからである。   As described above, in the surgery support system using the three-dimensional shape measuring apparatus disclosed in Patent Document 1, in order to measure the position and posture of the in-vivo insertion instrument using the three-dimensional shape measuring apparatus, at least 3 It is necessary to provide a single label for position detection. In this case, in order to accurately measure the position and orientation, it is desirable that the distance between the marked bodies is large and the marked body itself is as large as possible. On the other hand, since it is an instrument used at the time of surgery, it is desirable not to attach anything that obstructs the field of view or operation as much as possible, and it should not be unbalanced and impair operability. In addition, the marker is large and has a diameter of about several centimeters, which is a hindrance in surgery that requires accuracy in mm units. For this reason, it is conceivable to devise the arrangement of a plurality of markers so as not to obstruct the field of view and operation as much as possible. For example, in the case of an instrument used with the right hand, an instrument for the left hand may be inserted on the left side toward the patient. Therefore, it is conceivable to arrange a marker so as to open the left side as much as possible toward the patient. However, if it arrange | positions in this way, the gravity center of the whole some marker body may remove | deviate greatly from the axial center of the in-vivo insertion instrument. Although the sign body itself is not so heavy, an intracorporeal instrument such as a surgical instrument is used for very fine work, and even a slight shift in the position of the center of gravity may affect the work. This is because the size, shape, balance, etc. of surgical instruments have been established based on many years of experience, and instruments with poor balance can significantly impair operability.

本発明は上記問題点を解決するもので、3次元位置測定装置(特に、光学式3次元形状測定装置)の測定範囲内で用いる体内挿入器具に複数の位置検出用の標識体を設けるにあたって、複数の標識体を非対称に設けても、複数の標識体全体の重心位置を前記体内挿入器具の軸心に近くなるようにした、操作性のよい手術支援システム用体内挿入器具を提供することを目的とする。   The present invention solves the above problems, and in providing a plurality of position detection markers on an in-vivo insertion instrument used within the measurement range of a three-dimensional position measurement device (particularly an optical three-dimensional shape measurement device), To provide an intraoperative insertion device for a surgical support system with good operability, in which a plurality of marker bodies are provided asymmetrically so that the center of gravity of the entire plurality of marker bodies is close to the axial center of the intracorporeal instrument. Objective.

上記目的を達成するため、本発明は以下の構成を有する。
3次元位置測定手段を有する手術支援システムにおいて前記3次元位置測定手段の測定範囲内で用いる体内挿入器具であって、
前記体内挿入器具は、体内に挿入されない部分に、前記3次元位置測定手段で位置が測定可能な標識体を少なくとも3個有しており、これらの標識体の位置に基づいて前記体内挿入器具の位置及び姿勢が測定可能であり、
前記標識体の少なくとも1個は他の標識体と重さが異なっており、
前記体内挿入器具の軸心と標識体全体の重心位置とが近くなるように複数の前記標識体の配置及び重さを設定している、
手術支援システム用体内挿入器具。
In order to achieve the above object, the present invention has the following configuration.
An intracorporeal instrument used within a measurement range of the three-dimensional position measuring means in a surgical support system having a three-dimensional position measuring means,
The in-vivo insertion device has at least three marker bodies whose positions can be measured by the three-dimensional position measuring means in a portion that is not inserted into the body, and based on the positions of these marker bodies, Position and orientation can be measured,
At least one of the labeled bodies is different in weight from the other labeled bodies;
The placement and weight of the plurality of marker bodies are set so that the axial center of the internal insertion instrument and the center of gravity of the entire marker body are close to each other.
Internal insertion device for surgery support system.

また、以下の実施態様を採用しても良い。
前記3次元位置測定手段は、3次元形状測定手段であり、前記標識体は、標識体間の相対位置及び形状が既知であるとともに、前記3次元形状測定手段により位置および形状を測定可能であり、前記3次元形状測定手段の測定結果と、既知である標識体間の相対位置と各標識体の形状とに基づいて、前記体内挿入器具の位置及び姿勢が測定可能である。
前記体内挿入器具には、前記体内挿入器具の体内挿入方向に延びた第1アームと、前記第1アームと一定の角度をなす方向に延びた第2アームと、が設けられており、前記標識体は4個であり、そのうち2個は前記第1アームに配置されており、残りの2個は前記第2アームに配置されており、前記第2アームに配置された2個の標識体は、前記体内挿入器具の中心軸に対して非対称に配置されているとともに、それぞれ重さが異なる。
前記標識体の大きさまたは比重を異ならせることにより、前記標識体の重さを異ならせる。
前記体内挿入器具は、手術器具または硬性内視鏡である。
Further, the following embodiments may be adopted.
The three-dimensional position measuring means is a three-dimensional shape measuring means, and the marker body has a known relative position and shape between the marker bodies and can measure the position and shape by the three-dimensional shape measuring means. The position and posture of the intracorporeal instrument can be measured based on the measurement result of the three-dimensional shape measuring means, the known relative position between the labeled bodies, and the shape of each labeled body.
The body insertion device is provided with a first arm extending in the body insertion direction of the body insertion device and a second arm extending in a direction forming a certain angle with the first arm, and the indicator There are four bodies, two of which are arranged on the first arm, the other two are arranged on the second arm, and the two markers arranged on the second arm are These are disposed asymmetrically with respect to the central axis of the intracorporeal insertion instrument and have different weights.
By varying the size or specific gravity of the labeled body, the weight of the labeled body is varied.
The intracorporeal instrument is a surgical instrument or a rigid endoscope.

なお、上記「体内挿入器具の軸心と標識体全体の重心位置とが近くなるように」とは、前記体内挿入器具の軸心と前記標識体全体の重心位置とが前記体内挿入器具の操作性を損なわない程度の距離になるようにすることを意味しており、前記体内挿入器具の軸心と前記標識体全体の重心位置とが最も近い位置になるようにするのが最も好ましい。また、「標識体全体の重心位置」とは、標識体そのものの重さによる重心位置のほか、標識体を取り付けているアームの重さも含めた重心位置も含む。   Note that the phrase “so that the axial center of the internal insertion instrument and the center of gravity of the entire marker body are close to each other” means that the axial center of the internal insertion instrument and the center of gravity of the entire marker body operate the internal insertion instrument. It means that the distance is set so as not to impair the performance, and it is most preferable that the axial center of the in-vivo insertion instrument and the center of gravity of the entire marker body are located closest to each other. Further, the “center of gravity position of the entire marker” includes the center of gravity including the weight of the arm to which the marker is attached, in addition to the center of gravity based on the weight of the marker itself.

本発明は上記構成を採用したことにより、位置検出用の複数の標識体を非対称に配置しても、複数の標識体の重さを調整することで重心位置を体内挿入器具の軸心に近づけることができ、体内挿入器具の操作性が向上する。そして非対称に標識体を設けることによるモーメントの影響を、標識体の重さを調整することでキャンセルできるため、標識体を設ける位置の自由度が上がり、体内挿入器具を操作しやすいように標識体を配置できる。本発明は、標識体が大きくなる傾向がある3次元形状測定装置を用いた手術支援システムにおける位置及び姿勢検出用の標識体に対して特に有効であるが、通常の位置及び姿勢検出用の標識体(発光するものも含む)に対しても適用可能である。   Since the present invention employs the above-described configuration, even if a plurality of marker bodies for position detection are arranged asymmetrically, the center of gravity position is brought closer to the axis of the intracorporeal insertion instrument by adjusting the weights of the plurality of marker bodies. This improves the operability of the internal insertion instrument. Since the influence of the moment due to the provision of the marker body can be canceled by adjusting the weight of the marker body, the degree of freedom of the position where the marker body is provided is increased and the marker body can be operated easily. Can be placed. The present invention is particularly effective for a marker for position and posture detection in a surgical support system using a three-dimensional shape measuring apparatus in which the marker tends to be large. It can also be applied to a body (including those that emit light).

以下、図面を参照して本発明の実施形態の一例を詳細に説明する。なお、以下では本発明を、手術部位としての患者の頭部(特に、顔面や副鼻腔等)についての手術の支援に適用した場合を例に説明するが、本発明はこれに限定されるものではない。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. In the following, the present invention will be described by taking as an example the case where the present invention is applied to surgical support for a patient's head as a surgical site (particularly the face, sinus, etc.), but the present invention is not limited thereto. is not.

図1には本実施形態に係る手術支援システム10が示されている。手術支援システム10はパーソナル・コンピュータ(PC)等から成るコンピュータ12を備えている。コンピュータ12はCPU12A、ROM12B、RAM12C及び入出力ポート12Dを備えている。また、入出力ポート12Dには、ユーザが任意の情報を入力したり各種の指示を与えるためのキーボード14及びマウス16、LCD又はCRTから成り任意の情報を表示可能なディスプレイ18、ハードディスクドライブ(HDD)20及びCD−ROMドライブ22が各々接続されている。また、コンピュータ12の入出力ポート12Dには、核磁気共鳴コンピュータ断層撮影法により任意の方向についての生体の高精細な断層画像(MRI画像)を撮影可能なMRI撮影装置24、及び3次元形状測定装置30が各々接続されている。なお、入出力ポート12Dには、ビデオカメラ(例えば3個)を接続することができる。ビデオカメラは、本発明に必須の構成ではなく、必要に応じて用いることができる。MRI撮影装置24は、手術を行う手術室とは別に設けられたMRI撮影室に設置されている。なお、コンピュータ12がMRI画像表示処理を実行するにあたり、MRI撮影装置24からは手術前にMRI撮影装置24によって撮影されたMRI画像のデータを取得できていればよいので、コンピュータ12はMRI撮影装置24と接続されていなくてもよく、MRI画像のデータは各種記録媒体の何れかを介して対応する読み取り装置によりMRI撮影装置24からコンピュータ12へ送られるようにしてもよい。   FIG. 1 shows a surgery support system 10 according to the present embodiment. The surgery support system 10 includes a computer 12 composed of a personal computer (PC) or the like. The computer 12 includes a CPU 12A, a ROM 12B, a RAM 12C, and an input / output port 12D. Also, the input / output port 12D has a keyboard 14 and mouse 16 for allowing the user to input arbitrary information and give various instructions, a display 18 comprising an LCD or CRT, which can display arbitrary information, a hard disk drive (HDD). ) 20 and a CD-ROM drive 22 are connected to each other. An input / output port 12D of the computer 12 has an MRI imaging apparatus 24 capable of imaging a high-definition tomographic image (MRI image) of a living body in an arbitrary direction by nuclear magnetic resonance computed tomography, and a three-dimensional shape measurement. Each device 30 is connected. Note that video cameras (for example, three) can be connected to the input / output port 12D. The video camera is not essential to the present invention and can be used as necessary. The MRI imaging apparatus 24 is installed in an MRI imaging room that is provided separately from the operating room in which surgery is performed. Note that when the computer 12 executes the MRI image display process, it is only necessary that the MRI imaging apparatus 24 can acquire the data of the MRI image captured by the MRI imaging apparatus 24 before the operation. The MRI image data may be sent from the MRI imaging apparatus 24 to the computer 12 via any one of various recording media by a corresponding reading device.

図1には、手術者が手術中に用いる手術器具36が示されている。この手術器具36は、棒状の器具であり、手術野にあって対象物(手術部位)に接触したり進入したりする非露出部分となる先端部分38を含む非露出側39と、手術者が所持する等の露出部分となる露出側40と、から構成されている。露出側40には、所定径(例えば11〜19mm)の球体37がアームを介して所定個数(例えば4個)取り付けられている。この球体37は、手術器具36の各部分の位置(位置及び姿勢)を特定するための検出基準となるものである。手術器具36の形状は予め測定されており、手術器具36に対する球体37の位置関係も予め測定されている。これらの測定データは、HDD20に予め格納されている。   FIG. 1 shows a surgical instrument 36 used by an operator during an operation. This surgical instrument 36 is a rod-shaped instrument, and includes a non-exposed side 39 including a distal end portion 38 that is a non-exposed portion that contacts or enters an object (surgical site) in the surgical field, And an exposed side 40 that becomes an exposed portion such as possessed. A predetermined number (for example, four) of spheres 37 having a predetermined diameter (for example, 11 to 19 mm) are attached to the exposed side 40 via arms. The sphere 37 serves as a detection reference for specifying the position (position and posture) of each part of the surgical instrument 36. The shape of the surgical instrument 36 is measured in advance, and the positional relationship of the sphere 37 with respect to the surgical instrument 36 is also measured in advance. These measurement data are stored in the HDD 20 in advance.

ここで、本実施の形態では手術支援システム10として3次元形状測定装置30を備えているが、この3次元形状測定装置30は患者の顔面等の形状測定を行うと共に、手術中の手術器具の位置及び姿勢の検出を行うという、異なる対象物(の3次元位置)を測定することを兼用している。   Here, in the present embodiment, the three-dimensional shape measuring device 30 is provided as the surgery support system 10, but this three-dimensional shape measuring device 30 measures the shape of the patient's face and the like, and the surgical instrument during the operation. It is also used to measure different objects (three-dimensional positions thereof) in which position and orientation are detected.

図2に示すように、3次元形状測定装置30は、測定範囲が患者である対象物の顔部分全域を少なくとも含みかつ手術者が手術器具36を操作する操作範囲を網羅する3次元領域を含むように設置することが好ましい。この場合、手術の操作で手術者の邪魔にならない位置の一例として患者である対象物の斜め上方(図2では右上方向)から手術部位付近を3次元形状測定できる位置に設置することが好ましい。このようにすれば、3次元形状測定装置30によって、患者である対象物の頭部の形状または顔部の形状が検出され、各部位の3次元座標が測定される。これと共に、3次元形状測定装置30によって、手術器具36に取り付けられた光反射率の高い材料から成る球体37の3次元座標が3次元形状測定装置30によって測定される。なお、図2では、副鼻腔の手術を一例として示しているが、手術中に鼻が露出される患者を覆うドレープと呼ばれる布は省略している。   As shown in FIG. 2, the three-dimensional shape measuring apparatus 30 includes a three-dimensional region that covers at least the entire face portion of the object that is the patient and covers the operation range in which the operator operates the surgical instrument 36. It is preferable to install as described above. In this case, as an example of a position that does not interfere with the operator during the operation of the operation, it is preferable to install the vicinity of the surgical site at a position where the three-dimensional shape can be measured from obliquely above the target object (upper right in FIG. 2). In this way, the three-dimensional shape measuring apparatus 30 detects the shape of the head or the face of the subject that is the patient, and measures the three-dimensional coordinates of each part. At the same time, the three-dimensional shape measuring apparatus 30 measures the three-dimensional coordinates of the sphere 37 made of a material having a high light reflectance attached to the surgical instrument 36. In FIG. 2, sinus surgery is shown as an example, but a cloth called drape covering a patient whose nose is exposed during the surgery is omitted.

図3は、本実施形態の手術支援システムで用いられる手術器具36の一例を示したものである。また、図4はこの手術器具36が鼻腔に挿入された状態を表す写真で、図5はその模式図である。図3の手術器具36は吸引管であるが、手術器具は吸引管に限らず、硬性内視鏡や手術用鉗子や手術用ハサミなどでも良い。手術器具36には標識体取付部41が取付けられており、標識体取付部41には位置姿勢検出用の標識体37A〜37Dが取付けられている。標識体37は、3次元形状測定装置30により検出しやすい形状及び大きさ(例えば、直径11〜19mmの球体)を有している。図の例では標識体37A〜37Dの形状は球体であるが、これに限らず、3次元形状測定装置で位置及び形状を測定できるならば任意の形状で構わない。また、図の例では、標識体37の数は4個であるが、少なくとも3個あれば良い。手術器具36と標識体取付部41と各標識体37A〜37Dとはしっかりと固定されている。各標識体37A〜37Dの形状(球体という情報および直径)、相対位置、手術器具36の形状などのデータは事前に登録されており、各標識体37A〜37Dの位置及び形状を測定すれば、手術器具36の位置及び姿勢を算出できる。   FIG. 3 shows an example of the surgical instrument 36 used in the surgery support system of the present embodiment. 4 is a photograph showing a state in which the surgical instrument 36 is inserted into the nasal cavity, and FIG. 5 is a schematic diagram thereof. The surgical instrument 36 in FIG. 3 is a suction tube, but the surgical instrument is not limited to a suction tube, and may be a rigid endoscope, surgical forceps, surgical scissors, or the like. A sign body attaching portion 41 is attached to the surgical instrument 36, and mark bodies 37 </ b> A to 37 </ b> D for position and orientation detection are attached to the sign body attaching portion 41. The marker 37 has a shape and size (for example, a sphere having a diameter of 11 to 19 mm) that can be easily detected by the three-dimensional shape measuring apparatus 30. In the example of the figure, the shapes of the markers 37A to 37D are spheres, but the shape is not limited to this, and any shape may be used as long as the position and shape can be measured by a three-dimensional shape measuring apparatus. Moreover, in the example of a figure, although the number of the label | markers 37 is four, it should just be at least three. The surgical instrument 36, the sign body attaching portion 41, and the sign bodies 37A to 37D are firmly fixed. Data such as the shape (information and diameter of a sphere), the relative position, and the shape of the surgical instrument 36 of each marker 37A to 37D are registered in advance, and if the position and shape of each marker 37A to 37D are measured, The position and posture of the surgical instrument 36 can be calculated.

図6に、各標識体37A〜37Dの配置の一例を示す。図6は、図3乃至図5の標識体37A〜37Dを真上から見た図であり、図面の上方が体内挿入方向である。各標識体37A〜37Dは、標識体取付部41に設けられたアーム42に取付けられている。手術器具36の位置姿勢検出精度を高めるためにはアーム42はできるだけ長い方が良い。一方、標識体37には多少の重さがあり、標識体37A〜37Dの全体の重心位置はできるだけ手術器具本体に近いほうが良いので、各標識体37A〜37Dは対称に配置するのが望ましい。しかしながら、手術器具36は使いやすいことが重要であるので、場所によっては標識体37は邪魔になってしまう。例えば、例えば右手で使用する手術器具の場合、左手側に別の器具を挿入することがあるため、手術器具の左側はできるだけ開放しておきたい。したがって、左側の標識体37Aが付いているアーム42Aの長さLAを短くするのが好ましい。一方で、位置姿勢検出精度を高めるためにはアームは長い方が良いので、右側の標識体37Bが付いているアーム42Bの長さLBは長い方が良い。 In FIG. 6, an example of arrangement | positioning of each label | marker 37A-37D is shown. FIG. 6 is a view of the marker bodies 37A to 37D of FIGS. 3 to 5 as viewed from directly above, and the upper part of the drawings is the insertion direction in the body. Each marker 37 </ b> A to 37 </ b> D is attached to an arm 42 provided in the marker attachment part 41. In order to improve the position and orientation detection accuracy of the surgical instrument 36, the arm 42 should be as long as possible. On the other hand, since the marker 37 has some weight and the center of gravity of the markers 37A to 37D is preferably as close to the surgical instrument body as possible, it is desirable to arrange the markers 37A to 37D symmetrically. However, since it is important that the surgical instrument 36 is easy to use, the marker 37 becomes an obstacle in some places. For example, in the case of a surgical instrument used with the right hand, for example, another instrument may be inserted on the left hand side, so it is desirable to keep the left side of the surgical instrument as open as possible. Therefore, it is preferable to shorten the length L A of the arm 42A with the left marker 37A. On the other hand, in order to increase the position / orientation detection accuracy, it is preferable that the arm is long. Therefore, the length L B of the arm 42B with the marker 37B on the right side is preferably long.

したがって、左側のアーム42Aが短く、右側のアーム42Bが長いため、標識体37A及び標識体37Bの全体の重心位置は右側に寄ってしまう。これでは手術器具36の操作性に影響を与える可能性があるので、本実施形態では標識体A及び標識体Bの重さを異ならせることでこの問題を解決する。すなわち以下の関係になるように、標識体37A及び37Bの重さを調整する。
(標識体37Aの重さ)/(標識体37Bの重さ)
=(アーム42Bの長さLB)/(アーム42Aの長さLA
このように調整すれば、標識体37A及び標識体37Bの全体の重心位置は、手術器具本体36の軸心に最も近いところになり、操作性が良くなる。この例では、標識体の重さのみに着目したが、アームそのものの重さも無視できない場合は、アームの重さも考慮して、標識体37A及び標識体37Bの重さを決定する。
Therefore, since the left arm 42A is short and the right arm 42B is long, the center of gravity of the marker 37A and the marker 37B is shifted to the right. Since this may affect the operability of the surgical instrument 36, the present embodiment solves this problem by making the weights of the marker A and the marker B different. That is, the weights of the markers 37A and 37B are adjusted so as to satisfy the following relationship.
(Weight of label 37A) / (Weight of label 37B)
= (Length L B of arm 42B) / (Length L A of arm 42A)
By adjusting in this way, the center of gravity position of the whole of the marker 37A and the marker 37B is closest to the axis of the surgical instrument main body 36, and the operability is improved. In this example, attention is paid only to the weight of the marker, but when the weight of the arm itself cannot be ignored, the weight of the marker 37A and the marker 37B is determined in consideration of the weight of the arm.

また、図6では、アームの1つの軸が体内挿入方向に平行で、2つのアームが直交する場合を例に挙げたが、必ずしも2つのアームが直交する必要はなく、さらに、アームの1つの軸が体内挿入方向に平行である必要もない。その場合にも標識体およびアームの全体の重心位置が手術器具本体36の軸心に最も近づくように、体内挿入方向を示す長軸方向とそれに直交する方向で標識体の重さとアームの長さを調整すればよい。図7に、いずれのアームも体内挿入方向とは平行ではない場合の例を示す。この例では、体内挿入方向の軸に対する回転モーメントを均等にするように、以下の関係で標識体の重さ及びアームの長さを調整すれば良い。
(標識体37A重さ)×(距離a)+(標識体37D重さ)×(距離d)
=(標識体37C重さ)×(距離c)+(標識体37B重さ)×(距離b)
FIG. 6 shows an example in which one axis of the arm is parallel to the insertion direction in the body and the two arms are orthogonal to each other. However, the two arms are not necessarily orthogonal to each other. The axis need not be parallel to the body insertion direction. Even in this case, the weight of the marker and the length of the arm in the long axis direction indicating the insertion direction in the body and the direction orthogonal thereto so that the center of gravity of the entire marker body and the arm is closest to the axial center of the surgical instrument body 36. Can be adjusted. FIG. 7 shows an example in which none of the arms is parallel to the body insertion direction. In this example, the weight of the marker and the length of the arm may be adjusted according to the following relationship so that the rotational moment with respect to the axis in the body insertion direction is equalized.
(Weight of label 37A) × (distance a) + (weight of label 37D) × (distance d)
= (Weight of label 37C) × (distance c) + (weight of label 37B) × (distance b)

上記では左右方向の標識体37A及び標識体37Bの重心に着目したが、挿入方向前後の標識体37C及び標識体37Dでも同様にアームの長さ及び標識体の重さを調整可能である。例えば、体内挿入方向にある標識体37Cは体内挿入時に邪魔になってしまう可能性があるのでアーム42Cはできるだけ短いほうが良い。一方で、標識体37Dの方向は比較的余裕があるのでアーム42Dは長くできる。この場合も標識体37C及び標識体37Dの重さを調整することで前後方向の重心位置を移動させることができるが前後方向の重心については必ずしもアームの中心である必要は無く、最も使いやすい位置に重心が来るように調整すれば良い。このようにしても標識体37A〜37Dの全体の重心位置は手術器具本体36の軸心に最も近い位置である。さらに、アームは長い方が体内挿入器具の位置姿勢の検出精度が高まるため、前後方向のアームを左右方向のアームに比べて長くすることにより体内挿入器具の位置姿勢の検出精度が高まり、体内挿入器具の重要な部分である先端部の位置検出精度を高めることができる。
図6および図7の例は、各標識体37A〜37Dの大きさは同じで比重を変えることで各標識体の重さを変えるものであるが、標識体の大きさそのものを変えて重さを変えても良い。
In the above description, the center of gravity of the label 37A and the label 37B in the left-right direction is focused. However, the length of the arm and the weight of the label can be adjusted in the same manner in the label 37C and the label 37D before and after the insertion direction. For example, since the marker 37C in the direction of insertion into the body may become an obstacle when inserted into the body, the arm 42C should be as short as possible. On the other hand, since the direction of the marker 37D has a relatively large margin, the arm 42D can be lengthened. Also in this case, the gravity center position in the front-rear direction can be moved by adjusting the weights of the marker 37C and the marker 37D, but the center of gravity in the front-rear direction does not necessarily need to be the center of the arm, and is the most convenient position to use. Adjust so that the center of gravity comes to the center. Even in this way, the position of the center of gravity of the entire markers 37 </ b> A to 37 </ b> D is the position closest to the axis of the surgical instrument main body 36. In addition, the longer the arm, the higher the accuracy of detecting the position and orientation of the internal insertion device, so the longer the arm in the front-rear direction compared to the left and right direction, the higher the accuracy in detecting the position and orientation of the internal insertion device, and It is possible to improve the position detection accuracy of the tip, which is an important part of the instrument.
In the example of FIG. 6 and FIG. 7, the size of each label 37A to 37D is the same, and the weight of each label is changed by changing the specific gravity. May be changed.

なお図3乃至図5では、先端が真っ直ぐな吸引管に本発明を適用しているが、これに限られることはなく、図8のような先端が湾曲した吸引管に本発明を適用しても良い。また、図9及び図10に示されるような手術用鉗子等に取り付けられた標識体にも本発明は適用することができる。さらに、手術器具に限らず、体内に挿入する硬性内視鏡等にも本発明は適用できる。   3 to 5, the present invention is applied to a suction tube having a straight tip. However, the present invention is not limited to this, and the present invention is applied to a suction tube having a curved tip as shown in FIG. Also good. Further, the present invention can also be applied to a marker attached to a surgical forceps or the like as shown in FIGS. Furthermore, the present invention can be applied not only to surgical instruments but also to rigid endoscopes inserted into the body.

以上、本発明の実施形態の一例を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に記載された技術的思想の範疇において各種の変更が可能であることは言うまでもない。なお上記実施形態では、3次元形状測定装置を用いて体内挿入器具の位置姿勢を検出する手術支援システムに本発明を適用しているが、これに限定されるものではなく、例えば、標識体として発光体や反射体を用いて、光学的に3次元位置の測定を行う装置により体内挿入器具の位置姿勢を検出する手術支援システムにも本発明は適用できる。
Although an example of the embodiment of the present invention has been described above, the present invention is not limited to this, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims. Yes. In the above embodiment, the present invention is applied to a surgical operation support system that detects the position and orientation of a body insertion instrument using a three-dimensional shape measuring apparatus. However, the present invention is not limited to this. The present invention can also be applied to a surgery support system that detects the position and orientation of an intracorporeal instrument using a device that optically measures a three-dimensional position using a light emitter or reflector.

手術支援システムの概略構成を示すブロック図。The block diagram which shows schematic structure of a surgery assistance system. 手術器具と3次元形状測定装置との関係を示す図。The figure which shows the relationship between a surgical instrument and a three-dimensional shape measuring apparatus. 手術器具の一例を表す図。The figure showing an example of a surgical instrument. 手術器具を鼻腔に挿入した写真。A photograph of a surgical instrument inserted into the nasal cavity. 図4の模式図。The schematic diagram of FIG. 標識体の配置を上から見た図。The figure which looked at the arrangement | positioning of a marker from the top. 図6とは異なる標識体配置の例。An example of a marker arrangement different from FIG. 体内挿入器具の別の例(吸引管)。Another example of a body insertion device (aspiration tube). 体内挿入器具の別の例(手術用ハサミ)。Another example of an intracorporeal instrument (surgical scissors). 体内挿入器具の別の例(手術用ハサミ等)。Another example of an intracorporeal instrument (such as surgical scissors).

符号の説明Explanation of symbols

10:手術支援システム、 12:コンピュータ(PC等)、 36:体内挿入器具(手術器具)、 37A〜D:標識体(球体)、 38:先端部分、 39:非露出側(体内挿入部分)、 40:露出側(体内に挿入されない部分)、 41:標識体取付部、 42:アーム
10: Surgery support system, 12: Computer (PC, etc.), 36: In-body insertion instrument (surgical instrument), 37A to D: Marker (sphere), 38: Tip part, 39: Non-exposed side (in-body insertion part), 40: Exposed side (portion not inserted into the body) 41: Marking body mounting part 42: Arm

Claims (3)

3次元形状測定手段を有する手術支援システムにおいて前記3次元形状測定手段の測定範囲内で用いる体内挿入器具であって、
前記体内挿入器具は、体内に挿入されない部分に、前記3次元形状測定手段で位置および形状が測定可能な標識体であって標識体間の相対位置及び形状が既知である標識体を少なくとも3個有しており、前記3次元形状測定手段の測定結果と、既知である標識体間の相対位置と各標識体の形状とに基づいて、前記体内挿入器具の位置及び姿勢が測定可能であり、
前記標識体の少なくとも1個は他の標識体と大きさおよび重さが異なっており、
前記体内挿入器具の軸心と標識体全体の重心位置とが近くなるように複数の前記標識体の配置及び重さを設定している、
手術支援システム用体内挿入器具。
An intracorporeal instrument used within a measurement range of the three-dimensional shape measuring means in a surgery support system having a three-dimensional shape measuring means,
The body insertion instrument, the portion which is not inserted into the body, at least three labels the a position and shape measurable labels a three-dimensional shape measurement means relative position and shape between the labels is known And based on the measurement result of the three-dimensional shape measuring means, the known relative position between the labeled bodies and the shape of each labeled body, the position and posture of the intracorporeal instrument can be measured,
At least one of the labels is different in size and weight from the other labels,
The placement and weight of the plurality of marker bodies are set so that the axial center of the internal insertion instrument and the center of gravity of the entire marker body are close to each other.
Internal insertion device for surgery support system.
前記体内挿入器具には、前記体内挿入器具の体内挿入方向に延びた第1アームと、前記第1アームと一定の角度をなす方向に延びた第2アームと、が設けられており、
前記標識体は4個であり、そのうち2個は前記第1アームに配置されており、残りの2個は前記第2アームに配置されており、
前記第2アームに配置された2個の標識体は、前記体内挿入器具の中心軸に対して非対称に配置されているとともに、それぞれ重さが異なる、
請求項1記載の手術支援システム用体内挿入器具。
The body insertion device is provided with a first arm that extends in the body insertion direction of the body insertion device, and a second arm that extends in a direction that forms a certain angle with the first arm,
There are four marker bodies, two of which are arranged on the first arm, and the other two are arranged on the second arm,
The two marker bodies arranged on the second arm are arranged asymmetrically with respect to the central axis of the in-vivo insertion instrument, and each has a different weight.
The intracorporeal instrument for operation support system according to claim 1.
前記体内挿入器具は、手術器具または硬性内視鏡である、
請求項1または2記載の手術支援システム用体内挿入器具。
The intracorporeal instrument is a surgical instrument or a rigid endoscope,
The intracorporeal instrument for a surgery support system according to claim 1 or 2 .
JP2008045330A 2008-02-27 2008-02-27 Surgery support system insertion device Active JP5213200B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008045330A JP5213200B2 (en) 2008-02-27 2008-02-27 Surgery support system insertion device
PCT/JP2009/053507 WO2009107703A1 (en) 2008-02-27 2009-02-26 Surgery support system enabling identification of kind of body-inserted instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045330A JP5213200B2 (en) 2008-02-27 2008-02-27 Surgery support system insertion device

Publications (2)

Publication Number Publication Date
JP2009201617A JP2009201617A (en) 2009-09-10
JP5213200B2 true JP5213200B2 (en) 2013-06-19

Family

ID=41144477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045330A Active JP5213200B2 (en) 2008-02-27 2008-02-27 Surgery support system insertion device

Country Status (1)

Country Link
JP (1) JP5213200B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200582B2 (en) * 2008-02-27 2013-06-05 国立大学法人浜松医科大学 Method and system for measuring a three-dimensional relative relationship between a tip coordinate of a long axis portion of an object having a long axis portion and means for defining the position and orientation of the object
DE102013109486A1 (en) * 2013-08-30 2015-03-05 Surgiceye Gmbh navigation top
US10786311B2 (en) * 2017-12-22 2020-09-29 Acclarent, Inc. Apparatus and method for registering facial landmarks for surgical navigation system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040171930A1 (en) * 2003-02-04 2004-09-02 Zimmer Technology, Inc. Guidance system for rotary surgical instrument
US20050049485A1 (en) * 2003-08-27 2005-03-03 Harmon Kim R. Multiple configuration array for a surgical navigation system
US20060161059A1 (en) * 2005-01-20 2006-07-20 Zimmer Technology, Inc. Variable geometry reference array

Also Published As

Publication number Publication date
JP2009201617A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
JP6905535B2 (en) Guidance, tracking and guidance system for positioning surgical instruments within the patient&#39;s body
US8463360B2 (en) Surgery support device, surgery support method, and computer readable recording medium storing surgery support program
EP3003180B1 (en) Localization of robotic remote center of motion point using custom trocar
US7671887B2 (en) System and method of navigating a medical instrument
JP4553551B2 (en) Diagnostic imaging method
CN101410070B (en) Image guided surgery system
RU2445007C2 (en) Superposition of coordinate systems
EP2744391B1 (en) Shape sensing assisted medical procedure
JP5865361B2 (en) System and method for real-time endoscope calibration
US20090082784A1 (en) Interventional medical system
JP2010519635A (en) Pointing device for medical imaging
JP2001061861A (en) System having image photographing means and medical work station
EP3356090A1 (en) Automatic robotic arm calibration to camera system using a laser
EP3307189A1 (en) Dynamic reference frame for surgical navigation system
US20110046636A1 (en) Surgical Guide Instrument Capable of Omni-Directional Positioning and Omni-Directional Positioning Unit Thereof
EP3212104A1 (en) Hybrid navigation system for surgical interventions
JP2018051306A (en) Robotic fluoroscopic navigation
JP5213201B2 (en) Surgery support system that can identify types of internal insertion devices
JP5213200B2 (en) Surgery support system insertion device
JP2001190529A (en) Device for reproducing slice image
WO2009107703A1 (en) Surgery support system enabling identification of kind of body-inserted instrument
Maier-Hein et al. Comparative assessment of optical tracking systems for soft tissue navigation with fiducial needles
JP2012081167A (en) Medical image display device and medical image guidance method
JP4472080B2 (en) Microscopic surgery support system
JP2023507434A (en) Selection of cursor position on medical images by direction from the distal tip of the probe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130224

R150 Certificate of patent or registration of utility model

Ref document number: 5213200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250