JP5213090B2 - DIRECT LIQUID FUEL FUEL CELL, FUEL CELL SYSTEM, AND LIQUID FUEL FOR DIRECT LIQUID FUEL FUEL CELL - Google Patents

DIRECT LIQUID FUEL FUEL CELL, FUEL CELL SYSTEM, AND LIQUID FUEL FOR DIRECT LIQUID FUEL FUEL CELL Download PDF

Info

Publication number
JP5213090B2
JP5213090B2 JP2005108102A JP2005108102A JP5213090B2 JP 5213090 B2 JP5213090 B2 JP 5213090B2 JP 2005108102 A JP2005108102 A JP 2005108102A JP 2005108102 A JP2005108102 A JP 2005108102A JP 5213090 B2 JP5213090 B2 JP 5213090B2
Authority
JP
Japan
Prior art keywords
fuel
fuel cell
borane
liquid fuel
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005108102A
Other languages
Japanese (ja)
Other versions
JP2006286549A (en
Inventor
強 徐
マニシ チャンドラ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005108102A priority Critical patent/JP5213090B2/en
Publication of JP2006286549A publication Critical patent/JP2006286549A/en
Application granted granted Critical
Publication of JP5213090B2 publication Critical patent/JP5213090B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、液体燃料を直接供給して作動させる直接液体燃料型燃料電池、燃料電池システム及び直接液体燃料型燃料電池用液体燃料に関する。
The present invention is a direct liquid fuel type fuel cell is operated by supplying the liquid fuel directly relates to liquid fuel for a fuel cell system and a direct liquid fuel type fuel cell.

固体高分子形燃料電池は、低温作動で高電流密度を得ることができ、小型化が可能であるなどの優れた特徴を有することから、電気自動車、宇宙航空機器などの輸送機器用の電源、携帯用の小型電源などとして研究開発が進められている。   Since the polymer electrolyte fuel cell has excellent features such as being able to obtain a high current density at low temperature operation and being able to be downsized, it is a power source for transportation equipment such as electric vehicles and aerospace equipment, Research and development is underway for portable power supplies.

固体高分子形燃料電池に供給される燃料としては、天然ガス、メタノール、ガソリンなどの改質により製造された水素ガスが用いられることが多いが、貯蔵、運搬などに際しての液体燃料としての利便性から、メタノールを燃料として直接供給する固体高分子形燃料電池(ダイレクトメタノール燃料電池)も近年注目を集めている。特に、携帯機器用の小型電源や充電器の用途では、メタノール燃料電池が主流となっている。また、メタノールの他に、エタノール( 非特許文献1)、グリコール(特許文献1)等を始めとする種々
のアルコール類を燃料とする直接型燃料電池やギ酸を燃料とする燃料電池(特許文献2及び特許文献3 )の研究も行われている。しかしながら、これらの燃料は安全性に問題が
あるほか、起電力が必ずしも高くなく、十分な性能を有するものということはできない。
As the fuel supplied to the polymer electrolyte fuel cell, hydrogen gas produced by reforming natural gas, methanol, gasoline, etc. is often used, but it is convenient as a liquid fuel for storage, transportation, etc. Therefore, a polymer electrolyte fuel cell (direct methanol fuel cell) that directly supplies methanol as a fuel has recently attracted attention. In particular, methanol fuel cells are the mainstream for small power supplies and chargers for portable devices. In addition to methanol, ethanol (Non-patent Document 1), glycol (Patent Document 1), and other direct alcohol fuel cells using various alcohols such as fuel, and fuel cells using formic acid as fuel (Patent Document 2) And Patent Literature 3) have been studied. However, these fuels have safety problems and the electromotive force is not necessarily high, and it cannot be said that they have sufficient performance.

一方、NaBH4のようなテトラヒドロホウ酸塩のアルカリ性水溶液を燃料として用いる燃
料電池(非特許文献3〜6及び特許文献4〜6)の研究も行われているが、この燃料は強いアルカリ性を有するため、安全性やアルカリ濃度(PH値)の制御などの問題点がある。
On the other hand, research on fuel cells (non-patent documents 3 to 6 and patent documents 4 to 6) using an alkaline aqueous solution of tetrahydroborate such as NaBH 4 as a fuel has also been conducted, but this fuel has strong alkalinity. Therefore, there are problems such as control of safety and alkali concentration (PH value).

従って、安全性が高く取り扱い容易な燃料を直接供給することにより、高い起電力で作動することのできる燃料電池の実現が大きな課題となっている。
C. Lamy, E. M. Belgsir,and J. -M. Legar, J. Appl. Electrochem., 31, 799 (2001). M. Weber, J.-T. Wang, S. Wasmus, and R. F. Savinell, J. Electrochem. Soc. 143, L158 (1996). S. C. Amendola, P. Onnerud, M. T. Kelly, P. J. Petillo, S. L. Sharp-Goldman, M. Binder, J. Power Source, 84, 130, (1999). B. H. Liu, Z. P. Li, S. Suda, J. Electrochem. Soc. 150, A398 (2003). Z. P. Li, B. H. Liu, K. Arai, S. Suda, J. Electrochem. Soc. 150, A868 (2003). Z. P. Li, B. H. Liu, K. Arai, S. Suda, J. Power Source, 126, 28, (2004). 特開2002-151132号公報 特表平10−507572号公報 特開2001-219271号公報 米国特許5,804,329号 特開2003-132932号公報 特開2004-356084号公報
Therefore, the realization of a fuel cell that can operate with high electromotive force by directly supplying safe and easy-to-handle fuel has become a major issue.
C. Lamy, EM Belgsir, and J. -M. Legar, J. Appl. Electrochem., 31, 799 (2001). M. Weber, J.-T.Wang, S. Wasmus, and RF Savinell, J. Electrochem. Soc. 143, L158 (1996). SC Amendola, P. Onnerud, MT Kelly, PJ Petillo, SL Sharp-Goldman, M. Binder, J. Power Source, 84, 130, (1999). BH Liu, ZP Li, S. Suda, J. Electrochem. Soc. 150, A398 (2003). ZP Li, BH Liu, K. Arai, S. Suda, J. Electrochem. Soc. 150, A868 (2003). ZP Li, BH Liu, K. Arai, S. Suda, J. Power Source, 126, 28, (2004). JP 2002-151132 A Japanese National Patent Publication No. 10-507572 JP 2001-219271 A U.S. Patent 5,804,329 JP 2003-132932 A JP 2004-356084 A

本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、安
全性が高く、取り扱い容易な燃料を用いて、高い起電力で作動することのできる新規な燃料電池を提供することである。
The present invention has been made in view of the current state of the prior art described above, and its main purpose is a novel fuel that can be operated with high electromotive force using fuel that is highly safe and easy to handle. It is to provide a battery.

本発明者は、上記した目的を達成すべく鋭意研究を重ねてきた。その結果、特定の化学式で表されるボラン・アンモニア化合物の水溶液は、安全性が高く取り扱いが容易であり、これを燃料として燃料極に直接供給することによって高い起電力で作動する燃料電池が得られることを見出し、ここに本発明を完成するに至った。   The present inventor has intensively studied to achieve the above-described object. As a result, an aqueous solution of borane / ammonia compound represented by a specific chemical formula is safe and easy to handle, and a fuel cell that operates at a high electromotive force can be obtained by directly supplying it as a fuel to the fuel electrode. The present invention has been completed here.

即ち、本発明は、下記の燃料電池、燃料電池システム及び燃料電池用液体燃料を提供するものである。
1. 化学式:NHBHで表されるボラン・アンモニアの水溶液を燃料とする直接液体燃料型燃料電池。
2. 固体高分子形燃料電池である上記項1に記載の燃料電池。
3. 化学式:NHBHで表されるボラン・アンモニアの水溶液を燃料電池のアノードに供給することを特徴とする燃料電池システム。
4. 化学式:NHBHで表されるボラン・アンモニアの水溶液からなる直接液体燃料型燃料電池用液体燃料。
That is, the present invention provides the following fuel cell, fuel cell system, and liquid fuel for a fuel cell.
1. A direct liquid fuel type fuel cell using a borane / ammonia aqueous solution represented by the chemical formula: NH 3 BH 3 as fuel.
2. Item 2. The fuel cell according to Item 1, which is a polymer electrolyte fuel cell.
3. A fuel cell system, wherein an aqueous solution of borane / ammonia represented by the chemical formula: NH 3 BH 3 is supplied to an anode of a fuel cell.
4). A liquid fuel for a direct liquid fuel type fuel cell comprising an aqueous solution of borane / ammonia represented by chemical formula: NH 3 BH 3 .

本発明では、化学式:RNH3−nBH (式中、Rは一価の炭化水素基であり、nは0〜3の整数である。但し、2個又は3個のRが相互に結合して、窒素原子と共に含窒素環状構造を形成しても良い。)で表されるボラン・アンモニア化合物の水溶液を燃料電
池用の燃料として用いることが必要である。
In the present invention, the chemical formula: R n NH 3 -n BH 3 (wherein R is a monovalent hydrocarbon group and n is an integer of 0 to 3, provided that two or three R are mutually It is necessary to use a borane / ammonia compound aqueous solution represented by the following formula as a fuel for a fuel cell.

上記化学式において、一価の炭化水素基としては、低級アルキル基を例示できる。この様な低級アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、ペンチル基等の炭素数1〜5程度の直鎖状又は分枝鎖状のアルキル基を挙げることができる。上記化学式において、Rが二個以上含まれる場合には、Rは全て同一であって良く、或いは、一部又は全部が相互に異なっていても良い。   In the above chemical formula, examples of the monovalent hydrocarbon group include a lower alkyl group. Specific examples of such a lower alkyl group include linear groups having about 1 to 5 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, and pentyl group. Or a branched alkyl group can be mentioned. In the above chemical formula, when two or more Rs are contained, all the Rs may be the same, or some or all of them may be different from each other.

また、2個又は3個のRが相互に結合して窒素原子と共に含窒素環状構造を形成する場合には、形成される環状構造は、飽和及び不飽和のいずれでもよく、その他の窒素原子、酸素原子、硫黄原子などが含まれていても良い。   When two or three Rs are bonded to each other to form a nitrogen-containing cyclic structure together with a nitrogen atom, the formed cyclic structure may be either saturated or unsaturated, and other nitrogen atoms, An oxygen atom, a sulfur atom, etc. may be contained.

上記化学式で表されるボラン・アンモニア化合物は、公知化合物であり、固体の状態で軽量・安全に運搬・貯蔵することができる。また、水に可溶であるが、水に溶解しても水と容易に反応することなく、比較的安定に存在し、その取り扱いは容易、且つ安全であり、液体燃料としての利便性を有するものである。   The borane / ammonia compound represented by the above chemical formula is a known compound and can be transported and stored in a solid state in a lightweight and safe manner. Although it is soluble in water, it does not easily react with water even when dissolved in water, and it exists relatively stably, and its handling is easy and safe, and has convenience as a liquid fuel. Is.

上記化学式で表されるボラン・アンモニア化合物の具体例としては、NHBHで表されるボラン・アンモニア、(CHNHBHで表されるボラン・ジメチルアミン、(CHCH2)NHBHで表されるボラン・ジエチルアミン、(CH3NBHで表されるボラン・トリメチルアミン、(CHCHNBHで表されるボラン・トリエチルアミン、(CHCNH2BHで表されるボラン・t-ブチルアミン等を
挙げることができる。
Specific examples of the borane / ammonia compound represented by the above chemical formula include borane / ammonia represented by NH 3 BH 3 , borane / dimethylamine represented by (CH 3 ) 2 NHBH 3 , (CH 3 CH 2 ) 2 Borane / diethylamine represented by NHBH 3 , borane / trimethylamine represented by (CH 3 ) 3 NBH 3 , borane / triethylamine represented by (CH 3 CH 2 ) 3 NBH 3 , (CH 3 ) 3 CNH 2 Examples thereof include borane / t-butylamine represented by BH 3 .

また、含窒素環状構造を含む化合物の具体例としては、   Moreover, as a specific example of the compound containing a nitrogen-containing cyclic structure,

Figure 0005213090
で表されるボラン・モルホリン、
Figure 0005213090
Borane morpholine, represented by

Figure 0005213090
で表されるボラン・ピリジン等を挙げることができる。
Figure 0005213090
And borane pyridine represented by the formula:

本発明では、上記化学式で表されるボラン・アンモニア化合物は、一種単独又は二種以上混合して用いることができる。   In the present invention, the borane / ammonia compound represented by the above chemical formula can be used singly or in combination of two or more.

本発明では、燃料電池の燃料として、上記ボラン・アンモニア化合物の水溶液を用いる。水溶液中におけるボラン・アンモニア化合物の濃度は、特に限定的ではないが、例えば、10−4mol/L〜8mol/L程度の濃度範囲とすることができ、10−3mol/L〜2mol/L程度の濃度範囲とすることが好ましい。この様な濃度範囲において、要求される起電力などに応じて、具体的な濃度を決めればよい。この水溶液には、有効成分であるボラン・アンモニア化合物が含まれていればよく、燃料電池の燃料として悪影響の無い限りその他の成分が同時に含まれていても良い。 In the present invention, the borane / ammonia compound aqueous solution is used as the fuel for the fuel cell. The concentration of the borane / ammonia compound in the aqueous solution is not particularly limited, but can be, for example, a concentration range of about 10 −4 mol / L to 8 mol / L, and 10 −3 mol / L to 2 mol / L. It is preferable that the concentration range be within a range. In such a concentration range, a specific concentration may be determined according to the required electromotive force. The aqueous solution only needs to contain borane / ammonia compound as an active ingredient, and may contain other ingredients at the same time as long as there is no adverse effect as fuel for the fuel cell.

本発明の燃料電池は、好ましくは、固体高分子形燃料電池である。固体高分子形燃料電池の構造については、特に限定はなく、公知の構造と同様でよい。   The fuel cell of the present invention is preferably a polymer electrolyte fuel cell. The structure of the polymer electrolyte fuel cell is not particularly limited and may be the same as a known structure.

即ち、高分子電解質膜、電極触媒、膜−電極接合体、セル構造等については、公知の固体高分子形燃料電池と同様とすればよい。   That is, the polymer electrolyte membrane, the electrode catalyst, the membrane-electrode assembly, the cell structure and the like may be the same as those of a known solid polymer fuel cell.

例えば、触媒金属としては、従来から知られている種々の金属、金属合金などを使用することができる。具体例としては、白金、パラジウム、イリジウム、ロジウム、ルテニウム、白金−ルテニウムをはじめとする各種金属触媒、またはこれらの触媒微粒子をカーボンなどの担体上に分散させた担持触媒などが挙げられる。   For example, various conventionally known metals and metal alloys can be used as the catalyst metal. Specific examples include various metal catalysts including platinum, palladium, iridium, rhodium, ruthenium, platinum-ruthenium, or a supported catalyst in which these catalyst fine particles are dispersed on a carrier such as carbon.

高分子電解質膜としては、パーフルオロカーボン系、スチレン−ジビニルベンゼン共重合体系、ポリベンズイミダゾール系をはじめとする各種イオン交換樹脂膜、無機高分子イオン交換膜、有機―無機複合体高分子イオン交換膜等を使用することができる。   Polymer electrolyte membranes include perfluorocarbon, styrene-divinylbenzene copolymer, polybenzimidazole and other ion exchange resin membranes, inorganic polymer ion exchange membranes, organic-inorganic composite polymer ion exchange membranes, etc. Can be used.

固体高分子電解質膜と電極触媒との接合体は、公知の方法により作製することができる。例えば、触媒粉末と電解質溶液とを混合して作製した触媒インクを薄膜化させた後、電解質膜上にホットプレスする方法、あるいは直接高分子膜上に塗布・乾燥する方法などが適用される。その他にも、吸着還元法、無電解めっき法やスパッタ、CVDなどの方法で固体高分子膜に直接触媒を取り付けることもできる。また、ガス拡散層や集電体に直接触媒インクを塗布・乾燥する、あるいは前駆体となる金属錯体を含浸・還元するなどの方法によって電極を作製してもよい。   The joined body of the solid polymer electrolyte membrane and the electrode catalyst can be produced by a known method. For example, a method in which a catalyst ink produced by mixing catalyst powder and an electrolyte solution is thinned and then hot-pressed on the electrolyte membrane or directly applied and dried on the polymer membrane is applied. In addition, the catalyst can be directly attached to the solid polymer film by a method such as adsorption reduction, electroless plating, sputtering, or CVD. Further, the electrode may be produced by a method such as applying and drying the catalyst ink directly on the gas diffusion layer or the current collector, or impregnating or reducing the metal complex as the precursor.

得られた膜−電極接合体の両面をカーボンペーパー、カーボンクロスなどの集電体で挟んでセルに組み込むことによって、燃料電池セルを作製することができる。   A fuel battery cell can be produced by sandwiching both surfaces of the obtained membrane-electrode assembly between current collectors such as carbon paper and carbon cloth and incorporating them into the cell.

本発明の燃料電池では、上記したボラン・アンモニア化合物の水溶液を燃料として、アノードに供給し、カソード側には、空気又は酸素を供給又は自然拡散させればよい。   In the fuel cell of the present invention, the above-described aqueous solution of borane / ammonia compound may be supplied as fuel to the anode, and air or oxygen may be supplied or naturally diffused to the cathode side.

本発明の燃料電池の作動温度は、使用する電解質膜によって異なるが、通常0℃〜100℃ 程度であり、好ましくは10℃〜80℃ 程度である。   The operating temperature of the fuel cell of the present invention varies depending on the electrolyte membrane to be used, but is usually about 0 ° C to 100 ° C, preferably about 10 ° C to 80 ° C.

本発明の燃料電池は、安全性が高く取り扱いが容易なボラン・アンモニア化合物の水溶液を燃料極に直接供給することによって高い起電力で作動するものであり、非常に利便性の高い燃料電池である。   The fuel cell of the present invention operates with high electromotive force by directly supplying an aqueous solution of borane / ammonia compound that is safe and easy to handle to the fuel electrode, and is a very convenient fuel cell. .

燃料として用いられるボラン・アンモニア化合物は、固体の状態で軽量・安全に運搬・貯蔵することができ、燃料電池に供給する前に水に溶解するという簡単な方法で燃料電池用の液体燃料とすることができる。また、ボラン・アンモニア化合物は、水に溶解しても水と容易に反応することなく、比較的安定に存在し、その取り扱いは容易、且つ安全である。   Borane / ammonia compounds used as fuel can be transported and stored in a solid state in a lightweight and safe manner, and can be converted into liquid fuel for fuel cells by a simple method of dissolving in water before being supplied to the fuel cell. be able to. Further, the borane / ammonia compound does not react easily with water even when dissolved in water, exists relatively stably, and its handling is easy and safe.

以下に実施例を示して、本発明をさらに具体的に説明する。   The present invention will be described more specifically with reference to the following examples.

実施例1
アノード触媒として、白金ルテニウム(Pt:Ru=1:1)ブラックを用いて、高分子電解質の
溶液(“ Nafion溶液”、アルドリッチ社製)と混合して触媒インクとし、薄膜化させて
電極シートを作製した後、高分子電解質膜(“Nafion-117”、デュポン社製)の片面にホットプレスして、膜−電極接合体を得た。カソード触媒としてポリテトラフルオロエチレンで撥水化処理した白金ブラックを用いて、高分子電解質の溶液(“Nafion 溶液”、ア
ルドリッチ社製)と混合して触媒インクとし、薄膜化させて電極シートを作製した後、高分子電解質膜のもう一方の面にホットプレスして、膜−電極接合体を得た。この膜−電極接合体の両面をカーボンクロスで挟んで燃料電池セルを組み立てた。
Example 1
Platinum ruthenium (Pt: Ru = 1: 1) black is used as the anode catalyst and mixed with a polymer electrolyte solution (“Nafion solution”, manufactured by Aldrich) to form a catalyst ink, which is then thinned to form an electrode sheet. After the production, hot pressing was performed on one surface of a polymer electrolyte membrane (“Nafion-117”, manufactured by DuPont) to obtain a membrane-electrode assembly. Using platinum black water-repellent treated with polytetrafluoroethylene as the cathode catalyst, it is mixed with a polymer electrolyte solution (“Nafion solution”, manufactured by Aldrich) to form a catalyst ink, which is then thinned to produce an electrode sheet Then, the other surface of the polymer electrolyte membrane was hot pressed to obtain a membrane-electrode assembly. A fuel cell was assembled by sandwiching both surfaces of the membrane-electrode assembly with carbon cloth.

上記した方法で得た燃料電池セルのアノードに、0.1mol/Lのボラン・アンモニア(NH3BH3)水溶液を供給し、カソードには空気を自然拡散させ、室温で燃料電池の発電性能を評価した。電流−電圧特性を図1に曲線(a)として示す。 Supplying 0.1 mol / L borane / ammonia (NH 3 BH 3 ) aqueous solution to the anode of the fuel cell obtained by the above method, allowing air to diffuse naturally to the cathode, and evaluating the power generation performance of the fuel cell at room temperature did. The current-voltage characteristics are shown as curve (a) in FIG.

実施例2
実施例1で作製した燃料電池セルのアノード側に、0.5mol/Lのボラン・アンモニア(NH3BH3)水溶液を供給し、カソードには空気を自然拡散させ、室温で燃料電池の発電性能を評価した。電流−電圧特性を図1に曲線(b)として示す。
Example 2
A 0.5 mol / L aqueous solution of borane / ammonia (NH 3 BH 3 ) is supplied to the anode side of the fuel cell produced in Example 1, and air is naturally diffused to the cathode, thereby improving the power generation performance of the fuel cell at room temperature. evaluated. The current-voltage characteristic is shown as a curve (b) in FIG.

参考例1
実施例1 で作製した燃料電池セルのアノード側に0.1mol/Lのボラン・ジメチルアミン((CH3)2NHBH3)水溶液を供給し、カソードには空気を自然拡散させ、室温で燃料電池の発
電性能を評価した。電流−電圧特性を図1曲線(c)として示す。
Reference example 1
A 0.1 mol / L aqueous solution of borane / dimethylamine ((CH 3 ) 2 NHBH 3 ) was supplied to the anode side of the fuel cell produced in Example 1, and air was naturally diffused to the cathode. The power generation performance of was evaluated. The current-voltage characteristic is shown as curve (c) in FIG.

図1の曲線(a)〜(c)から、ボラン・アンモニアNH3BH3またはその誘導体の水溶液を燃料として燃料電池に直接供給した場合に、燃料電池が高い起電力で作動することが明らかである。 From the curves (a) to (c) of FIG. 1, it is clear that the fuel cell operates at a high electromotive force when an aqueous solution of borane / ammonia NH 3 BH 3 or a derivative thereof is directly supplied to the fuel cell as a fuel. is there.

実施例1、2及び参考例1で得られた各固体高分子形燃料電池の電流−電圧特性を示すグラフ。The graph which shows the current-voltage characteristic of each polymer electrolyte fuel cell obtained in Examples 1 and 2 and Reference Example 1 .

Claims (4)

化学式:NH BH で表されるボラン・アンモニアの水溶液を燃料とする直接液体燃料型燃料電池。 Formula: NH 3 BH liquid fuel type fuel cell directly to an aqueous solution of borane-ammonia and fuel represented by 3. 固体高分子形燃料電池である請求項1に記載の燃料電池。 2. The fuel cell according to claim 1, which is a polymer electrolyte fuel cell. 化学式:NH BH で表されるボラン・アンモニアの水溶液を燃料電池のアノードに供給することを特徴とする燃料電池システム。 Formula: NH 3 fuel cell system characterized by an aqueous solution of borane-ammonia represented by BH 3 is supplied to the anode of the fuel cell. 化学式:NHBHで表されるボラン・アンモニアの水溶液からなる直接液体燃料型燃料電池用液体燃料。
A liquid fuel for a direct liquid fuel type fuel cell comprising an aqueous solution of borane / ammonia represented by chemical formula: NH 3 BH 3 .
JP2005108102A 2005-04-05 2005-04-05 DIRECT LIQUID FUEL FUEL CELL, FUEL CELL SYSTEM, AND LIQUID FUEL FOR DIRECT LIQUID FUEL FUEL CELL Expired - Fee Related JP5213090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005108102A JP5213090B2 (en) 2005-04-05 2005-04-05 DIRECT LIQUID FUEL FUEL CELL, FUEL CELL SYSTEM, AND LIQUID FUEL FOR DIRECT LIQUID FUEL FUEL CELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005108102A JP5213090B2 (en) 2005-04-05 2005-04-05 DIRECT LIQUID FUEL FUEL CELL, FUEL CELL SYSTEM, AND LIQUID FUEL FOR DIRECT LIQUID FUEL FUEL CELL

Publications (2)

Publication Number Publication Date
JP2006286549A JP2006286549A (en) 2006-10-19
JP5213090B2 true JP5213090B2 (en) 2013-06-19

Family

ID=37408220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005108102A Expired - Fee Related JP5213090B2 (en) 2005-04-05 2005-04-05 DIRECT LIQUID FUEL FUEL CELL, FUEL CELL SYSTEM, AND LIQUID FUEL FOR DIRECT LIQUID FUEL FUEL CELL

Country Status (1)

Country Link
JP (1) JP5213090B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229872B2 (en) * 2008-01-24 2013-07-03 独立行政法人産業技術総合研究所 Fuel cell
US9553315B2 (en) 2008-11-12 2017-01-24 Ramot At Tel-Aviv University Ltd. Direct liquid fuel cell having ammonia borane or derivatives thereof as fuel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534033B1 (en) * 2000-01-07 2003-03-18 Millennium Cell, Inc. System for hydrogen generation
US6554877B2 (en) * 2001-01-03 2003-04-29 More Energy Ltd. Liquid fuel compositions for electrochemical fuel cells
US6946104B2 (en) * 2001-07-09 2005-09-20 Hydrogenics Corporation Chemical hydride hydrogen generation system and an energy system incorporating the same
JP4572384B2 (en) * 2005-02-04 2010-11-04 独立行政法人産業技術総合研究所 Hydrogen generation method

Also Published As

Publication number Publication date
JP2006286549A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
Abdelkareem et al. Comparative analysis of liquid versus vapor-feed passive direct methanol fuel cells
JP4993867B2 (en) Fuel cell
Aricò et al. Direct methanol fuel cells: history, status and perspectives
Pan et al. Performance characteristics of a passive direct ethylene glycol fuel cell with hydrogen peroxide as oxidant
CN104409745A (en) Preparation method of high-performance superlow-palladium-capacity anode electrocatalyst Pd-CoP/C of direct formic acid fuel cell
WO2003056649A1 (en) Fuel cell
Burhan et al. Direct methanol fuel cells (DMFCs)
US8182964B2 (en) Electrode for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system including the same
US20130236809A1 (en) Direct Formate Fuel Cell Employing Formate Salt Fuel, An Anion Exchange Membrane, And Metal Catalysts
JP2008210581A (en) Fuel cell
JP2002343403A (en) Operation method of fuel cell
JP5229872B2 (en) Fuel cell
JP5213090B2 (en) DIRECT LIQUID FUEL FUEL CELL, FUEL CELL SYSTEM, AND LIQUID FUEL FOR DIRECT LIQUID FUEL FUEL CELL
JP2006244960A (en) Fuel cell
JP5360821B2 (en) Direct fuel cell
JP2009217975A (en) Fuel electrode catalyst, membrane electrode assembly, and fuel cell
Schenk et al. Other polymer electrolyte fuel cells
JP4238364B2 (en) Polymer electrolyte fuel cell
JP5344483B2 (en) Direct liquid fuel type fuel cell
Reeve Update on status of direct methanol fuel cells
Mukherjee et al. Direct Hydrocarbon Low‐temperature Fuel Cell
WO2012007727A1 (en) Fuel cell
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
Bhat et al. Ambient condition alcohol reforming to hydrogen with electricity output
JP2004192879A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees