JP5211911B2 - Silver powder manufacturing method - Google Patents

Silver powder manufacturing method Download PDF

Info

Publication number
JP5211911B2
JP5211911B2 JP2008190875A JP2008190875A JP5211911B2 JP 5211911 B2 JP5211911 B2 JP 5211911B2 JP 2008190875 A JP2008190875 A JP 2008190875A JP 2008190875 A JP2008190875 A JP 2008190875A JP 5211911 B2 JP5211911 B2 JP 5211911B2
Authority
JP
Japan
Prior art keywords
silver
silver powder
solution
pure water
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008190875A
Other languages
Japanese (ja)
Other versions
JP2010024533A (en
Inventor
良宏 岡部
修二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2008190875A priority Critical patent/JP5211911B2/en
Publication of JP2010024533A publication Critical patent/JP2010024533A/en
Application granted granted Critical
Publication of JP5211911B2 publication Critical patent/JP5211911B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、銀粉の製造方法に関する。さらに詳しくは、電子機器の電極等の形成に利用される樹脂型銀ペーストや焼成型銀ペーストなどの主たる成分となる銀粉の製造方法に関する。   The present invention relates to a method for producing silver powder. More specifically, the present invention relates to a method for producing silver powder, which is a main component of resin-type silver paste, fired-type silver paste, and the like used for forming electrodes of electronic devices.

樹脂型銀ペーストは、銀粉、樹脂、硬化剤、溶剤などからなり、導電体回路パターン又は端子の上に印刷し、これを100℃〜200℃で加熱硬化させて配線や電極を形成する。一方、焼成型銀ペーストは、銀粉、ガラス、溶剤などからなり、導電体回路パターン又は端子の上に印刷し、これを600℃〜800℃に加熱して焼成し、配線や電極を形成する。これらの銀ペーストは銀を主成分としており、形成された配線や電極は、銀粉が連なることで電気的に接続した電流パスが形成される。   The resin-type silver paste is made of silver powder, a resin, a curing agent, a solvent, and the like, printed on a conductor circuit pattern or terminal, and heated and cured at 100 ° C. to 200 ° C. to form wirings and electrodes. On the other hand, the fired silver paste is made of silver powder, glass, solvent, etc., printed on a conductor circuit pattern or terminal, heated to 600 ° C. to 800 ° C. and fired to form wirings and electrodes. These silver pastes have silver as a main component, and the formed wirings and electrodes form a current path electrically connected by continuous silver powder.

上記銀ペーストに使用される銀粉は、形成する配線の太さや電極の厚さによって、使用される銀粉の粒径が異なる。また、ペースト中に均一に銀粉を分散させることにより、均一な太さの配線、均一な厚さの電極を形成することができる。従って、上記銀ペーストに使用される銀粉には、所望の粒径を有し、かつペースト中への分散性が高いことが要求される。さらに、ペーストの主成分である銀粉の価格は、ペースト価格に占める割合が大きいため、銀粉の製造コストが小さいことが好ましい。すなわち、銀粉の製造コスト低減のために、銀粉の生産性が高いことが要求される。   The silver powder used in the silver paste has a different particle diameter depending on the thickness of the wiring to be formed and the thickness of the electrode. Further, by uniformly dispersing silver powder in the paste, it is possible to form a wiring having a uniform thickness and an electrode having a uniform thickness. Accordingly, the silver powder used in the silver paste is required to have a desired particle size and high dispersibility in the paste. Furthermore, since the price of the silver powder which is the main component of the paste has a large proportion of the paste price, it is preferable that the production cost of the silver powder is small. That is, in order to reduce the manufacturing cost of silver powder, the productivity of silver powder is required to be high.

これまで上記銀ペーストに使用される銀粉の製造は、硝酸銀を水又はアンモニアに溶解し、この銀溶液に還元剤を投入して還元する方法がとられてきた。(例えば、特許文献1あるいは特許文献2参照)   Until now, the silver powder used for the silver paste has been produced by dissolving silver nitrate in water or ammonia and introducing a reducing agent into the silver solution for reduction. (For example, see Patent Document 1 or Patent Document 2)

しかしながら、硝酸銀を原料として使用すると、還元後の液には硝酸が含まれる。硝酸は環境負荷が大きく、これを含む廃液を排水する際には硝酸性窒素の除去装置が必要となり設備投資が大きくなる。またそのランニングコストも大きい。このように、硝酸銀を原料としたプロセスは、環境面及び経済的な面において問題点を抱えている。   However, when silver nitrate is used as a raw material, nitric acid is contained in the solution after the reduction. Nitric acid has a large environmental load, and when draining waste liquid containing it, a nitrate nitrogen removal device is required, which increases capital investment. The running cost is also high. Thus, the process using silver nitrate as a raw material has problems in terms of environment and economy.

一方、硝酸銀をアンモニアに溶解して銀溶液を作製する場合には、廃液中にアンモニアも含まれる。このアンモニアも環境負荷が大きく、これを含む廃液を排水する際にはアンモニア性窒素の除去装置が必要となり設備投資が大きくなる。またそのランニングコストも大きい。従って、硝酸銀とアンモニアを使用するプロセスは、環境面及び経済的な面において、さらに大きな問題点を抱えている。   On the other hand, when a silver solution is prepared by dissolving silver nitrate in ammonia, ammonia is also included in the waste liquid. This ammonia also has a large environmental load, and when draining waste liquid containing this ammonia, a device for removing ammonia nitrogen is required, which increases capital investment. The running cost is also high. Therefore, the process using silver nitrate and ammonia has a larger problem in terms of environment and economy.

さらに、硝酸銀をアンモニアに溶解して銀溶液を作製する場合には、雷銀が発生する可能性がある。銀粉の製造において雷銀が発生した場合は爆発する危険性があり、実際に爆発した事例も報告されている。雷銀の発生は、銀粉製造の収率を落とすだけでなく、災害となりうるものであり、避けなければならない重要な問題である。   Furthermore, when silver nitrate is dissolved in ammonia to prepare a silver solution, lightning silver may be generated. There is a danger of explosion if thunder silver occurs in the production of silver powder, and there have been reports of actual explosions. The occurrence of lightning silver not only reduces the yield of silver powder production, but can also be a disaster and is an important issue that must be avoided.

以上の従来技術の状況に鑑みて、生産性が高く、雷銀を生じないことに加えて、廃液に硝酸性窒素もアンモニア性窒素も含まない銀粉製造プロセスが求められている。   In view of the above-described state of the prior art, there is a need for a silver powder production process that is highly productive and does not produce thunder silver, and that does not contain nitrate nitrogen or ammonia nitrogen in the waste liquid.

特開平11−189812号公報JP-A-11-189812 特開2000−129318号公報JP 2000-129318 A

本発明の目的は、生産性が高く、雷銀を生じないことに加えて、廃液に硝酸性窒素もアンモニア性窒素も含まない銀粉製造プロセスを提供することにある。   An object of the present invention is to provide a silver powder production process that has high productivity and does not produce thunder silver, and that does not contain nitrate nitrogen or ammonia nitrogen in the waste liquid.

本発明者らは、上記目的を達成するために、銀粉の製造方法について鋭意研究を重ねた結果、塩化銀を亜硫酸ナトリウム水溶液に溶解し、窒素を含まない還元剤で還元するプロセスで収率良く銀粉が得られることを確認した。さらに、効率良く銀粉を製造するために、塩化銀を亜硫酸ナトリウム水溶液に溶解する際に水酸化ナトリウム又は水酸化カリウムを添加することで、塩化銀の亜硫酸ナトリウム水溶液への溶解度が上がり、銀溶液濃度を高くした条件で銀粉を製造できることを見出し、これらから本発明を完成するに至った。   In order to achieve the above object, the present inventors have conducted extensive research on a method for producing silver powder. As a result, silver chloride is dissolved in an aqueous sodium sulfite solution and reduced with a reducing agent that does not contain nitrogen in a high yield. It was confirmed that silver powder was obtained. Furthermore, in order to produce silver powder efficiently, by adding sodium hydroxide or potassium hydroxide when dissolving silver chloride in sodium sulfite aqueous solution, the solubility of silver chloride in sodium sulfite aqueous solution increases, and the concentration of silver solution The present inventors have found that silver powder can be produced under the condition of increasing the thickness of the present invention, and have led to the completion of the present invention.

すなわち、上記目的を達成するために本発明が提供する銀粉の製造方法は、純水に亜硫酸ナトリウム、塩化銀、及び水酸化ナトリウム又は水酸化カリウムを投入した銀溶液と、窒素を含まない還元剤溶液とを混合して銀粉を得ることを特徴としている。   That is, the method for producing silver powder provided by the present invention to achieve the above object includes a silver solution in which sodium sulfite, silver chloride, and sodium hydroxide or potassium hydroxide are added to pure water, and a reducing agent that does not contain nitrogen. A silver powder is obtained by mixing with a solution.

上記本発明の銀粉の製造方法においては、水酸化ナトリウム又は水酸化カリウムの投入量が、純水に対して0.1mol/L以上0.6mol/L以下であることが好ましい。   In the method for producing silver powder of the present invention, the input amount of sodium hydroxide or potassium hydroxide is preferably 0.1 mol / L or more and 0.6 mol / L or less with respect to pure water.

また、上記本発明の銀粉の製造方法においては、還元剤溶液が、ホルムアルデヒド若しくはアスコルビン酸のいずれか片方、またそれらは両方の水溶液であることが好ましい。   Moreover, in the manufacturing method of the silver powder of the said invention, it is preferable that a reducing agent solution is either one of formaldehyde or ascorbic acid, and they are both aqueous solution.

本発明の銀粉の製造方法によれば、雷銀を生じることなく、廃液に硝酸性窒素もアンモニア性窒素も含むことがない。さらに生産性が高いため、銀粉を低コストで工業的に効率的に製造することができる。このように、本発明の銀粉の製造方法は、工業的価値が極めて高い。   According to the method for producing silver powder of the present invention, lightning silver is not generated, and neither nitrate nitrogen nor ammoniacal nitrogen is contained in the waste liquid. Furthermore, since productivity is high, silver powder can be manufactured industrially efficiently at low cost. Thus, the silver powder production method of the present invention has an extremely high industrial value.

以下、本発明の銀粉の製造方法を詳細に説明する。本発明の銀粉の製造方法は、純水に溶解剤としての亜硫酸ナトリウムと、銀原料としての塩化銀と、水酸化ナトリウム又は水酸化カリウムとを投入して銀溶液を調製し、これに窒素を含まない還元剤溶液を混合して銀粉を得ることを特徴とする。   Hereafter, the manufacturing method of the silver powder of this invention is demonstrated in detail. In the method for producing silver powder of the present invention, sodium sulfite as a dissolving agent, silver chloride as a silver raw material, and sodium hydroxide or potassium hydroxide are added to pure water to prepare a silver solution, and nitrogen is added thereto. Silver powder is obtained by mixing a reducing agent solution that does not contain.

上記製造方法においては、銀原料、その溶解剤、及び還元剤溶液に窒素を含まないことが重要である。これにより、還元後の廃液に硝酸性窒素やアンモニア性窒素が含まれることがない。また、雷銀が発生することもない。   In the above production method, it is important that the silver raw material, its dissolving agent, and reducing agent solution do not contain nitrogen. Thereby, nitrate nitrogen and ammonia nitrogen are not contained in the waste liquid after reduction. In addition, no lightning silver is generated.

上記銀原料として使用する塩化銀には、工業的に安定して製造されている純度99.9999%のものを使用することができる。また、上記溶解剤として使用する亜硫酸ナトリウムも工業的に安定して製造されている。   As the silver chloride used as the silver raw material, those having a purity of 99.9999% which are produced industrially stably can be used. In addition, sodium sulfite used as the solubilizer is also industrially stably produced.

上記水酸化ナトリウム又は水酸化カリウムは、亜硫酸ナトリウム水溶液への塩化銀の溶解度を上げるために添加するものである。これを添加しないと銀溶液中の銀濃度は約30g/Lが限度であるが、水酸化ナトリウム又は水酸化カリウムを添加することで、pHが高くなり、銀溶液中の銀濃度を80g/L程度まで上げることができる。その結果、生産性が上がり、製造コストを下げることができる。   The sodium hydroxide or potassium hydroxide is added to increase the solubility of silver chloride in an aqueous sodium sulfite solution. If this is not added, the silver concentration in the silver solution is limited to about 30 g / L. However, by adding sodium hydroxide or potassium hydroxide, the pH increases, and the silver concentration in the silver solution is reduced to 80 g / L. Can be raised to a certain extent. As a result, productivity can be increased and manufacturing costs can be reduced.

水酸化ナトリウム又は水酸化カリウムの添加量は、亜硫酸ナトリウムを溶かす純水量に対して0.1mol/L以上0.6mol/L以下とすることが好ましい。0.1mol/Lより低ければ、塩化銀の溶解度を上げる効果が小さい。一方、0.6mol/Lより高ければ、塩化銀の溶解度が下がる。即ち、塩化銀の亜硫酸ナトリウム水溶液への溶解度は、水酸化ナトリウム又は水酸化カリウムの濃度が0.1mol/L以上0.6mol/L以下の範囲にピークがある。   The amount of sodium hydroxide or potassium hydroxide added is preferably 0.1 mol / L or more and 0.6 mol / L or less with respect to the amount of pure water in which sodium sulfite is dissolved. If it is lower than 0.1 mol / L, the effect of increasing the solubility of silver chloride is small. On the other hand, if it is higher than 0.6 mol / L, the solubility of silver chloride decreases. That is, the solubility of silver chloride in an aqueous sodium sulfite solution has a peak in the range where the concentration of sodium hydroxide or potassium hydroxide is 0.1 mol / L or more and 0.6 mol / L or less.

上記還元剤溶液には、窒素を含まないことが必須要件である。このような還元剤溶液は、ホルムアルデヒド若しくはアスコルビン酸のいずれか片方、又はそれらの両方の水溶液であることが望ましい。この水溶液の溶媒には純水を使用することがより望ましい。還元剤の使用当量は、還元剤の種類によって異なるが、1当量より低ければ、還元収率が落ちる。一方、過剰な還元剤の使用はコストを上げるだけである。従って、還元剤の還元能力によるが、溶解している銀を100%還元するために必要な最小量とすることが望ましい。   It is an essential requirement that the reducing agent solution does not contain nitrogen. Such a reducing agent solution is desirably an aqueous solution of either formaldehyde or ascorbic acid or both. It is more desirable to use pure water as the solvent of this aqueous solution. The use equivalent of the reducing agent varies depending on the type of the reducing agent, but if it is lower than 1 equivalent, the reduction yield decreases. On the other hand, the use of excess reducing agent only increases costs. Therefore, depending on the reducing ability of the reducing agent, it is desirable to make the minimum amount necessary to reduce dissolved silver by 100%.

一般的に、銀粉などの金属粉末を還元法によって製造する場合、分散剤を利用することが多い。本発明においては、分散剤について特に限定していないが、広く分散剤として利用されているものを使用することができる。通常、分散剤の使用量は作製する銀など金属の重量に対して高々数%であるため、分散剤の選定による廃液中の窒素濃度上昇の影響は小さいが、窒素を含まないものが望ましい。具体的には、ゼラチン、オレイン酸、PVA(ポリビニルアルコール)、PEI(ポリエチレンイミン)などが使用可能である。   Generally, when a metal powder such as silver powder is produced by a reduction method, a dispersant is often used. In the present invention, the dispersant is not particularly limited, but those widely used as dispersants can be used. Usually, the amount of the dispersant used is at most several percent with respect to the weight of the metal such as silver to be prepared. Specifically, gelatin, oleic acid, PVA (polyvinyl alcohol), PEI (polyethyleneimine) and the like can be used.

還元により析出した銀粉を含むスラリーは、所定の開口径を有するフィルターで濾過される。得られた濾過ケークは、洗浄後、乾燥される。洗浄方法としては、特に限定されるものではないが、銀粉の濾過ケークを水に投入し、攪拌機又は超音波洗浄器を使用して攪拌し、その後、濾過して銀粉を回収する方法が用いられる。尚、これら水投入、攪拌洗浄及び濾過からなる一連の操作は、複数回繰返し行なうことが好ましい。また、この洗浄において使用する水には、特に限定されるものではないが、銀粉に対して有害な不純物元素を含有していないことが好ましく、純水が特に好ましい。   The slurry containing silver powder precipitated by reduction is filtered through a filter having a predetermined opening diameter. The obtained filter cake is dried after washing. The washing method is not particularly limited, but a method is used in which a silver powder filter cake is put into water, stirred using a stirrer or an ultrasonic cleaner, and then filtered to collect silver powder. . In addition, it is preferable to repeat a series of operations consisting of water addition, stirring and washing, and filtration a plurality of times. Further, the water used in this cleaning is not particularly limited, but it is preferable that no impurity element harmful to silver powder is contained, and pure water is particularly preferable.

上記洗浄後の銀粉は湿潤状態にあるため、その水分を蒸発させるために乾燥される。この乾燥の方法としては、例えば、洗浄後の銀粉の濾過ケークをステンレスパッド上に置き、大気オーブン又は真空乾燥機などの市販の乾燥装置で、30〜60℃の温度に設定して加熱する方法が用いられる。   Since the washed silver powder is in a wet state, it is dried to evaporate the water. As a drying method, for example, a silver powder filter cake after washing is placed on a stainless steel pad, and heated at a temperature of 30 to 60 ° C. with a commercially available drying device such as an atmospheric oven or a vacuum dryer. Is used.

以下に、実施例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
純水81mLに関東化学製試薬の亜硫酸ナトリウム25.2gを投入した。さらに、純水に対して0.1mol/Lとなるように、関東化学製試薬の水酸化ナトリウム0.32gを投入し、攪拌して溶解した。その後、純度99.9999%の住友金属鉱山(株)製塩化銀5.5gを投入して引き続き攪拌して溶解した。液温は特に制御せず室温とした。この銀溶液に関東化学製試薬のアスコルビン酸5.3gを純水15mLに溶解した還元剤溶液を投入し、さらに攪拌を30分間継続した。
Example 1
81 mL of pure water was charged with 25.2 g of sodium sulfite, a reagent manufactured by Kanto Chemical. Furthermore, 0.32 g of sodium hydroxide, a reagent manufactured by Kanto Chemical Co., was added so as to be 0.1 mol / L with respect to pure water, and dissolved by stirring. Thereafter, 5.5 g of silver chloride manufactured by Sumitomo Metal Mining Co., Ltd. with a purity of 99.9999% was added and dissolved by stirring. The liquid temperature was room temperature without any particular control. This silver solution was charged with a reducing agent solution prepared by dissolving 5.3 g of ascorbic acid, a reagent manufactured by Kanto Chemical Co., in 15 mL of pure water, and stirring was continued for 30 minutes.

析出した銀を含むスラリー状の還元液を、開口径0.1μmのメンブランフィルターを使用して濾過した。次いで、得られた濾過ケークを純水100mL中に投入して30分間攪拌した後、開口径0.1μmのメンブランフィルターで濾過して濾過ケークを回収した。これら純水投入、攪拌、及び濾過からなる一連の操作をさらに2回繰返した後、濾過ケークをステンレスパッドに移し、真空乾燥機にて40℃で15時間乾燥して、銀粉を得た。   The slurry-like reducing solution containing the precipitated silver was filtered using a membrane filter having an opening diameter of 0.1 μm. Next, the obtained filter cake was put into 100 mL of pure water and stirred for 30 minutes, and then filtered through a membrane filter having an opening diameter of 0.1 μm to collect the filter cake. The series of operations consisting of adding pure water, stirring and filtration was repeated twice more, and then the filter cake was transferred to a stainless steel pad and dried in a vacuum dryer at 40 ° C. for 15 hours to obtain silver powder.

(実施例2)
純水66mLに関東化学製試薬の亜硫酸ナトリウム21.0gを投入した。さらに、純水に対して0.3mol/Lとなるように、関東化学製試薬の水酸化ナトリウム0.79gを投入し、攪拌して溶解した。その後、純度99.9999%の住友金属鉱山(株)製塩化銀7.2gを投入して引き続き攪拌して溶解した。液温は特に制御せず室温とした。この銀溶液に関東化学製試薬のアスコルビン酸8.8gを純水22mLに溶解した還元剤溶液を投入し、さらに攪拌を30分間継続した。
(Example 2)
66 mL of pure water was charged with 21.0 g of a sodium sulfite reagent manufactured by Kanto Chemical. Furthermore, 0.79 g of sodium hydroxide, a reagent manufactured by Kanto Chemical Co., was introduced so as to be 0.3 mol / L with respect to pure water, and dissolved by stirring. Thereafter, 7.2 g of silver chloride manufactured by Sumitomo Metal Mining Co., Ltd. with a purity of 99.9999% was added and stirred to dissolve. The liquid temperature was room temperature without any particular control. This silver solution was charged with a reducing agent solution in which 8.8 g of ascorbic acid, a reagent manufactured by Kanto Chemical Co., was dissolved in 22 mL of pure water, and stirring was further continued for 30 minutes.

析出した銀を含むスラリー状の還元液を、開口径0.1μmのメンブランフィルターを使用して濾過した。次いで、得られた濾過ケークを純水100mL中に投入して30分間攪拌した後、開口径0.1μmのメンブランフィルターで濾過して濾過ケークを回収した。これら純水投入、攪拌、及び濾過からなる一連の操作をさらに2回繰返した後、濾過ケークをステンレスパッドに移し、真空乾燥機にて40℃で15時間乾燥して、銀粉を得た。   The slurry-like reducing solution containing the precipitated silver was filtered using a membrane filter having an opening diameter of 0.1 μm. Next, the obtained filter cake was put into 100 mL of pure water and stirred for 30 minutes, and then filtered through a membrane filter having an opening diameter of 0.1 μm to collect the filter cake. The series of operations consisting of adding pure water, stirring and filtration was repeated twice more, and then the filter cake was transferred to a stainless steel pad and dried in a vacuum dryer at 40 ° C. for 15 hours to obtain silver powder.

(実施例3)
純水81mLに関東化学製試薬の亜硫酸ナトリウム25.2gを投入した。さらに、純水に対して0.6mol/Lとなるように、関東化学製試薬の水酸化ナトリウム1.9gを投入し、攪拌して溶解した。その後、純度99.9999%の住友金属鉱山(株)製塩化銀5.6gを投入して引き続き攪拌して溶解した。液温は特に制御せず室温とした。この銀溶液に関東化学製試薬のアスコルビン酸5.3gを純水15mLに溶解した還元剤溶液を投入し、さらに攪拌を30分間継続した。
(Example 3)
81 mL of pure water was charged with 25.2 g of sodium sulfite, a reagent manufactured by Kanto Chemical. Furthermore, 1.9 g of sodium hydroxide, a reagent manufactured by Kanto Chemical Co., was added so as to be 0.6 mol / L with respect to pure water, and dissolved by stirring. Thereafter, 5.6 g of silver chloride manufactured by Sumitomo Metal Mining Co., Ltd. having a purity of 99.9999% was added and subsequently stirred to dissolve. The liquid temperature was room temperature without any particular control. This silver solution was charged with a reducing agent solution prepared by dissolving 5.3 g of ascorbic acid, a reagent manufactured by Kanto Chemical Co., in 15 mL of pure water, and stirring was continued for 30 minutes.

析出した銀を含むスラリー状の還元液を、開口径0.1μmのメンブランフィルターを使用して濾過した。次いで、得られた濾過ケークを純水100mL中に投入して30分間攪拌した後、開口径0.1μmのメンブランフィルターで濾過して濾過ケークを回収した。これら純水投入、攪拌、及び濾過からなる一連の操作をさらに2回繰返した後、濾過ケークをステンレスパッドに移し、真空乾燥機にて40℃で15時間乾燥して、銀粉を得た。   The slurry-like reducing solution containing the precipitated silver was filtered using a membrane filter having an opening diameter of 0.1 μm. Next, the obtained filter cake was put into 100 mL of pure water and stirred for 30 minutes, and then filtered through a membrane filter having an opening diameter of 0.1 μm to collect the filter cake. The series of operations consisting of adding pure water, stirring and filtration was repeated twice more, and then the filter cake was transferred to a stainless steel pad and dried in a vacuum dryer at 40 ° C. for 15 hours to obtain silver powder.

上記実施例1〜3の還元剤投入後の銀濃度は、それぞれ51g/L、82g/L、52g/Lであった。還元後の濾液の銀濃度をICPで、窒素濃度をパックテストで分析した結果、いずれも、銀濃度は0.01g/L以下であり、総窒素濃度は10mg/L以下であった。また、得られた銀粉をXRD解析した結果、いずれも銀以外のピークは見られなかった。   The silver concentrations after introduction of the reducing agents in Examples 1 to 3 were 51 g / L, 82 g / L, and 52 g / L, respectively. As a result of analyzing the silver concentration of the filtrate after reduction by ICP and the nitrogen concentration by a pack test, the silver concentration was 0.01 g / L or less and the total nitrogen concentration was 10 mg / L or less. In addition, as a result of XRD analysis of the obtained silver powder, no peaks other than silver were observed.

さらに、SEM観察した結果、実施例1では0.4〜2μmの粒子が、実施例2では0.3〜3μmの粒子が、実施例3では0.2〜0.8μmの粒子がそれぞれ観察された。   Furthermore, as a result of SEM observation, particles of 0.4 to 2 μm were observed in Example 1, particles of 0.3 to 3 μm were observed in Example 2, and particles of 0.2 to 0.8 μm were observed in Example 3. It was.

これらの結果から、水酸化ナトリウムの添加により高い銀濃度が得られ、効率良く銀粉を製造できることがわかった。また、廃液中の窒素濃度が十分低く、窒素処理装置などの特別な排水処理装置を必要としないことが確認できた。尚、使用した原料、溶解剤、添加剤、還元剤には窒素が含まれていないため、雷銀が発生することはなかった。   From these results, it was found that high silver concentration was obtained by adding sodium hydroxide, and silver powder could be produced efficiently. Moreover, it was confirmed that the concentration of nitrogen in the waste liquid was sufficiently low and no special waste water treatment equipment such as a nitrogen treatment equipment was required. In addition, since the raw material, the solubilizer, the additive, and the reducing agent used did not contain nitrogen, thunder silver was not generated.

Claims (2)

純水に亜硫酸ナトリウム、塩化銀、及び該純水に対して0.1mol/L以上0.6mol/L以下の水酸化ナトリウム又は水酸化カリウムを投入した銀溶液と、窒素を含まない還元剤溶液とを混合して銀粉を得ることを特徴とする銀粉の製造方法。 Silver solution in which sodium sulfite, silver chloride, and 0.1 mol / L or more and 0.6 mol / L or less of sodium hydroxide or potassium hydroxide are added to pure water, and a reducing agent solution not containing nitrogen A method for producing silver powder, characterized in that silver powder is obtained by mixing with the above. 前記還元剤が、ホルムアルデヒド若しくはアスコルビン酸のいずれか片方、又はその両方の水溶液であることを特徴とする、請求項1に記載の銀粉の製造方法。 The method for producing silver powder according to claim 1, wherein the reducing agent is an aqueous solution of one or both of formaldehyde and ascorbic acid .
JP2008190875A 2008-07-24 2008-07-24 Silver powder manufacturing method Expired - Fee Related JP5211911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008190875A JP5211911B2 (en) 2008-07-24 2008-07-24 Silver powder manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008190875A JP5211911B2 (en) 2008-07-24 2008-07-24 Silver powder manufacturing method

Publications (2)

Publication Number Publication Date
JP2010024533A JP2010024533A (en) 2010-02-04
JP5211911B2 true JP5211911B2 (en) 2013-06-12

Family

ID=41730620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008190875A Expired - Fee Related JP5211911B2 (en) 2008-07-24 2008-07-24 Silver powder manufacturing method

Country Status (1)

Country Link
JP (1) JP5211911B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286320A (en) * 2013-06-08 2013-09-11 苏州诺信创新能源有限公司 Method for preparing superfine silver powder used for solar cell
JP6404554B2 (en) * 2013-10-03 2018-10-10 住友金属鉱山株式会社 Silver powder manufacturing method
JP6143627B2 (en) * 2013-10-03 2017-06-07 住友金属鉱山株式会社 Ammonia recovery method
JP6404553B2 (en) * 2013-10-03 2018-10-10 住友金属鉱山株式会社 Silver solution management method and silver powder production method
JP6230194B2 (en) * 2014-05-09 2017-11-15 コスモ石油株式会社 Method for producing silver nitrate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3407600B2 (en) * 1996-10-01 2003-05-19 住友金属鉱山株式会社 Silver extraction and recovery method
JP3837029B2 (en) * 2001-03-06 2006-10-25 日鉱金属株式会社 Silver recovery method
JP2003105456A (en) * 2001-09-28 2003-04-09 Nippon Mining & Metals Co Ltd Method for manufacturing silver
AU2004270530B2 (en) * 2003-09-02 2009-10-22 Sumitomo Metal Mining Co., Ltd. Method of separation/purification for high-purity silver chloride and process for producing high-purity silver by the same
JP2005292408A (en) * 2004-03-31 2005-10-20 Mitsubishi Paper Mills Ltd Lithographic printing plate and platemaking method for same

Also Published As

Publication number Publication date
JP2010024533A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5211911B2 (en) Silver powder manufacturing method
US10807161B2 (en) Silver powder, method for producing same, and hydrophilic conductive paste
CN107737949B (en) Silver-coated copper powder and preparation method thereof
CN101812591B (en) Method for recovering gold, copper, copper sulfate and copper chloride waste liquid of waste circuit board
CN101948133B (en) Method for co-producing sodium stannate and stannic oxide by solder removing liquid
JP2010024501A (en) Method for producing silver powder
KR102051321B1 (en) A method for preparing silver-copper mixture powder of core-shell structure using wet process
CN103103510A (en) Silver-plated copper nanowire and preparation method thereof
JP2012077372A (en) Silver powder and manufacturing method therefor
CN103008679A (en) Method for preparing nano-silver particle and nano-silver wire mixed conductive ink
US6649131B2 (en) Preparation of highly pure copper oxide from waste etchant
JP2010043337A (en) Silver powder and its manufacturing method
JP2020139178A (en) Silver powder and method for producing the same
TW201704154A (en) Tin(II) oxide powder and method for manufacturing tin(II) oxide powder
JP2017039991A (en) Silver-coated copper powder, method for producing the same, and conductive paste using the same
JP2014019923A (en) Method for producing silver powder
WO2017046687A1 (en) A process of recovering metal values from chips of waste printed circuit boards (pcbs)
KR102023714B1 (en) A silver nano powder improved in oxidation stability prepared by a wet process
CN110114175A (en) High temperature sintering type silver powder and its manufacturing method
CN208008862U (en) A kind of enrichment of waste water containing palladium absorption Palladium recovery system
WO2016052362A1 (en) Silver powder, method for producing same, and hydrophilic conductive paste
KR101605634B1 (en) Method for recovering silver and platinum of waste pastes using phosphoric acid
JP5750721B2 (en) Silver powder and method for producing the same, conductive paste and electronic component
JP2020143322A (en) Separation recovery method of precious metal and precious metal fine particle recovered by the method
JP6135479B2 (en) Method for producing nickel powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R150 Certificate of patent or registration of utility model

Ref document number: 5211911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees