JP5206985B2 - Cubic nitride semiconductor wafer, method for manufacturing the same, and method for manufacturing a cubic nitride semiconductor free-standing substrate - Google Patents

Cubic nitride semiconductor wafer, method for manufacturing the same, and method for manufacturing a cubic nitride semiconductor free-standing substrate Download PDF

Info

Publication number
JP5206985B2
JP5206985B2 JP2009128409A JP2009128409A JP5206985B2 JP 5206985 B2 JP5206985 B2 JP 5206985B2 JP 2009128409 A JP2009128409 A JP 2009128409A JP 2009128409 A JP2009128409 A JP 2009128409A JP 5206985 B2 JP5206985 B2 JP 5206985B2
Authority
JP
Japan
Prior art keywords
nitride semiconductor
cubic
seed crystal
crystal substrate
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009128409A
Other languages
Japanese (ja)
Other versions
JP2010275141A (en
Inventor
序章 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2009128409A priority Critical patent/JP5206985B2/en
Publication of JP2010275141A publication Critical patent/JP2010275141A/en
Application granted granted Critical
Publication of JP5206985B2 publication Critical patent/JP5206985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、青色、緑色、紫外発光ダイオード、レーザーダイオードなどの発光デバイス、あるいは電子デバイスなどの結晶成長用の基板として用いられ、特に緑色発光デバイスの作製に好適な立方晶型窒化物半導体ウェハ及びその製造方法、並びに立方晶型窒化物半導体自立基板の製造方法に関する。   The present invention is used as a substrate for crystal growth of light-emitting devices such as blue, green, ultraviolet light-emitting diodes and laser diodes, or electronic devices, and particularly suitable for the production of green light-emitting devices. The present invention relates to a manufacturing method thereof and a manufacturing method of a cubic nitride semiconductor free-standing substrate.

GaNに代表される窒化物半導体は、青、緑および紫外発光デバイス材料として注目されている。
従来、デバイス応用が報告されている窒化物半導体は、そのほとんど全てが六方晶(ウルツ鉱構造)のC面を表面とするウェハを用いたものである。これらデバイスは、例えばC面を表面に持つサファイアや4H−SiCなどの六方晶系の基板上に、低温GaNバッファ、低温AlNバッファや高温AlNバッファを介して窒化物半導体を成長することで実現されている。この構造により、現在までに青紫レーザーダイオード(LD)、青色LD、青色発光ダイオード(LED)、緑色LEDが実用化されている。
Nitride semiconductors typified by GaN are attracting attention as blue, green and ultraviolet light emitting device materials.
Conventionally, almost all nitride semiconductors that have been reported for device applications use wafers having a hexagonal crystal (wurtzite structure) C-plane as a surface. These devices are realized by growing a nitride semiconductor on a hexagonal substrate such as sapphire or 4H-SiC having a C-plane as a surface via a low temperature GaN buffer, a low temperature AlN buffer or a high temperature AlN buffer. ing. Due to this structure, blue-violet laser diode (LD), blue LD, blue light emitting diode (LED), and green LED have been put into practical use so far.

現状の窒化物半導体技術の課題としては、窒化物半導体による緑色LEDの効率が低く、同じく窒化物半導体による青色LEDやInGaAsP系の赤色LEDの半分の効率しか得られない点が挙げられる。またLDに関しても同様な状況にあり、窒化物半導体による青色LDおよびInGaAsP系の材料による赤色LDが既に実現されているが、窒化物半導体を用いた純緑色(波長〜520nm)LDにおいては室温レーザー発振がいまだ達成されていない。
これは、緑色発光するInGaN活性層は、青色の場合のInGaN活性層(典型的には、In組成=0.15)よりも多量にInを含むInGaN層(典型的には、In組成
=0.25)とする必要があるため、緑色発光素子のInGaN活性層の成長温度は、青色発光素子のInGaN活性層よりも低くする必要があって結晶品質が悪くなること、そして通常用いられる下地層のGaNとInGaN活性層との格子不整合が大きくなるため更に結晶品質が悪くなることが原因である。
The problem of the current nitride semiconductor technology is that the efficiency of the green LED using the nitride semiconductor is low, and only half the efficiency of the blue LED or the InGaAsP red LED using the nitride semiconductor can be obtained. The LD is also in the same situation, and a blue LD using a nitride semiconductor and a red LD using an InGaAsP-based material have already been realized, but a pure green (wavelength to 520 nm) LD using a nitride semiconductor is a room temperature laser. Oscillation has not yet been achieved.
This is because an InGaN active layer emitting green light has an InGaN layer (typically In composition = 0) containing a larger amount of In than an InGaN active layer in the case of blue (typically In composition = 0.15). .25), the growth temperature of the InGaN active layer of the green light emitting device needs to be lower than that of the InGaN active layer of the blue light emitting device, resulting in poor crystal quality, and a commonly used underlayer This is because the lattice mismatch between the GaN and the InGaN active layer becomes larger, which further deteriorates the crystal quality.

窒化物半導体の発光波長を長波長化するために、近年、六方晶ではあるが従来のC面では無くM面を表面に持つ窒化物半導体を用いるという試みが、数多くの研究機関でなされている(例えば、非特許文献1参照)。C面は極性を持つため、C面を表面に持つGaN上にInGaN活性層を成長すると、歪みに伴うピエゾ電界により、電子と正孔が分離され発光効率が低下すると言われている。一方、極性を持たないM面を表面とするGaN上にInGaN活性層を成長した場合には、ピエゾ電界は現れない。C面で現れるピエゾ電界は、InGaN活性層と下地の間の歪が大きいほど大きくなるので、紫色や青色発光素子よりもInGaN活性層のIn組成が大きく歪が大きい緑色発光素子において、発光効率が顕著に低下すると想定される。上記の各研究機関で盛んに行われているM面上の窒化物半導体発光素子の研究は、このピエゾ電界の存在が、従来の緑色発光素子の発光効率低下の主要因と考えたためである。   In order to increase the emission wavelength of nitride semiconductors, many research institutions have recently attempted to use nitride semiconductors that are hexagonal but have the M-plane instead of the conventional C-plane. (For example, refer nonpatent literature 1). Since the C plane has polarity, it is said that when an InGaN active layer is grown on GaN having the C plane on the surface, electrons and holes are separated by a piezo electric field due to strain, resulting in a decrease in luminous efficiency. On the other hand, when an InGaN active layer is grown on GaN having a nonpolar M-plane as a surface, no piezoelectric field appears. The piezo electric field appearing on the C plane increases as the strain between the InGaN active layer and the substrate increases, so that in the green light emitting device, the In composition of the InGaN active layer is larger and the strain is larger than in the purple or blue light emitting device. It is expected to decrease significantly. The research on nitride semiconductor light emitting devices on the M-plane, which is actively conducted by the above research institutions, is because the existence of the piezoelectric field is considered to be the main factor of the decrease in luminous efficiency of the conventional green light emitting devices.

しかしながら、これまでのM面上の発光素子の報告を見る限り、LEDの効率や、LDの発振波長・閾値電流などの諸特性は、ほぼC面上に製作したものと同等程度のものしか実現されていない。このことは、ピエゾ電界では無く、むしろIn組成の大きいInGaN活性層を用いることに伴う、低い成長温度及び大きな格子不整合による結晶性の劣化が、窒化物半導体発光素子の緑色領域での特性を支配しているということを示唆しているも
のと考えられる。
この考えに基づけば、InGaN活性層のIn組成を低く保ったまま、緑色発光を実現しない限り、緑色発光素子の特性向上は不可能であるといわざるを得ないが、このことは、従来の六方晶の窒化物半導体を用いたままでは無理であり、別のより緑色発光に適した材料系を採用する必要があるといえる。
However, as far as the reports on the light emitting elements on the M-plane are concerned, various characteristics such as LED efficiency, LD oscillation wavelength, threshold current, etc. are almost the same as those manufactured on the C-plane. It has not been. This is because the deterioration of crystallinity due to the low growth temperature and large lattice mismatch accompanying the use of an InGaN active layer having a large In composition rather than a piezo electric field is a characteristic of the nitride semiconductor light emitting device in the green region. It seems to suggest that it is in control.
Based on this idea, it can be said that unless the In composition of the InGaN active layer is kept low and green light emission is realized, it is impossible to improve the characteristics of the green light emitting device. It is impossible to use a hexagonal nitride semiconductor, and it can be said that it is necessary to adopt another material system suitable for green light emission.

そのような材料系の有望な候補として、立方晶の窒化物半導体が挙げられる。窒化物半導体は六方晶(ウルツ鉱構造)が最も安定な構造ではあるが、準安定状態として立方晶(閃亜鉛鉱構造)の窒化物半導体も存在している。立方晶の窒化物半導体は、実験的にも不完全な結晶ではあるものの、既に様々な方法で成長されている(例えば、非特許文献2〜4参照)。
立方晶のGaNのバンドギャップ・エネルギーは3.22eVであり、六方晶のGaN
のバンドギャップ・エネルギー(3.42eV)よりも0.2eV低い。このバンドギャップ・エネルギー差のために、六方晶と立方晶の窒化物半導体で、同じIn組成を持つInGaN活性層を持つLEDあるいはLDを製作した場合には、立方晶の方が六方晶よりも、より長波長での発光が可能となる。例えば、緑色LEDの典型的な発光波長である525nmを得るためには、六方晶のInGaNの場合にはIn組成を0.25程度にする必
要があったのが、立方晶のInGaNを用いた場合にはIn組成は0.2以下で良くなる
。このため、緑色の発光素子の作製に立方晶を用いた場合には、六方晶の場合よりも、高温成長でかつ格子不整合の少ない高品質なInGaN層を活性層として用いることが可能となり、緑色LEDやLDの特性に大幅な改善が見込まれる。
A promising candidate for such a material system is a cubic nitride semiconductor. Although the hexagonal crystal (wurtzite structure) is the most stable structure of the nitride semiconductor, there is also a cubic (zincblende structure) nitride semiconductor as a metastable state. Although cubic nitride semiconductors are experimentally incomplete crystals, they have already been grown by various methods (for example, see Non-Patent Documents 2 to 4).
The band gap energy of cubic GaN is 3.22 eV, and hexagonal GaN.
Is 0.2 eV lower than the band gap energy (3.42 eV). Due to this band gap and energy difference, when an LED or LD with an InGaN active layer having the same In composition is fabricated with hexagonal and cubic nitride semiconductors, the cubic is more than the hexagonal. Thus, light emission at a longer wavelength is possible. For example, in order to obtain 525 nm, which is a typical emission wavelength of a green LED, in the case of hexagonal InGaN, the In composition had to be about 0.25, but cubic InGaN was used. In this case, the In composition is improved to 0.2 or less. For this reason, when a cubic crystal is used for the production of a green light emitting element, it becomes possible to use a high-quality InGaN layer as an active layer with high-temperature growth and less lattice mismatch than in the case of a hexagonal crystal, Significant improvements are expected in the characteristics of green LEDs and LDs.

Kuniyoshi Okamoto et al., Japanese Journal of Applied Physics, Vol.46(2007), pp.L820-L822.Kuniyoshi Okamoto et al., Japanese Journal of Applied Physics, Vol.46 (2007), pp.L820-L822. Mutsumi Sugiyama et al., Japanese Journal of Applied Physics, Vol.43(2004), pp.106-110.Mutsumi Sugiyama et al., Japanese Journal of Applied Physics, Vol.43 (2004), pp.106-110. Harutoshi Tsuchiya et al., Japanese Journal of Applied Physics, Vol.36(1997), pp.L1-L3.Harutoshi Tsuchiya et al., Japanese Journal of Applied Physics, Vol.36 (1997), pp.L1-L3. S.V.Novikov et al., Journal of Crystal Growth, Vol.310(2008), pp.3964-3967.S.V.Novikov et al., Journal of Crystal Growth, Vol.310 (2008), pp.3964-3967.

しかしながら、これまでに、立方晶型の窒化物半導体を用いて実用的な発光デバイスが実現されたという報告はまだない。実用デバイスへの応用に際して、最も障害となっているのは、立方晶の窒化物半導体への六方晶型結晶の混入である。これまでGaAsや3C−SiCなどの立方晶系の基板上に立方晶GaN薄膜の成長が報告されているが、いずれの場合も10%以上の割合で六方晶のGaNが表面にランダムに分布したものしか得られていないのが現状である(非特許文献2〜4参照)。立方晶と六方晶が混在している表面の上に発光素子構造を成長すると、立方晶の部分と六方晶の部分に成長したInGaN活性層が、それぞれ異なった波長で発光する。このため、例えば緑色LEDを製作しようとしても、青緑がかった発光しか得られないことになる。また、緑色LDを製作しようとした場合にも、発光の単色性が悪いと高い利得が得られないため、閾値電流が極めて高くなり室温でのレーザー発振は不可能である。   However, there has been no report that a practical light emitting device has been realized using a cubic nitride semiconductor. In application to practical devices, the most hindrance is the mixing of hexagonal crystals into cubic nitride semiconductors. Up to now, the growth of cubic GaN thin films on cubic substrates such as GaAs and 3C-SiC has been reported. In either case, hexagonal GaN was randomly distributed on the surface at a rate of 10% or more. Only the thing is obtained at present (see Non-Patent Documents 2 to 4). When the light emitting device structure is grown on the surface where the cubic crystal and the hexagonal crystal are mixed, the InGaN active layers grown on the cubic crystal part and the hexagonal crystal part emit light at different wavelengths. For this reason, for example, even if a green LED is to be manufactured, only blue-green light emission can be obtained. Also, when trying to manufacture a green LD, a high gain cannot be obtained if the monochromaticity of light emission is poor, so that the threshold current becomes extremely high and laser oscillation at room temperature is impossible.

本発明は、実用的な発光効率を有する緑色発光デバイスを実現可能な立方晶型窒化物半導体ウェハ及びその製造方法、並びに立方晶型窒化物半導体自立基板の製造方法を提供することを目的とする。   An object of the present invention is to provide a cubic nitride semiconductor wafer capable of realizing a green light emitting device having practical luminous efficiency, a manufacturing method thereof, and a manufacturing method of a cubic nitride semiconductor free-standing substrate. .

本発明の第1の態様は、結晶成長の起点となる領域を局所的に制限した表面を有する立方晶の種結晶基板上に窒化物半導体を成長し、前記種結晶基板と局所的に接触した窒化物半導体の連続膜と成すことで得られる、少なくとも100μm四方以上の広さで立方晶型の窒化物半導体の割合が99%以上である区域を表面に有するとともに、前記種結晶基板の表面の隣接する前記領域から成長した窒化物半導体の結晶が融合した部分の前記種結晶基板側に、六方晶型の窒化物半導体の成長の伝播を停止させるか、又は抑制するボイドが形成されていることを特徴とする立方晶型窒化物半導体ウェハである。 In the first aspect of the present invention, a nitride semiconductor is grown on a cubic seed crystal substrate having a surface in which a region that is a starting point of crystal growth is locally restricted, and is in local contact with the seed crystal substrate. The surface of the surface of the seed crystal substrate is obtained by forming a continuous film of a nitride semiconductor and has a region having a ratio of a cubic nitride semiconductor of 99% or more in a width of at least 100 μm square . Voids that stop or suppress the propagation of hexagonal nitride semiconductor growth are formed on the side of the seed crystal substrate where the nitride semiconductor crystals grown from adjacent regions are fused. Is a cubic nitride semiconductor wafer characterized by

本発明の第2の態様は、立方晶の種結晶基板の表面に、周期的に又はランダムに凹凸を形成し、前記種結晶基板表面の前記凹凸の隣接する凸部から成長した窒化物半導体を融合させて連続膜とした窒化物半導体であって、少なくとも100μm四方以上の広さで立方晶型の窒化物半導体の割合が99%以上である区域を表面に有することを特徴とする立方晶型窒化物半導体ウェハである。
本発明の第の態様は、第の態様の立方晶型窒化物半導体ウェハにおいて、前記種結晶基板の表面の隣接する前記領域から成長した窒化物半導体の結晶が融合した部分の前記種結晶基板側に、六方晶型の窒化物半導体の成長の伝播を停止ないし抑制させるボイドが形成されている。
According to a second aspect of the present invention, a nitride semiconductor is formed by forming irregularities periodically or randomly on a surface of a cubic seed crystal substrate, and growing from adjacent convex portions of the irregularities on the seed crystal substrate surface. A nitride semiconductor that is fused to form a continuous film, and has a region on the surface that is at least 100 μm square and has a cubic crystal nitride semiconductor ratio of 99% or more. It is a nitride semiconductor wafer.
According to a third aspect of the present invention, in the cubic-type nitride semiconductor wafer according to the second aspect, the seed crystal at a portion where the nitride semiconductor crystals grown from the adjacent regions on the surface of the seed crystal substrate are fused. A void is formed on the substrate side to stop or suppress the propagation of the growth of the hexagonal nitride semiconductor.

本発明の第の態様は、第1の態様のいずれかの立方晶型窒化物半導体ウェハにおいて、前記立方晶型の窒化物半導体の表面が、立方晶の(001)面である。 According to a fourth aspect of the present invention, in the cubic nitride semiconductor wafer according to any one of the first to third aspects, the surface of the cubic nitride semiconductor is a cubic (001) plane. .

本発明の第の態様は、第1の態様のいずれかの立方晶型窒化物半導体ウェハにおいて、前記立方晶型の窒化物半導体の表面が、立方晶の(001)面から20度以内の角度で傾いた面である。 According to a fifth aspect of the present invention, in the cubic nitride semiconductor wafer of any one of the first to third aspects, the surface of the cubic nitride semiconductor is 20 from the cubic (001) plane. The surface is tilted at an angle within degrees.

本発明の第の態様は、第1〜第の態様のいずれかの立方晶型窒化物半導体ウェハにおいて、立方晶型の窒化物半導体の割合が99%以上の表面の前記区域において、50μm四方の範囲で測定した表面粗さのRMS値が1nm以下である。 According to a sixth aspect of the present invention, in the cubic nitride semiconductor wafer according to any one of the first to fifth aspects, the area of the surface in which the proportion of the cubic nitride semiconductor is 99% or more is 50 μm. The RMS value of the surface roughness measured in all directions is 1 nm or less.

本発明の第の態様は、立方晶の種結晶基板の表面に、窒化物半導体が成長しにくい材料で覆い且つ周期的に又はランダムに前記種結晶基板の表面が露出した開口部を有するマスクを形成し、前記マスクの前記開口部から窒化物半導体を成長し、前記種結晶基板と局所的に接触した連続膜とした窒化物半導体を形成するとともに、前記開口部から成長する窒化物半導体の結晶の断面が結晶成長方向に向かって拡大するような条件で成長させて、隣接する前記開口部から成長した窒化物半導体の結晶が融合した部分の前記種結晶基板側に、六方晶型の窒化物半導体の成長の伝播を停止ないし抑制させるボイドを形成するようにした立方晶型窒化物半導体ウェハの製造方法である。 According to a seventh aspect of the present invention, there is provided a mask having an opening in which a surface of a cubic crystal seed substrate is covered with a material in which a nitride semiconductor is difficult to grow and the surface of the seed crystal substrate is exposed periodically or randomly. And forming a nitride semiconductor as a continuous film in local contact with the seed crystal substrate and growing the nitride semiconductor from the opening of the mask . Hexagonal nitriding is performed on the seed crystal substrate side of the fused portion of the nitride semiconductor crystals grown from the adjacent openings grown under the condition that the cross section of the crystal expands in the crystal growth direction. This is a method for manufacturing a cubic nitride semiconductor wafer in which a void for stopping or suppressing propagation of growth of a physical semiconductor is formed .

本発明の第8の態様は、立方晶の種結晶基板の表面に、周期的に又はランダムに凹凸を形成し、前記種結晶基板表面の前記凹凸の隣接する凸部から成長した窒化物半導体を融合させて連続膜とした窒化物半導体を形成する立方晶型窒化物半導体ウェハの製造方法である。   According to an eighth aspect of the present invention, there is provided a nitride semiconductor in which irregularities are formed periodically or randomly on the surface of a cubic seed crystal substrate and grown from adjacent convex portions on the seed crystal substrate surface. This is a method for manufacturing a cubic nitride semiconductor wafer in which a nitride semiconductor is formed as a continuous film by fusing.

本発明の第9の態様は、第8の態様の立方晶型窒化物半導体ウェハの製造方法において、隣接する前記凸部から成長した窒化物半導体の結晶が融合した部分の前記種結晶基板側に、六方晶型の窒化物半導体の成長の伝播を停止させるボイドを形成するようにした。   According to a ninth aspect of the present invention, in the method for manufacturing a cubic nitride semiconductor wafer according to the eighth aspect, a portion where the nitride semiconductor crystals grown from the adjacent convex portions are fused to the seed crystal substrate side. A void is formed to stop the propagation of the growth of the hexagonal nitride semiconductor.

本発明の第10の態様は、第〜第9の態様のいずれかの立方晶型窒化物半導体ウェハの製造方法により、前記連続膜の窒化物半導体を形成した後であって、前記窒化物半導体の成長中あるいは成長終了後に、前記種結晶基板を除去して立方晶型窒化物半導体自立基板を製造する立方晶型窒化物半導体自立基板の製造方法である。 According to a tenth aspect of the present invention, after the nitride semiconductor of the continuous film is formed by the cubic nitride semiconductor wafer manufacturing method according to any one of the seventh to ninth aspects, the nitride This is a method for manufacturing a cubic nitride semiconductor free-standing substrate in which the seed crystal substrate is removed during or after the growth of the semiconductor to manufacture a cubic nitride semiconductor free-standing substrate.

本発明によれば、実用的な発光効率を有する緑色発光デバイスを実現可能な立方晶型窒化物半導体ウェハ、立方晶型窒化物半導体自立基板が得られる。   According to the present invention, a cubic nitride semiconductor wafer and a cubic nitride semiconductor free-standing substrate capable of realizing a green light emitting device having practical light emission efficiency can be obtained.

立方晶型窒化物半導体中に混入する六方晶型結晶の伝播を説明する模式図である。It is a schematic diagram explaining the propagation of the hexagonal crystal mixed in the cubic nitride semiconductor. 本発明の一実施形態及び一実施例に係る立方晶型窒化物半導体ウェハの製造方法の工程を模式的に示す工程図である。It is process drawing which shows typically the process of the manufacturing method of the cubic type nitride semiconductor wafer which concerns on one Embodiment and one Example of this invention. 本発明の他の実施形態及び実施例に係る立方晶型窒化物半導体ウェハの製造方法の工程を模式的に示す工程図である。It is process drawing which shows typically the process of the manufacturing method of the cubic type nitride semiconductor wafer which concerns on other embodiment and Example of this invention. 本発明の他の実施形態及び実施例に係る立方晶型窒化物半導体ウェハの製造方法の工程を模式的に示す工程図である。It is process drawing which shows typically the process of the manufacturing method of the cubic type nitride semiconductor wafer which concerns on other embodiment and Example of this invention. 本発明の立方晶型窒化物半導体ウェハの製造に用いられる、表面に2次元的に周期的に並んだ開口部を有するマスクが形成された種結晶基板の斜視図である。It is a perspective view of the seed crystal substrate in which the mask which has an opening part used for manufacture of the cubic type nitride semiconductor wafer of the present invention on the surface and arranged two-dimensionally periodically was formed. 本発明の立方晶型窒化物半導体ウェハの製造に用いられる、表面に2次元的に周期的に並んだ凹凸を持つ種結晶基板の斜視図である。It is a perspective view of the seed crystal substrate which has an unevenness | corrugation which was used for manufacture of the cubic type nitride semiconductor wafer of this invention on the surface periodically and two-dimensionally.

以下に、本発明に係る立方晶型窒化物半導体ウェハ及びその製造方法、並びに立方晶型窒化物半導体自立基板の製造方法の一実施形態を説明する。   Hereinafter, an embodiment of a cubic nitride semiconductor wafer and a method for manufacturing the same according to the present invention and a method for manufacturing a cubic nitride semiconductor free-standing substrate will be described.

本発明者は、上記課題に対して鋭意検討を行った結果、種結晶となる立方晶型の結晶基板の表面に、開口部を有するマスク(窒化物半導体が成長しにくい材料)を形成し、あるいは凹凸形状を形成し、またはそれら両方を形成して、結晶成長の起点となる領域を制限した表面を有する種結晶基板上に窒化物半導体を成長し、窒化物半導体を種結晶基板と局所的に接触した連続膜と成すことで、少なくとも100μm四方以上の広さで立方晶型の窒化物半導体の割合が99%以上である区域を表面に持つ立方晶型窒化物半導体ウェハが得られることを見出した。
また、種結晶基板の表面の結晶成長の起点となる隣接する領域から成長した窒化物半導体の結晶が融合した部分の種結晶基板側に、六方晶型の窒化物半導体の成長の伝播を停止ないし抑制するボイドを形成することで、立方晶型窒化物半導体ウェハ表面のほぼ全面において立方晶型の窒化物半導体の割合を99%以上にできることを見出した。
更に、上記の立方晶型窒化物半導体の成長中あるいは成長後に、種結晶基板を除去し、立方晶型窒化物半導体自立基板を得ることに成功した。
As a result of intensive studies on the above problems, the present inventor formed a mask (a material in which a nitride semiconductor is difficult to grow) having an opening on the surface of a cubic crystal substrate to be a seed crystal, Alternatively, an uneven shape is formed, or both are formed, and a nitride semiconductor is grown on a seed crystal substrate having a surface in which a region where crystal growth starts is limited, and the nitride semiconductor is locally grown with the seed crystal substrate. By forming a continuous film in contact with the substrate, a cubic nitride semiconductor wafer having an area of at least 100 μm square and a cubic nitride semiconductor ratio of 99% or more on the surface can be obtained. I found it.
Also, the propagation of the hexagonal nitride semiconductor growth is stopped on the seed crystal substrate side where the nitride semiconductor crystals grown from the adjacent region on the surface of the seed crystal substrate are fused. It has been found that by forming voids to be suppressed, the proportion of the cubic nitride semiconductor can be increased to 99% or more over almost the entire surface of the cubic nitride semiconductor wafer.
Furthermore, the seed crystal substrate was removed during or after the growth of the cubic nitride semiconductor, and a cubic nitride semiconductor free-standing substrate was successfully obtained.

以下に、より具体的に本発明の内容を説明する。
従来、C面((001)面)あるいはそれに近い面を表面に持つ立方晶型の種結晶上に窒化物半導体を成長した場合、得られる立方晶型の窒化物半導体層には六方晶型の結晶が混入し、立方晶型の窒化物半導体層の表面に、面積比率で10%程度以上の割合でランダムに六方晶結晶が分布したものとなる。
六方晶型の結晶の発生過程を詳細に調べたところ、図1に示すように、立方晶型の種結晶基板1上に六方晶型結晶5が発生するのは、立方晶型の窒化物半導体層2中の歪が大きい場合に限られることが明らかとなった。例えば、種結晶基板1上への窒化物半導体層2の成長初期には、種結晶基板1と窒化物半導体層2との間の格子不整合が大きいため、多くの六方晶型結晶5が導入される。また、成長が進み、窒化物半導体層2が厚くなると(典型的には10μm以上で)、窒化物半導体層2中の歪が大きくなるため、更に六方晶型の結晶5が増殖し始める。発生した六方晶型結晶5が立方晶型の窒化物半導体層2中を伝播する方向に関しては、種結晶基板1の表面が立方晶の(001)面あるいはそれに近い面の場合には、ある起点Pで発生した六方晶型の結晶5が、(001)面と約55度の角
度を成す(111)A面あるいは(111)B面に沿って伸びていくこと(図1参照)も明らかとなった。
Hereinafter, the contents of the present invention will be described more specifically.
Conventionally, when a nitride semiconductor is grown on a cubic seed crystal having a C plane ((001) plane) or a surface close to it, the resulting cubic nitride semiconductor layer has a hexagonal crystal structure. Crystals are mixed, and hexagonal crystals are randomly distributed on the surface of the cubic nitride semiconductor layer at an area ratio of about 10% or more.
When the generation process of the hexagonal crystal is examined in detail, as shown in FIG. 1, the hexagonal crystal 5 is generated on the cubic seed crystal substrate 1 as shown in FIG. It became clear that this was limited to the case where the strain in the layer 2 was large. For example, at the initial stage of the growth of the nitride semiconductor layer 2 on the seed crystal substrate 1, since many lattice mismatches between the seed crystal substrate 1 and the nitride semiconductor layer 2 are large, many hexagonal crystals 5 are introduced. Is done. Further, as the growth proceeds and the nitride semiconductor layer 2 becomes thick (typically 10 μm or more), the strain in the nitride semiconductor layer 2 increases, so that the hexagonal crystal 5 starts to multiply further. Regarding the direction in which the generated hexagonal crystal 5 propagates through the cubic nitride semiconductor layer 2, if the surface of the seed crystal substrate 1 is a cubic (001) plane or a plane close thereto, there is a certain starting point. It is also clear that the hexagonal crystal 5 generated in P extends along the (111) A plane or the (111) B plane forming an angle of about 55 degrees with the (001) plane (see FIG. 1). became.

これらの六方晶型結晶に関する知見に基づき、本発明者は、六方晶型結晶の混入が少ない立方晶型窒化物半導体の表面を得る以下の2つの方法を考案した。
(1)種結晶基板表面での窒化物半導体の結晶成長が生じる起点となる領域を制限・限定し、種結晶基板と局所的に接触した窒化物半導体の連続膜を形成する。このような窒化物半導体層は、種結晶基板と局所的にしか接触しないため、その層中のほとんどの部分が種結晶基板からの歪みを受けないように成長することが可能となる。また、種結晶基板と窒化物半導体層が局所的に接触する部分では、歪みの影響で六方晶型結晶が発生するが、その発生位置が限定されているため、表面での六方晶型結晶の出現位置も限定され、結果として六方晶型結晶の割合が低い表面(立方晶型の窒化物半導体の割合が99%以上の表面)をある程度の面積(少なくとも100μm四方以上の広さ)の区域を確保することができる(図2参照)。この六方晶型結晶の割合が低い区域の表面に、実用的な発光素子などを形成できる。
Based on the knowledge about these hexagonal crystals, the present inventor has devised the following two methods for obtaining the surface of a cubic nitride semiconductor with less mixing of hexagonal crystals.
(1) A region that is a starting point where nitride semiconductor crystal growth occurs on the surface of the seed crystal substrate is limited and limited, and a continuous film of nitride semiconductor that is locally in contact with the seed crystal substrate is formed. Since such a nitride semiconductor layer is only in local contact with the seed crystal substrate, most portions in the layer can be grown so as not to be strained from the seed crystal substrate. In addition, in the part where the seed crystal substrate and the nitride semiconductor layer are in local contact, a hexagonal crystal is generated due to the effect of strain, but since the generation position is limited, the hexagonal crystal on the surface is limited. Appearance position is also limited. As a result, a surface with a low ratio of hexagonal crystals (surface with a cubic nitride semiconductor ratio of 99% or more) has a certain area (at least 100 μm square area). Can be secured (see FIG. 2). A practical light-emitting element or the like can be formed on the surface of an area where the ratio of the hexagonal crystal is low.

(2)上記(1)と同様に、種結晶基板の表面での窒化物半導体の結晶成長が生じる起点となる領域を制限・限定することで、種結晶基板と局所的に接触した窒化物半導体の連続膜を形成し、窒化物半導体層中の歪みを局所的なものにする。更に、六方晶型結晶の伝播経路上に結晶成長を停止または抑制する機構となるボイド(空隙)を形成することで、窒化物半導体層の表面への六方晶結晶の伝播を防止または低減し、結果として表面全面での六方晶型結晶の割合を低減する(図3参照)。   (2) Similar to the above (1), the nitride semiconductor that is in local contact with the seed crystal substrate by limiting / limiting the starting region where the crystal growth of the nitride semiconductor on the surface of the seed crystal substrate occurs. The continuous film is formed to localize the strain in the nitride semiconductor layer. Furthermore, by forming voids (voids) that serve as a mechanism for stopping or suppressing the crystal growth on the propagation path of the hexagonal crystal, the propagation of the hexagonal crystal to the surface of the nitride semiconductor layer is prevented or reduced, As a result, the ratio of hexagonal crystals on the entire surface is reduced (see FIG. 3).

図2、図3に示す実施形態においては、結晶成長の起点を限定するために、種結晶基板1の表面を開口部4のあるマスク3で覆っている(図2(a)、図3(a))。マスク3の材料としては、その上に窒化物半導体が成長・付着しにくい、SiO、SiN、Ti、Ni、Wなどが適している。このマスク3で覆われた種結晶基板1上に窒化物半導体を成長すると、マスク3上へは結晶成長しにくいため、窒化物半導体はマスク3の開口部4にのみ成長する(図2(b)、図3(b))。種結晶基板1はGaAs等の立方晶型の基板であり、その表面は立方晶の(001)面あるいはそれに近い面であるので、開口部4には立方晶の窒化物半導体2が成長する。開口部4に露出した種結晶基板1の表面から成長した立方晶の窒化物半導体2はマスク3上方へも横方向に成長し(図2(c)、図3(c))、隣接する開口部4から成長した立方晶の窒化物半導体2は融合して連続した連続膜(窒化物半導体層)2となる(図2(c)、(d)、図3(d))。なお、図2(c)、(d)および図3(c)、(d)において、点線は立方晶型窒化物半導体2の成長途中での断面形状を示す。 In the embodiment shown in FIGS. 2 and 3, the surface of the seed crystal substrate 1 is covered with a mask 3 having an opening 4 in order to limit the starting point of crystal growth (FIGS. 2A and 3). a)). Suitable materials for the mask 3 include SiO 2 , SiN, Ti, Ni, W, and the like, on which nitride semiconductors are unlikely to grow and adhere. When a nitride semiconductor is grown on the seed crystal substrate 1 covered with the mask 3, it is difficult to grow a crystal on the mask 3, so the nitride semiconductor grows only in the opening 4 of the mask 3 (FIG. 2B). ), FIG. 3 (b)). The seed crystal substrate 1 is a cubic type substrate such as GaAs, and the surface thereof is a cubic (001) plane or a plane close thereto, so that a cubic nitride semiconductor 2 grows in the opening 4. The cubic nitride semiconductor 2 grown from the surface of the seed crystal substrate 1 exposed in the opening 4 also grows laterally above the mask 3 (FIG. 2 (c), FIG. 3 (c)) and adjacent openings. The cubic nitride semiconductor 2 grown from the portion 4 is fused to form a continuous film (nitride semiconductor layer) 2 (FIGS. 2C, 2D, and 3D). 2C and 2D and FIGS. 3C and 3D, the dotted line indicates the cross-sectional shape during the growth of the cubic nitride semiconductor 2.

マスク3の開口部4に成長する立方晶窒化物半導体2の結晶中には、上述したように、六方晶型の窒化物半導体結晶5が混入し、それが種結晶基板1表面の(001)面と約55度の角度をなして表面側に伝播していく。マスク3の開口部4から遠い部分に成長した窒化物半導体層2は、種結晶基板1と接触せずほぼ無歪みであるため、この領域では六方晶型の結晶5の発生が抑制される。
マスク3の開口部4の間隔と窒化物半導体層2の膜厚を適切に選ぶと、例えば図2(d)に示したように、最終的に得られるウェハ表面に六方晶結晶5の割合が低い区域・領域Sを確保できる。具体的には、開口部4の間隔をLとし、成長する窒化物半導体層2の厚さをtとした場合、六方晶型結晶5の伝播方向が表面と55度の角度を成すことから、隣り合った開口部4中心からそれぞれ成長した六方晶型結晶5が窒化物半導体層2の表面で会合する理想的な場合、すなわち、t=(L/2)×tan55°≒0.714Lの場合
に、表面での六方晶型結晶5の間隔が最大(L)となり、六方晶の割合が低い領域Sの幅が最大となる。実際の場合には、t<0.8Lの成長膜厚では窒化物半導体層2の表面を
平坦にすることは困難なため、上記の理想的な状態を実現するのは難しい。また、六方晶型結晶5が存在する領域も単なる線ではなくある程度幅を持っており、現実に得られる六方晶型結晶5が少ない区域Sの幅は、計算値よりも狭くなる。実際に実現可能な最良の状態としては、t=0.8L程度の場合で、この場合には窒化物半導体層の表面を平坦とで
き、六方晶の混入率が1%未満の領域が最大(およそ0.9L×0.9L程度)となる。
As described above, the hexagonal nitride semiconductor crystal 5 is mixed in the crystal of the cubic nitride semiconductor 2 grown in the opening 4 of the mask 3, and this is (001) on the surface of the seed crystal substrate 1. It propagates to the surface side at an angle of about 55 degrees with the surface. Since the nitride semiconductor layer 2 grown in a portion far from the opening 4 of the mask 3 is not in contact with the seed crystal substrate 1 and is almost unstrained, the generation of the hexagonal crystal 5 is suppressed in this region.
If the distance between the openings 4 of the mask 3 and the thickness of the nitride semiconductor layer 2 are appropriately selected, for example, as shown in FIG. A low area / region S can be secured. Specifically, when the interval between the openings 4 is L and the thickness of the growing nitride semiconductor layer 2 is t, the propagation direction of the hexagonal crystal 5 forms an angle of 55 degrees with the surface. An ideal case where hexagonal crystals 5 grown from the centers of adjacent openings 4 meet at the surface of the nitride semiconductor layer 2, that is, t = (L / 2) × tan 55 ° ≈0.714L. In addition, the distance between the hexagonal crystals 5 on the surface is maximum (L), and the width of the region S where the ratio of hexagonal crystals is low is maximum. In an actual case, it is difficult to realize the above ideal state because it is difficult to flatten the surface of the nitride semiconductor layer 2 with a growth thickness of t <0.8L. In addition, the region where the hexagonal crystal 5 exists is not a mere line but has a certain width, and the width of the region S where the actually obtained hexagonal crystal 5 is small is narrower than the calculated value. The best state that can be actually realized is about t = 0.8 L. In this case, the surface of the nitride semiconductor layer can be flattened, and the region where the hexagonal mixing rate is less than 1% is maximum ( About 0.9L × 0.9L).

また、結晶成長条件を適切に選択すると、マスク3の開口部4に成長する窒化物半導体2の島状の断面形状を、図3(b)、(c)のように、上にいくほど断面の幅が広くなるようにでき、このような島が融合した後には、図3(d)のように種結晶基板1と窒化物半導体層2の間にボイド(穴)6が形成される。このボイド6は、図3(d)に示したように、六方晶結晶5の伝播方向に位置するため、島が融合してボイド6が形成されるとボイド6内に結晶成長原料が供給されなくなり、六方晶型の結晶5の伝播も停止し、最終的に得られるウェハ表面は全面的に六方晶型結晶5の混入が少なくなる。このようなボイド6の形成は、900℃以上の高温度で、且つ窒化物半導体2をV族原料/III族原料の比
率を3以下として結晶成長することで実現可能である。
If the crystal growth conditions are appropriately selected, the cross section of the island-like cross section of the nitride semiconductor 2 grown in the opening 4 of the mask 3 is increased as it goes upward as shown in FIGS. After such islands are fused, voids (holes) 6 are formed between the seed crystal substrate 1 and the nitride semiconductor layer 2 as shown in FIG. The void 6 is located in the propagation direction of the hexagonal crystal 5 as shown in FIG. 3D. Therefore, when the island 6 is fused and the void 6 is formed, the crystal growth raw material is supplied into the void 6. As a result, the propagation of the hexagonal crystal 5 is stopped, and the finally obtained wafer surface is less mixed with the hexagonal crystal 5 over the entire surface. Such formation of the void 6 can be realized by crystal growth of the nitride semiconductor 2 at a high temperature of 900 ° C. or higher and a ratio of the group V material / group III material to 3 or less.

結晶成長の起点となる領域の制限は、図4に示す実施形態のように、種結晶基板1の表面に凹凸を形成することでも可能である。図4(a)に示すように、表面に凹凸を形成した種結晶基板1の表面に窒化物半導体2を適切な成長条件で成長すると、凸部1a上面部と溝状の凹部1bの底部とに分かれて結晶が成長する。この場合にも、上記の図3の場合と同様に、窒化物半導体2の断面形状の幅が成長方向に向かって広くなるような成長条件を選択すると、凸部1a上の窒化物半導体2の結晶が融合して連続した表面を成した段階で、図4(d)のように、凹部1bに成長した窒化物半導体結晶2と、凸部1a上の窒化物半導体結晶2とがボイド6によって分断された状態にすることができる。この場合、種結晶の凸部1aの上面を結晶成長の起点となる領域と見なすことができ、上記図3の場合と同様に表面の全体にわたって六方晶結晶5の割合が少ない立方晶型窒化物半導体ウェハが得られる。図4において、凸部1aに成長した窒化物半導体結晶2への、凹部1bの影響をより抑制するためには、凹部1bの底部にSiOなどのマスクを施すのが効果的である。 Limitation of the region that is the starting point of crystal growth can also be achieved by forming irregularities on the surface of the seed crystal substrate 1 as in the embodiment shown in FIG. As shown in FIG. 4A, when the nitride semiconductor 2 is grown on the surface of the seed crystal substrate 1 having irregularities on the surface under appropriate growth conditions, the top surface of the convex portion 1a and the bottom of the groove-shaped concave portion 1b The crystal grows in two parts. Also in this case, as in the case of FIG. 3 described above, if the growth conditions are selected such that the width of the cross-sectional shape of the nitride semiconductor 2 becomes wider in the growth direction, the nitride semiconductor 2 on the convex portion 1a At the stage where the crystals are fused to form a continuous surface, the nitride semiconductor crystal 2 grown in the recess 1b and the nitride semiconductor crystal 2 on the protrusion 1a are formed by voids 6 as shown in FIG. It can be in a divided state. In this case, the upper surface of the convex portion 1a of the seed crystal can be regarded as a region that is the starting point of crystal growth, and the cubic type nitride in which the ratio of the hexagonal crystal 5 is small over the entire surface as in FIG. A semiconductor wafer is obtained. In FIG. 4, in order to further suppress the influence of the concave portion 1b on the nitride semiconductor crystal 2 grown on the convex portion 1a, it is effective to apply a mask such as SiO 2 to the bottom of the concave portion 1b.

図2〜図4では、種結晶基板1をある方向からみた断面を模式的に示したので、開口部4あるいは凸部1aは、ストライプ状ないし直線状に種結晶基板1表面に1次元的に並んでいるように見える。しかしながら、図1に示したように六方晶型の結晶5は[110]および[−110]の直交した2つの方向に伝播していくので、ストライプ状ないし直線状の開口部4や凸部1aでは、マスク3上方や凹部1b上方のストライプ状の領域の表面に六方晶型結晶5が出現するのを抑制できない。[110]および[−110]の直交する2つの方向への六方晶型結晶5の伝播を抑制、あるいは、立方晶の窒化物半導体層2表面の出現位置を適切に制御するためには、図5や図6に模式的に示したように、種結晶基板1の表面に2次元的に配列した開口部4や凸部1aを形成する必要がある。   2 to 4 schematically show a cross section of the seed crystal substrate 1 as seen from a certain direction, the opening 4 or the convex portion 1a is one-dimensionally formed on the surface of the seed crystal substrate 1 in a stripe shape or a linear shape. Looks like they are lined up. However, since the hexagonal crystal 5 propagates in two orthogonal directions [110] and [−110] as shown in FIG. 1, the stripe-shaped or linear openings 4 and the protrusions 1a. Then, the appearance of the hexagonal crystal 5 on the surface of the stripe-shaped region above the mask 3 and the recess 1b cannot be suppressed. In order to suppress the propagation of the hexagonal crystal 5 in two directions orthogonal to [110] and [−110], or to appropriately control the appearance position of the surface of the cubic nitride semiconductor layer 2, FIG. As schematically shown in FIG. 5 and FIG. 6, it is necessary to form openings 4 and protrusions 1 a that are two-dimensionally arranged on the surface of the seed crystal substrate 1.

上記実施形態では、立方晶型の窒化物半導体2の表面を立方晶の(001)面あるいはそれに近い面としたのは、立方晶型窒化物半導体ウェハ上へ更に素子構造を結晶成長する際に好ましいからである。また、上記の立方晶型の窒化物半導体2の表面は、厳密に(001)面である必要は無く、(001)面から20度以内の角度で傾いた面であっても良い。具体的には、(001)面より、たとえば[110]方向、[−110]方向、[100]方向などに20度以内の角度で傾いた面を有する立方晶型の種結晶基板1を用いることにより、種結晶基板1と同じ傾きを持った表面を有する立方晶型の窒化物半導体2が得られる。ただし、(001)面からの傾き角度が20度よりも大きくなると、立方晶型の窒化物半導体2の表面での六方晶型の結晶5の割合が増加するので、好ましくない。   In the above-described embodiment, the surface of the cubic type nitride semiconductor 2 is the cubic (001) plane or a plane close thereto when the element structure is further grown on the cubic type nitride semiconductor wafer. It is because it is preferable. Further, the surface of the cubic nitride semiconductor 2 does not have to be strictly a (001) plane, and may be a plane inclined at an angle of 20 degrees or less from the (001) plane. Specifically, a cubic seed crystal substrate 1 having a plane inclined at an angle of 20 degrees or less from the (001) plane, for example, in the [110] direction, the [−110] direction, the [100] direction, or the like is used. Thus, a cubic type nitride semiconductor 2 having a surface having the same inclination as that of the seed crystal substrate 1 is obtained. However, if the inclination angle from the (001) plane is larger than 20 degrees, the ratio of the hexagonal crystal 5 on the surface of the cubic nitride semiconductor 2 increases, which is not preferable.

上記実施形態の種結晶基板1上に立方晶型窒化物半導体2を成長した立方晶型窒化物半導体ウェハより、窒化物半導体2の成長中あるいは成長終了後に種結晶基板1を除去することで、立方晶型窒化物半導体自立基板が得られる。   By removing the seed crystal substrate 1 during or after the growth of the nitride semiconductor 2 from the cubic nitride semiconductor wafer in which the cubic nitride semiconductor 2 is grown on the seed crystal substrate 1 of the above embodiment, A cubic nitride semiconductor free-standing substrate is obtained.

更に、上記の立方晶型窒化物半導体ウェハ、立方晶型窒化物半導体自立基板は表面を研磨して使用しても良く、研磨を適切に行った場合、立方晶型の窒化物半導体の割合が99%以上の区域の表面においては、立方晶と六方晶の研磨速度差による段差が生じ難いので、50μm四方の範囲で測定した表面荒さのRMS(二乗平均粗さ)値が1nm以下となり、従来法による10%程度の六方晶を含む立方晶型窒化物半導体ウェハを研磨した場合(RMS値〜3nm)よりも格段に表面の平坦性を向上できる。上記の立方晶型窒化物半導体ウェハ、立方晶型窒化物半導体自立基板の裏面は、研磨された鏡面仕上げでもよく、あるいは粗面であってもよい。   Furthermore, the above-mentioned cubic nitride semiconductor wafer and cubic nitride semiconductor free-standing substrate may be used with their surfaces polished, and when properly polished, the proportion of the cubic nitride semiconductor is On the surface of 99% or more area, it is difficult to cause a step due to the difference in polishing rate between cubic and hexagonal crystals, so the RMS (root mean square roughness) value of the surface roughness measured in a 50 μm square range is 1 nm or less, The surface flatness can be remarkably improved as compared with the case of polishing a cubic type nitride semiconductor wafer containing about 10% hexagonal crystals by the method (RMS value ˜3 nm). The back surface of the cubic nitride semiconductor wafer or the cubic nitride semiconductor free-standing substrate may be a polished mirror finish or a rough surface.

次に、本発明の実施例をさらに詳細に説明する。
(実施例1)
実施例1では、上記図2に示す実施形態と同様な製造方法により、立方晶型窒化物半導体ウェハを作製した。
種結晶基板1として、(001)面を表面に持つ立方晶(閃亜鉛鉱型)の3インチ径のGaAs基板を準備した。このGaAs基板をアセトン、エタノール、超純水による洗浄の後、プラズマCVD装置に導入し、GaAs基板の裏面に厚さ約30nmのSiO膜を形成した。このSiO膜のマスクは、GaAs基板上にGaN層成長中において、GaAs基板裏面からのGaAsの蒸発防止のためのものである。次いで、GaAs基板を上記と同様に洗浄し、再びプラズマCVD装置に導入し、今度はGaAs基板の表面に、マスク3として厚さ約30nmのSiO膜を形成した。その後、ホトリソグラフィーおよびフッ酸によるエッチングにより、GaAs基板の表面側のSiO膜に、図5に示すように周期的に2次元的に配置させて正方形状の開口部4を形成した。本実施例では、開口部4のサイズdは10μm角であり、隣り合う開口部4の間隔Lは200μmとし、開口部4が[110]方向および[−110]方向に沿って並ぶように形成した。
次に、上記のGaAs基板を、ハイドライド気相成長(HVPE)装置に導入し、GaAs基板上に窒化物半導体層2としてGaN層を成長した。V族原料としてはNHを、III族原料としては、HVPE装置内で800℃程度の温度で加熱した金属GaにHCl
ガスを導入することで発生するGaClガスを供給した。また、NHガス、HClガスと共に、窒素および水素の混合ガスをキャリアガスとして供給した。
GaN層の成長手順は以下の通りである。まず、窒素5slm(standard liter/min)、水素1slmを供給しながら、基板温度を600℃まで上昇し、GaAs基板表面の酸化膜を除去する。次に、基板温度を600℃に保ちつつ、NHを800sccm(standard cc/min)、GaClを40sccm供給し、GaN層を30nm成長した。その後
、GaClの供給を止め、基板温度を1100℃まで上昇した後に、再びGaClを250sccm供給しGaN層を合計で200μm成長した。成長終了後にGaClの供給を止め、基板温度を室温付近まで下げた後に、NHの供給を停止した。
この実施例1では、結晶成長は図2に示すように進行しており、平坦な表面のGaN層が得られていた。また六方晶型結晶は、隣り合う開口部4の中間の位置の表面に[110]方向および[−110]方向に沿った線状の領域として出現していた。また、これらの六方晶型結晶が集中した領域の間、すなわちマスク開口部4の上方に位置する領域には、正方形状の六方晶型結晶の少ない領域が存在していた。この六方晶の混入率が1%未満の領域の広さは100μm四方であり、その領域における六方晶混入率は0.7%であった
。すなわち、立方晶型の窒化物半導体の割合が99.3%であった。窒化物半導体の表面
における立方晶、六方晶の結晶型の測定は、X線回折測定によって行った。具体的には、立方晶GaNの(111)回折と六方晶GaNの(0001)回折の積分強度比を、立方
晶、六方晶の割合として求めた。
Next, examples of the present invention will be described in more detail.
Example 1
In Example 1, a cubic nitride semiconductor wafer was manufactured by the same manufacturing method as that of the embodiment shown in FIG.
As the seed crystal substrate 1, a cubic (zincblende) 3 inch diameter GaAs substrate having a (001) plane on the surface was prepared. This GaAs substrate was washed with acetone, ethanol, and ultrapure water and then introduced into a plasma CVD apparatus to form a SiO 2 film having a thickness of about 30 nm on the back surface of the GaAs substrate. This SiO 2 film mask is for preventing evaporation of GaAs from the back surface of the GaAs substrate during the growth of the GaN layer on the GaAs substrate. Next, the GaAs substrate was cleaned in the same manner as described above, and again introduced into the plasma CVD apparatus. This time, a SiO 2 film having a thickness of about 30 nm was formed as a mask 3 on the surface of the GaAs substrate. Thereafter, square openings 4 were formed by periodically and two-dimensionally arranging the SiO 2 film on the surface side of the GaAs substrate as shown in FIG. 5 by etching using photolithography and hydrofluoric acid. In this embodiment, the size d of the opening 4 is 10 μm square, the interval L between the adjacent openings 4 is 200 μm, and the openings 4 are arranged along the [110] direction and the [−110] direction. did.
Next, the GaAs substrate was introduced into a hydride vapor phase epitaxy (HVPE) apparatus, and a GaN layer was grown as the nitride semiconductor layer 2 on the GaAs substrate. NH 3 is used as a group V source, and HCl is added to metal Ga heated at a temperature of about 800 ° C. in an HVPE apparatus as a group III source.
GaCl gas generated by introducing the gas was supplied. A mixed gas of nitrogen and hydrogen was supplied as a carrier gas together with NH 3 gas and HCl gas.
The growth procedure of the GaN layer is as follows. First, while supplying nitrogen 5 slm (standard liter / min) and hydrogen 1 slm, the substrate temperature is raised to 600 ° C., and the oxide film on the surface of the GaAs substrate is removed. Next, while maintaining the substrate temperature at 600 ° C., NH 3 was supplied at 800 sccm (standard cc / min), GaCl was supplied at 40 sccm, and a GaN layer was grown to 30 nm. Thereafter, the supply of GaCl was stopped and the substrate temperature was raised to 1100 ° C., and then 250 sccm of GaCl was supplied again to grow a GaN layer by a total of 200 μm. After the growth was completed, the supply of GaCl was stopped, the substrate temperature was lowered to near room temperature, and then the supply of NH 3 was stopped.
In Example 1, crystal growth proceeded as shown in FIG. 2, and a flat surface GaN layer was obtained. Further, the hexagonal crystal appeared as a linear region along the [110] direction and the [−110] direction on the surface at the intermediate position between the adjacent openings 4. In addition, a region having few square hexagonal crystals exists in a region between the regions where these hexagonal crystals are concentrated, that is, in a region located above the mask opening 4. The width of the region where the hexagonal mixing rate was less than 1% was 100 μm square, and the hexagonal mixing rate in the region was 0.7%. That is, the ratio of the cubic type nitride semiconductor was 99.3%. Cubic and hexagonal crystal types on the surface of the nitride semiconductor were measured by X-ray diffraction measurement. Specifically, the integral intensity ratio between (111) diffraction of cubic GaN and (0001) diffraction of hexagonal GaN was determined as the ratio of cubic and hexagonal crystals.

(実施例2)
実施例1と同様の実験を、窒化物半導体層2としてGaN層の厚さを変えて行った。GaN層の成長膜厚tが160μm未満では平坦な表面が得られなかった。成長膜厚tが160μmの場合、六方晶の混入率が1%未満の区域・領域Sが最も広くなり、そのサイズは180μm四方であった。成長膜厚tを160μmよりも大きくしていくと、次第に六方晶の混入率が1%未満の区域Sが狭くなり、成長膜厚tが200μmの場合で100μm四方であった(実施例1の場合)。更に成長膜厚tを増やすと、六方晶の混入率が1%未満の区域Sは更に狭く100μm四方よりも小さくなり、現実的な発光素子を形成するのは困難な大きさとなった。六方晶混入率の観点から言うと、成長膜厚tが160μmの場合には0.2%であったのが、成長厚tを増やすと、六方晶の混入が少ない表面領域が
狭くなるとともに、六方晶の混入率は次第に増加していった。
(Example 2)
The same experiment as in Example 1 was performed by changing the thickness of the GaN layer as the nitride semiconductor layer 2. A flat surface could not be obtained when the growth thickness t of the GaN layer was less than 160 μm. When the grown film thickness t was 160 μm, the area / region S where the mixing ratio of hexagonal crystals was less than 1% was the largest, and the size was 180 μm square. As the grown film thickness t is increased from 160 μm, the area S in which the mixing ratio of hexagonal crystals is less than 1% becomes narrower, and when the grown film thickness t is 200 μm, the area S is 100 μm square (Example 1). If). When the growth film thickness t was further increased, the area S in which the hexagonal crystal mixing rate was less than 1% was narrower and smaller than 100 μm square, and it was difficult to form a realistic light emitting device. From the viewpoint of the hexagonal crystal mixing rate, it was 0.2% when the growth film thickness t was 160 μm, but when the growth thickness t was increased, the surface area with less hexagonal crystal mixing was narrowed. The mixing rate of hexagonal crystals gradually increased.

(実施例3)
実施例2と同様の実験を、実施例3では、マスク開口部4の間隔を変えて行った。その結果、ある特定のマスク開口部4の間隔Lの場合に、成長するGaN層の厚さをtとした場合、t/L=0.8の場合に、平坦な表面を持ち、且つ、六方晶の混入率が1%未満の
領域が最大(およそ0.9L×0.9L程度)となることが明らかとなった。また、GaN層の成長厚を0.8Lよりも大きくしていくと、実施例2と同様に次第に六方晶の混入率
が1%未満の領域が狭くなっていき、例えば、L=200、300、400、500μmの場合には、それぞれt=200、330、500、620μm以上では、混入率が1%未満の領域が100μm四方よりも小さくなり、現実的な発光素子を形成するのは困難な大きさとなった。
(Example 3)
The same experiment as in Example 2 was performed in Example 3 by changing the interval between the mask openings 4. As a result, when the thickness of the grown GaN layer is t in the case of the interval L of a specific mask opening 4 and t / L = 0.8, the surface has a flat surface and is hexagonal. It has been clarified that the region where the mixing ratio of crystals is less than 1% is the maximum (approximately 0.9 L × 0.9 L). Further, when the growth thickness of the GaN layer is made larger than 0.8 L, the region where the mixing ratio of hexagonal crystals is less than 1% is gradually reduced as in Example 2, for example, L = 200, 300 , 400, and 500 μm, when t = 200, 330, 500, and 620 μm or more, the region where the mixing rate is less than 1% is smaller than 100 μm square, and it is difficult to form a realistic light emitting element. It became size.

(実施例4)
実施例1〜3と同様の実験を、図6に示す凹凸を有する表面のGaAs基板に対してGaN層の成長を行ったところ、ほぼ同様の結果が得られた。なお、GaAs基板の表面への凹凸の形成は、ホトリソグラフィー及びエッチングを用いて行った。具体的には、GaAs基板表面にフォトレジストパターンを形成し、その後レジストをマスクとして、HSO:H:HO=5:1:1、あるいはNHOH:H=1:1等のエッチング液でGaAsをエッチングする。
Example 4
When the GaN layer was grown on the GaAs substrate having the unevenness shown in FIG. 6 in the same experiment as in Examples 1 to 3, almost the same result was obtained. In addition, the formation of unevenness on the surface of the GaAs substrate was performed using photolithography and etching. Specifically, a photoresist pattern is formed on the surface of the GaAs substrate, and then using the resist as a mask, H 2 SO 4 : H 2 O 2 : H 2 O = 5: 1: 1, or NH 4 OH: H 2 O Etch GaAs with an etchant such as 2 = 1: 1.

(実施例5)
図5、図6に示すように、マスク開口部や凹凸を形成する際に、ホトリソグラフィーによる規則的なマスクパターンではなく、TiOからなる微粒子を種結晶基板の表面に吹き付けて形成したランダムな分布の開口を有するマスクを用いると、ランダムな配置のマスク開口部や凸部を有する種結晶基板が形成される。吹き付ける微粒子の密度によって開口部あるいは凸部の平均間隔を制御し、これを用いて実施例1〜4と同様の実験を行った。その結果、実施例1〜4とほぼ同様の結果を得た。
(Example 5)
As shown in FIGS. 5 and 6, a random distribution formed by spraying fine particles of TiO on the surface of a seed crystal substrate, instead of a regular mask pattern by photolithography, when forming a mask opening or unevenness. When a mask having a plurality of openings is used, a seed crystal substrate having randomly arranged mask openings and projections is formed. The average interval between the openings or protrusions was controlled by the density of the fine particles to be sprayed, and the same experiment as in Examples 1 to 4 was performed using this. As a result, almost the same results as in Examples 1 to 4 were obtained.

(実施例6)
実施例6では、実施例1と同様の実験を、1100℃でGaNを成長する際のNH流量を200sccm、GaCl流量を250sccmとして行った。この場合、成長は図3に示す様に進行し、マスク開口部の間隔をL、成長するGaN層の厚さをtとした場合、t>Lの場合に平坦な表面が得られ、窒化物半導体層と種結晶基板の界面に図3に示したようなボイドが形成された。この場合には、ボイドにより六方晶型結晶の表面側への伝播が阻害されるため、実施例1〜5で見られたような、六方晶型結晶が密集する領域は表面で見られなかった。すなわち、立方晶型の窒化物半導体ウェハの表面全体において六方晶型結晶の混入率は1%未満であった。
(Example 6)
In Example 6, the same experiment as in Example 1 was performed with an NH 3 flow rate of 200 sccm and a GaCl flow rate of 250 sccm when growing GaN at 1100 ° C. In this case, the growth proceeds as shown in FIG. 3, where when the distance between the mask openings is L and the thickness of the growing GaN layer is t, a flat surface is obtained when t> L, and nitride Voids as shown in FIG. 3 were formed at the interface between the semiconductor layer and the seed crystal substrate. In this case, since the propagation of the hexagonal crystal to the surface side is inhibited by the void, the region where the hexagonal crystal is concentrated as in Examples 1 to 5 was not observed on the surface. . That is, the mixing ratio of hexagonal crystals was less than 1% over the entire surface of the cubic nitride semiconductor wafer.

(実施例7)
実施例6と同様の実験を、様々なマスク開口部の間隔L(100〜10000μm)、GaN層の厚さt(100〜10000μm)に対して行ったところ、実施例6と同様の結果を得た。この場合には、GaN層の表面での六方晶混入率は0.9%(L=100μ
m、t=110μm)から0.001%(L>300μm、t>800μm)の間であっ
た。すなわち、立方晶型の窒化物半導体の割合が99.1%から99.999%のものを製造することができた。
(Example 7)
The same experiment as in Example 6 was performed for various mask opening interval L (100 to 10,000 μm) and GaN layer thickness t (100 to 10,000 μm), and the same result as in Example 6 was obtained. It was. In this case, the hexagonal mixture ratio on the surface of the GaN layer is 0.9% (L = 100 μm).
m, t = 110 μm) to 0.001% (L> 300 μm, t> 800 μm). In other words, it was possible to manufacture a cubic nitride semiconductor having a ratio of 99.1% to 99.999%.

(実施例8)
実施例7と同様の実験を、図6に示す凹凸加工を施したGaAs基板を用いて行った。この場合には、成長は図4に示すように進行したが、最終的に得られる立方晶型窒化物半導体ウェハは実施例7と同様であった。
(Example 8)
An experiment similar to that of Example 7 was performed using a GaAs substrate subjected to the uneven processing shown in FIG. In this case, the growth proceeded as shown in FIG. 4, but the finally obtained cubic nitride semiconductor wafer was the same as in Example 7.

(実施例9)
実施例7,8と同様の実験を、実施例5と同様にTiOの微粒子をマスクとして形成したランダムに配置された開口部あるいは凸部を持つGaAs基板に対して行った。この場合も、実施例7、8と同様の結果が得られた。
Example 9
The same experiment as in Examples 7 and 8 was performed on a GaAs substrate having openings or projections arranged at random and formed using TiO fine particles as a mask, as in Example 5. In this case, the same results as in Examples 7 and 8 were obtained.

(実施例10)
実施例1〜9と同様の実験を、表面が(001)面より、[110]方向、[−110]方向、[100]方向、あるいはこれら方向の中間の方向に、0〜40度傾いたGaAs基板を用いて行った。その結果、角度が20度以下の場合には、GaN層の表面がGaAs基板と同じ傾きを持つ以外は、実施例1〜9とほぼ同様の結果が得られた。しかし、角度が20度よりも大きい場合には、GaN層の表面における六方晶型結晶の割合が従来と同程度(〜10%)にまで増加した。
(Example 10)
In the same experiment as in Examples 1 to 9, the surface was tilted by 0 to 40 degrees from the (001) plane in the [110] direction, the [−110] direction, the [100] direction, or an intermediate direction between these directions. This was performed using a GaAs substrate. As a result, when the angle was 20 degrees or less, substantially the same results as in Examples 1 to 9 were obtained except that the surface of the GaN layer had the same inclination as that of the GaAs substrate. However, when the angle was larger than 20 degrees, the ratio of hexagonal crystals on the surface of the GaN layer increased to the same level as before (-10%).

(実施例11)
実施例1〜10と同様の実験を、何種類かの異なる配置・構造のHVPE装置で行った。具体的には、原料ガスGaCl、NHが水平方向に流れる横型の成長炉を備えたHVPE装置と、原料ガスGaCl、NHが鉛直下方に流れる縦型の成長炉を備えたHVPE装置を用いた。横型の成長炉としては、円盤状のサセプタ上に取り付けたGaAs基板を、原料ガスが流れる方向に対してGaAs基板の成長面が垂直になるように支持するタイプと、円盤状のサセプタ上に取り付けたGaAs基板を、原料ガスが流れる方向に対してGaAs基板の成長面が平行になるように配置するタイプとの2種類のもので行った。縦型の成長炉としては、角錐体状のサセプタの各側面に取り付けたGaAs基板を、原料ガスが流れる方向に対してGaAs基板の成長面が斜めになるように配置するタイプ(バレル型)と、円盤状のサセプタに取り付けたGaAs基板を、原料ガスが流れる方向に対してGaAs基板の成長面が垂直になるように配置するタイプ(パンケーキ型)との2種類のもので行った。
その結果、成長条件に若干の相違はあったものの、温度および窒素、水素、原料ガスGaCl、NHの流量を適宜調整することで、実施例1〜10と同様の結果を得た。
(Example 11)
Experiments similar to those in Examples 1 to 10 were performed with several types of HVPE apparatuses having different arrangements and structures. Specifically, an HVPE apparatus having a horizontal growth furnace in which source gases GaCl and NH 3 flow in the horizontal direction and an HVPE apparatus having a vertical growth furnace in which source gases GaCl and NH 3 flow vertically downward are used. It was. As a horizontal growth furnace, a GaAs substrate mounted on a disk-shaped susceptor is supported so that the growth surface of the GaAs substrate is perpendicular to the direction in which the source gas flows, and mounted on a disk-shaped susceptor. Two types of GaAs substrates were used: a type in which the growth surface of the GaAs substrate is parallel to the direction in which the source gas flows. As a vertical growth furnace, a GaAs substrate attached to each side surface of a pyramidal susceptor is arranged so that the growth surface of the GaAs substrate is inclined with respect to the flow direction of the source gas (barrel type) and The GaAs substrate attached to the disk-shaped susceptor was used in two types (pancake type) in which the growth surface of the GaAs substrate is perpendicular to the direction in which the source gas flows.
As a result, although there were some differences in growth conditions, the same results as in Examples 1 to 10 were obtained by appropriately adjusting the temperature and the flow rates of nitrogen, hydrogen, source gas GaCl, and NH 3 .

(実施例12)
実施例1〜11で得た立方晶型GaNウェハのうち、GaN層の厚さが700μm以上のものに関しては、成長中にGaN層とGaAs基板が分離していた。GaNの成長中には、ウェハ外周部よりGaN層とGaAs基板の界面に水素ガスが侵入しエッチングが進行している。GaNの成長時間が長い場合には、エッチングにより、GaN層とGaAs基板が分離されてしまうのである。GaN層の厚さが薄い場合には、成長中にはGaN層とGaAs基板は分離されない。しかしながら、この場合においても、成長後に硫酸を用
いてGaAs基板を除去することで、GaN自立基板が得られた。これらGaN自立基板の六方晶型結晶の混入率が1%未満の領域での転位密度は、最も薄いGaN自立基板で5×10/cm、最も厚いGaN自立基板で2×10/cmであった。
(Example 12)
Among the cubic GaN wafers obtained in Examples 1 to 11, the GaN layer and the GaAs substrate were separated during the growth of the GaN layer having a thickness of 700 μm or more. During the growth of GaN, hydrogen gas enters the interface between the GaN layer and the GaAs substrate from the outer periphery of the wafer, and etching proceeds. When the growth time of GaN is long, the GaN layer and the GaAs substrate are separated by etching. If the GaN layer is thin, the GaN layer and the GaAs substrate are not separated during growth. However, even in this case, a GaN free-standing substrate was obtained by removing the GaAs substrate using sulfuric acid after growth. The dislocation density in the region where the mixing ratio of hexagonal crystals of these GaN free-standing substrates is less than 1% is 5 × 10 7 / cm 2 for the thinnest GaN free-standing substrate and 2 × 10 4 / cm for the thickest GaN free-standing substrate. 2 .

(実施例13)
実施例1〜11で得た立方晶型GaNウェハの表面は、成長時に発生する微少なファセット面を含み、各ウェハの立方晶型の窒化物半導体の割合が99%以上の領域であっても、50μm四方の領域で測定した表面荒さのRMS値は5nm程度であった。
上記立方晶型GaNウェハの表面平坦性を向上するために、上記GaNウェハの表面を研磨した。研磨は、上記GaNウェハの裏面側を研磨台にワックスにより接着し、ウェハの表面側をダイヤモンドスラリーを塗布した平坦面に押し付け、ウェハ・平坦面の双方を回転することにより実施した。
上記研磨の結果、立方晶型のGaNの割合が99%以上の領域においては、50μm四方の領域で測定した表面粗さのRMS値が1nm以下となった。従来法で製作した10%程度の六方晶を含むGaNウェハを、同じ工程で研磨した場合、50μm四方の領域で測定した表面粗さのRMS値は3nm程度であった。従来法では、50μm四方で測定した領域に不可避的に10%以上の六方晶を含み、立方晶と六方晶の間には研磨速度差による段差が生じるため、RMS値が大きくなる。一方、本発明の実施例のGaNウェハの場合には、立方晶と六方晶の研磨速度差による段差が生じ難いので、研磨後のウェハ表面の平坦性が格段に向上する。
上記の表面が研磨されたGaNウェハのうち、実施例12と同様にGaAs基板を分離したものの一部は、表面研磨に先立ち裏面の研磨も実施し、3インチ径の両面が鏡面の立方晶GaN自立基板を得た。また他の一部については、裏面研磨の後に、NHOHによるエッチングにより裏面を粗面化することで、表面が鏡面で裏面が粗面の3インチ径の立方晶GaN自立基板を得た。
(Example 13)
The surface of the cubic type GaN wafer obtained in Examples 1 to 11 includes a minute facet surface generated during growth, and the ratio of the cubic type nitride semiconductor of each wafer is 99% or more. The RMS value of the surface roughness measured in a 50 μm square region was about 5 nm.
In order to improve the surface flatness of the cubic GaN wafer, the surface of the GaN wafer was polished. Polishing was performed by adhering the back side of the GaN wafer to a polishing table with wax, pressing the front side of the wafer against a flat surface coated with diamond slurry, and rotating both the wafer and the flat surface.
As a result of the polishing, the RMS value of the surface roughness measured in the 50 μm square region was 1 nm or less in the region where the proportion of cubic GaN was 99% or more. When a GaN wafer containing about 10% hexagonal crystals manufactured by a conventional method was polished in the same process, the RMS value of the surface roughness measured in a 50 μm square region was about 3 nm. In the conventional method, the region measured at 50 μm square inevitably contains 10% or more of hexagonal crystals, and a step difference due to the polishing rate difference occurs between the cubic crystals and the hexagonal crystals, so the RMS value increases. On the other hand, in the case of the GaN wafer according to the embodiment of the present invention, the level difference due to the difference in polishing rate between the cubic crystal and the hexagonal crystal hardly occurs, and thus the flatness of the polished wafer surface is remarkably improved.
Among the GaN wafers whose surfaces were polished, a part of the GaAs substrate separated as in Example 12 was also subjected to the polishing of the back surface prior to the surface polishing, and the cubic GaN having a mirror surface of 3 inches in diameter. A self-supporting substrate was obtained. As for the other part, after the back surface polishing, the back surface was roughened by etching with NH 4 OH to obtain a cubic GaN free-standing substrate having a 3 inch diameter with a mirror surface and a rough back surface.

(実施例14)
実施例1〜13と同様の実験を、GaN以外の窒化物半導体として、AlN、AlGaN、InN、InGaNに対して実施した。細かな成長条件は、それぞれの材料に対して調整が必要であったが、得られた結果は、実施例1〜12とほぼ同等であった。
(Example 14)
Experiments similar to those in Examples 1 to 13 were performed on AlN, AlGaN, InN, and InGaN as nitride semiconductors other than GaN. Although fine growth conditions needed to be adjusted for each material, the obtained results were almost the same as in Examples 1-12.

(その他の実施例)
本発明は、上記実施例のように、HVPE装置を用いた場合にのみ限定されるものでは無く、同様の手法は、窒化物半導体層を有機金属気相成長法あるいは分子線エピタキシー法などの他の気相成長法で成長する場合にも有効である。
本発明は、気相成長法を用いた場合にのみ限定されるものでは無く、高圧合成法、Naフラックス法、昇華法や安熱合成法といった閉鎖系での結晶成長法により、窒化物半導体層を成長する場合にも有効である。
上記実施例では、マスク材料としてSiOを用いたが、マスク材料としては結晶成長の環境で窒化物半導体の付着率が低くかつ、結晶成長の環境に耐えるものであれば、何であろうと構わない。SiO以外には、例えばSiN、Ti、Ni、Wなどが挙げられる。
上記実施例では、基板としてGaAsを用いたが、これ以外の立方晶型の結晶基板を用いても良い。立方晶型の結晶基板としては、例えばSi、3C−SiC、GaP、InP、InAs、AlAs、AlPなどが挙げられる。
上記の実施例に示した手法で製作した立方晶型窒化物半導体ウェハを種結晶基板として、再度、上記の実施例の手法を繰り返しても良い。この場合には、種結晶基板と窒化物半導体層の間の歪が無視できるため、より一層、六方晶型結晶混入率を抑制できる(六方晶型結晶の混入率を0.1%以下にすることが可能である)。
(Other examples)
The present invention is not limited only to the case where an HVPE apparatus is used as in the above-described embodiment, and a similar method can be applied to nitride semiconductor layers other than metal organic vapor phase epitaxy or molecular beam epitaxy. This is also effective when growing by the vapor phase growth method.
The present invention is not limited to the case where the vapor phase growth method is used. The nitride semiconductor layer is formed by a closed-system crystal growth method such as a high pressure synthesis method, a Na flux method, a sublimation method, or a low temperature synthesis method. It is also effective when growing.
In the above embodiment, SiO 2 is used as a mask material. However, any mask material can be used as long as it has a low nitride semiconductor adhesion rate in a crystal growth environment and can withstand the crystal growth environment. . In addition to SiO 2 , for example, SiN, Ti, Ni, W and the like can be mentioned.
In the above embodiment, GaAs is used as the substrate, but other cubic crystal substrates may be used. Examples of the cubic crystal substrate include Si, 3C—SiC, GaP, InP, InAs, AlAs, and AlP.
The method of the above embodiment may be repeated again using the cubic nitride semiconductor wafer manufactured by the method shown in the above embodiment as a seed crystal substrate. In this case, since the strain between the seed crystal substrate and the nitride semiconductor layer can be ignored, the hexagonal crystal contamination rate can be further suppressed (the hexagonal crystal contamination rate is 0.1% or less). Is possible).

(応用例)
本発明により実現される立方晶型窒化物半導体ウェハ上に、InGaN活性層を形成することで、高効率な緑色発光素子が実現される。例えば、上記実施例の立方晶型窒化物半導体ウェハ上に形成した純緑色(波長525nm)LEDは、20mA通電時の電圧が2.4V、発光出力が10mWであった。従来のC面の六方晶窒化物半導体ウェハを用いた
場合には、20mA通電時の電圧が3.3V、発光出力が5mWであったので、本発明に
より大幅な低電圧化、高効率化が達成された。
更に、上記実施例の立方晶型窒化物半導体自立基板を用いることで、純緑色LDの室温連続発振にも成功している。
また、上記実施例で得られた、六方晶型結晶の密集領域と、六方晶型結晶の混入が少ない領域を合わせ待つ立方晶型窒化物半導体ウェハ上に発光素子を形成することで、1枚の基板上に2種類の波長(例えば、青と緑、青紫と青など)で発光する発光素子を同時に形成することが可能となる。
(Application examples)
By forming the InGaN active layer on the cubic type nitride semiconductor wafer realized by the present invention, a highly efficient green light emitting device is realized. For example, the pure green (wavelength 525 nm) LED formed on the cubic nitride semiconductor wafer of the above example had a voltage of 2.4 V when energized with 20 mA and a light emission output of 10 mW. In the case of using a conventional C-plane hexagonal nitride semiconductor wafer, the voltage at the time of 20 mA energization was 3.3 V and the light emission output was 5 mW. Therefore, the present invention significantly reduces the voltage and increases the efficiency. Achieved.
Furthermore, by using the cubic type nitride semiconductor free-standing substrate of the above-described embodiment, room temperature continuous oscillation of a pure green LD has been succeeded.
Further, by forming a light emitting element on the cubic nitride semiconductor wafer waiting for the combination of the hexagonal crystal dense region and the region with little hexagonal crystal contamination obtained in the above embodiment, It is possible to simultaneously form light emitting elements that emit light with two types of wavelengths (for example, blue and green, blue violet and blue) on the substrate.

1 種結晶基板
2 窒化物半導体層
3 マスク
4 開口部
5 六方晶型結晶
6 ボイド
1 seed crystal substrate 2 nitride semiconductor layer 3 mask 4 opening 5 hexagonal crystal 6 void

Claims (10)

結晶成長の起点となる領域を局所的に制限した表面を有する立方晶の種結晶基板上に窒化物半導体を成長し、前記種結晶基板と局所的に接触した窒化物半導体の連続膜と成すことで得られる、少なくとも100μm四方以上の広さで立方晶型の窒化物半導体の割合が99%以上である区域を表面に有するとともに、前記種結晶基板の表面の隣接する前記領域から成長した窒化物半導体の結晶が融合した部分の前記種結晶基板側に、六方晶型の窒化物半導体の成長の伝播を停止させるか、又は抑制するボイドが形成されることを特徴とする立方晶型窒化物半導体ウェハ。 Nitride semiconductor is grown on a cubic seed crystal substrate having a surface where a region for starting crystal growth is locally restricted, and a continuous film of nitride semiconductor locally in contact with the seed crystal substrate is formed. Nitride having a surface area of at least 100 μm square and having a cubic crystal nitride semiconductor ratio of 99% or more, and grown from the adjacent region of the surface of the seed crystal substrate. Cubic nitride semiconductor characterized in that a void is formed on the seed crystal substrate side of the portion where the semiconductor crystals are fused to stop or suppress the growth propagation of the hexagonal nitride semiconductor. Wafer. 立方晶の種結晶基板の表面に、周期的に又はランダムに凹凸を形成し、Form irregularities periodically or randomly on the surface of the cubic seed crystal substrate,
前記種結晶基板表面の前記凹凸の隣接する凸部から成長した窒化物半導体を融合させて連続膜とした窒化物半導体であって、少なくとも100μm四方以上の広さで立方晶型の窒化物半導体の割合が99%以上である区域を表面に有することを特徴とする立方晶型窒化物半導体ウェハ。A nitride semiconductor formed as a continuous film by fusing nitride semiconductors grown from adjacent protrusions on the surface of the seed crystal substrate, wherein the nitride semiconductor is at least 100 μm square and has a cubic crystal structure. A cubic nitride semiconductor wafer having an area having a ratio of 99% or more on the surface.
前記種結晶基板の表面の隣接する前記凸部から成長した窒化物半導体の結晶が融合した部分の前記種結晶基板側に、六方晶型の窒化物半導体の成長の伝播を停止ないし抑制させるボイドが形成されていることを特徴とする請求項2に記載の立方晶型窒化物半導体ウェハ。On the seed crystal substrate side of the portion where the nitride semiconductor crystals grown from the adjacent convex portions on the surface of the seed crystal substrate are fused, there is a void that stops or suppresses the propagation of the growth of the hexagonal nitride semiconductor. The cubic nitride semiconductor wafer according to claim 2, wherein the cubic nitride semiconductor wafer is formed. 前記立方晶型の窒化物半導体の表面が、立方晶の(001)面であることを特徴とする請求項1〜3のいずれかに記載の立方晶型窒化物半導体ウェハ。 The cubic nitride semiconductor wafer according to any one of claims 1 to 3, wherein a surface of the cubic nitride semiconductor is a cubic (001) plane. 前記立方晶型の窒化物半導体の表面が、立方晶の(001)面から20度以内の角度で傾いた面であることを特徴とする請求項1〜3のいずれかに記載の立方晶型窒化物半導体ウェハ。 The cubic-type nitride semiconductor on the surface of, cubic according to any one of claims 1-3, characterized in that the cubic (001) plane is a plane inclined at an angle within 20 degrees Nitride semiconductor wafer. 立方晶型の窒化物半導体の割合が99%以上の表面の前記区域において、50μm四方の範囲で測定した表面粗さのRMS値が1nm以下であることを特徴とする請求項1〜のいずれかに記載の立方晶型窒化物半導体ウェハ。 In the area of the cubic type surface ratio of the nitride semiconductor is not less than 99% of any of claims 1-5 in which the RMS value of the surface roughness measured in the range of 50μm square is equal to or is 1nm or less A cubic nitride semiconductor wafer according to claim 1. 立方晶の種結晶基板の表面に、窒化物半導体が成長しにくい材料で覆い且つ周期的に又はランダムに前記種結晶基板の表面が露出した開口部を有するマスクを形成し、
前記マスクの前記開口部から窒化物半導体を成長し、前記種結晶基板と局所的に接触した連続膜とした窒化物半導体を形成するとともに、
前記開口部から成長する窒化物半導体の結晶の断面が結晶成長方向に向かって拡大するような条件で成長させて、隣接する前記開口部から成長した窒化物半導体の結晶が融合した部分の前記種結晶基板側に、六方晶型の窒化物半導体の成長の伝播を停止ないし抑制させるボイドを形成するようにしたことを特徴とする立方晶型窒化物半導体ウェハの製造方法。
Forming a mask on the surface of the cubic seed crystal substrate, covering the material with a material in which a nitride semiconductor is difficult to grow and having an opening in which the surface of the seed crystal substrate is exposed periodically or randomly;
Growing a nitride semiconductor from the opening of the mask to form a nitride semiconductor as a continuous film in local contact with the seed crystal substrate ;
The seed of the portion where the nitride semiconductor crystal grown from the adjacent opening is fused by growing the nitride semiconductor crystal grown from the opening under a condition that the cross section of the crystal expands in the crystal growth direction. A method for producing a cubic nitride semiconductor wafer, wherein a void is formed on the crystal substrate side to stop or suppress the propagation of growth of a hexagonal nitride semiconductor.
立方晶の種結晶基板の表面に、周期的に又はランダムに凹凸を形成し、
前記種結晶基板表面の前記凹凸の隣接する凸部から成長した窒化物半導体を融合させて連続膜とした窒化物半導体を形成することを特徴とする立方晶型窒化物半導体ウェハの製造方法。
Form irregularities periodically or randomly on the surface of the cubic seed crystal substrate,
A method for producing a cubic nitride semiconductor wafer, comprising forming a nitride semiconductor as a continuous film by fusing nitride semiconductors grown from adjacent convex portions on the surface of the seed crystal substrate.
隣接する前記凸部から成長した窒化物半導体の結晶が融合した部分の前記種結晶基板側に、六方晶型の窒化物半導体の成長の伝播を停止ないし抑制させるボイドを形成するようにしたことを特徴とする請求項8に記載の立方晶型窒化物半導体ウェハの製造方法。 Voids that stop or suppress the propagation of hexagonal nitride semiconductor growth are formed on the side of the seed crystal substrate where the nitride semiconductor crystals grown from the adjacent convex portions are fused. The method for producing a cubic nitride semiconductor wafer according to claim 8. 請求項〜9のいずれかに記載の立方晶型窒化物半導体ウェハの製造方法により、前記連続膜の窒化物半導体を形成した後であって、前記窒化物半導体の成長中あるいは成長終了後に、前記種結晶基板を除去して立方晶型窒化物半導体自立基板を製造する立方晶型窒化物半導体自立基板の製造方法。 After the nitride semiconductor of the continuous film is formed by the method for manufacturing a cubic nitride semiconductor wafer according to any one of claims 7 to 9, and during or after the growth of the nitride semiconductor, A method for producing a cubic nitride semiconductor free-standing substrate, wherein the seed crystal substrate is removed to produce a cubic nitride semiconductor free-standing substrate.
JP2009128409A 2009-05-28 2009-05-28 Cubic nitride semiconductor wafer, method for manufacturing the same, and method for manufacturing a cubic nitride semiconductor free-standing substrate Expired - Fee Related JP5206985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009128409A JP5206985B2 (en) 2009-05-28 2009-05-28 Cubic nitride semiconductor wafer, method for manufacturing the same, and method for manufacturing a cubic nitride semiconductor free-standing substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009128409A JP5206985B2 (en) 2009-05-28 2009-05-28 Cubic nitride semiconductor wafer, method for manufacturing the same, and method for manufacturing a cubic nitride semiconductor free-standing substrate

Publications (2)

Publication Number Publication Date
JP2010275141A JP2010275141A (en) 2010-12-09
JP5206985B2 true JP5206985B2 (en) 2013-06-12

Family

ID=43422465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009128409A Expired - Fee Related JP5206985B2 (en) 2009-05-28 2009-05-28 Cubic nitride semiconductor wafer, method for manufacturing the same, and method for manufacturing a cubic nitride semiconductor free-standing substrate

Country Status (1)

Country Link
JP (1) JP5206985B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504731B1 (en) 2012-11-30 2015-03-23 주식회사 소프트에피 Iii-nitride semiconductor stacked structure
EP2743966B1 (en) * 2012-12-14 2020-11-25 Seoul Viosys Co., Ltd. Epitaxial layer wafer having void for separating growth substrate therefrom and semiconductor device fabricated using the same
KR101504732B1 (en) * 2013-04-10 2015-03-23 주식회사 소프트에피 Iii-nitride semiconductor stacked structure and method of manufacturing the same
CN108470674B (en) * 2018-01-16 2020-07-14 长春理工大学 Preparation method for realizing pure-phase GaAs nanowire by utilizing stress regulation
JP7203390B2 (en) * 2020-10-13 2023-01-13 セイコーエプソン株式会社 Light-emitting device and projector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4178936B2 (en) * 2002-12-11 2008-11-12 日本電気株式会社 Group III nitride free-standing substrate, semiconductor device using the same, and manufacturing method thereof
JP5109912B2 (en) * 2008-10-03 2012-12-26 セイコーエプソン株式会社 Semiconductor device manufacturing method, semiconductor device

Also Published As

Publication number Publication date
JP2010275141A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP5815144B2 (en) Nitride semiconductor light emitting diode device
US8963165B2 (en) Nitride semiconductor structure, nitride semiconductor light emitting element, nitride semiconductor transistor element, method of manufacturing nitride semiconductor structure, and method of manufacturing nitride semiconductor element
JP4475358B1 (en) GaN-based semiconductor optical device, method for manufacturing GaN-based semiconductor optical device, and epitaxial wafer
US6455877B1 (en) III-N compound semiconductor device
US7041523B2 (en) Method of fabricating nitride semiconductor device
JP4178936B2 (en) Group III nitride free-standing substrate, semiconductor device using the same, and manufacturing method thereof
JP6121806B2 (en) Nitride semiconductor wafer, nitride semiconductor device, and method of manufacturing nitride semiconductor wafer
JP6704387B2 (en) Substrate for growing nitride semiconductor, method of manufacturing the same, semiconductor device, and method of manufacturing the same
JP4644942B2 (en) Crystal film, crystal substrate, and method of manufacturing semiconductor device
JP2001160627A (en) Group iii nitride compound semiconductor light emitting element
JP5509680B2 (en) Group III nitride crystal and method for producing the same
JP2009021361A (en) Nitride-based semiconductor light emitting element, and method of fabricating nitride-based semiconductor light emitting element
TW201638378A (en) Group iii nitride laminate and light emitting element comprising said laminate
JP2000091253A (en) Method of producing gallium nitride based compound semiconductor
JP2005314121A (en) Single crystal sapphire substrate, its producing method, and semiconductor light-emitting element
JP5206985B2 (en) Cubic nitride semiconductor wafer, method for manufacturing the same, and method for manufacturing a cubic nitride semiconductor free-standing substrate
US20140054605A1 (en) Composite Substrates, Light Emitting Devices and a Method of Producing Composite Substrates
JP2004327655A (en) Nitride semiconductor laser device, its manufacturing method, and semiconductor optical device
TWI520325B (en) Manufacture of nitride semiconductor structures
JP5644996B2 (en) Nitride optical semiconductor device
JP2009023853A (en) Group iii-v nitride semiconductor substrate, method for manufacturing the same, and group iii-v nitride semiconductor device
JP4016062B2 (en) Nitride semiconductor structure, manufacturing method thereof, and light emitting device
JP5015480B2 (en) Manufacturing method of semiconductor single crystal substrate
JP5206854B2 (en) GaN-based semiconductor laser and method for manufacturing GaN-based semiconductor laser
JP2004165550A (en) Nitride semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees