JP5205751B2 - Shaft-shaped part, forging molding apparatus thereof, and forging molding method - Google Patents

Shaft-shaped part, forging molding apparatus thereof, and forging molding method Download PDF

Info

Publication number
JP5205751B2
JP5205751B2 JP2006333634A JP2006333634A JP5205751B2 JP 5205751 B2 JP5205751 B2 JP 5205751B2 JP 2006333634 A JP2006333634 A JP 2006333634A JP 2006333634 A JP2006333634 A JP 2006333634A JP 5205751 B2 JP5205751 B2 JP 5205751B2
Authority
JP
Japan
Prior art keywords
cavity
shaft
knockout pin
sliding hole
shaft portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006333634A
Other languages
Japanese (ja)
Other versions
JP2008142748A (en
Inventor
貴司 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006333634A priority Critical patent/JP5205751B2/en
Publication of JP2008142748A publication Critical patent/JP2008142748A/en
Application granted granted Critical
Publication of JP5205751B2 publication Critical patent/JP5205751B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Forging (AREA)

Description

本発明は、鍛造金型による押し出し加工等により成形される軸状部品およびその鍛造成形装置並びに鍛造成形方法に関するものである。   The present invention relates to a shaft-like component molded by extrusion using a forging die, a forging molding apparatus thereof, and a forging molding method.

従来から、鍛造金型による押し出し加工や据込み加工等により軸状部品、例えば、カップ部に連ねて軸部を一体的に備える等速ジョイントを成形する鍛造成形方法が知られている(特許文献1参照)。   2. Description of the Related Art Conventionally, a forging method for forming a shaft-shaped part, for example, a constant velocity joint integrally provided with a shaft portion connected to a cup portion by extrusion processing or upsetting processing using a forging die is known (Patent Literature). 1).

これは、円柱状のビレットに対し鍛造金型による前方押出し加工を施すことにより、円柱状の本体部とその先端側に中間段部を介して直径が異なる軸部とからなる第1次成形品を成形し、続いて、この第1次成形品の本体に対して据込み加工を施すことによりカップ部に形成される円板部および軸部からなる第2次成形品を成形している。さらに、円板部に対して2〜3段階の後方押出し加工を施すことによってカップ状のアウタカップ部と軸部とからなる軸状部品を得るようにしている。
特開2005−66616号公報
This is a primary molded product comprising a cylindrical main body part and a shaft part having a different diameter through an intermediate step part on the tip side by subjecting the cylindrical billet to forward extrusion using a forging die. Subsequently, a secondary molded product composed of a disk portion and a shaft portion formed on the cup portion is formed by performing upsetting on the main body of the primary molded product. Furthermore, a shaft-shaped part composed of a cup-shaped outer cup portion and a shaft portion is obtained by subjecting the disk portion to a backward extrusion process in two to three stages.
JP-A-2005-66616

ところで、上記のように、第1次成形品および第2次成形品を閉塞鍛造成形する場合、各成形品の軸直径寸法(ダイスに形成する軸部用キャビティの直径)とそのキャビティを下方から閉塞するノックアウトピンの直径寸法とが略等しく設定され、ノックアウトピンに作用する成形荷重が大きくなる構造となっているため、ノックアウトピンおよびノックアウトピンを駆動するノックアウトフィラーの寿命を低下させる不具合があった。   By the way, when the primary molded product and the secondary molded product are subjected to closed forging as described above, the shaft diameter dimension of each molded product (diameter of the cavity for the shaft portion formed on the die) and the cavity are defined from below. Since the diameter dimension of the knockout pin to be closed is set to be substantially equal and the molding load acting on the knockout pin is increased, there is a problem that the life of the knockout pin and the knockout filler that drives the knockout pin is reduced. .

また、ノックアウトピンは閉塞鍛造終了時に成形品をキャビティから排出させるようキャビティ内へ突出す必要があり、ダイスに対して摺動のためのクリアランスを設ける構造としているため、鍛造時に前記クリアランスに粗材が入り込み成形品の軸端にバリが発生したり、発生したバリがダイスに固着して金型が破損するという不具合があった。   In addition, the knockout pin needs to protrude into the cavity so that the molded product is discharged from the cavity at the end of the closed forging, and a clearance is provided for sliding against the die. However, there is a problem that burrs are generated at the shaft end of the molded product, or the generated burrs are fixed to the die and the die is damaged.

そこで本発明は、上記問題点に鑑みてなされたもので、型寿命の向上に好適な軸状部品およびその鍛造成形装置並びに鍛造成形方法を提供することを目的とする。   Then, this invention was made | formed in view of the said problem, and it aims at providing the shaft-shaped component suitable for the improvement of a mold | die lifetime, its forge molding apparatus, and a forge molding method.

本発明は、粗材本体を収容する本体キャビティと、前記本体キャビティに連ねて配置されて軸部を構成する軸部キャビティと、軸部キャビティの終端に連ねて配置されてノックアウトピンが摺動自在に嵌合するノックアウトピンの摺動孔と、軸部キャビティのノックアウトピンの摺動孔に連なるキャビティ終端に設けたノックアウトピンの摺動孔側で軸部キャビティの内径を終端側に移るに連れて小径となり前記軸部キャビティからノックアウトピン摺動孔側への塑性流動を抑制するテーパ部と、を備え、テーパ部の表面を、つなぎ面取りRをもって軸部キャビティを構成する内面に連ねて形成したダイスを用いて、粗材を本体キャビティから軸部キャビティに押出し加工し、ダイスに投入された粗材を押出し加工により軸部キャビティに塑性流動させて軸部キャビティへ流入させ、次いで、つなぎ面取りRを介して流動方向が半径方向内側となるテーパ部に流動させて、テーパ部により軸部キャビティからノックアウトピン摺動孔側への塑性流動を抑制するようにした。 The present invention includes a main body cavity that accommodates a rough material main body, a shaft cavity that is arranged continuously with the main body cavity to form a shaft portion, and a knockout pin that is slidably disposed with a terminal end of the shaft portion cavity. As the inner diameter of the shaft cavity is moved to the end side on the sliding hole side of the knockout pin provided at the end of the cavity connected to the sliding hole of the knockout pin of the shaft cavity and the knockout pin of the shaft cavity And a tapered portion that suppresses plastic flow from the shaft cavity to the knockout pin sliding hole side, and the surface of the tapered portion is formed continuously to the inner surface constituting the shaft cavity with a joint chamfer R. Using a die, the rough material is extruded from the main body cavity into the shaft cavity, and the rough material put into the die is extruded into the shaft cavity by extrusion. By flow made to flow into the shank cavity, then allowed to flow into the tapered portion the flow direction is radially inward through the connecting chamfer R, plastic flow from the shank cavity by the tapered portion to the knock-out pin sliding hole side To suppress.

したがって、本発明では、軸部キャビティのノックアウトピンの摺動孔に連なるキャビティ終端に設けたノックアウトピンの摺動孔側で軸部キャビティの内径を終端側に移るに連れて小径となり前記軸部キャビティからノックアウトピン摺動孔側への塑性流動を抑制するテーパ部を備え、テーパ部の表面を、つなぎ面取りRをもって軸部キャビティを構成する内面に連ねて形成したダイスを用いて、粗材を本体キャビティから軸部キャビティに押出し加工するようにした。
即ち、テーパ部の表面を、つなぎ面取りRをもって軸部キャビティを構成する内面に連ねて形成しているため、テーパ部に加わる成形荷重が軸部キャビティとテーパ部とのつなぎ部分Rに応力集中して、ダイスがつなぎ部分から割れることを防止することができる。
また、テーパ部に到達するよう軸方向に流れていた材料をつなぎ面取りRを介して流動方向が半径方向内側へ縮径する流れとなるテーパ部に、円滑に方向変換させて流動させることができ、軸部キャビティからノックアウトピン摺動孔側への塑性流動を抑制することができ、ノックアウトピンおよびノックアウトフィラーに加わる成形荷重を低減できてその破損を抑制でき、型寿命を向上させ、型補修コストを削減できる。
Therefore, in the present invention, the shaft cavity becomes smaller in diameter as the inner diameter of the shaft cavity is shifted to the end side on the sliding hole side of the knockout pin provided at the end of the cavity connected to the sliding hole of the knockout pin of the shaft cavity. A taper part that suppresses plastic flow from the pin to the knockout pin sliding hole side, and using a die formed by connecting the surface of the taper part to the inner surface constituting the shaft cavity with a joint chamfer R , Extrusion was performed from the main body cavity to the shaft cavity.
That is, since the surface of the taper portion is formed continuously with the inner surface of the shaft portion cavity with the joint chamfer R, the molding load applied to the taper portion concentrates stress on the joint portion R between the shaft portion cavity and the taper portion. Thus, it is possible to prevent the die from breaking from the connecting portion.
Further, the material that has flowed in the axial direction so as to reach the taper portion can be smoothly changed in direction and flowed to the taper portion whose flow direction is reduced radially inward via the connecting chamfer R. can, it is possible to suppress the plastic flow of the knock-out pin sliding hole side from the shaft cavity, and can reduce the molding load applied to the knockout pins and knockout filler can suppress the damage, to improve die life, type repair Cost can be reduced.

以下、本発明の鍛造成形装置および鍛造成形方法の一実施形態を図1〜図10に基づいて説明する。図1は本発明を適用する軸状部品、例えば、トリポート型等速ジョイントの成形過程を説明する説明図、図2は軸状部品の一成形工程に用いる成形金型の断面図、図3は図2に示す成形金型の要部拡大断面図、図4は図2に示す成形金型による成形開始状態の断面図、図5は図4に続く成形完了状態の断面図、図6は図5におけるワークの要部の拡大図、図7は図5に続くワーク排出状態の断面図、図8および図9は得られた中間成形品の断面図および要部拡大図である。   Hereinafter, one embodiment of a forging device and a forging method according to the present invention will be described with reference to FIGS. FIG. 1 is an explanatory diagram for explaining a molding process of a shaft-like component to which the present invention is applied, for example, a tripart constant velocity joint, FIG. 2 is a sectional view of a molding die used in one molding process of the shaft-like component, and FIG. FIG. 4 is a sectional view of the molding start state of the molding die shown in FIG. 2, FIG. 5 is a sectional view of the molding completion state following FIG. 4, and FIG. 5 is an enlarged view of the main part of the work in FIG. 5, FIG. 7 is a cross-sectional view of the discharged state of the work following FIG. 5, and FIGS. 8 and 9 are a cross-sectional view and an enlarged main part of the obtained intermediate molded product.

先ず、図1により、軸状部品としてのトリポート型等速ジョイントの成形過程を説明する。先ず、加熱炉により熱間鍛造若しくは温間鍛造が可能な温度に加熱された棒状粗材W0(ビレット)が用意され(A)、第1工程において、この棒状粗材W0に前方押出し成形が施されて軸部WSと継手となる本体部WJを備える成形体W1が得られる(B)。次いで、第2工程において、前記成形体W1に据込み成形が施されることにより、本体部WJが拡径されて据込み部WJ1が成形され(C)、第3工程において、この据込み部WJ1に後方押出し成形が施されて内周にトラック溝WJ3を備えるカップ部WJ2が粗成形される(D)。さらに、第4工程において、継続して後方押出し成形を施してカップ部WJ2が仕上げ成形され(E)、第5工程において、カップ部WJ2内周の拡管成形が施され(F)、内周面にトラック溝WJ3を有する製品としての軸付き継手部材W5が得られる。図中のW0〜W5は成形過程における成形体を示す。   First, with reference to FIG. 1, a forming process of a tripart constant velocity joint as a shaft-like component will be described. First, a rod-like coarse material W0 (billet) heated to a temperature at which hot forging or warm forging can be performed in a heating furnace is prepared (A), and forward extrusion molding is performed on the rod-like coarse material W0 in the first step. Thus, a molded body W1 including the main body portion WJ that becomes a joint with the shaft portion WS is obtained (B). Next, in the second step, upsetting is performed on the molded body W1, thereby expanding the diameter of the main body WJ and forming the upsetting portion WJ1 (C). In the third step, the upsetting portion Back extrusion molding is performed on WJ1, and cup portion WJ2 including track groove WJ3 on the inner periphery is roughly molded (D). Further, in the fourth step, the back extrusion is continuously performed to finish the cup portion WJ2 (E), and in the fifth step, the inner periphery of the cup portion WJ2 is expanded (F), and the inner peripheral surface Thus, a joint member W5 with a shaft as a product having the track groove WJ3 is obtained. W0 to W5 in the figure indicate molded bodies in the molding process.

前記第2工程の据込み成形(若しくは、第1工程の前方押出し成形)に使用する成形金型1は、図2に示すように、継手となる本体部WJ1を形成する本体キャビティ3および軸部WSを形成する軸部キャビティ4を備えるダイス3と、ダイス3の軸部WSを形成する軸部キャビティ4に連なる摺動孔5にクリアランスを持って嵌合して前記軸部キャビティ4に下方から臨むノックアウトピン6と、前記ノックアウトピン6をキャビティ2、4内へ向けて繰出すノックアウトフィラー7と、が下部ダイホルダ8に固定配置されている。前記下部ダイホルダ8は、前記ダイス3を下方から支持すると共にノックアウトピン6およびノックアウトフィラー7を摺動自在に支持する第2〜4ダイホルダ8B〜8Dと、これらを外周部から位置決め支持する固定ブロック8Eと、固定ブロック8Eを固定するベースとなる第1ダイホルダ8Aとから構成している。   As shown in FIG. 2, a molding die 1 used for upset molding in the second step (or forward extrusion molding in the first step) has a main body cavity 3 and a shaft portion that form a main body WJ1 serving as a joint. A die 3 having a shaft cavity 4 forming WS and a slide hole 5 connected to the shaft cavity 4 forming the shaft WS of the die 3 are fitted with clearance to the shaft cavity 4 from below. A knockout pin 6 that faces and a knockout filler 7 that feeds the knockout pin 6 into the cavities 2 and 4 are fixed to the lower die holder 8. The lower die holder 8 includes second to fourth die holders 8B to 8D that support the die 3 from below and slidably support the knockout pin 6 and the knockout filler 7, and a fixing block 8E that positions and supports these from the outer periphery. And the 1st die holder 8A used as the base which fixes the fixed block 8E is comprised.

また、前記下部ダイホルダ8に臨む上部ダイホルダ10には、固定ブロック12により固定して、先端が前記ダイス3の本体キャビティ2に嵌合して継手の本体部WJ1を据込むポンチ11が配置されている。   Further, the upper die holder 10 facing the lower die holder 8 is provided with a punch 11 that is fixed by a fixing block 12 and that fits the body cavity 2 of the die 3 at the tip and installs the body portion WJ1 of the joint. Yes.

前記ダイス3に形成したキャビティ2、4は、継手の本体部WJ1の形状に型彫りされた本体キャビティ2と、本体キャビティ2と連なって継手の軸部WSを形成する軸部キャビティ4とから構成されている。前記軸部キャビティ4は、2個の段付により先端(下端)側に向かって徐々に内径が小さくなるよう形成されている。そして、前記ノックアウトピン6の先端に臨む軸部キャビティ4の先端(下端)において、図3に拡大して示すように、軸先端部直径φDに対してテーパ部9(軸径変更部)を介在させてその断面積を縮小させた小径部φdに形成され、この小径部φdの下側に連ねてノックアウトピン6の摺動孔5が配置されている。前記テーパ部9の角度は、軸部キャビティ4の軸に直角な面に対して、30°〜60°に設定され、テーパ部9の幅Tw(=(先端部直径φD−小径部φd)/2)は、先端部直径φDの5〜20%に設定している。また、前記先端部直径φD部分からテーパ部9への遷移領域にはつなぎの面取りRが形成され、そのつなぎの面取りRの半径Rは2〜4[mm]程度としている。前記ノックアウトピン6の外周とその摺動孔5との間には、ノックアウトピン6の軸方向の摺動を許容するためのクリアランスC(摺動隙間)が形成されている。   The cavities 2 and 4 formed in the die 3 are composed of a main body cavity 2 engraved in the shape of the main body portion WJ1 of the joint, and a shaft portion cavity 4 that is connected to the main body cavity 2 to form the shaft portion WS of the joint. Has been. The shaft cavity 4 is formed by two steps so that the inner diameter gradually decreases toward the tip (lower end) side. Then, at the tip (lower end) of the shaft cavity 4 facing the tip of the knockout pin 6, as shown in an enlarged view in FIG. 3, a taper portion 9 (shaft diameter changing portion) is interposed with respect to the shaft tip diameter φD. The small-diameter portion φd whose cross-sectional area is reduced is formed, and the sliding hole 5 of the knockout pin 6 is arranged continuously below the small-diameter portion φd. The angle of the taper portion 9 is set to 30 ° to 60 ° with respect to a plane perpendicular to the axis of the shaft portion cavity 4, and the width Tw of the taper portion 9 (= (tip portion diameter φD−small diameter portion φd) / 2) is set to 5 to 20% of the tip diameter φD. Further, a chamfer R of the joint is formed in the transition region from the tip diameter φD portion to the taper portion 9, and the radius R of the chamfer R of the joint is about 2 to 4 [mm]. A clearance C (sliding gap) for allowing the knockout pin 6 to slide in the axial direction is formed between the outer periphery of the knockout pin 6 and the sliding hole 5.

以上の構成の鍛造成形装置による鍛造成形方法について以下に説明する。   A forging method using the forging device having the above configuration will be described below.

図2は、型開きした状態における第2工程の成形金型1を示し、この成形金型1のダイス3のキャビティ2に第1工程で形成された成形体W1が投入される(図2は、投入途中の状態を示している)。投入された成形体W1は、その軸部WSをダイス3の軸部用キャビティ4に嵌合させて位置決めされ、その本体部WJは本体キャビティ2の内面に対して隙間を持って配置される(図4の成形体W1と本体キャビティ2との関係参照)。   FIG. 2 shows the molding die 1 in the second step in a state where the mold is opened, and the molded body W1 formed in the first step is put into the cavity 2 of the die 3 of this molding die 1 (FIG. 2 shows , Shows the state during the insertion). The charged molded body W1 is positioned by fitting the shaft portion WS to the shaft portion cavity 4 of the die 3, and the body portion WJ is disposed with a gap with respect to the inner surface of the body cavity 2 ( (See the relationship between the molded body W1 and the main body cavity 2 in FIG. 4).

この状態から、型閉じすると、図4(図4は、押し潰し開始時の状態)に示すように、先ず、ポンチ11の先端外周がダイス3のキャビティ2へ嵌合され、次いで、ポンチ11が成形体W1の本体部WJを構成する粗材を外周側に拡げつつ押し潰し、本体部WJの粗材の外周面がダイス3のキャビティ2の周面に到達するまで据込まれるよう塑性流動させる。   When the mold is closed from this state, as shown in FIG. 4 (FIG. 4 shows a state when crushing is started), first, the outer periphery of the tip end of the punch 11 is fitted into the cavity 2 of the die 3, and then the punch 11 is The coarse material constituting the main body WJ of the molded body W1 is crushed while being expanded to the outer peripheral side, and is plastically flowed so that the outer peripheral surface of the coarse material of the main body WJ reaches the peripheral surface of the cavity 2 of the die 3. .

本体部WJの粗材がダイス3の本体キャビティ2内面に充満されると、引続くポンチ11の押潰しによりポンチ11とキャビティ2の周面との間に粗材を充填させつつ粗材を下部の軸部キャビティ4側に押出し流動させる(前方押出し成形)。   When the rough material of the main body WJ fills the inner surface of the main body cavity 2 of the die 3, the rough material is filled in between the punch 11 and the peripheral surface of the cavity 2 by the subsequent crushing of the punch 11, and the lower portion of the rough material is lowered. Is extruded and fluidized to the shaft cavity 4 side (forward extrusion molding).

そして、前記粗材の下部側(軸部キャビティ4)への押出し流動により、ダイス3の軸部キャビティ4へ押出された粗材の先端がテーパ部9に到達した段階で、軸部WS先端の粗材はテーパ面9により、半径方向外方から半径方向内方へ押付けられて縮径が開始されと共に、この粗材の縮径に対する反力はテーパ面9に作用してダイス3に受持たされる。結果として、従来はノックアウトピン6およびノックアウトフィラー7が受けていた成形荷重の一部を、ダイス3に負担させることができる。従って、ノックアウトピン6およびノックアウトフィラー7が受ける成形荷重がその分だけ低減できる。   Then, when the tip of the rough material pushed into the shaft cavity 4 of the die 3 reaches the taper portion 9 by the extruding flow of the coarse material to the lower side (shaft cavity 4), the tip of the shaft WS is The coarse material is pressed from the radially outer side to the radially inner side by the taper surface 9 to start the diameter reduction, and the reaction force against the diameter reduction of the coarse material acts on the taper surface 9 to be received by the die 3. Is done. As a result, a part of the molding load conventionally received by the knockout pin 6 and the knockout filler 7 can be borne by the die 3. Therefore, the molding load received by the knockout pin 6 and the knockout filler 7 can be reduced accordingly.

また、軸部WSを構成する粗材の先端直径部φDからテーパ部9への移行に際して、両者間に面取りRを形成しているため、テーパ部9に加わる成形荷重が先端直径部φDとテーパ部9とのつなぎ部分Rに応力集中して、ダイス3が先端直径部とテーパ部9とのつなぎ部分から割れることを防止することができる。   In addition, since the chamfer R is formed between the tip diameter portion φD of the coarse material constituting the shaft portion WS and the taper portion 9, the forming load applied to the taper portion 9 is increased with the tip diameter portion φD and the taper. It is possible to prevent the die 3 from cracking from the connecting portion between the tip diameter portion and the taper portion 9 by concentrating stress on the connecting portion R with the portion 9.

また、前記テーパ部9による縮径により、先端側粗材のテーパ部9を通過する際の抵抗(流動抵抗)が上昇され、キャビティ2、4の内圧を上昇させ、先端側粗材のノックアウトピン6側への突出変形が抑制される。この先端側粗材の突出変形の抑制によっても、ノックアウトピン6およびノックアウトフィラー7が受ける成形荷重が減少される。   Further, due to the diameter reduction by the tapered portion 9, the resistance (flow resistance) when passing through the tapered portion 9 of the tip side coarse material is increased, the internal pressure of the cavities 2 and 4 is increased, and the knockout pin of the tip side coarse material is increased. Protruding deformation to the 6 side is suppressed. Also by suppressing the protrusion deformation of the front end side coarse material, the molding load received by the knockout pin 6 and the knockout filler 7 is reduced.

軸部キャビティ4の先端(下端)側への塑性流動の先端面が小径部φdに到達した段階で、粗材がポンチ11と前記本体キャビティ2および軸部キャビティ4とで閉塞した空間に充満されてキャビティ内の内圧が急激に上昇し、図5に示すように、据込み成形(前方押出し成形を含む)が完了する。この状態では、図6に示すように、軸部WSを構成する粗材がテーパ部9を乗越えてその先端部がノックアウトピン6の端面に密に接触された状態となっている。また、テーパ部9により先端の粗材の流動方向が半径方向内方に曲げられた結果として、ノックアウトピン6とダイス3の摺動孔5との間に形成されたクリアランスCへの粗材の入込みが抑制され、粗材の入込みにより発生するバリの生成が抑制されている。   When the tip end surface of the plastic flow toward the tip (lower end) side of the shaft cavity 4 reaches the small diameter portion φd, the coarse material is filled in the space closed by the punch 11, the main body cavity 2 and the shaft cavity 4. As a result, the internal pressure in the cavity rises abruptly, and upsetting (including forward extrusion) is completed as shown in FIG. In this state, as shown in FIG. 6, the rough material constituting the shaft portion WS gets over the taper portion 9, and the tip portion thereof is in close contact with the end surface of the knockout pin 6. Further, as a result of the flow direction of the coarse material at the tip being bent inward in the radial direction by the tapered portion 9, the coarse material to the clearance C formed between the knockout pin 6 and the sliding hole 5 of the die 3. The entry is suppressed, and the generation of burrs caused by the entry of the coarse material is suppressed.

続いて、上部ダイホルダ10・ポンチ11を上昇させて型開きし、ノックアウトピン6を上昇させてキャビティ2内に残っている成形体W2をダイス3から搬送高さまで上昇させ、図示しない自動搬送装置により、成形体W2を次工程である第3工程の成形金型に搬送する。   Subsequently, the upper die holder 10 and the punch 11 are raised to open the mold, the knockout pin 6 is raised to raise the molded body W2 remaining in the cavity 2 from the die 3 to the conveyance height, and an automatic conveyance device (not shown) is used. Then, the molded body W2 is conveyed to a molding die in the third step which is the next step.

図8は上記成形工程によって得られた本実施形態による成形体W2(図8(A))と比較のために従来の成形工程によって得られた比較例の成形体W2A(図8(B))とを対比して示すものである。前記比較例の成形体W2Aにおいては、軸部WSの先端直径部φDと先端面とが円筒状のエッジを介して繋がっているのに対して、本実施形態による成形体W2では、軸部WSの先端直径部φDと先端面とはテーパ状部分9Aを介在させて繋がっている構成で相違している。図9は比較例と本実施形態の成形体を重ね合せて示すものであり、ハッチングを付した領域部分において、本実施形態の成形体W2が比較例の成形体W2Aより体積が小さく形成される。従って、成形品W2に転写されたテーパ形状部9Aを鍛造成形完了状態のまま継手製品として使用するようにすれば、本実施形態における成形体W2の材料使用量が比較例の成形体W2Aの材料使用量に対して、材料投入量を減少させることができる。   FIG. 8 shows a molded body W2A (FIG. 8B) of a comparative example obtained by a conventional molding process for comparison with the molded body W2 of the present embodiment obtained by the molding process (FIG. 8A). Is shown in comparison. In the molded body W2A of the comparative example, the tip diameter part φD of the shaft part WS and the tip surface are connected via a cylindrical edge, whereas in the molded body W2 according to the present embodiment, the shaft part WS is connected. The tip diameter portion φD and the tip face are different in the configuration in which the tapered portion 9A is interposed and connected. FIG. 9 shows the comparative example and the molded body of the present embodiment superimposed, and in the hatched region portion, the molded body W2 of the present embodiment is formed to have a smaller volume than the molded body W2A of the comparative example. . Therefore, if the tapered portion 9A transferred to the molded product W2 is used as a joint product in a state where the forging is completed, the material usage of the molded product W2 in this embodiment is the material of the molded product W2A of the comparative example. The amount of material input can be reduced with respect to the amount used.

なお、上記実施形態において、対象とする工程として、据込み成形と前方押出し成形を含む第2工程の鍛造成形を対象とする鍛造成形装置について説明したが、図示はしないが、前方押出し成形を備える第1工程の鍛造成形を対象とする鍛造成形装置であってもよく、また、両者を対象とする鍛造成形装置であってもよい。   In the above-described embodiment, a forging apparatus that targets forging in the second step including upset molding and forward extrusion molding has been described as a target process. However, although not illustrated, forward extrusion molding is provided. It may be a forging apparatus for forging in the first step, or a forging apparatus for both.

また、上記実施形態において、対象とする軸状部品として、主に軸付き継手、例えば、等速ジョイントを対象とするものについて説明しているが、軸状部品を鍛造前方押出し成形若しくは鍛造後方押出し成形により形成するものであれば、即ち、軸状部品の軸状部分を粗材の前方押出し成形若しくは後方押出し成形により形成するものに適用することができる。   Further, in the above embodiment, the shaft-shaped component to be targeted is mainly described for a joint with a shaft, for example, a constant velocity joint, but the shaft-shaped component is forged forward extrusion or forged backward extruded. In other words, the present invention can be applied to those formed by molding, that is, the shaft-shaped part of the shaft-shaped part formed by forward extrusion molding or backward extrusion molding of a rough material.

本実施形態においては、以下に記載する効果を奏することができる。   In the present embodiment, the following effects can be achieved.

(ア)粗材本体WJを収容する本体キャビティ2と、前記本体キャビティ2に連ねて配置されて軸部WSを構成する軸部キャビティ4と、軸部キャビティ4の終端に連ねて配置されてノックアウトピン6が摺動自在に嵌合するノックアウトピン6の摺動孔5と、軸部キャビティ4のノックアウトピン6の摺動孔5に連なるキャビティ終端に設けたノックアウトピン6の摺動孔5側で小径となり前記軸部キャビティ4からノックアウトピン摺動孔5側への塑性流動を抑制する軸径変更部9と、を備えたダイス3を用いて、粗材を本体キャビティ2から軸部キャビティ4に押出し加工するようにした。このため、軸部キャビティ4からノックアウトピン摺動孔5側への塑性流動を抑制することができ、ノックアウトピン6およびノックアウトフィラー7に加わる成形荷重を低減できてその破損を抑制でき、型寿命を向上させ、型補修コストを削減できる。   (A) A main body cavity 2 that accommodates the coarse material main body WJ, a shaft portion cavity 4 that is arranged continuously to the main body cavity 2 and constitutes the shaft portion WS, and is arranged to be connected to the terminal end of the shaft portion cavity 4 and is knocked out. On the sliding hole 5 side of the knockout pin 6 provided at the end of the cavity connected to the sliding hole 5 of the knockout pin 6 of the shaft portion cavity 4 and the sliding hole 5 of the knockout pin 6 in which the pin 6 is slidably fitted. Using a die 3 having a small diameter and a shaft diameter changing portion 9 that suppresses plastic flow from the shaft portion cavity 4 to the knockout pin sliding hole 5 side, the coarse material is changed from the main body cavity 2 to the shaft portion cavity 4. It was made to extrude. For this reason, the plastic flow from the shaft portion cavity 4 to the knockout pin sliding hole 5 side can be suppressed, the molding load applied to the knockout pin 6 and the knockout filler 7 can be reduced, the breakage thereof can be suppressed, and the mold life can be reduced. Improve and reduce mold repair costs.

(イ)軸径変更部として、軸部キャビティ4の内径を終端側に移るに連れて小径とするテーパ部9、例えば、軸部キャビティ終端の内径φDを5〜20%縮小させることにより構成することにより、軸部キャビティ4空間をノックアウトピン6の摺動孔5に円滑に接続することができる。   (B) The shaft diameter changing portion is configured by reducing the inner diameter φD of the end of the shaft cavity by 5 to 20%, for example, a taper portion 9 that decreases in diameter as the inner diameter of the shaft portion cavity 4 moves toward the end side. Thus, the shaft cavity 4 space can be smoothly connected to the sliding hole 5 of the knockout pin 6.

(ウ)テーパ部9のテーパ角を軸部キャビティ4の軸に直角な面に対して30度〜60度の角度範囲に形成することにより、軸部キャビティ終端からノックアウトピン摺動孔5側への塑性流動を半径方向内周側に向けることができ、ノックアウトピン6とその摺動孔5とのクリアランスCへの材料の入込みを抑制でき、バリの発生を削減できる。   (C) By forming the taper angle of the taper portion 9 within an angle range of 30 degrees to 60 degrees with respect to the plane perpendicular to the axis of the shaft portion cavity 4, from the end of the shaft portion cavity to the knockout pin sliding hole 5 side. The plastic flow can be directed to the radially inner peripheral side, the material can be prevented from entering the clearance C between the knockout pin 6 and the sliding hole 5, and the generation of burrs can be reduced.

(エ)軸径変更部若しくは前記テーパ部9の表面は、2〜4[mm]のつなぎ面取りRをもって軸部キャビティ4を構成する内面に連ねることにより、軸径変更部若しくはテーパ部9にかかる成形荷重でダイス3がつなぎ部から割れることを防止することができる。   (D) The shaft diameter changing portion or the surface of the taper portion 9 is applied to the shaft diameter changing portion or the taper portion 9 by connecting to the inner surface constituting the shaft portion cavity 4 with a connecting chamfer R of 2 to 4 [mm]. It is possible to prevent the die 3 from being cracked from the joint portion by the molding load.

(オ)粗材本体を収容する本体キャビティ2に連ねて軸部WSを構成する軸部キャビティ4を備え、前記軸部キャビティ4のノックアウトピン6の摺動孔5に連なる軸部キャビティ終端にノックアウトピン6の摺動孔5側で小径となり前記軸部キャビティ4からノックアウトピン摺動孔5側への塑性流動を抑制するテーパ部9を備えるダイス3の本体キャビティ2に粗材を収容し、前記収容した粗材を押出し加工により本体キャビティ2から軸部キャビティ4に塑性流動させて軸部キャビティ4へ流入させて鍛造押出し加工することにより、成形品W2の前記軸部WSの軸端にテーパ状部分9Aを形成するため、成形品W2に転写されたテーパ形状部9Aにより、その分だけ材料投入量を減少させることができる。   (E) A shaft cavity 4 constituting the shaft WS is connected to the body cavity 2 for housing the coarse material body, and knocked out at the end of the shaft cavity connected to the sliding hole 5 of the knockout pin 6 of the shaft cavity 4 The coarse material is accommodated in the body cavity 2 of the die 3 having a taper portion 9 that has a small diameter on the sliding hole 5 side of the pin 6 and suppresses plastic flow from the shaft portion cavity 4 to the knockout pin sliding hole 5 side, The accommodated coarse material is plastically flowed from the main body cavity 2 to the shaft cavity 4 by extrusion and flows into the shaft cavity 4 and is forged and extruded to taper the shaft end of the shaft WS of the molded product W2. Since the portion 9A is formed, the amount of material input can be reduced by the taper-shaped portion 9A transferred to the molded product W2.

本発明の鍛造成形装置および鍛造成形方法は、主に軸付き継手、例えば、等速ジョイントを対象とするものについて説明しているが、軸状部品を鍛造前方押出し成型若しくは鍛造後方押出し成型により形成するものであれば適用することができる。   The forging apparatus and the forging method of the present invention are mainly described for joints with shafts, for example, for constant velocity joints, but shaft parts are formed by forging forward extrusion or forging backward extrusion. It can be applied if it does.

本発明を適用する軸状部品、例えば、トリポート型等速ジョイントの成形過程を説明する説明図。Explanatory drawing explaining the shaping | molding process of the shaft-shaped components to which this invention is applied, for example, a tripod type constant velocity joint. 同じく軸状部品の一成形工程に用いる成形金型の断面図。Sectional drawing of the molding die similarly used for one formation process of a shaft-shaped component. 図2に示す成形金型の要部拡大断面図。The principal part expanded sectional view of the molding die shown in FIG. 図2に示す成形金型による成形開始状態の断面図。Sectional drawing of the shaping | molding start state by the shaping die shown in FIG. 図4に続く成形完了状態の断面図。FIG. 5 is a cross-sectional view of a completed state following FIG. 4. 図5におけるワークの要部の拡大図。The enlarged view of the principal part of the workpiece | work in FIG. 図5に続くワーク排出状態の断面図。Sectional drawing of the workpiece | work discharge | emission state following FIG. 得られた本実施形態による中間成形品(A)および比較例の中間成形品(B)の断面図。Sectional drawing of the intermediate molded product (A) by this obtained embodiment, and the intermediate molded product (B) of a comparative example. 本実施形態による中間成形品と比較例の中間成形品との要部を比較した説明図。Explanatory drawing which compared the principal part of the intermediate molded product by this embodiment, and the intermediate molded product of a comparative example.

符号の説明Explanation of symbols

1 成形金型
2 本体キャビティ
3 ダイス
4 軸部キャビティ
5 摺動孔
6 ノックアウトピン
7 ノックアウトフィラー
8 下部ダイホルダ
9 内径変更部としてのテーパ部
10 上部ダイホルダ
11 ポンチ
DESCRIPTION OF SYMBOLS 1 Molding die 2 Main body cavity 3 Dies 4 Shaft cavity 5 Sliding hole 6 Knockout pin 7 Knockout filler 8 Lower die holder 9 Taper part as inner diameter change part 10 Upper die holder 11 Punch

Claims (6)

粗材に押出し加工を施すことにより粗材本体に連なる軸部を押出し成形する軸状部品の鍛造成形装置であって、
前記粗材本体を収容する本体キャビティと、前記本体キャビティに連ねて配置されて軸部を構成する軸部キャビティと、軸部キャビティの終端に連ねて配置されてノックアウトピンが摺動自在に嵌合するノックアウトピンの摺動孔と、軸部キャビティのノックアウトピンの摺動孔に連なるキャビティ終端に設けたノックアウトピンの摺動孔側で軸部キャビティの内径を終端側に移るに連れて小径となり前記軸部キャビティからノックアウトピン摺動孔側への塑性流動を抑制するテーパ部と、を備えたダイスと、
前記ダイスの本体キャビティに嵌合して本体キャビティ内の粗材を押出し加工により軸部キャビティへ塑性流動させるポンチと、
前記ダイスの摺動孔に摺動自在に挿入され、軸部キャビティから前記摺動孔へ流動する粗材を軸端で停止させると共に鍛造後の成形品をダイスのキャビティから押出すノックアウトピンと、を備え、
前記テーパ部の表面を、つなぎ面取りRをもって軸部キャビティを構成する内面に連ねて形成し、
前記ダイスに投入された粗材を押出し加工により軸部キャビティに塑性流動させて軸部キャビティへ流入させ、次いで、前記つなぎ面取りRを介して流動方向が半径方向内側となる前記テーパ部に流動させて、前記軸部キャビティからノックアウトピン摺動孔側への塑性流動を抑制するようにしたことを特徴とする軸状部品の鍛造成形装置。
A forging device for a shaft-like component that extrudes and forms a shaft portion connected to a coarse material main body by extruding the coarse material,
A main body cavity that accommodates the rough material main body, a shaft portion cavity that is arranged continuously to the main body cavity and constitutes a shaft portion, and a knockout pin that is arranged to be connected to the end of the shaft portion cavity and is slidable As the inner diameter of the shaft cavity is moved to the end side on the sliding hole side of the knockout pin provided at the end of the cavity connected to the sliding hole of the knockout pin of the knockout pin of the shaft cavity, the diameter becomes smaller. A die having a taper portion for suppressing plastic flow from the shaft cavity to the knockout pin sliding hole side;
A punch that fits into the body cavity of the die and plastically flows the coarse material in the body cavity to the shaft cavity by extrusion processing;
A knockout pin that is slidably inserted into the sliding hole of the die and stops the rough material flowing from the shaft cavity to the sliding hole at the shaft end, and extrudes the molded product after forging from the cavity of the die. Prepared,
Forming the surface of the tapered portion continuously with the inner surface of the shaft cavity with a connecting chamfer R;
The coarse material put into the die is plastically flowed into the shaft portion cavity by extrusion and flows into the shaft portion cavity, and then flows through the joint chamfer R to the tapered portion where the flow direction is radially inward. A forging apparatus for a shaft-like component , wherein plastic flow from the shaft cavity to the knockout pin sliding hole side is suppressed.
前記テーパ部のテーパ角度は、軸部キャビティの軸に直角な面に対して30度〜60度の角度範囲に形成されていることを特徴とする請求項1に記載の鍛造成形装置。   The forging apparatus according to claim 1, wherein the taper angle of the taper portion is formed in an angle range of 30 degrees to 60 degrees with respect to a plane perpendicular to the axis of the shaft portion cavity. 前記テーパ部は、軸部キャビティ終端の内径を5〜20%縮小させるものであることを特徴とする請求項1または請求項2に記載の鍛造成形装置。   The forging apparatus according to claim 1 or 2, wherein the taper portion reduces the inner diameter of the end of the shaft cavity by 5 to 20%. 前記つなぎ面取りRは、テーパ部の表面と軸部キャビティを構成する内面との間を、2〜4[mm]で連ねられていることを特徴とする請求項1から請求項3のいずれか一つに記載の鍛造成形装置。 4. The connecting chamfer R is formed by connecting the surface of the tapered portion and the inner surface of the shaft cavity at 2 to 4 [mm]. The forging molding device described in 1. 粗材に押出し成形を施すことにより粗材本体に連なる軸部を押出し形成する軸状部品の鍛造成形方法であって、
前記軸部を構成するようダイスに設けた軸部キャビティのノックアウトピンの摺動孔に連なるキャビティ終端にノックアウトピンの摺動孔側で軸部キャビティの内径を終端側に移るに連れて小径となり、前記軸部キャビティからノックアウトピン摺動孔側への塑性流動を抑制するテーパ部を設け、
前記テーパ部の表面を、つなぎ面取りRをもって軸部キャビティを構成する内面に連ねて形成し、
前記ダイスに投入された粗材を押出し加工により軸部キャビティに塑性流動させて軸部キャビティへ流入させ、次いで、前記つなぎ面取りRを介して流動方向が半径方向内側となる前記テーパ部に流動させて、前記テーパ部により前記軸部キャビティからノックアウトピン摺動孔側への塑性流動を抑制するようにしたことを特徴とする軸状部品の鍛造成形方法。
A forging method of a shaft-shaped part that extrudes and forms a shaft portion connected to a coarse material main body by extruding the coarse material,
The diameter of the shaft cavity on the sliding hole side of the knockout pin at the end of the cavity connected to the sliding hole of the knockout pin of the shaft cavity provided on the die so as to form the shaft portion becomes smaller, Provide a taper portion to suppress plastic flow from the shaft cavity to the knockout pin sliding hole side,
Forming the surface of the tapered portion continuously with the inner surface of the shaft cavity with a connecting chamfer R;
The coarse material put into the die is plastically flowed into the shaft portion cavity by extrusion and flows into the shaft portion cavity, and then flows through the joint chamfer R to the tapered portion where the flow direction is radially inward. A method of forging a shaft-shaped part , wherein the taper portion suppresses plastic flow from the shaft portion cavity to the knockout pin sliding hole side.
粗材本体を収容する本体キャビティに連ねて軸部を構成する軸部キャビティを備え、前記軸部キャビティのノックアウトピンの摺動孔に連なる軸部キャビティ終端にノックアウトピンの摺動孔側で軸部キャビティの内径を終端側に移るに連れて小径となり前記軸部キャビティからノックアウトピン摺動孔側への塑性流動を抑制するテーパ部を備えると共に前記テーパ部の表面を、つなぎ面取りRをもって軸部キャビティを構成する内面に連ねて形成したダイスの本体キャビティに粗材を収容し、
前記収容した粗材を押出し加工により本体キャビティから軸部キャビティに塑性流動させて軸部キャビティへ流入させて鍛造押出し加工することにより、前記つなぎ面取りRを介して流動方向が半径方向内側となる前記テーパ部に流動させて、前記軸部キャビティからノックアウトピン摺動孔側への塑性流動を抑制して、成形品の前記軸部の軸端にテーパ状部分を形成することを特徴とする軸状部品。
A shaft portion cavity that forms a shaft portion connected to a main body cavity that accommodates the coarse material main body is provided, and a shaft portion on the sliding hole side of the knockout pin at the end of the shaft portion cavity that is connected to the sliding hole of the knockout pin of the shaft portion cavity As the inner diameter of the cavity is moved to the terminal end side, the diameter of the shaft part cavity is reduced with a taper part that suppresses plastic flow from the shaft part cavity to the knockout pin sliding hole side and the surface of the taper part has a joint chamfer R. The coarse material is accommodated in the body cavity of the die formed continuously with the inner surface constituting
The accommodated coarse material is plastically flowed from the main body cavity to the shaft portion cavity by extrusion processing, and flows into the shaft portion cavity for forging and extruding, so that the flow direction is radially inward via the joint chamfer R. An axial shape characterized in that a taper portion is formed at the shaft end of the shaft portion of the molded product by flowing into the taper portion to suppress plastic flow from the shaft portion cavity to the knockout pin sliding hole side. parts.
JP2006333634A 2006-12-11 2006-12-11 Shaft-shaped part, forging molding apparatus thereof, and forging molding method Active JP5205751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333634A JP5205751B2 (en) 2006-12-11 2006-12-11 Shaft-shaped part, forging molding apparatus thereof, and forging molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333634A JP5205751B2 (en) 2006-12-11 2006-12-11 Shaft-shaped part, forging molding apparatus thereof, and forging molding method

Publications (2)

Publication Number Publication Date
JP2008142748A JP2008142748A (en) 2008-06-26
JP5205751B2 true JP5205751B2 (en) 2013-06-05

Family

ID=39603498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333634A Active JP5205751B2 (en) 2006-12-11 2006-12-11 Shaft-shaped part, forging molding apparatus thereof, and forging molding method

Country Status (1)

Country Link
JP (1) JP5205751B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4819806B2 (en) * 1971-04-19 1973-06-16
JPH0821284B2 (en) * 1986-12-03 1996-03-04 田中貴金属工業株式会社 Lower mold for manufacturing rivet contacts with leg throttle
JPH0215845A (en) * 1988-06-30 1990-01-19 Honda Motor Co Ltd Forming method for cup-shaped part
JP3775573B2 (en) * 2001-05-18 2006-05-17 武蔵精密工業株式会社 Forging method of housing for joint member
JP4673090B2 (en) * 2005-03-03 2011-04-20 本田技研工業株式会社 Manufacturing method and punch of outer ring member for constant velocity joint

Also Published As

Publication number Publication date
JP2008142748A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
US5056219A (en) Method of manufacturing hollow engine valve
US20160067757A1 (en) Method and upsetting tool for producing highly dimensionally accurate half shells
US8127585B2 (en) Process for manufacturing outer ring member for constant-velocity joint
US20160001351A1 (en) Hollow drive shaft with flange and method for the production thereof
JP6212349B2 (en) Spark plug metal shell manufacturing method, spark plug metal shell manufacturing method, and spark plug manufacturing method
JP4819329B2 (en) Forging method, forged product and forging device
WO2006137198A1 (en) Method for producing outer ring member of constant velocity universal joint
JP2006192450A (en) Forging die for scroll, method for forging scroll and scroll
CN107708889A (en) Pipe yoke manufacturing equipment
US7588834B2 (en) Trimless forged products and method
EP1844875B1 (en) Method and device for upsetting cylindrical material
JP2006088197A (en) Manufacturing method for axial product with expanded head, manufacturing method for engine valve, and forging die used for manufacturing axial product with expanded head
JP5205751B2 (en) Shaft-shaped part, forging molding apparatus thereof, and forging molding method
US8011220B2 (en) Backward extrusion process for inner profiles
JP4899494B2 (en) Forging molding apparatus and forging molding method
JP6057830B2 (en) Hot forging die
US7347077B2 (en) Method of manufacturing outer ring member for constant velocity joint
JP6005610B2 (en) Release device for hollow shaft forgings
CN107438466A (en) Pipe yoke manufacture method
JP4856889B2 (en) Cold forging method
JP4956113B2 (en) Manufacturing method of outer member for constant velocity joint
JP6992321B2 (en) Hollow shaft manufacturing method
JP3544479B2 (en) Barfield type constant velocity joint forging method and apparatus
JP2000343171A (en) Forward extrusion forging method
JP7279575B2 (en) Perforated member manufacturing method, perforated member manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150