JP5202460B2 - Activated carbon and electric double layer capacitor using the activated carbon - Google Patents

Activated carbon and electric double layer capacitor using the activated carbon Download PDF

Info

Publication number
JP5202460B2
JP5202460B2 JP2009169473A JP2009169473A JP5202460B2 JP 5202460 B2 JP5202460 B2 JP 5202460B2 JP 2009169473 A JP2009169473 A JP 2009169473A JP 2009169473 A JP2009169473 A JP 2009169473A JP 5202460 B2 JP5202460 B2 JP 5202460B2
Authority
JP
Japan
Prior art keywords
activated carbon
less
pore
double layer
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009169473A
Other languages
Japanese (ja)
Other versions
JP2011020907A (en
Inventor
尚一 竹中
純一 安丸
徳康 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MC EVOLVE TECHNOLOGIES CORPORATION
Kansai Coke and Chemicals Co Ltd
Original Assignee
MC EVOLVE TECHNOLOGIES CORPORATION
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MC EVOLVE TECHNOLOGIES CORPORATION, Kansai Coke and Chemicals Co Ltd filed Critical MC EVOLVE TECHNOLOGIES CORPORATION
Priority to JP2009169473A priority Critical patent/JP5202460B2/en
Publication of JP2011020907A publication Critical patent/JP2011020907A/en
Application granted granted Critical
Publication of JP5202460B2 publication Critical patent/JP5202460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide activated carbon which satisfies both of the adsorption amount and the moving speed of an adsorbate in a good balance. <P>SOLUTION: The activated carbon is characterized in that the BET specific surface area is 1,000-3,000 m<SP>2</SP>/g, the area ratio of pores each having a pore diameter of 1.0-2.0 nm in the BET specific surface area is &ge;40%, and the volume ratio of pores each having pore diameter of &gt;2.0 nm and &lt;50.0 nm in the total pore volume is &ge;40%. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、ミクロ孔およびメソ孔の両方を有する活性炭に関するものである。   The present invention relates to activated carbon having both micropores and mesopores.

活性炭は、高い比表面積を有することから吸着用途などに用いられている。また、近年では、電気二重層キャパシタ用電極などの電子材料としての用途にも用いられている。活性炭は、直径2.0nm以下のミクロ孔を多く有するため、他の多孔質材料に比べて比表面積が高いという特徴を有する。しかし、ミクロ孔は細孔容積当たりの比表面積が高くなるが、その孔径が小さいため、吸着剤に用いた場合には吸着物質の細孔内への移動が遅く、また電気二重層キャパシタ用電極に用いた場合には電解質イオンの拡散・移動が遅い。従って、高い比表面積を有していても微細な細孔内の吸着サイトを充分に生かしきれていなかった。   Activated carbon is used for adsorption and the like because of its high specific surface area. In recent years, it is also used for electronic materials such as electrodes for electric double layer capacitors. Since activated carbon has many micropores having a diameter of 2.0 nm or less, it has a feature that the specific surface area is higher than other porous materials. However, micropores have a high specific surface area per pore volume, but their pore size is small, so when used as an adsorbent, the movement of adsorbent into the pores is slow, and the electrode for electric double layer capacitors When it is used for electrolyte, diffusion and movement of electrolyte ions are slow. Therefore, even if it has a high specific surface area, the adsorption sites in the fine pores were not fully utilized.

このような問題を解決するために、単純に個々の細孔径を大きくすることにより、吸着物質や電解質イオンの細孔内への拡散速度を向上させることが考えられる。しかし、単に細孔径を大きくした場合には、細孔容積当たりの比表面積が低下してしまい、活性炭質量もしくは活性炭体積当たりの吸着量、静電容量が低下する。そこで、活性炭の吸着量を向上させる微細な細孔と、物質移動を速やかに行う比較的大きな細孔を有する活性炭が、種々提案されている。   In order to solve such a problem, it is conceivable to increase the diffusion rate of adsorbed substances and electrolyte ions into the pores by simply increasing the diameter of each pore. However, when the pore diameter is simply increased, the specific surface area per pore volume decreases, and the mass of activated carbon, the amount of adsorption per activated carbon volume, and the capacitance decrease. Therefore, various types of activated carbon having fine pores for improving the amount of adsorption of activated carbon and relatively large pores for rapid mass transfer have been proposed.

例えば、特許文献1には、クランストン−インクレイ法により測定された細孔径の分布が、1.0〜2.0nmと2.0nm〜10.0nmの間に各々ピークを有する活性炭が開示されている。特許文献2には、細孔径分布において、細孔直径が1.0〜4.0nmの範囲に少なくとも1個のピークと細孔直径が0.6〜0.9nmの範囲に少なくとも1個のピークを備え、細孔直径が1.0〜5.0nmの大口径細孔の内表面に細孔直径が0.6〜0.9nmの小口径細孔が形成されている活性炭が開示されている。特許文献3には、細孔容積が0.01ml/g以上0.2ml/g以下であって、細孔直径が10.0〜30.0nmの細孔容積(A)と、細孔直径が2.0〜3.0nmの細孔容積(B)の比(A/B)が0.6以上である活性炭が開示されている。   For example, Patent Document 1 discloses activated carbon in which the pore size distribution measured by the Cranston-Inclay method has a peak between 1.0 to 2.0 nm and 2.0 nm to 10.0 nm, respectively. Yes. In Patent Document 2, in the pore size distribution, at least one peak in the pore diameter range of 1.0 to 4.0 nm and at least one peak in the pore diameter range of 0.6 to 0.9 nm are disclosed. And activated carbon in which small-diameter pores having a pore diameter of 0.6 to 0.9 nm are formed on the inner surface of large-diameter pores having a pore diameter of 1.0 to 5.0 nm. . Patent Document 3 discloses a pore volume (A) having a pore volume of 0.01 ml / g or more and 0.2 ml / g or less, a pore diameter of 10.0 to 30.0 nm, and a pore diameter of An activated carbon having a pore volume (B) ratio of 2.0 to 3.0 nm (A / B) of 0.6 or more is disclosed.

特許文献4には、細孔容積分布において、細孔径2.1〜2.4nmの範囲、1.7〜2.1nmの範囲、1.4〜1.7nmの範囲、1.1〜1.4nmの範囲にそれぞれピークを有する活性炭が開示されている。特許文献5には、細孔分布曲線において、少なくとも4.0nm未満に少なくとも2つ以上のピークトップを有し、比表面積が1200〜2500m2/gである活性炭が開示されている。特許文献6には、孔径が2.0以上50.0nm未満のメソ細孔の比表面積が100〜2500m2/gであり、且つ孔径が2.0nm未満のミクロ細孔の比表面積が600〜2500m2/gであり、全細孔容積に対するメソ細孔容積の比率が10〜40%である繊維状活性炭が開示されている。 In Patent Document 4, in the pore volume distribution, a pore diameter range of 2.1 to 2.4 nm, a range of 1.7 to 2.1 nm, a range of 1.4 to 1.7 nm, and a 1.1 to 1. Activated carbon having a peak in the range of 4 nm is disclosed. Patent Document 5 discloses activated carbon having at least two peak tops at least less than 4.0 nm and a specific surface area of 1200 to 2500 m 2 / g in a pore distribution curve. In Patent Document 6, the specific surface area of mesopores having a pore diameter of 2.0 or more and less than 50.0 nm is 100-2500 m 2 / g, and the specific surface area of micropores having a pore diameter of less than 2.0 nm is 600- Fibrous activated carbon with 2500 m 2 / g and a mesopore volume to total pore volume ratio of 10-40% is disclosed.

特開平9−328308号公報JP-A-9-328308 特開2000−351613号公報JP 2000-351613 A 特開2006−143494号公報JP 2006-143494 A 特開2007−186411号公報JP 2007-186411 A 特開2007−269552号公報JP 2007-269552 A 特開2008−149267号公報JP 2008-149267 A

上記特許文献1〜6のように、微細な細孔と、比較的大きな細孔とを有する活性炭が提案されている。しかし、吸着量と吸着物質の移動速度とを両立させる観点から、活性炭に形成される直径2.0nm以下のミクロ孔と直径2.0nm超50nm未満のメソ孔との存在比率には、未だ検討の余地があった。   As in Patent Documents 1 to 6, activated carbon having fine pores and relatively large pores has been proposed. However, from the viewpoint of achieving both the amount of adsorption and the moving speed of the adsorbed material, the existence ratio of micropores having a diameter of 2.0 nm or less and mesopores having a diameter of more than 2.0 nm and less than 50 nm formed on activated carbon has not yet been examined. There was room for.

本発明は上記事情に鑑みてなされたものであり、吸着量と吸着物質の移動速度とをバランスよく両立させた活性炭を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the activated carbon which made the adsorption amount and the moving speed of adsorption material balance compatible.

上記課題を解決することができた本発明の活性炭は、BET比表面積が1000m2/g以上3000m2/g以下であり、細孔径1.0nm以上2.0nm以下の細孔のBET比表面積中の面積比率が40%以上、かつ、細孔径2.0nm超50.0nm未満の細孔の全細孔容積中の容積比率が40%以上であることを特徴とする。前記活性炭は、細孔径10.0nm以上50.0nm未満の細孔の全細孔容積中の容積比率が8%以上であることが好ましい。 The activated carbon of the present invention that has solved the above problems has a BET specific surface area of 1000 m 2 / g or more and 3000 m 2 / g or less, and has a pore diameter of 1.0 nm or more and 2.0 nm or less in the BET specific surface area of the pores. And the volume ratio in the total pore volume of pores having a pore diameter of more than 2.0 nm and less than 50.0 nm is 40% or more. The activated carbon preferably has a volume ratio of 8% or more in the total pore volume of pores having a pore diameter of 10.0 nm or more and less than 50.0 nm.

また、前記活性炭は、窒素吸着法により測定した細孔分布図(縦軸:log微分細孔容積dV/dlogD(cm3/g)、横軸:細孔径D(nm))において、細孔径1.0nm以上2.0nm以下の範囲に最大ピークを有することが好ましい。さらに、前記細孔分布図において、細孔径が3.0nm、4.0nmおよび10.0nmのときのlog微分細孔容積の値をそれぞれV3、V4およびV10としたとき、V10/V3≧0.4、かつ、V10/V4≧0.5であることが好ましい。 The activated carbon has a pore size of 1 in a pore distribution diagram (vertical axis: log differential pore volume dV / dlogD (cm 3 / g), horizontal axis: pore diameter D (nm)) measured by a nitrogen adsorption method. It is preferable to have a maximum peak in the range of not less than 0.0 nm and not more than 2.0 nm. Further, in the pore distribution diagram, when the log differential pore volume values when the pore diameter is 3.0 nm, 4.0 nm and 10.0 nm are V 3 , V 4 and V 10 , respectively, V 10 / It is preferable that V 3 ≧ 0.4 and V 10 / V 4 ≧ 0.5.

前記活性炭の平均細孔径は2.0nm以上3.0nm以下が好ましい。   The average pore diameter of the activated carbon is preferably 2.0 nm or more and 3.0 nm or less.

また、本発明には、前記活性炭を含有する電気二重層キャパシタ用電極材料、該電極材料を用いた電気二重層キャパシタ用電極、ならびに、該電極を用いた電気二重層キャパシタも含まれる。   The present invention also includes an electrode material for an electric double layer capacitor containing the activated carbon, an electrode for an electric double layer capacitor using the electrode material, and an electric double layer capacitor using the electrode.

本発明の活性炭は、ミクロ孔とメソ孔とをバランスよく有しているため、吸着量と吸着物質の移動速度とがバランスよく両立されている。そのため、例えば、本発明の活性炭を電極材料に用いれば、静電容量および内部抵抗に優れた電気二重層キャパシタが得られる。   Since the activated carbon of the present invention has micropores and mesopores in a well-balanced manner, the amount of adsorption and the moving speed of the adsorbed material are balanced. Therefore, for example, when the activated carbon of the present invention is used as an electrode material, an electric double layer capacitor excellent in capacitance and internal resistance can be obtained.

活性炭No.1〜5の細孔分布図である。Activated carbon No. It is a pore distribution map of 1-5. 活性炭No.3、6、7の細孔分布図である。Activated carbon No. 3 is a pore distribution diagram of 3, 6, and 7. FIG. 活性炭No.3、8、9の細孔分布図である。Activated carbon No. 3 is a pore distribution diagram of 3, 8, and 9. FIG. 活性炭No.3、10、11の細孔分布図である。Activated carbon No. 3 is a pore distribution diagram of 3, 10, and 11. FIG. 実施例の活性炭を使用して製造した電気二重層キャパシタを説明するための図である。It is a figure for demonstrating the electric double layer capacitor manufactured using the activated carbon of an Example.

本発明の活性炭は、高比表面積を有し、細孔径1.0nm以上2.0nm以下の細孔(以下、「ミクロ孔」と称する場合がある)と、細孔径2.0nm超50.0nm未満の細孔(以下、「メソ孔」と称する場合がある)をバランスよく有することを特徴とする。吸着サイトとして作用するミクロ孔と、吸着物質の移動経路となるメソ孔とをバランスよく存在させることで、活性炭内での吸着物質の拡散、移動が早くなり、かつ、細孔深部に存在する吸着サイトまでも十分に生かすことができる。そのため、例えば、本発明の活性炭を電気二重層キャパシタ用電極材料として用いた場合、静電容量が高く、かつ、内部抵抗の低い電気二重層キャパシタが得られる。また、本発明の活性炭をガス吸着剤、浄水用吸着剤、排水浄化用吸着剤などの吸着剤として用いれば、吸着容量および吸着速度を向上させることができる。   The activated carbon of the present invention has a high specific surface area, a pore having a pore diameter of 1.0 nm or more and 2.0 nm or less (hereinafter sometimes referred to as “micropore”), a pore diameter of more than 2.0 nm and 50.0 nm. It is characterized by having a well-balanced number of pores (hereinafter sometimes referred to as “mesopores”) of less than. Adsorption in the deep pores of the adsorbed material is accelerated by allowing the adsorbed material to diffuse and move more quickly in the activated carbon by making the micropores acting as the adsorption site and the mesopores, which serve as the movement route of the adsorbed material, in good balance. Even the site can be fully utilized. Therefore, for example, when the activated carbon of the present invention is used as an electrode material for an electric double layer capacitor, an electric double layer capacitor having a high capacitance and a low internal resistance can be obtained. Further, when the activated carbon of the present invention is used as an adsorbent such as a gas adsorbent, an adsorbent for water purification, and an adsorbent for wastewater purification, the adsorption capacity and the adsorption rate can be improved.

以下、本発明の活性炭について具体的に説明する。   Hereinafter, the activated carbon of the present invention will be specifically described.

前記活性炭のBET比表面積(Stotal)は1000m2/g以上3000m2/g以下である。BET比表面積が1000m2/g未満では、活性炭の吸着能力が低くなる。そのため、例えば、活性炭を電気二重層キャパシタ用電極に用いた場合に十分な質量当たりの静電容量(F/g)が得られない。また、BET比表面積が3000m2/gを超えると活性炭の密度が低下し過ぎる。そのため、例えば、活性炭を電気二重層キャパシタ用電極に用いた場合に体積当たりの静電容量(F/cm3)が低下する。前記BET比表面積は1200m2/g以上が好ましく、より好ましくは1500m2/g以上であり、2500m2/g以下が好ましく、より好ましくは2200m2/g以下である。 The activated carbon has a BET specific surface area (S total ) of 1000 m 2 / g or more and 3000 m 2 / g or less. When the BET specific surface area is less than 1000 m 2 / g, the adsorption ability of the activated carbon becomes low. Therefore, for example, when activated carbon is used for the electrode for an electric double layer capacitor, a sufficient capacitance per unit mass (F / g) cannot be obtained. On the other hand, if the BET specific surface area exceeds 3000 m 2 / g, the density of the activated carbon is excessively lowered. Therefore, for example, when activated carbon is used for an electrode for an electric double layer capacitor, the capacitance per volume (F / cm 3 ) is lowered. The BET specific surface area is preferably 1200 m 2 / g or more, more preferably 1500 m 2 / g or more, preferably 2500 m 2 / g or less, more preferably 2200 m 2 / g or less.

前記活性炭は、BET比表面積(Stotal)中における細孔径1.0nm以上2.0nm以下である細孔のBET比表面積(S1-2)の面積比率が40%以上である。BET比表面積中のミクロ孔の面積比率が40%未満では、吸着サイトとして作用するミクロ孔の比率が低くなり過ぎる。そのため、例えば、電気二重層キャパシタ用電極に用いた場合に十分な質量当たりの静電容量(F/g)が得られない。前記BET比表面積中のミクロ孔の面積比率は、50%以上が好ましく、より好ましくは60%以上である。BET比表面積中のミクロ孔の面積比率の上限は、メソ孔の面積比率により変化するが、通常80%である。 The activated carbon has an area ratio of a BET specific surface area (S 1-2 ) of pores having a pore diameter of 1.0 nm to 2.0 nm in a BET specific surface area (S total ) of 40% or more. When the area ratio of micropores in the BET specific surface area is less than 40%, the ratio of micropores acting as adsorption sites becomes too low. Therefore, for example, when used as an electrode for an electric double layer capacitor, a sufficient capacitance per unit mass (F / g) cannot be obtained. The area ratio of the micropores in the BET specific surface area is preferably 50% or more, more preferably 60% or more. The upper limit of the area ratio of micropores in the BET specific surface area varies depending on the area ratio of mesopores, but is usually 80%.

また、前記活性炭は、BET比表面積(Stotal)中における細孔径2.0nm超50.0nm未満である細孔のBET比表面積(S2-50)の面積比率が40%以下であることが好ましく、より好ましくは36%以下、さらに好ましくは32%以下である。前記BET比表面積中のメソ孔の面積比率が40%以下であれば、相対的にミクロ孔の面積比率が増大する。そのため、例えば、電気二重層キャパシタ用電極に用いた場合に、質量当たりの静電容量(F/g)がより良好となる。BET比表面積中のメソ孔の面積比率の下限は、通常20%である。 The activated carbon may have an area ratio of a BET specific surface area (S 2-50 ) of pores having a pore diameter of more than 2.0 nm and less than 50.0 nm in the BET specific surface area (S total ) of 40% or less. Preferably, it is 36% or less, more preferably 32% or less. If the area ratio of mesopores in the BET specific surface area is 40% or less, the area ratio of micropores is relatively increased. Therefore, for example, when used for an electrode for an electric double layer capacitor, the capacitance per unit mass (F / g) becomes better. The lower limit of the area ratio of mesopores in the BET specific surface area is usually 20%.

前記活性炭の全細孔容積(Vtotal)は、0.7cm3/g以上が好ましく、より好ましくは0.8cm3/g以上、さらに好ましくは0.9cm3/g以上であり、3.0cm3/g以下が好ましく、より好ましくは2.5cm3/g以下、さらに好ましくは2.0cm3/g以下である。 Total pore volume of the activated carbon (V total) is preferably at least 0.7 cm 3 / g, more preferably 0.8 cm 3 / g or more, more preferably 0.9 cm 3 / g or more, 3.0 cm 3 / g or less is preferable, More preferably, it is 2.5 cm < 3 > / g or less, More preferably, it is 2.0 cm < 3 > / g or less.

前記活性炭は、全細孔容積(Vtotal)中における細孔径2.0nm超50.0nm未満の細孔の細孔容積(V2-50)の容積比率が40%以上である。全細孔容積中のメソ孔の容積比率が40%未満では、吸着物質の移動経路となるメソ孔の比率が低くなり過ぎる。そのため、例えば、電気二重層キャパシタ用電極に用いた場合に内部抵抗が増大する。前記全細孔容積中のメソ孔の容積比率は45%以上が好ましく、より好ましくは50%以上である。全細孔容積中のメソ孔の容積比率の上限は、ミクロ孔の容積比率により変化するが、通常70%である。 The activated carbon has a volume ratio of the pore volume (V 2-50 ) of pores having a pore diameter of more than 2.0 nm and less than 50.0 nm in the total pore volume (V total ) of 40% or more. If the volume ratio of mesopores in the total pore volume is less than 40%, the ratio of mesopores that become the migration path of the adsorbed material becomes too low. Therefore, for example, when used for an electric double layer capacitor electrode, the internal resistance increases. The volume ratio of mesopores in the total pore volume is preferably 45% or more, more preferably 50% or more. The upper limit of the volume ratio of mesopores in the total pore volume varies depending on the volume ratio of micropores, but is usually 70%.

前記活性炭は、全細孔容積(Vtotal)中における細孔径10.0nm以上50.0nm未満である細孔(以下、「大径メソ孔」と称する場合がある)の細孔容積(V10-50)の容積比率が8%以上であることが好ましく、より好ましくは10%以上、さらに好ましくは12%以上である。全細孔容積中の大径メソ孔の容積比率が8%以上であれば、大きな内径を有する移動経路が増加するため、活性炭内部での吸着物質の移動、拡散がより容易となる。そのため、例えば、電気二重層キャパシタ用電極に用いた場合、内部抵抗がより低減する。全細孔容積中の大径メソ孔の容積比率は20%以下が好ましい。 The activated carbon has a pore volume (V 10 ) of pores (hereinafter sometimes referred to as “large diameter mesopores”) having a pore diameter of 10.0 nm or more and less than 50.0 nm in the total pore volume (V total ). -50 ) is preferably 8% or more, more preferably 10% or more, and even more preferably 12% or more. If the volume ratio of the large-diameter mesopores in the total pore volume is 8% or more, the movement path having a large inner diameter increases, so that the adsorbed substance can be moved and diffused inside the activated carbon more easily. Therefore, for example, when used for an electrode for an electric double layer capacitor, the internal resistance is further reduced. The volume ratio of large diameter mesopores in the total pore volume is preferably 20% or less.

前記活性炭の平均細孔径は2.0nm以上が好ましく、より好ましくは2.1nm以上、さらに好ましくは2.2nm以上であり、3.0nm以下が好ましく、より好ましくは2.6nm以下、さらに好ましくは2.4nm以下である。前記平均細孔径が上記範囲内であれば、吸着物質が活性炭から出入りしやすくなる。そのため、例えば、電気二重層キャパシタ用電極に用いた場合に急速充放電特性が向上する。   The average pore diameter of the activated carbon is preferably 2.0 nm or more, more preferably 2.1 nm or more, still more preferably 2.2 nm or more, preferably 3.0 nm or less, more preferably 2.6 nm or less, still more preferably 2.4 nm or less. When the average pore diameter is within the above range, the adsorbed material easily enters and exits the activated carbon. Therefore, for example, when used as an electrode for an electric double layer capacitor, rapid charge / discharge characteristics are improved.

前記活性炭は、窒素吸着法により測定した細孔分布図(縦軸:log微分細孔容積dV/dlogD(cm3/g)、横軸:細孔径D(nm))において、細孔径1.0nm以上2.0nm以下の範囲に最大ピークを有することが好ましい。前記細孔分布図においてミクロ孔領域に最大ピークを有していれば、活性炭がミクロ孔を多く有していることとなり、吸着サイトを多く有することとなる。なお、前記細孔分布図においてメソ孔領域に最大ピークを有する活性炭では、メソ孔の存在比率が高く、比表面積が低くなる傾向がある。 The activated carbon has a pore diameter of 1.0 nm in a pore distribution diagram (vertical axis: log differential pore volume dV / dlogD (cm 3 / g), horizontal axis: pore diameter D (nm)) measured by a nitrogen adsorption method. It is preferable to have a maximum peak in the range of 2.0 nm or less. If the pore distribution diagram has the maximum peak in the micropore region, the activated carbon has many micropores and many adsorption sites. In the pore distribution diagram, activated carbon having a maximum peak in the mesopore region tends to have a high mesopore ratio and a low specific surface area.

また、前記細孔分布図において、細孔径が3.0nm、4.0nmおよび10.0nmのときのlog微分細孔容積の値をそれぞれV3、V4およびV10としたとき、V10/V3≧0.4、かつ、V10/V4≧0.5であることが好ましい。V10/V3およびV10/V4が上記範囲であれば、ミクロ孔とメソ孔とが効率よく連通し、例えば、電気二重層キャパシタ用として使用した際には、電解液やイオン類などの多孔質炭素内部への拡散性が高くなり、その結果、イオンの吸着量が多くなって静電容量が高くなる。 In the pore distribution diagram, when the log differential pore volume values when the pore diameter is 3.0 nm, 4.0 nm, and 10.0 nm are V 3 , V 4, and V 10 , respectively, V 10 / It is preferable that V 3 ≧ 0.4 and V 10 / V 4 ≧ 0.5. If V 10 / V 3 and V 10 / V 4 are in the above ranges, the micropores and the mesopores communicate with each other efficiently. For example, when used as an electric double layer capacitor, an electrolyte, ions, etc. As a result, the amount of ions adsorbed increases and the capacitance increases.

次に、上記活性炭の製造方法について説明する。上記活性炭は、賦活原料に賦活処理することで製造できる。ここで、「賦活処理」とは、賦活原料の表面に細孔を形成して、比表面積および細孔容積を大きくする処理である。賦活処理としては、薬品賦活、ガス賦活のいずれも採用することができ、薬品賦活およびガス賦活の両方を行ってもよい。また、賦活処理は一回のみ行ってもよいし、複数回行ってもよい。賦活原料は、通常の活性炭の原料として用いられるものであれば、特に限定されない。   Next, the manufacturing method of the said activated carbon is demonstrated. The activated carbon can be produced by activating the activated raw material. Here, the “activation process” is a process for forming pores on the surface of the activation raw material to increase the specific surface area and the pore volume. As the activation treatment, both chemical activation and gas activation can be employed, and both chemical activation and gas activation may be performed. Moreover, the activation process may be performed only once or multiple times. An activation raw material will not be specifically limited if it is used as a raw material of normal activated carbon.

なお、上記活性炭の製造方法としては、比較的大きい細孔(メソ孔)が形成されやすい賦活原料(以下、「メソ孔形成原料」と称する場合がある)と比較的小さい細孔(ミクロ孔)が形成されやすい賦活原料(以下、「ミクロ孔形成原料」と称する場合がある)との複合物を、水蒸気賦活することが好適である。賦活原料として、メソ孔形成原料とミクロ孔形成原料との複合物を用いれば、賦活処理を複数回行うことなく、一回の賦活処理でミクロ孔とメソ孔とをバランスよく有する活性炭が得られる。   In addition, as the manufacturing method of the activated carbon, an activation raw material in which relatively large pores (mesopores) are easily formed (hereinafter may be referred to as “mesopore forming raw material”) and relatively small pores (micropores). It is preferable to steam-activate a composite with an activation raw material (hereinafter sometimes referred to as a “micropore forming raw material”) that is easily formed. If a composite of mesopore-forming raw material and micropore-forming raw material is used as the activation raw material, activated carbon having a good balance of micropores and mesopores can be obtained by a single activation treatment without performing the activation treatment multiple times. .

前記メソ孔形成原料としては、例えば、紙、綿繊維、木質材料などのセルロース系原料などが挙げられる。前記ミクロ孔形成原料としては、例えば、フェノール樹脂、フラン樹脂などの合成樹脂系原料などが挙げられる。これらのメソ孔形成原料、ミクロ孔形成原料は、それぞれ少なくとも1種以上使用する。なお、メソ孔形成原料とミクロ孔形成原料との配合比は、所望とする活性炭の物性に応じて適宜変更すればよい。メソ孔形成原料とミクロ孔形成原料との複合物としては、例えば、紙フェノール樹脂積層板などが挙げられる。   Examples of the mesopore forming raw material include cellulosic raw materials such as paper, cotton fiber, and woody material. Examples of the micropore forming raw material include synthetic resin raw materials such as phenol resin and furan resin. At least one or more of these mesopore forming raw materials and micropore forming raw materials are used. In addition, what is necessary is just to change suitably the compounding ratio of a mesopore formation raw material and a micropore formation raw material according to the physical property of the desired activated carbon. Examples of the composite of the mesopore-forming raw material and the micropore-forming raw material include a paper phenolic resin laminate.

前記メソ孔形成原料とミクロ孔形成原料との混合物または複合物は、炭化処理して用いることが好ましい。前記炭化処理は、通常、不活性ガス雰囲気下で加熱処理することによりなされる。該炭化処理の温度は、500℃以上が好ましく、より好ましくは550℃以上であり、850℃以下が好ましく、より好ましくは800℃以下である。   The mixture or composite of the mesopore forming raw material and the micropore forming raw material is preferably used after being carbonized. The carbonization treatment is usually performed by heat treatment in an inert gas atmosphere. The carbonization temperature is preferably 500 ° C. or higher, more preferably 550 ° C. or higher, preferably 850 ° C. or lower, more preferably 800 ° C. or lower.

水蒸気賦活に用いる前記メソ孔形成原料とミクロ孔形成原料との混合物または複合物、あるいはその炭化物の平均粒子径は1μm以上が好ましく、より好ましくは3μm以上、さらに好ましくは5μm以上であり、10cm以下が好ましく、より好ましくは7cm以下、さらに好ましくは5cm以下である。ここで、本願において平均粒子径とは、水に分散させた試料を、レーザ回折式粒度分布測定装置(例えば、島津製作所製の「SALD(登録商標)−2000」)により測定して、求められる体積平均粒子径である。なお、賦活原料の平均粒子径は粉砕により調整すればよい。また、賦活原料の平均粒子径が200μm以上の場合は、篩を用いて整粒すればよい。   The average particle size of the mixture or composite of the mesopore-forming raw material and the micropore-forming raw material used for steam activation, or the carbide thereof is preferably 1 μm or more, more preferably 3 μm or more, further preferably 5 μm or more, and 10 cm or less. Is more preferably 7 cm or less, and further preferably 5 cm or less. Here, in the present application, the average particle size is obtained by measuring a sample dispersed in water with a laser diffraction particle size distribution measuring device (for example, “SALD (registered trademark) -2000” manufactured by Shimadzu Corporation). Volume average particle size. In addition, what is necessary is just to adjust the average particle diameter of an activation raw material by a grinding | pulverization. Moreover, what is necessary is just to size-size using a sieve, when the average particle diameter of an activation raw material is 200 micrometers or more.

前記水蒸気賦活では、賦活原料を所定の温度まで加熱した後、水蒸気を供給することにより賦活処理を行う。賦活原料の加熱は、不活性ガス雰囲気で行うことが好ましい。なお、不活性ガスとしては、窒素、アルゴン、ヘリウムなどを用いることができる。   In the steam activation, the activation raw material is heated to a predetermined temperature and then activated by supplying steam. It is preferable to heat the activation raw material in an inert gas atmosphere. Note that nitrogen, argon, helium, or the like can be used as the inert gas.

賦活処理を行う際の温度(炉内温度)は400℃以上が好ましく、より好ましくは450℃以上であり、1500℃以下が好ましく、より好ましくは1300℃以下である。また、賦活処理を行う際の加熱時間は0.5時間以上が好ましく、より好ましくは1.0時間以上であり、10時間以下が好ましく、より好ましくは5時間以下である。   The temperature at the time of activation treatment (furnace temperature) is preferably 400 ° C. or higher, more preferably 450 ° C. or higher, preferably 1500 ° C. or lower, more preferably 1300 ° C. or lower. Moreover, the heating time at the time of performing an activation process has preferable 0.5 hours or more, More preferably, it is 1.0 hours or more, 10 hours or less are preferable, More preferably, it is 5 hours or less.

賦活処理中に供給する水蒸気の総量は、賦活原料100質量部に対して50質量部以上が好ましく、より好ましくは100質量部以上、さらに好ましくは200質量部以上であり、10000質量部以下とすることが好ましく、より好ましくは5000質量部以下、さらに好ましくは3000質量部以下である。供給する水蒸気の総量が賦活原料100質量部に対して50質量部以上であれば、賦活反応による細孔形成がより良好となり、10000質量部以下であれば、賦活反応がより効率良く進行し、生産性を向上できる。   50 mass parts or more are preferable with respect to 100 mass parts of activation raw materials, as for the total amount of the water vapor | steam supplied during an activation process, More preferably, it is 100 mass parts or more, More preferably, it is 200 mass parts or more, and shall be 10000 mass parts or less. More preferably, it is 5000 parts by mass or less, and still more preferably 3000 parts by mass or less. If the total amount of water vapor to be supplied is 50 parts by mass or more with respect to 100 parts by mass of the activation raw material, pore formation by the activation reaction is better, and if it is 10000 parts by mass or less, the activation reaction proceeds more efficiently. Productivity can be improved.

水蒸気を供給する態様としては、水蒸気を希釈せずに供給する態様、水蒸気を不活性ガスで希釈して供給する態様のいずれも可能であるが、賦活反応を効率良く進行させるために、不活性ガスで希釈して供給する態様が好ましい。水蒸気を不活性ガスで希釈して供給する場合、該混合ガス(全圧101.3kPa)中の水蒸気分圧は40kPa以上が好ましく、より好ましくは50kPa以上、さらに好ましくは70kPa以上である。   As an aspect for supplying water vapor, either an aspect for supplying water vapor without dilution or an aspect for supplying water vapor diluted with an inert gas can be used, but in order to advance the activation reaction efficiently, it is inactive. An embodiment in which the gas is supplied after being diluted with gas is preferable. When supplying water vapor diluted with an inert gas, the water vapor partial pressure in the mixed gas (total pressure 101.3 kPa) is preferably 40 kPa or more, more preferably 50 kPa or more, and further preferably 70 kPa or more.

水蒸気賦活後の活性炭は、さらに洗浄、熱処理、粉砕を行ってもよい。洗浄は、水蒸気賦活後の活性炭を、水、酸、有機溶剤などの溶媒を用いて行う。活性炭を洗浄することにより、金属不純物、灰分、有機溶剤可溶成分などを除去することができる。熱処理は、水蒸気賦活後あるいは洗浄後の活性炭を、さらに不活性ガス雰囲気下で加熱する。活性炭を熱処理することにより、活性炭の表面の官能基量を調整することができる。粉砕は、ディスクミル、ボールミル、ビーズミルなどを用いて行う。なお、活性炭の粒子径は、用途に応じて適宜調整すればよい。   The activated carbon after steam activation may be further washed, heat-treated and pulverized. Washing is performed using activated carbon after steam activation using a solvent such as water, an acid, or an organic solvent. By washing the activated carbon, metal impurities, ash, organic solvent soluble components and the like can be removed. In the heat treatment, the activated carbon after steam activation or after washing is further heated in an inert gas atmosphere. The amount of functional groups on the surface of the activated carbon can be adjusted by heat treating the activated carbon. The pulverization is performed using a disk mill, a ball mill, a bead mill or the like. In addition, what is necessary is just to adjust the particle diameter of activated carbon suitably according to a use.

次に、本発明の電気二重層キャパシタについて説明する。本発明の電気二重層キャパシタは、前記活性炭を用いたことを特徴とする。   Next, the electric double layer capacitor of the present invention will be described. The electric double layer capacitor of the present invention is characterized by using the activated carbon.

電気二重層キャパシタ用電極としては、例えば、活性炭、導電性付与剤、およびバインダーを混練し、さらに溶媒を添加してペーストを調製し、このペーストをアルミ箔などの集電板に塗布した後、溶媒を乾燥除去したものが挙げられる。   As an electrode for an electric double layer capacitor, for example, knead activated carbon, a conductivity imparting agent, and a binder, further add a solvent to prepare a paste, and after applying this paste to a current collector plate such as an aluminum foil, What removed the solvent by drying is mentioned.

前記電気二重層キャパシタ用電極に使用されるバインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系高分子化合物や、カルボキシメチルセルロース、スチレン−ブタジエンゴム、石油ピッチ、フェノール樹脂などを使用できる。また、導電性付与剤としては、アセチレンブラック、ケッチェンブラックなどを使用できる。   As the binder used for the electrode for the electric double layer capacitor, fluorine-based polymer compounds such as polytetrafluoroethylene and polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber, petroleum pitch, phenol resin, and the like can be used. As the conductivity imparting agent, acetylene black, ketjen black, or the like can be used.

電気二重層キャパシタは、一般的には、電極、電解液、およびセパレータを主要構成とし、一対の電極間にセパレータを配置した構造となっている。前記電解液としては、例えば、プロピレンカーボネート、エチレンカーボネート、メチルエチルカーボネートなどの有機溶剤に、アミジン塩を溶解した電解液;過塩素酸の4級アンモニウム塩を溶解した電解液;4級アンモニウムやリチウムなどのアルカリ金属の四フッ化ホウ素塩や六フッ化リン塩を溶解した電解液;4級ホスホニウム塩を溶解した電解液などが挙げられる。また、前記セパレータとしては、例えば、セルロース、ガラス繊維、または、ポリエチレンやポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムが挙げられる。   An electric double layer capacitor generally has a structure in which an electrode, an electrolytic solution, and a separator are main components, and a separator is disposed between a pair of electrodes. Examples of the electrolytic solution include an electrolytic solution in which an amidine salt is dissolved in an organic solvent such as propylene carbonate, ethylene carbonate, and methyl ethyl carbonate; an electrolytic solution in which a quaternary ammonium salt of perchloric acid is dissolved; quaternary ammonium or lithium An electrolytic solution in which an alkali metal boron tetrafluoride salt or phosphorous hexafluoride salt is dissolved; an electrolytic solution in which a quaternary phosphonium salt is dissolved may be mentioned. Examples of the separator include cellulose, glass fiber, or a nonwoven fabric, cloth, or microporous film mainly composed of polyolefin such as polyethylene or polypropylene.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

比表面積、全細孔容積および平均細孔径の測定方法
活性炭0.2gを150℃にて真空加熱した後、窒素吸着装置(マイクロメリティックス社製、「ASAP−2400」)を用いて、吸着等温線を求め、BET法により比表面積、全細孔容積を算出した。また、活性炭に形成された細孔の形状をシリンダー状と仮定し、細孔径1.0nm〜30nmの範囲における細孔容積と比表面積に基づき、下記式(1)により平均細孔径を算出した。
Measuring method of specific surface area, total pore volume and average pore diameter After 0.2 g of activated carbon was heated under vacuum at 150 ° C., adsorption was performed using a nitrogen adsorption device (“ASAP-2400” manufactured by Micromeritics). An isotherm was determined, and the specific surface area and total pore volume were calculated by the BET method. Further, assuming that the shape of the pores formed in the activated carbon is cylindrical, the average pore size was calculated by the following formula (1) based on the pore volume and specific surface area in the pore size range of 1.0 nm to 30 nm.

電気二重層キャパシタ性能評価
静電容量
充放電装置(楠本化成社製、「ETAC(登録商標) Ver.4.4」)の充放電端子を電気二重層キャパシタの集電板に接続し、集電板間電圧が2.5Vになるまで40mAの定電流充電を行い、続けて、2.5Vの定電圧で30分間充電を行った。充電後、定電流(放電電流10mA)で電気二重層キャパシタの放電を行った。このとき、集電板間電圧がV1、V2となるまでに要した放電時間t1、t2を測定し、下記式(2)を用いて静電容量を求めた。得られた静電容量を、キャパシタ用電極における電極材料層中の活性炭質量で除することにより質量基準静電容量(F/g)を算出し、キャパシタ用電極における電極材料層の総体積で除することにより体積基準静電容量(F/cm3)を算出した。また、下記式(3)を用いて内部抵抗を求めた。なお、静電容量および内部抵抗の測定は、25℃および−30℃の温度下で行った。
Electric double layer capacitor performance evaluation Capacitance Charge / discharge device (Etamoto Kasei Co., Ltd., “ETAC (registered trademark) Ver. 4.4”) charge / discharge terminal is connected to the current collector plate of the electric double layer capacitor to collect current The battery was charged with a constant current of 40 mA until the voltage between the plates reached 2.5 V, and then charged with a constant voltage of 2.5 V for 30 minutes. After charging, the electric double layer capacitor was discharged with a constant current (discharge current 10 mA). At this time, the discharge times t1 and t2 required until the voltage between the current collector plates became V1 and V2 were measured, and the capacitance was obtained using the following formula (2). The mass-based capacitance (F / g) is calculated by dividing the obtained capacitance by the mass of activated carbon in the electrode material layer in the capacitor electrode, and divided by the total volume of the electrode material layer in the capacitor electrode. Thus, a volume-based capacitance (F / cm 3 ) was calculated. Moreover, internal resistance was calculated | required using following formula (3). The capacitance and internal resistance were measured at 25 ° C. and −30 ° C.


I:10(mA)
t1:電気二重層キャパシタ電圧がV1となるまでに要した放電時間(sec)
t2:電気二重層キャパシタ電圧がV2となるまでに要した放電時間(sec)
V1:2.0(V)
V2:1.0(V)

I: 10 (mA)
t1: Discharge time required for the electric double layer capacitor voltage to reach V1 (sec)
t2: Discharge time (sec) required for the electric double layer capacitor voltage to reach V2
V1: 2.0 (V)
V2: 1.0 (V)

1.活性炭の製造
製造例1
賦活原料として、紙フェノール樹脂積層板を炭化したもの(平均粒子径:5mm〜15mm)100gをロータリーキルン(タナカテック社製(容積:2.5L))内に投入し、窒素流通下(1L/分)で900℃まで昇温した(昇温速度:10℃/分)。
900℃に達してからロータリーキルン内に水蒸気(水蒸気分圧:71kPa)を窒素とともに供給して、2.0時間水蒸気賦活処理を行い活性炭No.1を得た。なお、供給する窒素の流量は1.0L/分とした。この時、水蒸気の総使用量は240g、すなわち賦活原料100質量部に対して240質量部とした。得られた活性炭を評価し、結果を表1に示した。
1. Production of activated carbon Production example 1
As an activation raw material, 100 g of carbonized paper phenolic resin laminate (average particle size: 5 mm to 15 mm) was put into a rotary kiln (Tanaka Tech Co., Ltd. (volume: 2.5 L)), and under nitrogen flow (1 L / min) ) To 900 ° C. (temperature increase rate: 10 ° C./min).
After reaching 900 ° C., steam (steam partial pressure: 71 kPa) was supplied together with nitrogen into the rotary kiln, and steam activation treatment was performed for 2.0 hours to obtain activated carbon No. 1 was obtained. The flow rate of nitrogen to be supplied was 1.0 L / min. At this time, the total amount of water vapor used was 240 g, that is, 240 parts by mass with respect to 100 parts by mass of the activation raw material. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例2
水蒸気賦活処理時間を3.0時間に変更したこと以外は製造例1と同様にして活性炭No.2を得た。この時、水蒸気の総使用量は360g、すなわち賦活原料100質量部に対して360質量部とした。得られた活性炭を評価し、結果を表1に示した。
Production Example 2
Activated carbon No. 1 was prepared in the same manner as in Production Example 1 except that the steam activation treatment time was changed to 3.0 hours. 2 was obtained. At this time, the total amount of steam used was 360 g, that is, 360 parts by mass with respect to 100 parts by mass of the activation raw material. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例3
水蒸気賦活処理時間を3.5時間に変更したこと以外は製造例1と同様にして活性炭No.3を得た。この時、水蒸気の総使用量は420g、すなわち賦活原料100質量部に対して420質量部とした。得られた活性炭を評価し、結果を表1に示した。
Production Example 3
Activated carbon No. 1 was prepared in the same manner as in Production Example 1 except that the steam activation treatment time was changed to 3.5 hours. 3 was obtained. At this time, the total amount of water vapor used was 420 g, that is, 420 parts by mass with respect to 100 parts by mass of the activation raw material. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例4
水蒸気賦活処理時間を4.0時間に変更したこと以外は製造例1と同様にして活性炭No.4を得た。この時、水蒸気の総使用量は480g、すなわち賦活原料100質量部に対して480質量部とした。得られた活性炭を評価し、結果を表1に示した。
Production Example 4
In the same manner as in Production Example 1 except that the steam activation treatment time was changed to 4.0 hours, activated carbon No. 4 was obtained. At this time, the total amount of water vapor used was 480 g, that is, 480 parts by mass with respect to 100 parts by mass of the activation raw material. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例5
水蒸気賦活処理時間を4.5時間に変更したこと以外は製造例1と同様にして活性炭No.5を得た。この時、水蒸気の総使用量は540g、すなわち賦活原料100質量部に対して540質量部とした。得られた活性炭を評価し、結果を表1に示した。
Production Example 5
Activated carbon No. 1 was prepared in the same manner as in Production Example 1 except that the steam activation treatment time was changed to 4.5 hours. 5 was obtained. At this time, the total amount of water vapor used was 540 g, that is, 540 parts by mass with respect to 100 parts by mass of the activation raw material. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例6
ロータリーキルン内に水蒸気を窒素とともに供給する際の水蒸気分圧を54kPaに変更したこと以外は製造例3と同様にして活性炭No.6を得た。なお、供給する窒素の流量は1.6L/分とした。この時、水蒸気の総使用量は300g、すなわち賦活原料100質量部に対して300質量部とした。得られた活性炭を評価し、結果を表1に示した。
Production Example 6
In the same manner as in Production Example 3 except that the water vapor partial pressure when supplying water vapor with nitrogen into the rotary kiln was changed to 54 kPa. 6 was obtained. The flow rate of nitrogen to be supplied was 1.6 L / min. At this time, the total amount of water vapor used was 300 g, that is, 300 parts by mass with respect to 100 parts by mass of the activation raw material. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例7
ロータリーキルン内に水蒸気を窒素とともに供給する際の水蒸気分圧を41kPaに変更したこと以外は製造例3と同様にして活性炭No.7を得た。なお、供給する窒素の流量は1.8L/分とした。この時、水蒸気の総使用量は200g、すなわち賦活原料100質量部に対して200質量部とした。得られた活性炭を評価し、結果を表1に示した。
Production Example 7
In the same manner as in Production Example 3 except that the water vapor partial pressure when supplying water vapor with nitrogen into the rotary kiln was changed to 41 kPa. 7 was obtained. The flow rate of nitrogen to be supplied was 1.8 L / min. At this time, the total amount of water vapor used was 200 g, that is, 200 parts by mass with respect to 100 parts by mass of the activation raw material. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例8
賦活原料の仕込み量を、125gに変更したこと以外は製造例3と同様にして活性炭No.8を得た。この時、水蒸気の総使用量は420g、すなわち賦活原料100質量部に対して336質量部とした。得られた活性炭を評価し、結果を表1に示した。
Production Example 8
Activated carbon No. 1 was prepared in the same manner as in Production Example 3 except that the charging amount of the activation raw material was changed to 125 g. 8 was obtained. At this time, the total amount of water vapor used was 420 g, that is, 336 parts by mass with respect to 100 parts by mass of the activation raw material. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例9
賦活原料の仕込み量を、150gに変更したこと以外は製造例3と同様にして活性炭No.9を得た。この時、水蒸気の総使用量は420g、すなわち賦活原料100質量部に対して280質量部とした。得られた活性炭を評価し、結果を表1に示した。
Production Example 9
Activated carbon No. 2 was prepared in the same manner as in Production Example 3 except that the amount of the activation raw material was changed to 150 g. 9 was obtained. At this time, the total amount of water vapor used was 420 g, that is, 280 parts by mass with respect to 100 parts by mass of the activation raw material. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例10
賦活原料として、フェノール樹脂(住友ベークライト社製)を炭化したもの(平均粒子径:5mm〜15mm)100gをロータリーキルン(タナカテック社製(容積:2.5L))内に投入し、窒素流通下(1L/分)で900℃まで昇温した(昇温速度:10℃/分)。
Production Example 10
As an activation raw material, 100 g of carbonized phenol resin (manufactured by Sumitomo Bakelite Co., Ltd.) (average particle diameter: 5 mm to 15 mm) is put into a rotary kiln (manufactured by Tanaka Tech Co., Ltd. (volume: 2.5 L)), under nitrogen circulation ( The temperature was raised to 900 ° C. at 1 L / min (temperature raising rate: 10 ° C./min).

900℃に達してからロータリーキルン内に水蒸気(水蒸気分圧:71kPa)を窒素とともに供給して、4.0時間水蒸気賦活処理を行い活性炭No.10を得た。この時、水蒸気の総使用量は480g、すなわち賦活原料100質量部に対して480質量部とした。得られた活性炭を評価し、結果を表1に示した。   After reaching 900 ° C., water vapor (water vapor partial pressure: 71 kPa) was supplied into the rotary kiln together with nitrogen, and steam activation treatment was performed for 4.0 hours to obtain activated carbon No. 10 was obtained. At this time, the total amount of water vapor used was 480 g, that is, 480 parts by mass with respect to 100 parts by mass of the activation raw material. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例11
特開平11−87190の実施例No.1と同様にして活性炭No.11を得た。すなわち、紙基材フェノール樹脂積層板を約2.5mm角に粉砕したものを、不活性ガス雰囲気下において700℃で4時間炭化処理を施した後、ロータリーキルン装置を用いて水蒸気賦活処理を行い活性炭No.11を得た。水蒸気賦活処理の条件は、試料仕込み量:500g、水使用量:500g/時間、窒素流入量:12L/分、賦活温度:900℃、賦活時間:3.0時間とした。得られた活性炭を評価し、結果を表1に示した。
Production Example 11
In Example No. 11 of Japanese Patent Laid-Open No. 11-87190. In the same manner as in No. 1, activated carbon no. 11 was obtained. That is, a paper base phenolic resin laminate crushed to about 2.5 mm square was carbonized at 700 ° C. for 4 hours in an inert gas atmosphere, and then subjected to steam activation using a rotary kiln device to activate activated carbon. No. 11 was obtained. The conditions for the steam activation treatment were: sample charge: 500 g, water usage: 500 g / hour, nitrogen inflow: 12 L / min, activation temperature: 900 ° C., activation time: 3.0 hours. The obtained activated carbon was evaluated and the results are shown in Table 1.

製造例1〜9で得られた活性炭No.1〜9は、いずれも比表面積が大きく、ミクロ孔およびメソ孔をバランスよく有している。これらの結果より、メソ孔形成原料とミクロ孔形成原料との混合物または複合物を賦活原料に用いることで、ミクロ孔とメソ孔とをバランスよく有する活性炭が容易に製造できることがわかる。活性炭No.10、11は、BET比表面積が高く、BET比表面積中のミクロ孔の面積比率も大きいが、全細孔容積中のメソ孔の容積比率が小さい、すなわち、ミクロ孔は多く形成されているが、メソ孔の比率が小さい。   Activated carbon No. 1 obtained in Production Examples 1-9. Each of Nos. 1 to 9 has a large specific surface area and has micropores and mesopores in a balanced manner. From these results, it can be seen that activated carbon having a good balance of micropores and mesopores can be easily produced by using a mixture or composite of the mesopore-forming raw material and the micropore-forming raw material as the activation raw material. Activated carbon No. Nos. 10 and 11 have a high BET specific surface area and a large area ratio of micropores in the BET specific surface area, but a small volume ratio of mesopores in the total pore volume, that is, many micropores are formed. The mesopore ratio is small.

2.電気二重層キャパシタの製造
上記で得た活性炭No.1〜3、10を用いて電気二重層キャパシタを製造した。具体的には、活性炭に、ポリテトラフルオロエチレン(PTFE)粉末とアセチレンブラックとを、活性炭:PTFE:アセチレンブラック=8:1:1(質量比)になるように混合し、ペースト状になるまで混練した。ついで、ミニブレンダーで粉砕し、500μmのステンレス鋼製篩で篩って粒度を揃えた。次に、直径2.54cm(1インチ)の金型を用い、プレス後の厚みが0.5mmになるように仕込み量を調節し、50.4MPaの圧力でプレス成形して、キャパシタ用電極を作成した。
2. Production of electric double layer capacitor Activated carbon No. obtained above. The electric double layer capacitor was manufactured using 1-3. Specifically, polytetrafluoroethylene (PTFE) powder and acetylene black are mixed with activated carbon so as to be activated carbon: PTFE: acetylene black = 8: 1: 1 (mass ratio), until a paste is obtained. Kneaded. Subsequently, it grind | pulverized with the mini blender and sieved with the stainless steel sieve of 500 micrometers, and the particle size was arrange | equalized. Next, using a mold having a diameter of 2.54 cm (1 inch), adjusting the preparation amount so that the thickness after pressing becomes 0.5 mm, press-molding with a pressure of 50.4 MPa, and the capacitor electrode Created.

得られたキャパシタ用電極を真空条件下、200℃、1時間の条件で乾燥した後、窒素ガスを流通させたグローブボックス内で電解液(1Mテトラエチルアンモニウムテトラフルオロボレートのプロピレンカーボネート溶液)を電極に真空含浸させた。この電極を使用して図5に示すように電気二重層キャパシタを組み立てた。図5に示す電気二重層キャパシタは、前記電解液を含浸させたセパレータ(Celgard社製、「セルガード(登録商標)#3501」)1を前記キャパシタ用電極2で挟み、電極をOリング3で囲繞した後、さらに集電板としてのアルミニウム板4で挟んで作成した。得られた電気二重層キャパシタの評価結果を表2に示した。   The obtained capacitor electrode was dried under vacuum conditions at 200 ° C. for 1 hour, and then an electrolyte (1M tetraethylammonium tetrafluoroborate propylene carbonate solution) was used as an electrode in a glove box in which nitrogen gas was circulated. Vacuum impregnated. Using this electrode, an electric double layer capacitor was assembled as shown in FIG. The electric double layer capacitor shown in FIG. 5 includes a separator (Celgard, “Celgard (registered trademark) # 3501”) 1 impregnated with the electrolytic solution 1 sandwiched between the capacitor electrodes 2, and the electrodes are surrounded by an O-ring 3. Then, it was further sandwiched between aluminum plates 4 as current collector plates. The evaluation results of the obtained electric double layer capacitor are shown in Table 2.

活性炭No.1〜3を用いた電気二重層キャパシタは、いずれも高い静電容量を有しており、特に、全細孔容積中のメソ孔の容積比率が50%以上である活性炭No.2および3では、電気二重層キャパシタの内部抵抗が大幅に低減されていることがわかる。活性炭No.10を用いた電気二重層キャパシタは、活性炭No.1を用いた電気二重層キャパシタに比べて、内部抵抗は若干低いが静電容量も低い値となっている。このことから、活性炭No.10では吸着物質の移動経路となるメソ孔の比率が低いため、細孔深部の吸着サイトが充分に生かしきれていないことがわかる。   Activated carbon No. The electric double layer capacitors using No. 1 to No. 3 have a high capacitance, and in particular, activated carbon No. 1 having a volume ratio of mesopores in the total pore volume of 50% or more. 2 and 3 show that the internal resistance of the electric double layer capacitor is greatly reduced. Activated carbon No. The electric double layer capacitor using No. 10 is activated carbon No. Compared with the electric double layer capacitor using No. 1, the internal resistance is slightly lower, but the capacitance is also lower. From this, activated carbon No. 10 shows that the ratio of mesopores serving as the movement path of the adsorbed material is low, so that the adsorption sites in the deep pores are not fully utilized.

本発明の活性炭は、電気二重層キャパシタ用電極材料や吸着剤に好適である。   The activated carbon of the present invention is suitable for electrode materials for electric double layer capacitors and adsorbents.

1:セパレータ、2:キャパシタ用電極、3:Oリング、4:アルミニウム板、5:ポリテトラフルオロエチレン板、6:ステンレス鋼板 1: Separator, 2: Electrode for capacitor, 3: O-ring, 4: Aluminum plate, 5: Polytetrafluoroethylene plate, 6: Stainless steel plate

Claims (7)

BET比表面積が1000m2/g以上3000m2/g以下であり、
細孔径1.0nm以上2.0nm以下の細孔のBET比表面積中の面積比率が40%以上、かつ、
細孔径2.0nm超50.0nm未満の細孔の全細孔容積中の容積比率が40%以上
細孔径10.0nm以上50.0nm未満の細孔の全細孔容積中の容積比率が10%以上であることを特徴とする活性炭。
The BET specific surface area is 1000 m 2 / g or more and 3000 m 2 / g or less,
The area ratio in the BET specific surface area of pores having a pore diameter of 1.0 nm or more and 2.0 nm or less is 40% or more, and
The volume ratio in the total pore volume of pores having a pore diameter of more than 2.0 nm and less than 50.0 nm is 40% or more ,
Activated carbon characterized in that the volume ratio in the total pore volume of pores having a pore diameter of 10.0 nm or more and less than 50.0 nm is 10% or more .
窒素吸着法により測定した細孔分布図(縦軸:log微分細孔容積dV/dlogD(cm3/g)、横軸:細孔径D(nm))において、細孔径1.0nm以上2.0nm以下の範囲に最大ピークを有する請求項に記載の活性炭。 In a pore distribution diagram (vertical axis: log differential pore volume dV / dlogD (cm 3 / g), horizontal axis: pore diameter D (nm)) measured by the nitrogen adsorption method, a pore diameter of 1.0 nm to 2.0 nm The activated carbon according to claim 1 , having a maximum peak in the following range. 前記細孔分布図において、細孔径が3.0nm、4.0nmおよび10.0nmのときのlog微分細孔容積の値をそれぞれV3、V4およびV10としたとき、
10/V3≧0.4、かつ、
10/V4≧0.5である請求項に記載の活性炭。
In the pore distribution diagram, when the log differential pore volume values when the pore diameter is 3.0 nm, 4.0 nm, and 10.0 nm are V 3 , V 4, and V 10 , respectively,
V 10 / V 3 ≧ 0.4, and
The activated carbon according to claim 2 , wherein V 10 / V 4 ≧ 0.5.
平均細孔径が2.0nm以上3.0nm以下である請求項1〜のいずれか一項に記載の活性炭。 The activated carbon according to any one of claims 1 to 3 , wherein the average pore diameter is 2.0 nm or more and 3.0 nm or less. 請求項1〜のいずれか一項に記載の活性炭を含有することを特徴とする電気二重層キャパシタ用電極材料。 An electrode material for an electric double layer capacitor comprising the activated carbon according to any one of claims 1 to 4 . 請求項に記載の電極材料を用いたことを特徴とする電気二重層キャパシタ用電極。 An electrode for an electric double layer capacitor, wherein the electrode material according to claim 5 is used. 請求項に記載の電極を用いたことを特徴とする電気二重層キャパシタ。 An electric double layer capacitor using the electrode according to claim 6 .
JP2009169473A 2009-07-17 2009-07-17 Activated carbon and electric double layer capacitor using the activated carbon Active JP5202460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169473A JP5202460B2 (en) 2009-07-17 2009-07-17 Activated carbon and electric double layer capacitor using the activated carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169473A JP5202460B2 (en) 2009-07-17 2009-07-17 Activated carbon and electric double layer capacitor using the activated carbon

Publications (2)

Publication Number Publication Date
JP2011020907A JP2011020907A (en) 2011-02-03
JP5202460B2 true JP5202460B2 (en) 2013-06-05

Family

ID=43631306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169473A Active JP5202460B2 (en) 2009-07-17 2009-07-17 Activated carbon and electric double layer capacitor using the activated carbon

Country Status (1)

Country Link
JP (1) JP5202460B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017553A1 (en) * 2018-07-20 2020-01-23 株式会社クラレ Carbonaceous material and method for producing same, electrode active material for electrochemical devices, electrode for electrochemical devices, and electrochemical device
US10879014B2 (en) 2016-11-15 2020-12-29 Kuraray Co., Ltd. Carbonaceous material for electric double layer capacitors and method for producing same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011906B2 (en) 2011-01-19 2016-10-25 株式会社Gsユアサ Negative electrode, electrode body, power storage element, and method for manufacturing power storage element
CN102674313A (en) * 2011-03-16 2012-09-19 财团法人工业技术研究院 Porous carbon material and manufacturing method thereof
US8652995B2 (en) * 2011-07-19 2014-02-18 Corning Incorporated Steam activated non-lignocellulosic based carbons for ultracapacitors
JP5829456B2 (en) * 2011-08-11 2015-12-09 リグナイト株式会社 Manufacturing method of carbide
JP5932331B2 (en) * 2011-12-28 2016-06-08 国立大学法人信州大学 Method for producing activated carbon
JP6071261B2 (en) * 2012-06-15 2017-02-01 東洋炭素株式会社 Porous carbon material, method for producing the same, and electric double layer capacitor using the same
KR101412775B1 (en) * 2012-07-27 2014-07-02 서울대학교산학협력단 Porous carbon and method for preparing the same
TWI472483B (en) 2012-10-30 2015-02-11 Ind Tech Res Inst Porous carbon material and manufacturing method thereof and supercapacitor
CN105122407B (en) 2013-03-07 2018-12-25 鲍尔卡本技术有限公司 Activated carbon for electric double layer capacitor electrode and its manufacturing method
WO2015152391A1 (en) * 2014-04-03 2015-10-08 関西熱化学株式会社 Activated carbon for water purifier
WO2016006237A1 (en) * 2014-07-10 2016-01-14 パナソニックIpマネジメント株式会社 Capacitor
JP6371787B2 (en) * 2016-03-24 2018-08-08 関西熱化学株式会社 Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon
NO343769B1 (en) * 2017-04-06 2019-06-03 Ipr Holding As Method for producing activated carbon
JP6542968B1 (en) * 2018-09-28 2019-07-10 関西熱化学株式会社 Activated carbon and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089119A (en) * 1999-04-30 2001-04-03 Adchemco Corp Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10879014B2 (en) 2016-11-15 2020-12-29 Kuraray Co., Ltd. Carbonaceous material for electric double layer capacitors and method for producing same
US11823837B2 (en) 2016-11-15 2023-11-21 Kuraray Co., Ltd. Carbonaceous material for electric double layer capacitors and method for producing same
WO2020017553A1 (en) * 2018-07-20 2020-01-23 株式会社クラレ Carbonaceous material and method for producing same, electrode active material for electrochemical devices, electrode for electrochemical devices, and electrochemical device
JPWO2020017553A1 (en) * 2018-07-20 2021-08-12 株式会社クラレ Carbonaceous materials, their manufacturing methods, electrode active materials for electrochemical devices, electrodes for electrochemical devices and electrochemical devices
US11731880B2 (en) 2018-07-20 2023-08-22 Kuraray Co., Ltd. Carbonaceous material and method for producing same, electrode active material for electrochemical devices, electrode for electrochemical devices, and electrochemical device
JP7349988B2 (en) 2018-07-20 2023-09-25 株式会社クラレ Carbonaceous materials, manufacturing methods thereof, electrode active materials for electrochemical devices, electrodes for electrochemical devices, and electrochemical devices

Also Published As

Publication number Publication date
JP2011020907A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5202460B2 (en) Activated carbon and electric double layer capacitor using the activated carbon
JP5344972B2 (en) Carbon material for electric double layer capacitor electrode and manufacturing method thereof
US10008337B2 (en) Activated carbon for an electric double-layer capacitor electrode and manufacturing method for same
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
JP5027849B2 (en) Method for producing activated carbon, and electric double layer capacitor using activated carbon obtained by the method
JP5770550B2 (en) Activated carbon and manufacturing method thereof
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
KR101553716B1 (en) Active carbon for an electric double layer capacitor electrode and process for manufacturing the same
Wei et al. Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors
KR102113719B1 (en) Activated carbon and its manufacturing method
JP2011136856A (en) Activated carbon for electric double-layer capacitor electrode, and method for producing the same
JP2012101948A (en) Method for producing activated carbon
WO2017213057A1 (en) Porous carbon material for electric bilayer capacitor electrode, porous carbon material manufacturing method, and electric bilayer capacitor electrode
Kim et al. Enhanced electrical capacitance of tetraethyl orthosilicate-derived porous carbon nanofibers produced via electrospinning
JP2011207722A (en) Active carbon for electric double layer capacitor electrode and method of manufacturing the same
JP6371787B2 (en) Activated carbon, method for producing the same, and electric double layer capacitor using the activated carbon
JP2023169201A (en) Activated carbon for power storage device electrode
JP2009013012A (en) Method of producing active carbon for electric double-layer capacitor electrode
JP2013049617A (en) Method for producing activated carbon porous body, activated carbon porous body, and electrode for electric double layer capacitor
JP5563239B2 (en) Method for producing porous carbon material
WO2021241334A1 (en) Electrochemical device
Nor et al. Supercapacitor activated carbon electrode from composite of green monoliths of KOH-treated pre-carbonized oil palm empty fruit bunches and HNO3-treated graphite
WO2021241420A1 (en) Electrode for electrochemical devices, and electrochemical device
JP2010215474A (en) Producing method of active carbon and electrical double layer capacitor using active carbon obtained by the method
JP2015202965A (en) Modified graphite, electrode material for battery, electric double-layer capacitor and lithium ion capacitor containing modified graphite

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5202460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250