JP5202286B2 - UV water purifier - Google Patents

UV water purifier Download PDF

Info

Publication number
JP5202286B2
JP5202286B2 JP2008328852A JP2008328852A JP5202286B2 JP 5202286 B2 JP5202286 B2 JP 5202286B2 JP 2008328852 A JP2008328852 A JP 2008328852A JP 2008328852 A JP2008328852 A JP 2008328852A JP 5202286 B2 JP5202286 B2 JP 5202286B2
Authority
JP
Japan
Prior art keywords
water
purified water
tank
raw water
purified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008328852A
Other languages
Japanese (ja)
Other versions
JP2010149031A (en
Inventor
貴秀 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duskin Co Ltd
Original Assignee
Duskin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Duskin Co Ltd filed Critical Duskin Co Ltd
Priority to JP2008328852A priority Critical patent/JP5202286B2/en
Publication of JP2010149031A publication Critical patent/JP2010149031A/en
Application granted granted Critical
Publication of JP5202286B2 publication Critical patent/JP5202286B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Description

本発明は、集合住宅、飲食店、ホテル、旅館、事務所、工場、レジャー施設等において使用する浄水を紫外線殺菌する紫外線浄水器に関するものである。   The present invention relates to an ultraviolet water purifier that sterilizes purified water used in apartment houses, restaurants, hotels, inns, offices, factories, leisure facilities, and the like.

従来、この種の浄水生成システムの一例として、例えば、特許文献1に示すように、水道水等の原水槽から汲み出した原水を、活性炭充填槽及びろ過膜フィルタを通過させて浄水化し供給先に提供するようにしている。この浄水生成システムでは、浄水は一旦、貯水槽に収容され、貯水槽内の水位が一定に保持されるように浄水の生成と貯水が行われる。ろ過膜フィルタには、0.01〜0.5μmの細孔を有するろ過膜を使用することが記載されている。   Conventionally, as an example of this type of purified water generation system, for example, as shown in Patent Document 1, raw water pumped from a raw water tank such as tap water is purified by passing it through an activated carbon filling tank and a filtration membrane filter to a supply destination. I am trying to provide it. In this purified water generation system, purified water is once stored in a water tank, and purified water is generated and stored so that the water level in the water tank is kept constant. It is described that a filtration membrane having pores of 0.01 to 0.5 μm is used for the filtration membrane filter.

ろ過膜フィルタには、中空糸膜によるマイクロフィルタあるいは限外ろ過によるウルトラフィルタが使用されるが、これらのフィルタによる不純物除去効果は0.01μm程度の粒子除去が限界となっている。このため、原水に溶解している、各種塩素化合物、トリハロメタン、ダイオキシン等の不純物は0.01μmよりはるかに小さく、ろ過膜フィルタでは除去できないといった問題があった。   As the filtration membrane filter, a microfilter using a hollow fiber membrane or an ultrafilter using ultrafiltration is used. However, the removal of particles of about 0.01 μm is the limit of the effect of removing impurities by these filters. For this reason, impurities such as various chlorine compounds, trihalomethane, and dioxin dissolved in raw water are much smaller than 0.01 μm, and there is a problem that they cannot be removed by a filter membrane filter.

一方、純水の生成方法のひとつに、逆浸透膜(RO膜)を使用する方法があり、RO膜によって水道水から純水に近い水を生成することができる。RO膜は、約0.0001μmの孔を無数に持った人工膜からなり、半透膜と同様の性質を有して、水に溶解した微細な不純物、例えば、細菌、塩素、砒素、トリハロメタン、さび、ダイオキシン等を取り除くことができる。従って、RO膜による純水生成システムを原水の通水経路に適用すれば、ろ過膜フィルタよりも一層、浄化された浄水を得ることができる。   On the other hand, there is a method of using a reverse osmosis membrane (RO membrane) as one method of producing pure water, and water close to pure water can be produced from tap water by the RO membrane. The RO membrane is made of an artificial membrane having an infinite number of pores of about 0.0001 μm, has the same properties as a semipermeable membrane, and has fine impurities dissolved in water, such as bacteria, chlorine, arsenic, trihalomethane, Rust, dioxins, etc. can be removed. Therefore, if the pure water production | generation system by RO membrane is applied to the flow path of raw | natural water, the purified water further purified rather than the filtration membrane filter can be obtained.

ところで、RO膜の逆浸透作用によって高純水化すると、水道水の次亜塩素酸など、原水に含まれる殺菌成分を全て除去してしまうため、浄水を浄水タンクに一旦貯留する場合には、貯留タンク内でRO膜を透過した水に細菌やカビ等が繁殖するといった問題を生ずる。
特開平3−131383号公報 特開2004−25018号公報
By the way, when highly pure water is made by the reverse osmosis action of the RO membrane, all sterilizing components contained in the raw water such as hypochlorous acid in tap water are removed. Therefore, when the purified water is temporarily stored in the purified water tank, the storage tank This causes a problem that bacteria, fungi, etc. propagate in the water that has passed through the RO membrane.
JP-A-3-131383 JP-A-2004-25018

貯水槽における細菌やカビ等の繁殖を防ぐには、滅菌剤として塩素を塩素ガスや次亜塩素酸塩により貯水槽に投入する方法があるが、塩素添加に伴ってトリハロメタンの有害物質が生成してしまう欠点がある。そこで、例えば、特許文献2に示すように、有害物質の発生を伴わずに滅菌するためには、紫外線による殺菌方法が利用されている。紫外線殺菌には簡易な紫外線殺菌灯を用いるのが一般的である。   To prevent the growth of bacteria and mold in the water tank, there is a method in which chlorine is added as a sterilizing agent to the water tank using chlorine gas or hypochlorite. However, with the addition of chlorine, harmful substances of trihalomethane are generated. There is a drawback. Therefore, for example, as shown in Patent Document 2, a sterilization method using ultraviolet rays is used for sterilization without generation of harmful substances. In general, a simple ultraviolet germicidal lamp is used for ultraviolet radiation.

しかしながら、紫外線殺菌灯を貯水槽に設置して用いる場合、常時、点灯して使用すると、殺菌灯としての消耗が早まってしまい、設備費用が嵩み、しかも、電力消費が多くなり、殺菌処理コストが高くなる問題があった。   However, when an ultraviolet germicidal lamp is installed in a water storage tank, if it is always lit and used, the consumption as a germicidal lamp is accelerated, the equipment cost increases, and the power consumption increases and the sterilization treatment cost increases. There was a problem that increased.

本発明の目的は、上記課題に鑑み、原水を浄化して浄水タンクに貯留する浄水システムにおいて、浄水タンク内の浄水の紫外線殺菌処理を低価格且つ高効率に行うことのできる紫外線浄水器を提供することである。   In view of the above problems, an object of the present invention is to provide an ultraviolet water purifier that can perform ultraviolet sterilization of purified water in a purified water tank at low cost and high efficiency in a purified water system that purifies raw water and stores it in a purified water tank. It is to be.

本発明の第1の形態は、原水を貯留する原水タンクと、前記原水タンクから供給される原水を浄化する浄化部と、前記浄化部から供給される浄水を所定の上限量まで貯留する浄水タンクと、前記浄水タンクから前記浄水を必要量だけ供給する浄水提供部とから構成され、前記浄水タンク内に紫外線殺菌灯を配置して前記紫外線殺菌灯により貯留浄水を殺菌し、前記紫外線殺菌灯は、前記浄水タンク内に前記所定の上限量の浄水が貯留されるまで点灯され、前記上限量の浄水が貯留された場合に所定時間経過後に消灯される紫外線浄水器である。   The first aspect of the present invention is a raw water tank for storing raw water, a purification unit for purifying raw water supplied from the raw water tank, and a purified water tank for storing purified water supplied from the purification unit up to a predetermined upper limit amount. And a purified water supply unit that supplies the required amount of the purified water from the purified water tank, disposing the ultraviolet germicidal lamp in the purified water tank to sterilize the stored purified water with the ultraviolet germicidal lamp, The ultraviolet water purifier is turned on until the predetermined upper limit amount of purified water is stored in the water purification tank, and is turned off after a predetermined time when the upper limit amount of purified water is stored.

本発明の第2の形態は、前記第1の形態において、前記紫外線殺菌灯は、消灯後、前記浄水タンク内の貯水量が所定の下限量に達した場合に点灯される紫外線浄水器である。   According to a second aspect of the present invention, in the first aspect, the ultraviolet germicidal lamp is an ultraviolet water purifier that is turned on when the amount of water stored in the water purification tank reaches a predetermined lower limit after being turned off. .

本発明の第3の形態は、前記第1又は第2の形態において、前記紫外線殺菌灯が消灯しているとき、前記浄水タンク内への浄水供給の停止時間を監視し、前記停止時間が所定時間を超えるとき、前記紫外線殺菌灯を点灯させる紫外線浄水器である。   According to a third aspect of the present invention, in the first or second aspect, when the ultraviolet germicidal lamp is turned off, a stop time of the purified water supply to the purified water tank is monitored, and the stop time is predetermined. An ultraviolet water purifier that turns on the ultraviolet germicidal lamp when the time is exceeded.

本発明の第4の形態は、前記第1、第2又は第3の形態において、前記前記浄化部は、前記原水タンクから前記原水をポンプにより供給する原水供給管と、前記原水供給管を流通する前記原水の不純物濃度を計測する原水センサと、前記原水供給管から前記原水を通水して前記原水中の不純物を除去して浄水を生成するRO(Reverse Osmosis:逆浸透)膜を少なくとも含む浄化フィルタ部と、前記RO膜の浄化作用により生ずる濃縮水を前記原水タンクに帰還させる濃縮水帰還管によって構成され、前記浄化フィルタ部から浄水を前記浄水タンクに供給する浄水供給管と、前記浄水供給管を流通する前記浄水の不純物濃度を計測する浄水センサとを有する紫外線浄水器である。   According to a fourth aspect of the present invention, in the first, second, or third aspect, the purification unit distributes the raw water supply pipe that supplies the raw water from the raw water tank by a pump, and the raw water supply pipe. A raw water sensor that measures the impurity concentration of the raw water, and a RO (Reverse Osmosis) membrane that generates purified water by removing the impurities in the raw water by passing the raw water from the raw water supply pipe A purified water supply pipe for supplying purified water from the purification filter section to the purified water tank; and a purified water supply pipe configured to return the concentrated water generated by the purification action of the RO membrane to the raw water tank. It is an ultraviolet water purifier having a water purification sensor for measuring the impurity concentration of the purified water flowing through a supply pipe.

本発明の第5の形態は、前記第4の形態において、前記原水タンクに前記原水が貯留された後、前記原水センサにより最初に計測される最先原水濃度を記憶する最先原水濃度記憶手段と、前記浄水センサにより継続的に計測される浄水濃度を記憶する浄水濃度記憶手段と、前記最先原水濃度から計算される基準濃度と前記浄水濃度を比較する比較手段と、前記浄水濃度が前記基準濃度より大きくなったときに、前記原水の交換及び/又は前記RO膜の交換を報知する報知手段とを少なくとも具備する制御回路部を付設した紫外線浄水器である。   According to a fifth aspect of the present invention, in the fourth aspect, the earliest raw water concentration storage means for storing the earliest raw water concentration first measured by the raw water sensor after the raw water is stored in the raw water tank. And a purified water concentration storage means for storing the purified water concentration continuously measured by the purified water sensor, a comparing means for comparing the purified water concentration with a reference concentration calculated from the earliest raw water concentration, and the purified water concentration is the When it becomes larger than a reference concentration, it is an ultraviolet water purifier provided with a control circuit unit having at least a notification means for notifying the replacement of the raw water and / or the replacement of the RO membrane.

本発明の第6の形態は、前記第5の形態において、前記浄水濃度が前記基準濃度より大きくなったときに、前記送水ポンプの送水を停止させる送水停止手段を前記制御回路部に設けた紫外線浄水器である。   The sixth aspect of the present invention is the ultraviolet light according to the fifth aspect, wherein the control circuit unit is provided with water supply stop means for stopping water supply of the water pump when the purified water concentration becomes higher than the reference concentration. It is a water purifier.

本発明の第7の形態は、前記第5又は第6の形態において、前記原水センサにより、前記原水タンクが空になったことを検出して報知する空報知手段を前記制御回路部に設けた紫外線浄水器である。   According to a seventh aspect of the present invention, in the fifth or sixth aspect, the control circuit unit includes an empty notification unit that detects and notifies that the raw water tank is empty by the raw water sensor. It is a UV water purifier.

本発明の第8の形態は、前記第1〜第7のいずれかの形態において、前記濃縮水帰還管は、前記RO膜の浸透圧を所定値に保持する流量調整流路と、前記流量調整流路に併設された開閉自在のバイパス流路とを含み、前記RO膜の通水初期時に前記バイパス流路を開放する紫外線浄水器である。   According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the concentrated water return pipe includes a flow rate adjustment flow path for maintaining an osmotic pressure of the RO membrane at a predetermined value, and the flow rate adjustment. An ultraviolet water purifier that includes an openable and closable bypass channel provided alongside the channel and opens the bypass channel at the initial stage of water flow through the RO membrane.

本発明の第9の形態は、前記第1〜第8のいずれかの形態において、前記原水センサ及び前記浄水センサは、水に溶け込んだ全溶解性物質を測定するセンサからなる紫外線浄水器である。   According to a ninth aspect of the present invention, in any one of the first to eighth aspects, the raw water sensor and the water purification sensor are ultraviolet water purifiers comprising a sensor that measures all soluble substances dissolved in water. .

本発明の第10の形態は、前記第1〜第9のいずれかの形態において、前記浄化フィルタ部の、少なくとも原水導入側流路に、前記原水を活性炭槽を通過させて浄化する活性炭処理部を設け、前記活性炭槽を通過した原水を前記RO膜に通水する紫外線浄水器である。   In a tenth aspect of the present invention, in any one of the first to ninth aspects, an activated carbon treatment section that purifies the raw water by passing it through an activated carbon tank at least in the raw water introduction side flow path of the purification filter section. And an ultraviolet water purifier for passing raw water that has passed through the activated carbon tank through the RO membrane.

本発明の第11の形態は、前記第1〜第10のいずれかの形態において、前記浄水提供部は、前記浄水タンクの貯留水を取水する浄水取水部と、前記浄水タンクから取り出した浄水を加熱して貯留する温水部から温浄水を取水する温浄水取水部とを有する紫外線浄水器である。   In an eleventh aspect of the present invention, in any one of the first to tenth aspects, the water purification providing unit includes a purified water intake unit that takes in water stored in the purified water tank, and purified water extracted from the purified water tank. It is an ultraviolet water purifier having a warm purified water intake section that takes warm purified water from a heated water section that is heated and stored.

本発明は、滞水状態に長時間放置したとき細菌やカビ等の繁殖が進むが、流水下や浄水タンクへの給水が行われているときには、タンク内での繁殖が進行しない点に着目してなされたものであり、本発明の第1の形態によれば、前記原水タンクから供給される原水を浄化する前記浄化部からの浄水を貯留する前記浄水タンク内に紫外線殺菌灯を配置して前記紫外線殺菌灯により貯留浄水を殺菌し、前記紫外線殺菌灯は、前記浄水タンク内に前記所定の上限量の浄水が貯留されるまで点灯され、前記上限量の浄水が貯留された場合に所定時間経過後に消灯される。従って、本形態においては、浄水のタンク貯留量に関係なく、常時、前記紫外線殺菌灯を点灯させるのではなく、浄水の貯留量が前記上限量より少なく給水可能な場合、あるいは上限貯留後の前記所定時間だけ、前記紫外線殺菌灯を点灯させるので、浄水タンク内の浄水の紫外線殺菌処理を低価格且つ高効率に行うことができる。   The present invention focuses on the point that the breeding of bacteria, molds, etc. proceeds when left in a stagnant state for a long time, but the propagation in the tank does not proceed under running water or when water is supplied to the water purification tank. According to the first aspect of the present invention, an ultraviolet germicidal lamp is disposed in the water purification tank that stores purified water from the purification unit that purifies the raw water supplied from the raw water tank. The stored purified water is sterilized by the ultraviolet germicidal lamp, and the ultraviolet germicidal lamp is turned on until the predetermined upper limit amount of purified water is stored in the purified water tank, and the upper limit amount of purified water is stored for a predetermined time. Turns off after elapse. Therefore, in this embodiment, the ultraviolet germicidal lamp is not always turned on regardless of the amount of water stored in the tank, but when the amount of purified water stored can be less than the upper limit, or after the upper limit storage. Since the ultraviolet sterilization lamp is turned on only for a predetermined time, the ultraviolet sterilization treatment of the purified water in the purified water tank can be performed at low cost and high efficiency.

本発明の第2の形態によれば、前記紫外線殺菌灯は、消灯後、前記浄水タンク内の貯水量が所定の下限量に達した場合に点灯されるので、下限量に達してから浄水の供給が行われるまでの間も殺菌処理でき、下限量に達してから浄水の供給が行われない不測の事態が生じても、滞水状態における繁殖の進行を未然に防ぐことができる。   According to the second aspect of the present invention, the ultraviolet germicidal lamp is turned on after the light is turned off when the amount of water stored in the water purification tank reaches a predetermined lower limit amount. Sterilization can be performed until the supply is performed, and even if an unexpected situation occurs in which the supply of purified water is not performed after reaching the lower limit amount, it is possible to prevent the breeding from proceeding in a stagnant state.

本発明の第3の形態によれば、前記紫外線殺菌灯が消灯しているとき、前記浄水タンク内への浄水供給の停止時間を監視し、前記停止時間が所定時間を超えるとき、前記紫外線殺菌灯を点灯させるので、滞水状態が長時間継続しても細菌等の繁殖の進行を未然に防ぐことができる。   According to the third aspect of the present invention, when the ultraviolet germicidal lamp is turned off, the stop time of purified water supply to the purified water tank is monitored, and when the stopped time exceeds a predetermined time, the ultraviolet germicidal lamp is disinfected. Since the light is turned on, it is possible to prevent the propagation of bacteria and the like even if the water stays for a long time.

上述のように、RO膜はろ過膜フィルタよりも格段に純水に近い浄水を得ることができるが、前記ろ過膜フィルタでは通水の全量を浄水として取り出すことになる一方、前記RO膜の純水処理では、膜を通過しなかった塩類を連続的に排出させなければ、加圧側の塩類濃度が限りなく上昇してしまって、浸透圧が高まって水が通過できなくなるため、RO膜からは必ず、塩類や不純物が濃縮された水(以下、これを濃縮水という。)が連続的に排出されることになる。即ち、RO膜を通過した水は浄水と濃縮水に分離されるので、浄水の回収量(率)を上げる場合には、濃縮水を原水タンクに戻して、RO膜に再度供給する循環式再処理システムを使用するのが好ましい。   As described above, the RO membrane can obtain purified water that is much closer to pure water than the filtration membrane filter, but the filtration membrane filter takes out the entire amount of water flow as purified water, while the RO membrane is pure. In water treatment, if the salts that did not pass through the membrane are not discharged continuously, the salt concentration on the pressurized side will rise without limit, and the osmotic pressure will increase and water will not pass. Water with concentrated salts and impurities (hereinafter referred to as concentrated water) is always discharged continuously. That is, since the water that has passed through the RO membrane is separated into purified water and concentrated water, when increasing the recovery amount (rate) of the purified water, return the concentrated water to the raw water tank and supply it again to the RO membrane. It is preferred to use a processing system.

しかしながら、原水タンクに濃縮水を戻すと、タンク内の全溶解性物質あるいは総溶解固形分(TDS:Total Dissolved Solids)の濃度が徐々に高くなり、RO膜への負担が増大してしまい、TDS濃度が高くなると、その除去率が低下するため、使用者に安全な飲料水として浄水を提供できなくなる。従って、原水タンクに濃縮水を戻す場合には、使用者、浄水提供者あるいはメンテナンス業者等の作業者がタンク内のTDS濃度を定期的に測定して、RO膜の劣化を監視する必要があるため、RO膜の交換に手間がかかると共に、メンテナンス費用を要する。   However, when the concentrated water is returned to the raw water tank, the concentration of all soluble substances or total dissolved solids (TDS) in the tank gradually increases, and the burden on the RO membrane increases. When the concentration increases, the removal rate decreases, and it becomes impossible to provide purified water as safe drinking water to the user. Therefore, when returning the concentrated water to the raw water tank, it is necessary for an operator such as a user, a water purification provider, or a maintenance company to periodically measure the TDS concentration in the tank and monitor the deterioration of the RO membrane. Therefore, the replacement of the RO membrane takes time and maintenance costs are required.

そこで、本発明の第4の形態によれば、前記濃縮水帰還管により、前記RO膜の浄化作用により生ずる濃縮水を前記原水タンクに帰還させる濃縮水帰還流路を設けた浄水生成システムにおいて、少なくとも原水供給開始時ないしそれ以降の所定時間経過時における、前記原水の不純物濃度を前記原水センサにより予め計測し、その初期計測値と、前記浄水タンクに供給する浄水の不純物濃度を前記浄水センサにより計測した浄水の計測値とを比較することにより、前記原水タンク内の不純物濃度の変化を監視しながら浄水供給することができる。従って、前記原水センサ及び前記浄水センサによる自動監視を行うことにより、前記原水タンクに前記濃縮水を戻して前記RO膜による再浄化を行わせる浄化循環システムにおいて、前記原水や前記RO膜の交換に手間がかからず、またメンテナンスの人件費を削減して、浄水処理コストの低減を図ることができる。しかも、前記RO膜により高純度化された浄水の貯留量に応じて、前記紫外線殺菌灯の点灯・消灯を切り換えるので、浄水タンク内の高純度浄水の紫外線殺菌処理を低価格且つ高効率に行うことができる。   Therefore, according to the fourth aspect of the present invention, in the purified water generation system provided with the concentrated water return flow path for returning the concentrated water generated by the purification action of the RO membrane to the raw water tank by the concentrated water return pipe, At least at the time of starting raw water supply or at a predetermined time after that, the raw water impurity concentration is measured in advance by the raw water sensor, and the initial measured value and the purified water impurity concentration to be supplied to the water purification tank are measured by the water purification sensor. By comparing with the measured value of the purified water, purified water can be supplied while monitoring the change in the impurity concentration in the raw water tank. Therefore, in the purification circulation system in which the concentrated water is returned to the raw water tank and repurified by the RO membrane by performing automatic monitoring by the raw water sensor and the water purification sensor, the raw water and the RO membrane can be replaced. This saves time and reduces labor costs for maintenance, thereby reducing the cost of water purification. Moreover, since the ultraviolet germicidal lamp is turned on / off according to the amount of purified water stored by the RO membrane, the ultraviolet germicidal treatment of the purified water in the purified water tank is performed at low cost and with high efficiency. be able to.

前記RO膜には、膜孔が約1〜2ナノメートル以下のものを使用するのが好ましく、RO膜による逆浸透作用により、水道水に含まれる全溶解性物質、例えば、細菌、砒素、塩素、トリハロメタン、さび、ダイオキシン等を除去することができる。   The RO membrane preferably has a membrane pore size of about 1 to 2 nanometers or less, and due to the reverse osmosis action by the RO membrane, all soluble substances contained in tap water, such as bacteria, arsenic, chlorine, etc. , Trihalomethane, rust, dioxin and the like can be removed.

本発明の第5の形態によれば、前記浄水濃度が前記基準濃度より大きくなったとき、前記報知手段により、前記原水の交換及び/又は前記RO膜の交換を報知するので、定期的に作業員が浄水濃度を計測しなくても、前記報知により前記原水の交換及び/又は前記RO膜の交換を知ることができ、メンテナンス作業の省力化を実現でき、浄水処理コストの低減を図ることができる。報知出力の態様には、アラーム音、アラームランプ点灯・点滅、アラーム表示等が含まれる。   According to the fifth aspect of the present invention, when the purified water concentration becomes higher than the reference concentration, the notification means notifies the replacement of the raw water and / or the replacement of the RO membrane. Even if a member does not measure the purified water concentration, the notification can know the replacement of the raw water and / or the replacement of the RO membrane, can realize labor saving of maintenance work, and can reduce the cost of the water purification treatment. it can. Examples of notification output include alarm sound, alarm lamp lighting / flashing, alarm display, and the like.

本発明の第6の形態によれば、前記送水停止手段により前記浄水濃度が前記基準濃度より大きくなったときに、前記送水ポンプの送水を停止させるので、純度の低下した浄水を前記浄水タンクに送水することなく、前記原水の交換及び/又は前記RO膜の交換を促すことができる。   According to the sixth aspect of the present invention, when the purified water concentration becomes higher than the reference concentration by the water supply stopping means, the water supply pump stops the water supply, so the purified water with reduced purity is supplied to the purified water tank. Exchange of the raw water and / or replacement of the RO membrane can be promoted without sending water.

前記原水センサは前記原水供給管を流通する前記原水の不純物濃度を計測するので、前記原水タンクの原水供給状態、つまりタンクの空状態も監視することが可能になる。即ち、本発明の第7の形態によれば、前記空報知手段により前記原水タンクが空になったことを報知するので、前記原水の交換時期を適切に知ることができ、前記原水タンクの監督作業を簡素化することができ、浄水処理コストの低減に寄与する。   Since the raw water sensor measures the impurity concentration of the raw water flowing through the raw water supply pipe, it is possible to monitor the raw water supply state of the raw water tank, that is, the empty state of the tank. That is, according to the seventh aspect of the present invention, the empty notification means notifies that the raw water tank has been emptied, so that it is possible to appropriately know the replacement time of the raw water tank and to supervise the raw water tank. Work can be simplified and it contributes to reduction of the cost of water purification.

本発明の第8の形態によれば、前記濃縮水帰還管は、前記RO膜の浸透圧を所定値に保持する流量調整流路と、前記流量調整流路に併設された開閉自在のバイパス流路とを含み、前記RO膜の通水初期時に前記バイパス流路を開放するので、前記RO膜を交換した際には、通水初期時に前記バイパス流路を開放した後、原水を加圧して供給し、前記RO膜の水圧が所定値を超えたときに前記バイパス流路を閉塞することができ、前記RO膜交換後の再稼動を自動化して、浄水処理の省力化・自動化を実現することができる。   According to an eighth aspect of the present invention, the concentrated water return pipe includes a flow rate adjusting flow path that maintains the osmotic pressure of the RO membrane at a predetermined value, and an openable and closable bypass flow that is provided in the flow rate adjusting flow path. And when the RO membrane is replaced, the raw water is pressurized after opening the bypass channel at the initial stage of water flow. When the water pressure of the RO membrane exceeds a predetermined value, the bypass flow path can be closed, and the re-operation after the RO membrane replacement is automated to realize labor saving and automation of water purification treatment. be able to.

本発明の第9の形態によれば、前記原水センサ及び前記浄水センサは、水に溶け込んだ全溶解性物質を測定するTDSセンサからなるので、夫々、前記原水、前記浄水の不純物濃度を高精度に計測して、前記原水の交換及び/又は前記RO膜の交換の時期を適切に検出して報知することができる。   According to the ninth aspect of the present invention, since the raw water sensor and the water purification sensor are composed of TDS sensors that measure all soluble substances dissolved in water, the impurity concentrations of the raw water and the purified water are highly accurate, respectively. It is possible to appropriately detect and notify the timing of the exchange of the raw water and / or the exchange of the RO membrane.

本発明の第10の形態によれば、前記浄化フィルタ部の、少なくとも原水導入側流路に、前記原水を活性炭槽を通過させて浄化する活性炭処理部を設け、前記活性炭槽を通過した原水を前記RO膜に通水するので、前記RO膜に供給する前段階で、前記活性炭槽によって原水中の有害物質を吸着、除去して、より効率的に不純物が除去された高純度の浄水を生成することができる。   According to the tenth aspect of the present invention, at least the raw water introduction-side flow path of the purification filter unit is provided with an activated carbon treatment unit that purifies the raw water through an activated carbon tank, and the raw water that has passed through the activated carbon tank Since water is passed through the RO membrane, before the supply to the RO membrane, harmful substances in the raw water are adsorbed and removed by the activated carbon tank to produce highly purified water from which impurities are removed more efficiently. can do.

本発明の第11の形態によれば、前記浄水提供部は、前記浄水タンクの貯留水を取水する浄水取水部と、前記浄水タンクから取り出した浄水を加熱して貯留する温水部から温浄水を取水する温浄水取水部とを有するので、低コストで紫外線殺菌処理された高純度浄水を使用者ニーズに応じて非温水又は温水として提供することができる。前記浄水タンクに冷却機能を付与すれば、貯留浄水を冷水化して、冷水と上記温水の選択的利用を図ることができる。   According to an eleventh aspect of the present invention, the purified water supply unit obtains warm purified water from a purified water intake unit that takes in the stored water in the purified water tank, and a hot water unit that heats and stores purified water taken out from the purified water tank. Since it has the warm purified water intake part which takes in water, the high purity purified water by which the ultraviolet sterilization process was carried out at low cost can be provided as non-warm water or warm water according to a user's needs. If a cooling function is given to the water purification tank, the stored purified water can be chilled to selectively use cold water and the hot water.

本発明の実施形態に係る紫外線RO浄水器を含む浄水処理システムを図面を参照して以下に説明する。この紫外線RO浄水器は浄水生成用のRO膜を使用し、且つ貯留浄水を紫外線殺菌灯31により紫外線殺菌処理する機能を具備する。
図1は本実施形態の浄水処理システムの概略構成図である。図1では流通する水流経路を実線で示し、電磁弁等への電気系統の信号線を破線で示している。
A water purification system including an ultraviolet RO water purifier according to an embodiment of the present invention will be described below with reference to the drawings. This ultraviolet RO water purifier uses an RO membrane for generating purified water and has a function of performing ultraviolet sterilization treatment of stored purified water with an ultraviolet sterilization lamp 31.
FIG. 1 is a schematic configuration diagram of a water purification system of the present embodiment. In FIG. 1, the flowing water flow path is indicated by a solid line, and the signal line of the electric system to the solenoid valve or the like is indicated by a broken line.

この浄水処理システムにおける紫外線RO浄水器は、水道水の原水2を貯留する原水タンク1と、原水タンク1から原水2を送水ポンプ6により送水、供給する原水供給管3と、原水供給管3を流通する原水2の不純物濃度を計測する原水センサ5と、原水供給管3から原水2を通水して原水2中の不純物を除去して浄水を生成するRO膜装置9を含む浄化フィルタ部と、RO膜の浄化作用により生ずる濃縮水を原水タンク1に帰還させる濃縮水帰還管23と、浄水29を貯留する浄水タンク26と、前記浄化フィルタ部から浄水を浄水タンク26に供給する浄水供給管24と、浄水供給管24を流通する浄水の不純物濃度を計測する浄水センサ25と、浄水タンク26から浄水29を必要量だけ供給する浄水提供部とを有し、浄水の回収率を上げるために、濃縮水を原水タンク1に戻して、RO膜に再度供給する循環式再処理システムを使用している。原水タンク1及び浄水タンク26の容積は、夫々、10〜20リットル、4〜8リットルである。   The ultraviolet RO water purifier in this water purification system includes a raw water tank 1 for storing raw water 2 for tap water, a raw water supply pipe 3 for supplying and supplying raw water 2 from the raw water tank 1 by a water supply pump 6, and a raw water supply pipe 3. A raw water sensor 5 that measures the impurity concentration of the raw water 2 that circulates, and a purification filter section that includes the RO membrane device 9 that passes through the raw water 2 from the raw water supply pipe 3 to remove impurities in the raw water 2 and generates purified water The concentrated water return pipe 23 for returning the concentrated water generated by the purification action of the RO membrane to the raw water tank 1, the purified water tank 26 for storing the purified water 29, and the purified water supply pipe for supplying purified water from the purification filter unit to the purified water tank 26 24, a purified water sensor 25 that measures the impurity concentration of purified water flowing through the purified water supply pipe 24, and a purified water supply unit that supplies a required amount of purified water 29 from the purified water tank 26, and a purified water recovery rate To increase, to return the concentrated water to the raw water tank 1, using a circulating reprocessing system supplies again RO membrane. The volumes of the raw water tank 1 and the purified water tank 26 are 10 to 20 liters and 4 to 8 liters, respectively.

前記浄化フィルタ部はRO膜装置9と、その前後に配設された3つの活性炭槽7、8、10からなる。RO膜装置9の前方の流路側には、2つの活性炭槽7、8が直列状に接続され、後方側にも活性炭槽9が直列状に接続されている。活性炭槽7、8、10はタワー形状をなし、最前段の活性炭槽7の原水導入口には、原水供給管3の送水端6が連結されている。原水センサ5及び送水ポンプ4は原水供給管3に配設されている。原水センサ5は送水ポンプ4により原水タンク1から汲み出された原水2に含有されるTDSの含有量を計測するTDSセンサからなる。原水センサ5は原水のTDSの計測信号S8を出力する。原水供給管3の取水端は原水タンク1の底部付近まで延設されている。送水ポンプ4は電動ポンプからなり、後述の制御回路部41からの駆動信号S4により駆動制御される。   The purification filter section includes an RO membrane device 9 and three activated carbon tanks 7, 8, and 10 disposed before and after the RO membrane device 9. Two activated carbon tanks 7 and 8 are connected in series on the flow path side in front of the RO membrane device 9, and the activated carbon tank 9 is also connected in series on the rear side. The activated carbon tanks 7, 8, and 10 have a tower shape, and the water supply end 6 of the raw water supply pipe 3 is connected to the raw water inlet of the activated carbon tank 7 in the foremost stage. The raw water sensor 5 and the water pump 4 are disposed in the raw water supply pipe 3. The raw water sensor 5 includes a TDS sensor that measures the content of TDS contained in the raw water 2 pumped from the raw water tank 1 by the water pump 4. The raw water sensor 5 outputs a TDS measurement signal S8 of the raw water. The intake end of the raw water supply pipe 3 is extended to the vicinity of the bottom of the raw water tank 1. The water pump 4 is an electric pump, and is driven and controlled by a drive signal S4 from a control circuit unit 41 described later.

活性炭槽7、8は連結管11により連結されている。活性炭槽8とRO膜装置9は連結管12により連結されている。原水タンク1から汲み出された原水2は連結管11、12を介して活性炭槽7、8を順次、通過し、活性炭の吸着作用により、原水2に含まれる塩素イオンや有機化合物等の有害物質を吸着して除去する。連結管12の中間には三方弁13が配設されている。活性炭槽7、8の活性炭を入替える際、新品の活性炭に含まれる塵埃がRO膜に流れ込まないように、三方弁13を出口側流路14に切換え、活性炭槽7、8内部を洗い流す活性炭前処理を行う。この活性炭前処理を施した後、三方弁13をRO膜装置9に切換え、活性炭槽7、8を通過した原水をRO膜装置9の給水口(原水導入口)に流入させる。RO膜装置9の後方側にも、連結管15を介して最終段の活性炭槽10が配設されている。   The activated carbon tanks 7 and 8 are connected by a connecting pipe 11. The activated carbon tank 8 and the RO membrane device 9 are connected by a connecting pipe 12. The raw water 2 pumped from the raw water tank 1 sequentially passes through the activated carbon tanks 7 and 8 through the connecting pipes 11 and 12, and harmful substances such as chlorine ions and organic compounds contained in the raw water 2 due to the adsorption action of the activated carbon. Is removed by adsorption. A three-way valve 13 is disposed in the middle of the connecting pipe 12. When the activated carbon in the activated carbon tanks 7 and 8 is replaced, the three-way valve 13 is switched to the outlet channel 14 so that dust contained in the new activated carbon does not flow into the RO membrane, and the activated carbon tanks 7 and 8 are washed away inside the activated carbon tank. Process. After performing this activated carbon pretreatment, the three-way valve 13 is switched to the RO membrane device 9, and the raw water that has passed through the activated carbon tanks 7 and 8 is caused to flow into the water supply port (raw water introduction port) of the RO membrane device 9. Also on the rear side of the RO membrane device 9, a final stage activated carbon tank 10 is disposed via a connecting pipe 15.

RO膜装置9は、RO膜(図示せず)を収納させた筒状容器からなり、容器上には、給水口、純水排出口及び濃縮水排出口が設けられている。純水排出口からは給水した水から不純物を高度に除去した純水が排出され、濃縮水排出口からは逆浸透作用により生じた濃縮水が排出される。RO膜には中空糸膜、スパイラル膜あるいはチューブラー膜等を使用でき、膜材質としては酢酸セルロース、芳香族ポリアミド、ポリビニルアルコールあるいはポリスルホン等を使用することができる。   The RO membrane device 9 is a cylindrical container in which an RO membrane (not shown) is accommodated, and a water supply port, a pure water discharge port, and a concentrated water discharge port are provided on the container. Pure water from which impurities are highly removed is discharged from the pure water discharge port, and concentrated water generated by reverse osmosis is discharged from the concentrated water discharge port. As the RO membrane, a hollow fiber membrane, a spiral membrane, a tubular membrane or the like can be used, and as the membrane material, cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone or the like can be used.

RO膜装置9の浄水排出口(純水排出口)は連結管15を介して活性炭槽10に接続されている。RO膜装置9の濃縮水排出口は連結管18を介して濃縮水帰還管23に連結している。濃縮水帰還管23の排出口は原水タンク1内部に収設され、RO膜を経て不純物が濃縮された濃縮水を原水タンク1に帰還させ、再処理に供する。原水タンク1に戻された濃縮水は原水2となって、送水ポンプ6により再び前記浄化フィルタ部に送水される。連結管15及び濃縮水帰還管23によって、濃縮水を原水として原水タンク1に戻し、RO膜装置9に循環させる循環処理システムが構成されている。   A purified water discharge port (pure water discharge port) of the RO membrane device 9 is connected to the activated carbon tank 10 via a connecting pipe 15. The concentrated water discharge port of the RO membrane device 9 is connected to the concentrated water return pipe 23 via the connecting pipe 18. The outlet of the concentrated water return pipe 23 is accommodated in the raw water tank 1, and the concentrated water enriched with impurities through the RO membrane is returned to the raw water tank 1 for reprocessing. The concentrated water returned to the raw water tank 1 becomes the raw water 2 and is sent again to the purification filter section by the water pump 6. The connection pipe 15 and the concentrated water return pipe 23 constitute a circulation processing system that returns the concentrated water to the raw water tank 1 as raw water and circulates it through the RO membrane device 9.

濃縮水帰還管23には、連結管18から分岐して、RO膜装置9のRO膜の浸透圧を所定値に保持する流量調整流路19と、流量調整流路19に併設されたバイパス流路20が設けられている。流量調整流路19には、所定のオリフィスからなる流量調整器22が配設されている。RO膜装置9のRO膜による逆浸透作用を働かせるには加圧流をRO膜に流す必要があるので、流量調整器22により、濃縮水帰還管23に流す濃縮水の流量を特定流量、例えば200ミリリットル/分に制限して、前記加圧流を生成している。   The concentrated water return pipe 23 is branched from the connecting pipe 18 and has a flow rate adjusting channel 19 that maintains the osmotic pressure of the RO membrane of the RO membrane device 9 at a predetermined value, and a bypass flow that is provided in the flow rate adjusting channel 19. A path 20 is provided. A flow rate regulator 22 made of a predetermined orifice is disposed in the flow rate regulation channel 19. In order to exert the reverse osmosis action by the RO membrane of the RO membrane device 9, it is necessary to flow a pressurized flow through the RO membrane. Therefore, the flow rate regulator 22 sets the flow rate of the concentrated water flowing through the concentrated water return pipe 23 to a specific flow rate, for example 200 The pressure flow is generated at a limit of milliliters / minute.

流量調整流路19に併設されたバイパス流路20には電磁弁21が設置されている。原水タンク1の原水2又はタンク自体の取替え時、あるいは活性炭槽7、8、10、RO膜装置9の取替え時には、通水初期に電磁弁21を開放側に切り換えて、RO膜装置9から排出される濃縮水を大量に排出させ、その後、RO膜全体に通水が満たされたとき、電磁弁21を閉成側に切り換えて、バイパス流路20への流通を遮断する。バイパス流路20の遮断により、濃縮水は流量調整流路19にのみ流れ、前記流量調整器22による流量の絞込みによって加圧流を生じて、円滑に逆浸透膜作用を原水に及ぼすことができる。電磁弁21は制御回路部41からの駆動信号S5により開閉制御される。   An electromagnetic valve 21 is installed in the bypass flow path 20 provided along with the flow rate adjustment flow path 19. When the raw water 2 of the raw water tank 1 or the tank itself is replaced, or when the activated carbon tanks 7, 8, 10 and the RO membrane device 9 are replaced, the electromagnetic valve 21 is switched to the open side at the initial stage of water flow and discharged from the RO membrane device 9. The concentrated water to be discharged is discharged in a large amount, and then, when the entire RO membrane is filled with water, the solenoid valve 21 is switched to the closed side to block the flow to the bypass flow path 20. By shutting off the bypass flow path 20, the concentrated water flows only in the flow rate adjustment flow path 19, and a pressurized flow is generated by narrowing the flow rate by the flow rate regulator 22, so that the reverse osmosis membrane action can be smoothly applied to the raw water. The solenoid valve 21 is controlled to open and close by a drive signal S5 from the control circuit unit 41.

RO膜装置9と活性炭槽10の間の連結管15の中間には三方弁16が配設されている。RO膜装置9の入替え時等において、最初に流れ出る浄水には、活性炭やRO膜に付着している僅かの汚れが混入しているおそれがあるので、三方弁16を出口側流路17に切換えて外部に排出させることができる。この排出処理を施した後、三方弁16を活性炭槽10に切換え、RO膜装置9により生成された浄水を活性炭槽10の浄水導入口に流入させる。活性炭槽10に導入された浄水は活性炭槽10を通過することにより、活性炭の吸着作用により、原水2に含まれる微量の有害物質も取り除かれて、活性炭槽10の浄水排水口に接続された浄水供給管24を通じて浄水タンク26に排出される。浄水供給管24に設けた浄水センサ25は、浄水に含有されるTDSの含有量を計測するTDSセンサからなる。浄水センサ25は浄水のTDSの計測信号S3を出力する。   A three-way valve 16 is disposed in the middle of the connecting pipe 15 between the RO membrane device 9 and the activated carbon tank 10. When the RO membrane device 9 is replaced, the purified water that flows out first may be contaminated with activated carbon or a slight amount of dirt adhering to the RO membrane, so the three-way valve 16 is switched to the outlet-side flow path 17. Can be discharged to the outside. After performing this discharge process, the three-way valve 16 is switched to the activated carbon tank 10, and the purified water generated by the RO membrane device 9 is caused to flow into the purified water inlet of the activated carbon tank 10. The purified water introduced into the activated carbon tank 10 passes through the activated carbon tank 10, thereby removing a trace amount of harmful substances contained in the raw water 2 by the adsorption action of the activated carbon, and the purified water connected to the purified water drain of the activated carbon tank 10. The water is discharged to the purified water tank 26 through the supply pipe 24. The purified water sensor 25 provided in the purified water supply pipe 24 includes a TDS sensor that measures the content of TDS contained in the purified water. The water purification sensor 25 outputs a TDS measurement signal S3.

前記浄水提供部は、浄水タンク26の浄水を蛇口38を通じて冷水又は温水として提供可能に構成されている。浄水供給管24の排水端は、浄水タンク26の上蓋45に取着され、その排水口はタンク内部に臨んでいる。浄水供給管24の排水端にはフロート弁27が設けられている。また、浄水タンク26の上蓋45には、タンク内部に向けて、紫外線殺菌灯31と液面センサ32が取着されている。紫外線殺菌灯31は制御回路部41からの制御信号S1により点灯・消灯制御される。液面センサ32は収容された浄水液面に接触することにより、所定量の浄水が貯留されているか否かを検出する。液面センサ32は所定量の浄水が貯留されていることを検出する検出手段であり、液面の上昇・下降に応じて上下動するフロートを有し、液面の上限位置と下限位置を検出するフロートスイッチからなる。液面センサ32が液面の上限位置LH又は下限位置LLを検出したとき検出信号S2を出力する。制御回路部41は検出信号S2の受信により送水ポンプ4を停止させて、浄水タンク26への浄水の送水を停止させる。送水の停止後、所定時間が経過したとき、制御回路部41は駆動信号S4を送水ポンプ4に送信して駆動させ、浄水の送水を開始する。液面センサ32による浄水量の監視と送水ポンプ4の間欠駆動により、浄水タンク26内の浄水が一定の水位に保持されるように浄水量の制御が行われる。液面センサ32のフロートスイッチに代えて、上限位置LHと下限位置LLを夫々、検知する一対のレベルセンサを設置してもよい。   The said purified water provision part is comprised so that the purified water of the purified water tank 26 can be provided as cold water or warm water through the faucet 38. The drain end of the purified water supply pipe 24 is attached to the upper cover 45 of the purified water tank 26, and the drain port faces the inside of the tank. A float valve 27 is provided at the drain end of the purified water supply pipe 24. Moreover, the ultraviolet germicidal lamp 31 and the liquid level sensor 32 are attached to the upper cover 45 of the water purification tank 26 toward the inside of the tank. The ultraviolet germicidal lamp 31 is controlled to be turned on / off by a control signal S 1 from the control circuit unit 41. The liquid level sensor 32 detects whether or not a predetermined amount of purified water is stored by contacting the stored purified water level. The liquid level sensor 32 is a detecting means for detecting that a predetermined amount of purified water is stored, has a float that moves up and down in accordance with the rise and fall of the liquid level, and detects the upper limit position and the lower limit position of the liquid level. It consists of a float switch. When the liquid level sensor 32 detects the upper limit position LH or the lower limit position LL of the liquid level, it outputs a detection signal S2. The control circuit unit 41 stops the water supply pump 4 by receiving the detection signal S <b> 2 and stops water supply to the water purification tank 26. When a predetermined time has elapsed after stopping the water supply, the control circuit unit 41 transmits the drive signal S4 to the water supply pump 4 to drive it, and starts the supply of purified water. By monitoring the amount of purified water by the liquid level sensor 32 and intermittently driving the water pump 4, the amount of purified water is controlled so that the purified water in the purified water tank 26 is maintained at a constant water level. Instead of the float switch of the liquid level sensor 32, a pair of level sensors for detecting the upper limit position LH and the lower limit position LL may be provided.

フロート弁27のフロート28の設置位置は液面センサ32の上限検出位置よりも上方に位置し、液面センサ32の検出後も貯留水量が増大したとき、液面上昇によりフロート28が浮力で動作して、フロート弁27を強制的に閉成して、浄水の供給を緊急に停止させることができる。浄水タンク26の底面にはドレイン管43が配設され、ドレイン管43は開閉弁30により開閉される。   When the float 28 is located above the upper limit detection position of the liquid level sensor 32 and the amount of stored water increases after the liquid level sensor 32 is detected, the float 28 operates with buoyancy due to the rise in liquid level. Then, the float valve 27 can be forcibly closed to urgently stop the supply of purified water. A drain pipe 43 is disposed on the bottom surface of the water purification tank 26, and the drain pipe 43 is opened and closed by the opening / closing valve 30.

浄水タンク26には冷却装置(図示せず)が付設されており、貯留水を5〜10℃程度まで冷却して冷水化することができる。冷却温度は任意に設定することができる。浄水タンク26には2本の取水管33、42がタンク内に連通して取着されている。取水管33の一端はホットタンク34の内部に延設されている。ホットタンク34は加熱ヒータ(図示せず)により加熱され、取水管33を通じて浄水タンク26から供給された浄水を加熱して温水化する。ホットタンク34の底面にはドレイン管44が配設され、ドレイン管44は開閉弁36により開閉される。ホットタンク34には温水管35が接続され、温水管35の一端には電磁弁37と蛇口38が配設されている。ホットタンク34の温水は浄水タンク26からの水圧で温水管35を通じて蛇口38より排水される。   The water purification tank 26 is provided with a cooling device (not shown), and the stored water can be cooled to about 5 to 10 ° C. to be chilled. The cooling temperature can be set arbitrarily. Two intake pipes 33 and 42 are attached to the water purification tank 26 in communication with the tank. One end of the intake pipe 33 is extended inside the hot tank 34. The hot tank 34 is heated by a heater (not shown), and the purified water supplied from the purified water tank 26 through the intake pipe 33 is heated to warm it. A drain pipe 44 is disposed on the bottom surface of the hot tank 34, and the drain pipe 44 is opened and closed by an opening / closing valve 36. A hot water pipe 35 is connected to the hot tank 34, and an electromagnetic valve 37 and a faucet 38 are disposed at one end of the hot water pipe 35. The hot water in the hot tank 34 is drained from the faucet 38 through the hot water pipe 35 with the water pressure from the water purification tank 26.

取水管42の一端には電磁弁40が配設され、更に、排出管39を介して蛇口38に接続されている。浄水タンク26の浄水は前記冷却装置により冷水化されて、冷水として浄水タンク26からの水圧で取水管42及び排出管39を通じて蛇口38より排水される。電磁弁37、40は夫々、制御回路部41からの開閉信号S6、S7により開閉される。
なお、本実施形態における電磁弁には、電磁石(ソレノイド)の磁力によりプランジャを可動させるソレノイド弁等を使用することができる。また、原水センサ5及び浄水センサ25には、0〜2000ppmの範囲でTDS検出が可能で、0.1〜10ppmの分解能を有するTDSセンサを使用することができる。
An electromagnetic valve 40 is disposed at one end of the water intake pipe 42, and is further connected to a faucet 38 via a discharge pipe 39. The purified water in the purified water tank 26 is chilled by the cooling device, and is drained from the faucet 38 through the intake pipe 42 and the discharge pipe 39 as cold water by the water pressure from the purified water tank 26. The electromagnetic valves 37 and 40 are opened and closed by open / close signals S6 and S7 from the control circuit unit 41, respectively.
In addition, the solenoid valve etc. which move a plunger with the magnetic force of an electromagnet (solenoid) can be used for the solenoid valve in this embodiment. Moreover, TDS detection is possible for the raw | natural water sensor 5 and the water purification sensor 25 in the range of 0-2000 ppm, and a TDS sensor which has a resolution of 0.1-10 ppm can be used.

制御回路部41はマイクロプロセッサにより構成され、本発明に係る浄水処理プログラム、取水処理プログラム及び殺菌灯の点灯制御プログラムを記憶するプログラム記憶メモリ46を有する。制御回路部41には、液面センサ32の液面レベル検出信号S2、浄水センサ25の計測信号S3及び原水センサ5の計測信号S8が与えられ、これらの信号データを記憶するワークメモリ47が制御回路部41に設けられている。外部出力手段として、原水又はRO膜の交換時期をアラーム報知する警報器48と、アラーム内容を表示するディスプレイ49が制御回路部41に接続されている。外部入力手段として、各種操作キーからなる入力手段50が制御回路部41に接続されている。   The control circuit unit 41 includes a microprocessor and has a program storage memory 46 for storing a water purification treatment program, a water intake treatment program, and a germicidal lamp lighting control program according to the present invention. The control circuit unit 41 is given a liquid level detection signal S2 of the liquid level sensor 32, a measurement signal S3 of the water purification sensor 25, and a measurement signal S8 of the raw water sensor 5, and a work memory 47 for storing these signal data is controlled. The circuit unit 41 is provided. As external output means, an alarm device 48 for alarming the replacement timing of the raw water or the RO membrane and a display 49 for displaying the alarm content are connected to the control circuit unit 41. As external input means, input means 50 comprising various operation keys is connected to the control circuit unit 41.

図2は制御回路部41の浄水処理プログラムにより実行される浄水処理制御を示すフローチャートである。
浄水処理の開始に先立ち、事前に、各種前処理が行われる。活性炭槽7、8の活性炭入替えを行うときは、三方弁13のマニュアル開閉によって上記活性炭前処理を行っておく。また、原水タンク1の原水2又はタンク自体の取替えた時、あるいは活性炭槽7、8、10、RO膜装置9の取替えた時には、初期設定が行われる(ステップST0)。即ち、浄水前処理開始の指示入力を入力手段50により制御回路部41に与えることによって、通水初期時に、制御回路部41から駆動信号S5が送信され、電磁弁21を開放側に切り換える。ついで、RO膜装置9から排出される濃縮水を大量に排出させて、RO膜全体に通水が満たされたとき、電磁弁21を閉成側に切り換えて、バイパス流路20への流通を遮断し、加圧水流状態に自動設定しておく。
FIG. 2 is a flowchart showing water purification treatment control executed by the water purification treatment program of the control circuit unit 41.
Prior to the start of the water purification treatment, various pretreatments are performed in advance. When the activated carbon tanks 7 and 8 are replaced, the activated carbon pretreatment is performed by manually opening and closing the three-way valve 13. Moreover, when the raw water 2 of the raw water tank 1 or the tank itself is replaced, or when the activated carbon tanks 7, 8, 10 and the RO membrane device 9 are replaced, initial setting is performed (step ST0). That is, by giving an instruction input for starting the pretreatment of water purification to the control circuit unit 41 by the input means 50, the drive signal S5 is transmitted from the control circuit unit 41 at the initial stage of water flow, and the electromagnetic valve 21 is switched to the open side. Next, a large amount of the concentrated water discharged from the RO membrane device 9 is discharged, and when the entire RO membrane is filled with water, the solenoid valve 21 is switched to the closed side and the flow to the bypass flow path 20 is made. Shut off and automatically set to pressurized water flow.

浄水処理の開始を入力手段50により制御回路部41に与えることによって、浄水処理が開始される。まず、原水センサ5によって計測された原水TDS濃度の計測値が読み取られる(ステップST1)。このTDSデータ値はワークメモリ47に最先原水濃度C1として記憶される(ステップST2)。ついで、最先原水濃度C1から基準濃度C0が算出される(ステップST3)。一般に、原水に用いる水道水のTDSは50〜200ppmであるので、基準濃度C0としては最先原水濃度C1の例えば20%(α%)の値に設定されるが、α値は浄化要求度に応じて種々に設定できる。算出された基準濃度C0の値はワークメモリ47に記憶される(ステップST4)。基準濃度C0は浄化の目標TDS除去率に相当し、α値を制御回路部41に対して可変設定可能にして任意に設定でき、水道水、天然水等の原水源の濃度に応じて任意に設定することができる。本実施形態では、基準濃度C0と実測濃度との比較により、臨界濃度に達したことにより原水又はRO膜の交換時期を判別するが、原水供給管3内に配置された原水センサ5が通水を検出しなくなった時には、原水タンク1は空になったと判断して、タンクの空状態の発生を報知することができる。   By giving the start of the water purification treatment to the control circuit unit 41 by the input means 50, the water purification treatment is started. First, the measured value of the raw water TDS concentration measured by the raw water sensor 5 is read (step ST1). The TDS data value is stored in the work memory 47 as the earliest raw water concentration C1 (step ST2). Next, a reference concentration C0 is calculated from the earliest raw water concentration C1 (step ST3). Generally, since the TDS of tap water used for raw water is 50 to 200 ppm, the reference concentration C0 is set to a value of, for example, 20% (α%) of the earliest raw water concentration C1, but the α value depends on the degree of purification requirement. Various settings can be made accordingly. The calculated value of the reference density C0 is stored in the work memory 47 (step ST4). The reference concentration C0 corresponds to the target TDS removal rate for purification, and the α value can be arbitrarily set to the control circuit unit 41 so that it can be set arbitrarily. It can be arbitrarily set according to the concentration of raw water sources such as tap water and natural water. Can be set. In this embodiment, when the critical concentration is reached by comparing the reference concentration C0 with the actually measured concentration, the replacement time of the raw water or the RO membrane is discriminated. However, the raw water sensor 5 disposed in the raw water supply pipe 3 has a water flow rate. Can no longer be detected, it can be determined that the raw water tank 1 is empty, and the occurrence of an empty state of the tank can be notified.

RO膜装置9と活性炭槽7、8、10による浄水化の進行に伴い、浄水供給管24を通じて浄水タンク26に順次、浄水の移送が行われていくが、このとき浄水供給管24に流れる浄水に対して、浄水センサ25によりTDS濃度が計測され、その計測値Ctが読み取られる(ステップST5)。原水供給管3内に配置された原水センサ5が通水を検出しなくなった時には、計測値Ctの読み取りが行われないので(ステップST6)、原水タンク1は空になったと判断して、タンクの空状態の発生を報知する(ステップST9)。
計測値Ctの読み取りが正常に行われた場合には(ステップST6)、所定時間(例えば、1分)内の前記浄水TDS濃度Ctの平均値が算出され、浄水TDS濃度Ctの平均値と基準濃度C0の比較が行われる(ステップST7)。この比較により浄水TDS濃度Ctが基準濃度C0より大きくなったとき、駆動信号4により送水ポンプ4の駆動を停止させると共に、原水2及びRO膜装置9の交換を促す警報処理を行う(ステップST8)。警報処理は警報器48のアラーム音の出力と、ディスプレイ49上のアラームメッセージの表示が行われる。このとき、RO膜装置9の取付時期(前回の交換時期)を予め記憶しておき、警報と共に、使用中のRO膜装置9の所要使用時間を表示するようにすれば、RO膜の寿命の判断に役立つ。比較処理(ステップST7)により、浄水TDS濃度Ctが基準濃度C0を超えていないときは、警報処理は行われない。その後、前記所定時間(例えば、1分)内の前記浄水TDS濃度Ctの平均値が新たに読み取られ、上記比較処理が繰り返される(ステップST5〜ST7)。
With the progress of water purification by the RO membrane device 9 and the activated carbon tanks 7, 8, and 10, purified water is sequentially transferred to the purified water tank 26 through the purified water supply pipe 24. At this time, purified water flowing to the purified water supply pipe 24 On the other hand, the TDS concentration is measured by the water purification sensor 25, and the measured value Ct is read (step ST5). When the raw water sensor 5 arranged in the raw water supply pipe 3 no longer detects water flow, the measured value Ct is not read (step ST6), so it is determined that the raw water tank 1 is empty, and the tank The occurrence of the empty state is notified (step ST9).
When the measurement value Ct is normally read (step ST6), the average value of the purified water TDS concentration Ct within a predetermined time (for example, 1 minute) is calculated, and the average value of the purified water TDS concentration Ct and the reference The density C0 is compared (step ST7). When the purified water TDS concentration Ct becomes larger than the reference concentration C0 by this comparison, the drive of the water pump 4 is stopped by the drive signal 4 and an alarm process for urging the replacement of the raw water 2 and the RO membrane device 9 is performed (step ST8). . In the alarm processing, an alarm sound of the alarm device 48 is output and an alarm message on the display 49 is displayed. At this time, if the RO membrane device 9 mounting time (previous replacement time) is stored in advance and the required usage time of the RO membrane device 9 in use is displayed together with an alarm, the life of the RO membrane is shortened. Useful for judgment. When the purified water TDS concentration Ct does not exceed the reference concentration C0 by the comparison process (step ST7), the alarm process is not performed. Thereafter, the average value of the purified water TDS concentration Ct within the predetermined time (for example, 1 minute) is newly read, and the comparison process is repeated (steps ST5 to ST7).

上記比較処理(ステップST7)は、本発明における、最先原水濃度から計算される基準濃度と浄水濃度を比較する比較手段に対応する。また、浄水濃度が基準濃度より大きくなったときに、原水の交換及び/又はRO膜の交換を報知する報知手段は、警報器48、ディスプレイ49及び警報処理(ステップST8)により構成される。   The comparison process (step ST7) corresponds to comparison means for comparing the reference concentration calculated from the earliest raw water concentration with the purified water concentration in the present invention. In addition, when the purified water concentration becomes higher than the reference concentration, the notification means for notifying the replacement of the raw water and / or the replacement of the RO membrane includes an alarm device 48, a display 49, and an alarm process (step ST8).

以上のように、濃縮水帰還管23により、前記RO膜の浄化作用により生ずる濃縮水を原水タンク1に帰還させる濃縮水帰還流路を設けた浄水生成システムにおいて、浄水処理開始時に、原水2のTDS濃度を原水センサ5により予め計測し、その初期計測値から算出した基準値C0と、浄水タンク26に供給する浄水のTDS濃度を浄水センサ25により計測した計測値Ctとを比較することにより、原水タンク1内の不純物濃度の変化を監視しながら浄水供給することが可能になる。従って、原水センサ5及び浄水センサ25による自動監視により、原水タンク1に濃縮水を戻して、前記RO膜による再浄化を行わせる浄化循環システムを実現でき、原水やRO膜の交換に手間がかからず、またメンテナンスに必要な人件費を削減して、浄水処理費用の低減を図ることができる。   As described above, in the purified water generation system provided with the concentrated water return flow path for returning the concentrated water generated by the purification action of the RO membrane to the raw water tank 1 by the concentrated water return pipe 23, at the start of the purified water treatment, By measuring the TDS concentration in advance with the raw water sensor 5 and comparing the reference value C0 calculated from the initial measurement value with the measured value Ct measured by the water purification sensor 25 for the TDS concentration of purified water supplied to the water purification tank 26, It becomes possible to supply purified water while monitoring changes in the impurity concentration in the raw water tank 1. Therefore, by the automatic monitoring by the raw water sensor 5 and the purified water sensor 25, it is possible to realize a purification circulation system that returns the concentrated water to the raw water tank 1 and performs repurification by the RO membrane, and it takes time to replace the raw water and the RO membrane. In addition, the labor cost required for maintenance can be reduced, and the cost of water purification can be reduced.

図3は本実施形態に係る浄水処理システムにおける取水処理制御を示す。
浄水タンク26からの取水は浄水処理が可能な状態で行われる。上述の浄水処理の前処理を終えていない状態、つまり活性炭やRO膜あるいは原水の取替中における警報発生時には取水停止の報知が行われる(ステップST11、ST17)。また、浄水の浄水タンク26への供給不良のとき、つまり、送水ポンプ4の駆動不良等時などにおいて、液面センサ32の監視により、浄水タンク26内の貯留浄水の量が上限位置LHと下限位置LLの間で適正に充填されていない場合にも、取水停止の報知が行われる(ステップST12、ST17)。
FIG. 3 shows water intake control in the water purification system according to this embodiment.
Water intake from the water purification tank 26 is performed in a state where water purification treatment is possible. In the state where the pretreatment of the above water purification treatment has not been completed, that is, when an alarm is generated during replacement of activated carbon, RO membrane or raw water, a water withdrawal stop is notified (steps ST11 and ST17). In addition, when the supply of purified water to the purified water tank 26 is defective, that is, when the water pump 4 is not driven properly, the amount of stored purified water in the purified water tank 26 is monitored by the liquid level sensor 32 to the upper limit position LH and the lower limit. Even when the filling is not properly performed between the positions LL, the intake stop is notified (steps ST12 and ST17).

取水停止の報知が行われていず、上記前処理を完了し、浄水の浄水タンク26への供給不良も生じていない状態 (ステップST11、ST12)、取水モードの設定を行うことができる(ステップST13)。入力手段50により、取水開始を指示するキーインを行うと共に、温水又は冷水の区別をキー入力する(ステップST14)。温水を選択した場合には、電磁弁37のみを開成してホットタンク34を経由して加熱された浄水を排出可能にする(ステップST15)。冷水を選択した場合には、電磁弁40のみを開成して浄水タンク26内の浄水を排出可能にする(ステップST16)。   Intake stop notification is not performed, the pretreatment is completed, and there is no supply failure of purified water to the purified water tank 26 (steps ST11 and ST12), and the intake mode can be set (step ST13). ). The input means 50 performs key-in for instructing the start of water intake, and inputs a key for distinguishing between hot water and cold water (step ST14). When hot water is selected, only the solenoid valve 37 is opened, and the heated purified water can be discharged via the hot tank 34 (step ST15). When cold water is selected, only the solenoid valve 40 is opened, and the purified water in the purified water tank 26 can be discharged (step ST16).

上記取水モードに設定した通常の浄水使用状態において、液面センサ32による浄水タンク26の貯水量保持の監視処理(後述のステップST32〜ST34、ST37〜ST41参照)が行われる。貯水量の監視処理は取水モード設定に関わりなく、浄水処理中、強制的に行うことができるようにしてもよい。   In the normal clean water use state set in the water intake mode, a monitoring process (see steps ST32 to ST34 and ST37 to ST41 described later) for holding the amount of water stored in the water purification tank 26 by the liquid level sensor 32 is performed. Regardless of the water intake mode setting, the monitoring process of the water storage amount may be forcibly performed during the water purification process.

浄水タンク26内の浄水はRO膜の逆浸透作用によって高純度化されるものの、水道水の次亜塩素酸など、原水に含まれる殺菌成分を全て除去してしまうため、RO膜を透過した水に細菌やカビなどが繁殖しないとも限らない。そこで、本実施形態においては、紫外線殺菌灯31を浄水タンク26内に投入して浄水29の紫外線殺菌を行っている。   Although the purified water in the water purification tank 26 is highly purified by the reverse osmosis action of the RO membrane, it removes all the sterilizing components contained in the raw water such as hypochlorous acid in tap water. There is no guarantee that bacteria and mold will not propagate. Therefore, in this embodiment, the ultraviolet sterilization lamp 31 is put into the water purification tank 26 to sterilize the purified water 29.

紫外線殺菌灯31を常時、点灯して使用すると、その消耗が早まり、設備費用が嵩むので、本実施形態においては紫外線殺菌灯31の省電力制御システムを導入している。 If the ultraviolet germicidal lamp 31 is always lit and used, its consumption is accelerated and the equipment cost increases. Therefore, in this embodiment, a power saving control system for the ultraviolet germicidal lamp 31 is introduced.

図4は本実施形態における貯水量保持の監視処理及び浄水殺菌処理を示す。
この貯水量保持の監視処理及び浄水殺菌処理制御は、上記取水モードに設定した浄水処理可能状態で実行される(ステップST31)。浄水処理可能状態においては、浄水処理が実行され、送水ポンプによる浄水タンク26への送水が行われる。液面センサ32により、所定量の浄水が上限位置LHまで貯留されていることを検出したとき、その旨の検出信号S2が出力される(ステップST32)。LH検出の検出信号S2の受信により、制御回路部41は、制御信号S4により送水ポンプ4の駆動が停止する(ステップST33)。送水ポンプ4の停止により浄水タンク26への浄水の送水が停止されると、送水停止状態を監視するための送水停止タイマ(図示せず)が起動される(ステップST34)。この送水停止タイマは制御回路部41に内蔵されている。このように、液面センサ32による浄水量の監視と送水ポンプ4の間欠駆動により、浄水タンク26内の浄水が一定の水位に保持されるので、取水に必要な浄水量を常時、確保しておくことができる。
FIG. 4 shows the monitoring process of the water storage amount retention and the purified water sterilization process in this embodiment.
The monitoring process of water storage amount retention and the purified water sterilization process control are executed in the purified water processable state set in the water intake mode (step ST31). In the state where the water purification treatment is possible, the water purification treatment is performed, and water is supplied to the water purification tank 26 by the water supply pump. When the liquid level sensor 32 detects that a predetermined amount of purified water is stored up to the upper limit position LH, a detection signal S2 to that effect is output (step ST32). Upon reception of the detection signal S2 for LH detection, the control circuit unit 41 stops driving the water pump 4 with the control signal S4 (step ST33). When water supply to the water purification tank 26 is stopped by stopping the water supply pump 4, a water supply stop timer (not shown) for monitoring the water supply stop state is started (step ST34). This water supply stop timer is built in the control circuit unit 41. Thus, since the purified water in the purified water tank 26 is maintained at a constant water level by monitoring the purified water amount by the liquid level sensor 32 and intermittent driving of the water pump 4, always secure the purified water amount necessary for water intake. I can leave.

タンク内の浄水が上限位置LHと下限位置LLの間の水位に所定量貯留された貯水状態で、制御回路部41は制御信号S1により紫外線殺菌灯31を点灯させている(ステップST38)。従って、送水ポンプ4の停止(ステップST33)に至るまでには紫外線殺菌灯31の点灯状態が継続されており、十分に殺菌処理が行われている。流水中や十分に新しい浄水が浄水タンク26へ供給されているときには、タンク内で細菌やカビなどの繁殖が進行せず、滞水状態に長時間放置するとき繁殖が進むので、十分に紫外線を照射した後は省電力のために消灯させて寿命を維持するのが好ましい。そこで、送水ポンプ4の停止後、1時間経過したときには、紫外線殺菌灯31を消灯する(ステップST35、ST36)。 The control circuit unit 41 turns on the ultraviolet germicidal lamp 31 by the control signal S1 in a water storage state in which a predetermined amount of purified water in the tank is stored at the water level between the upper limit position LH and the lower limit position LL (step ST38). Therefore, until the water pump 4 is stopped (step ST33), the ultraviolet germicidal lamp 31 is kept on, and the sterilization process is sufficiently performed. When running water or sufficiently new purified water is supplied to the water purification tank 26, the propagation of bacteria and mold does not proceed in the tank, and the propagation proceeds when left in a stagnant state for a long time. After irradiation, it is preferable to maintain the life by turning off the light for power saving. Therefore, when one hour has passed after the water pump 4 is stopped, the ultraviolet germicidal lamp 31 is turned off (steps ST35 and ST36).

上限位置LHまで貯水されている状態から浄水の使用により徐々に液面が低下していく。液面センサ32により下限位置LLまで貯水量が低下したことを検出したとき、その旨の検出信号S2が出力される(ステップST37)。このとき、送水ポンプ4の再駆動に先立ち、紫外線殺菌灯31を点灯しておく(ステップST38)。何らかの原因により浄水供給が間に合わず、少量の貯水で滞水が長引くおそれがあるので、紫外線殺菌灯31の点灯を開始している。この点灯後、送水開始タイマ(図示せず)を起動し、そのタイマで1分を計時したとき(ステップST39)、制御回路部41は制御信号S4により送水ポンプ4を駆動させる(ステップST40)。このように下限量に達してから浄水の供給が行われるまでの間も殺菌処理を開始できるため、下限位置LHに達してから浄水の供給が行われない不測の事態が生じても、滞水状態における繁殖の進行を未然に防ぐことができる。送水開始タイマは制御回路部41に内蔵されている。送水ポンプ4の駆動開始により前記送水停止タイマはリセットされる(ステップST41)。 From the state where the water is stored up to the upper limit position LH, the liquid level gradually decreases by using purified water. When the liquid level sensor 32 detects that the amount of stored water has decreased to the lower limit position LL, a detection signal S2 to that effect is output (step ST37). At this time, prior to re-driving the water pump 4, the ultraviolet germicidal lamp 31 is turned on (step ST38). Since the purified water supply is not in time for some reason and there is a possibility that the water retention will be prolonged with a small amount of stored water, the ultraviolet germicidal lamp 31 is turned on. After this lighting, a water supply start timer (not shown) is started, and when the timer counts 1 minute (step ST39), the control circuit unit 41 drives the water supply pump 4 by the control signal S4 (step ST40). Since the sterilization process can be started from the time when the lower limit amount is reached to the time when purified water is supplied, even if an unexpected situation occurs where the purified water is not supplied after reaching the lower limit position LH, The progress of breeding in the state can be prevented in advance. The water supply start timer is built in the control circuit unit 41. The water supply stop timer is reset by the start of driving of the water supply pump 4 (step ST41).

上記取水モードに設定した浄水処理可能状態においては、ステップST32〜ST41にて貯水量保持の監視処理及び浄水殺菌処理が制御される。しかし、例えば、店舗等における閉店時には、取水モードから稼働停止モードになり、送水が停止される。このときは貯水量保持の監視処理が実行されず、稼働停止モードにおける浄水殺菌処理(ステップST42〜ST46)が実行される。勿論、送水ポンプ4の故障等により取水モードが解除されたりして稼働停止モードになると、浄水殺菌処理(ステップST42〜ST46)が実行される。 In the water-purifying process possible state set in the water intake mode, the monitoring process of the water storage amount retention and the water purification sterilization process are controlled in steps ST32 to ST41. However, for example, when the store is closed in a store or the like, the water intake mode is changed to the operation stop mode, and the water supply is stopped. At this time, the monitoring process for holding the stored water amount is not executed, and the purified water sterilization process (steps ST42 to ST46) in the operation stop mode is executed. Of course, when the water intake mode is canceled due to a failure of the water pump 4 or the like and the operation stop mode is entered, the water purification sterilization process (steps ST42 to ST46) is executed.

浄水殺菌処理においては、前記送水停止タイマによる監視が行われる (ステップST42)。タンク内の浄水が上限位置LHと下限位置LLの間の水位に所定量貯留された貯水状態では、上述のように、送水ポンプ4の停止後、1時間経過すると紫外線殺菌灯31を消灯させている(ステップST33〜ST36)。このとき前記送水停止タイマが起動されており(ステップST34)、その計時時間が7時間経過したか否か判断される(ステップST43)。滞水状態が7時間を超えると雑菌の繁殖が開始するおそれが強くなるので、この時点で前記送水停止タイマをリセットして、紫外線殺菌灯31を1時間点灯させ、雑菌の増殖を未然に防止する(ステップST44、ST45)。1時間の点灯後は紫外線殺菌灯31を消灯させて、前記送水停止タイマを再起動させ、7時間監視を継続する(ステップST46、ST42)。 In the purified water sterilization process, monitoring by the water supply stop timer is performed (step ST42). In a water storage state in which a predetermined amount of purified water in the tank is stored at the water level between the upper limit position LH and the lower limit position LL, as described above, the ultraviolet germicidal lamp 31 is turned off after one hour has elapsed after the water pump 4 is stopped. (Steps ST33 to ST36). At this time, the water supply stop timer is started (step ST34), and it is determined whether or not the measured time has elapsed for 7 hours (step ST43). If there is more than 7 hours of stagnant water, there is a strong risk that germs will start to grow. At this point, the water supply stop timer is reset and the UV germicidal lamp 31 is turned on for 1 hour to prevent the growth of germs. (Steps ST44 and ST45). After lighting for 1 hour, the ultraviolet germicidal lamp 31 is turned off, the water supply stop timer is restarted, and monitoring is continued for 7 hours (steps ST46 and ST42).

上記浄水殺菌処理制御によれば、紫外線殺菌灯31は、浄水タンク26内に所定量又はそれ以上の浄水が貯留すべく送水ポンプ4を駆動している場合に点灯され、浄水タンク26内に十分給水されて、送水ポンプ4を停止した後は所定時間経過後に消灯されるので、常時点灯ではなく、貯水状態に応じて点灯・消灯を切り換えることにより紫外線殺菌灯31の寿命を延長でき、且つ点灯消費電力を低減して消電力化を実現することができる。   According to the purified water sterilization treatment control, the ultraviolet germicidal lamp 31 is turned on when the water pump 4 is driven to store a predetermined amount or more of purified water in the purified water tank 26, and is sufficiently in the purified water tank 26. Since the water supply pump 4 is stopped after the water supply pump 4 is stopped after a predetermined time has elapsed, the life of the ultraviolet germicidal lamp 31 can be extended by switching on / off according to the water storage state instead of always lighting. Power consumption can be reduced by reducing power consumption.

尚、本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々変形例、設計変更などをその技術的範囲内に包含するものであることは云うまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and various modifications, design changes and the like within the scope not departing from the technical idea of the present invention are included in the technical scope. Nor.

本発明によれば、RO膜等を用いて高純度化した浄水を貯留し、その貯留水を低価格且つ高効率に、紫外線殺菌灯で殺菌して、常時、良質の浄水を提供できる紫外線浄水器を実現することができる。   According to the present invention, purified water that has been purified using an RO membrane or the like is stored, and the stored water is sterilized with an ultraviolet germicidal lamp at a low cost and with high efficiency, and can always provide high-quality purified water. Can be realized.

本発明の一実施形態である浄水処理システムの概略構成図であるIt is a schematic block diagram of the water purification system which is one Embodiment of this invention. 前記浄水処理システムにおける浄水処理制御を示すフローチャートである。It is a flowchart which shows the water purification process control in the said water purification system. 前記浄水処理システムにおける取水処理制御を示すフローチャートである。It is a flowchart which shows the water intake process control in the said water purification system. 前記浄水処理システムにおける貯水量保持の監視処理及び浄水殺菌処理を示すフローチャートである。It is a flowchart which shows the monitoring process of the stored water amount in the said purified water processing system, and a purified water sterilization process.

符号の説明Explanation of symbols

1 原水タンク
2 原水
3 原水供給管
4 送水ポンプ
5 原水センサ
6 送水端
7 活性炭槽
8 活性炭槽
9 RO膜装置
10 活性炭槽
11 連結管
12 連結管
13 三方弁
14 出口側流路
15 連結管
16 三方弁
17 出口側流路
18 連結管
19 流量調整流路
20 バイパス流路
21 電磁弁
22 流量調整器
23 濃縮水帰還管
24 浄水供給管
25 浄水センサ
26 浄水タンク
27 フロート弁
28 フロート
29 浄水
30 開閉弁
31 紫外線殺菌灯
32 液面センサ
33 取水管
34 ホットタンク
35 温水管
36 開閉弁
37 電磁弁
38 蛇口
39 排出管
40 電磁弁
41 制御回路部
42 取水管
43 ドレイン管
44 ドレイン管
45 上蓋
46 プログラム記憶メモリ
47 ワークメモリ
48 警報器
49 ディスプレイ
50 入力手段
S1 制御信号
S2 検出信号
S3 計測信号
S4 駆動信号
S5 開閉信号
S6 開閉信号
S7 開閉信号
S8 計測信号
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Raw water 3 Raw water supply pipe 4 Water pump 5 Raw water sensor 6 Water supply end 7 Activated carbon tank 8 Activated carbon tank 9 RO membrane device 10 Activated carbon tank 11 Connecting pipe 12 Connecting pipe 13 Outlet side flow path 15 Outlet side flow path 15 Connecting pipe 16 Three way Valve 17 Outlet side flow path 18 Connection pipe 19 Flow rate adjustment flow path 20 Bypass flow path 21 Solenoid valve 22 Flow rate regulator 23 Concentrated water return pipe 24 Purified water supply pipe 25 Purified water sensor 26 Purified water tank 27 Float valve 28 Float 29 Purified water 30 Open / close valve 31 Ultraviolet germicidal lamp 32 Liquid level sensor 33 Intake pipe 34 Hot tank 35 Hot water pipe 36 On-off valve 37 Solenoid valve 38 Faucet 39 Discharge pipe 40 Solenoid valve 41 Control circuit section 42 Intake pipe 43 Drain pipe 44 Drain pipe 45 Top cover 46 Program storage memory 47 Work memory 48 Alarm 49 Display 50 Input means S1 Control signal S2 Detection signal S3 Measurement signal S4 Drive signal S5 Open / close signal S6 Open / close signal S7 Open / close signal S8 Measurement signal

Claims (11)

原水を貯留する原水タンクと、前記原水タンクから供給される原水を浄化する浄化部と、前記浄化部から供給される浄水を所定の上限量まで貯留する浄水タンクと、前記浄水タンクから前記浄水を必要量だけ供給する浄水提供部とから構成され、前記浄水タンク内に紫外線殺菌灯を配置して前記紫外線殺菌灯により貯留浄水を殺菌し、前記紫外線殺菌灯は、前記浄水タンク内に前記所定の上限量の浄水が貯留されるまで点灯され、前記上限量の浄水が貯留されると所定時間経過後に消灯されることを特徴とする紫外線浄水器。 A raw water tank for storing raw water, a purification unit for purifying raw water supplied from the raw water tank, a purified water tank for storing purified water supplied from the purification unit up to a predetermined upper limit, and the purified water from the purified water tank A purification water supply unit for supplying only a necessary amount, an ultraviolet germicidal lamp is disposed in the purified water tank, and the stored germicidal water is sterilized by the ultraviolet germicidal lamp, and the ultraviolet germicidal lamp It is turned to water purification upper limit amount is stored, UV water purifier, wherein a purified water of the upper limit amount is turned off after the lapse of the Ru is stored for a predetermined time. 前記紫外線殺菌灯は、消灯後、前記浄水タンク内の貯水量が所定の下限量に達すると点灯される請求項1に記載の紫外線浄水器。 The UV sterilizer lamp, after turning off, UV water purifier according to claim 1, water amount of the purified water tank is reaches Then turned to a predetermined lower limit amount. 前記紫外線殺菌灯が消灯しているとき、前記浄水タンク内への浄水供給の停止時間を監視し、前記停止時間が所定時間を超えるとき、前記紫外線殺菌灯を点灯させる請求項1又は2に記載の紫外線浄水器。 The said ultraviolet germicidal lamp is turned on when the said ultraviolet germicidal lamp is extinguished, the stop time of the purified water supply in the said purified water tank is monitored, and the said halt time exceeds predetermined time. UV water purifier. 前記浄化部は、前記原水タンクから前記原水をポンプにより供給する原水供給管と、前記原水供給管を流通する前記原水の不純物濃度を計測する原水センサと、前記原水供給管から前記原水を通水して前記原水中の不純物を除去して浄水を生成するRO(Reverse Osmosis:逆浸透)膜を少なくとも含む浄化フィルタ部と、前記RO膜の浄化作用により生ずる濃縮水を前記原水タンクに帰還させる濃縮水帰還管によって構成され、前記浄化フィルタ部から浄水を前記浄水タンクに供給する浄水供給管と、前記浄水供給管を流通する前記浄水の不純物濃度を計測する浄水センサとを有する請求項1、2又は3に記載の紫外線浄水器。 The purification unit includes a raw water supply pipe for supplying the raw water from the raw water tank by a pump, a raw water sensor for measuring an impurity concentration of the raw water flowing through the raw water supply pipe, and passing the raw water from the raw water supply pipe. Then, a purification filter unit including at least a RO (Reverse Osmosis) membrane that removes impurities in the raw water to generate purified water, and a concentrated water that is returned to the raw water tank by concentrated water generated by the purification action of the RO membrane. A purified water supply pipe configured by a water feedback pipe and configured to supply purified water from the purification filter unit to the purified water tank, and a purified water sensor for measuring an impurity concentration of the purified water flowing through the purified water supply pipe. Or the ultraviolet water purifier of 3. 前記原水タンクに前記原水が貯留された後、前記原水センサにより最初に計測される最先原水濃度を記憶する最先原水濃度記憶手段と、前記浄水センサにより継続的に計測される浄水濃度を記憶する浄水濃度記憶手段と、前記最先原水濃度から計算される基準濃度と前記浄水濃度を比較する比較手段と、前記浄水濃度が前記基準濃度より大きくなったときに、前記原水の交換及び/又は前記RO膜の交換を報知する報知手段とを少なくとも具備する制御回路部を付設した請求項4に記載の紫外線浄水器。 After the raw water is stored in the raw water tank, the earliest raw water concentration storage means for storing the earliest raw water concentration first measured by the raw water sensor, and the purified water concentration continuously measured by the water purification sensor are stored. Purified water concentration storage means, comparison means for comparing the purified water concentration with a reference concentration calculated from the earliest raw water concentration, and replacement of the raw water and / or when the purified water concentration is greater than the reference concentration. The ultraviolet water purifier according to claim 4, further comprising a control circuit unit including at least a notification unit that notifies the replacement of the RO membrane. 前記浄水濃度が前記基準濃度より大きくなったときに、送水ポンプの送水を停止させる送水停止手段を前記制御回路部に設けた請求項5に記載の紫外線浄水器。 The ultraviolet water purifier according to claim 5, wherein water supply stopping means for stopping water supply of a water supply pump is provided in the control circuit unit when the purified water concentration becomes higher than the reference concentration. 前記原水センサにより、前記原水タンクが空になったことを検出して報知する空報知手段を前記制御回路部に設けた請求項5又は6に記載の紫外線浄水器。 The ultraviolet water purifier according to claim 5 or 6, wherein an empty notification means for detecting and notifying that the raw water tank is empty by the raw water sensor is provided in the control circuit unit. 前記濃縮水帰還管は、前記RO膜の浸透圧を所定値に保持する流量調整流路と、前記流量調整流路に併設された開閉自在のバイパス流路とを含み、前記RO膜の通水初期時に前記バイパス流路を開放する請求項4〜7のいずれに記載の紫外線浄水器。 The concentrated water return pipe includes a flow rate adjusting flow path that maintains the osmotic pressure of the RO membrane at a predetermined value, and an openable and closable bypass flow path that is provided alongside the flow rate adjusting flow path. The ultraviolet water purifier according to any one of claims 4 to 7 , wherein the bypass channel is opened at an initial stage . 前記原水センサ及び前記浄水センサは、水に溶け込んだ全溶解性物質を測定するセンサからなる請求項4〜8のいずれに記載の紫外線浄水器。 The ultraviolet water purifier according to any one of claims 4 to 8 , wherein each of the raw water sensor and the water purification sensor comprises a sensor that measures a total soluble substance dissolved in water. 前記浄化フィルタ部の、少なくとも原水導入側流路に、前記原水を活性炭槽を通過させて浄化する活性炭処理部を設け、前記活性炭槽を通過した原水を前記RO膜に通水する請求項4〜9のいずれかに記載の紫外線浄水器。 An activated carbon treatment unit that purifies the raw water through an activated carbon tank is provided in at least the raw water introduction-side flow path of the purification filter unit, and the raw water that has passed through the activated carbon tank is passed through the RO membrane . The ultraviolet water purifier according to any one of 9 above. 前記浄水提供部は、前記浄水タンクの貯留水を取水する浄水取水部と、前記浄水タンクから取り出した浄水を加熱して貯留する温水部から温浄水を取水する温浄水取水部とを有する請求項1〜10のいずれかに記載の紫外線浄水器。 The said purified water provision part has the purified water intake part which takes in the stored water of the said purified water tank, and the warm purified water intake part which takes in warm purified water from the warm water part which heats and stores the purified water taken out from the said purified water tank The ultraviolet water purifier in any one of 1-10.
JP2008328852A 2008-12-24 2008-12-24 UV water purifier Active JP5202286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008328852A JP5202286B2 (en) 2008-12-24 2008-12-24 UV water purifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008328852A JP5202286B2 (en) 2008-12-24 2008-12-24 UV water purifier

Publications (2)

Publication Number Publication Date
JP2010149031A JP2010149031A (en) 2010-07-08
JP5202286B2 true JP5202286B2 (en) 2013-06-05

Family

ID=42568736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008328852A Active JP5202286B2 (en) 2008-12-24 2008-12-24 UV water purifier

Country Status (1)

Country Link
JP (1) JP5202286B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200465551Y1 (en) 2010-07-09 2013-02-25 윤상기 Feeder of water or liguid
WO2016189800A1 (en) * 2015-05-26 2016-12-01 パナソニックIpマネジメント株式会社 Water supply device
JP2018065584A (en) * 2016-10-18 2018-04-26 株式会社オーセンテック Clear water supply apparatus
CN109824182A (en) * 2019-02-10 2019-05-31 广东蓝鸥净水设备制造有限公司 A kind of bionical purifier and process for purifying water

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07251172A (en) * 1994-03-11 1995-10-03 Techno Bio Kk Water purifier
JP2007136384A (en) * 2005-11-21 2007-06-07 Family Service Eiko Co Ltd Permeated water manufacturing apparatus

Also Published As

Publication number Publication date
JP2010149031A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP2010149030A (en) Ro water purifier
JP2011020098A (en) Raw water sensor-controlled ro water purifier
JP2011025114A (en) Switching type ro water purifier
JP2018171577A (en) Pure water production method and device
US10159939B2 (en) Reverse osmosis system
JP2007136384A (en) Permeated water manufacturing apparatus
KR101492879B1 (en) Water treatment apparatus and water treatment method
JP2011255357A (en) Drinking water apparatus
JP5202286B2 (en) UV water purifier
JP2000189965A (en) Fresh water maker and production of fresh water
KR101439948B1 (en) Water treatment apparatus and water treatment method
KR101936733B1 (en) Water purifier and method for descaling of water purifier
JP2005279614A (en) Water cleaning device
KR101446127B1 (en) Water treatment apparatus
JP2006289329A (en) Water distribution system and its apparatus
JP7189612B2 (en) water purifier
KR101459001B1 (en) Water treatment apparatus and water treatment method
KR101198652B1 (en) Purifier apparatus equipped with self-sterilizing and Sterilization Method having the same
JP2013066830A (en) Water treatment apparatus
KR100688388B1 (en) water purifier and control method silver supply apparatus
CN215559647U (en) Water supply device for constant-temperature direct drinking water in prison room
KR101223796B1 (en) Water purification apparatus for hemodialyzer and method for controlling the same
KR101447963B1 (en) Water treatment method
KR101476323B1 (en) Water treatment apparatus and water treatment method
CN208055107U (en) A kind of efficient water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5202286

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250