JP5198989B2 - Conductor connection device for gas insulated power equipment - Google Patents

Conductor connection device for gas insulated power equipment Download PDF

Info

Publication number
JP5198989B2
JP5198989B2 JP2008236038A JP2008236038A JP5198989B2 JP 5198989 B2 JP5198989 B2 JP 5198989B2 JP 2008236038 A JP2008236038 A JP 2008236038A JP 2008236038 A JP2008236038 A JP 2008236038A JP 5198989 B2 JP5198989 B2 JP 5198989B2
Authority
JP
Japan
Prior art keywords
conductor
solid insulator
connection device
gas
cylindrical portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008236038A
Other languages
Japanese (ja)
Other versions
JP2009261215A (en
Inventor
裕行 新開
久司 五島
政史 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2008236038A priority Critical patent/JP5198989B2/en
Publication of JP2009261215A publication Critical patent/JP2009261215A/en
Application granted granted Critical
Publication of JP5198989B2 publication Critical patent/JP5198989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings
    • H02G5/066Devices for maintaining distance between conductor and enclosure
    • H02G5/068Devices for maintaining distance between conductor and enclosure being part of the junction between two enclosures

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Description

本発明は、接地容器内に絶縁ガスを封入すると共に導体を収容し、導体を接地容器から浮かせた状態で支持するガス絶縁電力機器の導体接続装置に関する。   The present invention relates to a conductor connection device for a gas-insulated power device that encloses an insulating gas in a ground container, accommodates a conductor, and supports the conductor in a state of floating from the ground container.

近年、環境問題に対する関心が高まっており、ガス絶縁開閉装置やガス絶縁送電線路等のガス絶縁電力機器の主絶縁媒体であるSFガスが地球温暖化ガスとして注目されている。このため、SF代替ガス絶縁の研究がなされている。SF代替ガスはSFガスに比べて絶縁性能に劣ることから、導体を固体絶縁物で被覆することが研究されている。 In recent years, interest in environmental problems has increased, and SF 6 gas, which is the main insulating medium of gas-insulated power equipment such as gas-insulated switchgear and gas-insulated power transmission lines, has attracted attention as a global warming gas. For this reason, studies have been made on SF 6 alternative gas insulation. Since SF 6 substitute gas is inferior in insulation performance to SF 6 gas, it has been studied to coat a conductor with a solid insulator.

ハイブリッドガス絶縁方式の開発、[online]、[平成20年3月14日検索]、インターネット<http://criepi.denken.or.jp/jp/electric/substance/08.pdf>Development of hybrid gas insulation system, [online], [Search on March 14, 2008], Internet <http://criepi.denken.or.jp/jp/electric/substance/08.pdf>

しかしながら、導体を固体絶縁物で被覆する場合、導体の接続部分で被覆に接触界面が生じる。ここで、固体絶縁物の被覆に接触界面が発生しないように導体の接続部分も含めて全ての部分に連続して被覆を施すことも考えられる。しかしながら、導体の熱伸縮、被覆の長期信頼性、施工性、将来のタンク(接地容器)開放の可能性等を考慮すると、導体の接続にコネクタ導体を使用することが好ましい。そのため、固体絶縁物の被覆を全ての部分で連続したものにすることは困難あり、接触界面が生じてしまうことから絶縁耐圧を十分に大きくすることが困難である。   However, when the conductor is coated with a solid insulator, a contact interface is formed on the coating at the connection portion of the conductor. Here, it is also conceivable to continuously coat all the portions including the conductor connecting portion so that the contact interface does not occur in the coating of the solid insulator. However, considering the thermal expansion and contraction of the conductor, the long-term reliability of the coating, the workability, the possibility of opening the tank (grounding container) in the future, it is preferable to use a connector conductor for connecting the conductor. Therefore, it is difficult to make the coating of the solid insulator continuous in all parts, and since a contact interface is generated, it is difficult to sufficiently increase the withstand voltage.

本発明は、絶縁耐圧を大きくすることができるガス絶縁電力機器の導体接続装置を提供することを目的とする。   An object of this invention is to provide the conductor connection apparatus of the gas insulated power equipment which can make a withstand voltage large.

かかる目的を達成するために、請求項1記載のガス絶縁電力機器の導体接続装置は、絶縁ガスが封入された接地容器内に収容された導体を接続するコネクタ導体の外周面を覆う固体絶縁物本体と、導体の少なくとも端部外周面を被覆し、端面がコネクタ導体又は固体絶縁物本体との間で接触界面となる固体絶縁物被覆と、固体絶縁物本体に設けられ、固体絶縁物被覆を囲んで接地容器と固体絶縁物被覆の端面の接触界面との間の沿面長を延長させる筒状部を備え、筒状部と固体絶縁物被覆との間には、接触界面を排除するギャップが設けられているものである。 In order to achieve this object, the conductor connection device for a gas-insulated power device according to claim 1 is a solid insulator that covers the outer peripheral surface of a connector conductor that connects a conductor housed in a ground container filled with an insulating gas. A solid insulation coating that covers at least the outer peripheral surface of the main body and the conductor, and the end surface is a contact interface between the connector conductor or the solid insulation main body, and the solid insulation main body, A cylindrical portion is provided to extend a creeping length between the grounding container and the contact interface of the end surface of the solid insulator coating, and a gap that excludes the contact interface is provided between the cylindrical portion and the solid insulator coating. It is provided.

導体に固体絶縁物被覆を施すことで、仮に、接地容器と導体との間に絶縁破壊が生じるとしたら固体絶縁物被覆の端面の接触界面に沿って絶縁破壊が生じることになる。固体絶縁物本体に筒状部を設けることで、接地容器と固体絶縁物被覆の端面の接触界面との間の沿面長を延長することができる。また、筒状部を設けることで、接地容器と固体絶縁物被覆との間よりも接地容器と筒状部との間に絶縁破壊が生じやすくなるので、固体絶縁物被覆を設ける範囲が狭まる。   If a dielectric breakdown occurs between the ground container and the conductor by applying the solid insulator coating to the conductor, the dielectric breakdown occurs along the contact interface of the end surface of the solid insulator coating. By providing the cylindrical portion on the solid insulator main body, the creepage length between the ground container and the contact interface between the end faces of the solid insulator coating can be extended. Further, by providing the cylindrical portion, dielectric breakdown is more likely to occur between the ground container and the cylindrical portion than between the ground container and the solid insulator coating, so that the range for providing the solid insulator coating is narrowed.

ここで、請求項2記載のガス絶縁電力機器の導体接続装置のように、固体絶縁物本体が、導体の接続部分を支持する絶縁スペーサ、又は導体を接続する絶縁コネクタであることが好ましい。   Here, it is preferable that the solid insulator main body is an insulating spacer that supports the connecting portion of the conductor or an insulating connector that connects the conductor, as in the conductor connecting device of the gas-insulated power device according to the second aspect.

また、請求項3記載のガス絶縁電力機器の導体接続装置のように、筒状部は 固体絶縁体によって成形されたシースでも良く、請求項4記載のガス絶縁電力機器の導体接続装置のように、筒状部にシールド電極が埋め込まれていても良い。   Further, the tubular part may be a sheath formed of a solid insulator as in the conductor connection device of a gas insulated power device according to claim 3, and as in the conductor connection device of a gas insulated power device according to claim 4. The shield electrode may be embedded in the cylindrical portion.

さらに、請求項5記載のガス絶縁電力機器の導体接続装置は、筒状部の内周面と、固体絶縁物被覆の外周面の筒状部に臨む部分とのうち、少なくともいずれか一方に周方向に環状の突部が設けられている。したがって、接地容器と固体絶縁物被覆の端面の接触界面との間の沿面長がより一層長くなる。また、仮に接地容器と固体絶縁物被覆の端面の接触界面との間に絶縁破壊が生じるとすると、その放電が突部を乗り越えることが逆電界となる。   Furthermore, the conductor connection device for a gas-insulated power device according to claim 5 is provided so that at least one of the inner peripheral surface of the cylindrical portion and the portion of the outer peripheral surface of the solid insulator coating facing the cylindrical portion is surrounded. An annular protrusion is provided in the direction. Accordingly, the creepage length between the ground container and the contact interface between the end faces of the solid insulator coating is further increased. Further, if a dielectric breakdown occurs between the ground container and the contact interface between the end faces of the solid insulator coating, the reverse electric field is that the discharge over the protrusion.

請求項1記載のガス絶縁電力機器の導体接続装置では、筒状部によって接地容器と固体絶縁物被覆の端面の接触界面との間の沿面長を延長することができるので、その分だけ絶縁耐圧を大きくすることができる。また、筒状部と固体絶縁物被覆との間にギャップを設けているので、筒状部と固体絶縁物被覆との間に接触界面が存在することがなく、接触界面のボイド等に起因した電界集中を防止することができ、絶縁耐圧の低下を防止することができる。したがって、ガス絶縁電力機器の大型化を招かずにSFよりも絶縁性能に劣る絶縁ガスの使用が可能になる。また、絶縁ガスとしてSFを使用する場合には、ガス絶縁電力機器を小型化することができる。さらに、筒状部によって沿面長を増加させているので、筒状部の長さを変えることで沿面長の増加を調節することができ、その調節が容易である。 In the conductor connection device for a gas insulated power device according to claim 1, since the creeping length between the ground container and the contact interface of the end face of the solid insulator coating can be extended by the cylindrical portion, the dielectric breakdown voltage is increased accordingly. Can be increased. In addition, since a gap is provided between the cylindrical portion and the solid insulator coating, there is no contact interface between the cylindrical portion and the solid insulator coating, which is caused by voids in the contact interface. Electric field concentration can be prevented, and a reduction in withstand voltage can be prevented. Therefore, it is possible to use an insulating gas that is inferior in insulation performance to that of SF 6 without increasing the size of the gas-insulated power device. Further, when SF 6 is used as the insulating gas, the gas-insulated power device can be reduced in size. Furthermore, since the creeping length is increased by the cylindrical portion, the increase of the creeping length can be adjusted by changing the length of the cylindrical portion, and the adjustment is easy.

また、請求項2記載のガス絶縁電力機器の導体接続装置では、導体の接続部分を支持する絶縁スペーサ又は導体を接続する絶縁コネクタを利用して絶縁耐圧を増加させることができる。   In the conductor connection device for a gas-insulated power device according to the second aspect, the withstand voltage can be increased by using an insulating spacer that supports the connecting portion of the conductor or an insulating connector that connects the conductor.

また、請求項3記載のガス絶縁電力機器の導体接続装置のように、筒状部は 固体絶縁体によって成形されたシースでも良く、請求項4記載のガス絶縁電力機器の導体接続装置のように、筒状部にシールド電極が埋め込まれていても良い。   Further, the tubular part may be a sheath formed of a solid insulator as in the conductor connection device of a gas insulated power device according to claim 3, and as in the conductor connection device of a gas insulated power device according to claim 4. The shield electrode may be embedded in the cylindrical portion.

さらに、請求項5記載のガス絶縁電力機器の導体接続装置では、突部によって接地容器と固体絶縁物被覆の端面の接触界面との間の沿面長をより一層長くできると共に、仮に絶縁破壊が生じるとすると逆電界となる部分を作ることができるので、絶縁破壊をより一層生じ難くすることができる。   Furthermore, in the conductor connection device for a gas-insulated power apparatus according to claim 5, the creeping length between the ground container and the contact interface between the end faces of the solid insulator coating can be further increased by the protrusions, and the dielectric breakdown temporarily occurs. As a result, a portion serving as a reverse electric field can be formed, so that dielectric breakdown can be further prevented.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に本発明のガス絶縁電力機器の導体接続装置の実施形態の一例を示す。ガス絶縁電力機器の導体接続装置(以下、単に導体接続装置という)は、絶縁ガス1が封入された接地容器2内に収容された導体3を接続するコネクタ導体4の外周面を覆う固体絶縁物本体5と、導体3の少なくとも端部3a外周面を被覆し、端面がコネクタ導体4又は固体絶縁物本体5との間で接触界面6aとなる固体絶縁物被覆6と、固体絶縁物本体5に設けられ、固体絶縁物被覆6を囲んで接地容器2と固体絶縁物被覆6の端面の接触界面6aとの間の沿面長を延長させる筒状部7を備え、筒状部7と固体絶縁物被覆6との間には、接触界面を排除するギャップ8が設けられている。 FIG. 1 shows an example of an embodiment of a conductor connection device for a gas insulated power device according to the present invention. A conductor connection device (hereinafter simply referred to as a conductor connection device) of a gas-insulated power device is a solid insulator that covers an outer peripheral surface of a connector conductor 4 that connects a conductor 3 housed in a grounding container 2 in which an insulating gas 1 is sealed. The solid insulator coating 6 that covers at least the outer peripheral surface of the main body 5 and the conductor 3 and the end surface serves as the contact interface 6a between the connector conductor 4 or the solid insulator main body 5 and the solid insulator main body 5 A cylindrical portion 7 is provided which surrounds the solid insulator coating 6 and extends the creeping length between the ground container 2 and the contact interface 6a at the end surface of the solid insulator coating 6, and the cylindrical portion 7 and the solid insulator A gap 8 is provided between the coating 6 and the contact interface.

本実施形態の導体接続装置は、導体3の端面同士を接続する絶縁コネクタ9である。ただし、絶縁コネクタ9に限るものではなく、導体3を接続するものであれば例えば絶縁スペーサ10等にも適用可能である。   The conductor connection device of the present embodiment is an insulating connector 9 that connects the end faces of the conductor 3. However, the present invention is not limited to the insulating connector 9 and can be applied to, for example, the insulating spacer 10 as long as the conductor 3 is connected.

ガス絶縁電力機器は、例えばガス絶縁開閉装置(GIS:Gas-Insulated Switchgear)、ガス絶縁送電線路(GIL:Gas-Insulated Line)等のガス絶縁電力機器である。ただし、これらに限るものではない。本実施形態では、GISを例に説明する。   The gas-insulated power device is a gas-insulated power device such as a gas-insulated switchgear (GIS) or a gas-insulated transmission line (GIL). However, it is not limited to these. In this embodiment, GIS will be described as an example.

接地容器2は例えばGISの接地タンクであり、その内部には絶縁ガス1が封入されている。絶縁ガス1としては、例えばNガス、COガス等の使用が可能である。ただし、絶縁ガス1としてはNガス、COガスに限るものではなく、例えばSFガス、その他の絶縁ガスの使用が可能である。導体3はコネクタ導体4によって接続され、図示しない絶縁スペーサによって接地容器2から浮かせた状態で支持されている。コネクタ導体4としては、例えば金属接触子を用いた差し込み方式のものの使用が可能である。ただし、他の方式でも良い。 The grounding container 2 is, for example, a GIS grounding tank, and an insulating gas 1 is sealed therein. As the insulating gas 1, for example, N 2 gas, CO 2 gas, or the like can be used. However, the insulating gas 1 is not limited to N 2 gas and CO 2 gas, and for example, SF 6 gas and other insulating gases can be used. The conductor 3 is connected by a connector conductor 4 and is supported in a state of being floated from the ground container 2 by an insulating spacer (not shown). As the connector conductor 4, for example, a plug-in type using a metal contact can be used. However, other methods may be used.

固体絶縁物本体5は、例えばエポキシ樹脂、ポリエチレン等の固体絶縁材料から成る筒体であり、コネクタ導体4の外周面を覆っている。   The solid insulator main body 5 is a cylindrical body made of a solid insulating material such as epoxy resin or polyethylene, and covers the outer peripheral surface of the connector conductor 4.

固体絶縁物被覆6は、例えばエポキシ樹脂、ポリエチレン等の固体絶縁材料から成る被覆である。本実施形態では、導体3の外周面を全長にわたり被覆している。ただし、導体3の外周面を全長にわたり被覆する必要はなく、少なくとも端部3a、即ち接地容器2と導体3との間に絶縁破壊が生じる場合において、固体絶縁物被覆6の端面の接触界面6aと筒状部7の先端との間の沿面長をL1、固体絶縁物被覆6の接触界面6aとは反対側の端と筒状部7の先端との間の沿面長をL2とした場合、L1≦L2となる範囲、又はL1>L2であってもL1とL2との差が僅かになるような範囲に固体絶縁物被覆6を設ければ足りる。即ち、導体3の全長に固体絶縁物被覆6を設けることで接地容器2と導体3との間の絶縁耐圧を導体3の全長にわたって増加させることができるが、絶縁コネクタ9を設けた場合、この部分が絶縁耐圧の小さな部位となるので、この部分の絶縁耐圧を大きくする必要がある。導体3の少なくとも端部3aに固体絶縁物被覆6を施すことで、少なくとも絶縁耐圧を大きくすべき部位について絶縁耐圧を大きくすることができる。本実施形態では、導体3の外径とコネクタ導体4の外径は同一であり、固体絶縁物被覆6の端面の接触界面6aは固体絶縁物本体5との間に形成される。   The solid insulator coating 6 is a coating made of a solid insulating material such as epoxy resin or polyethylene. In this embodiment, the outer peripheral surface of the conductor 3 is covered over the entire length. However, it is not necessary to cover the outer peripheral surface of the conductor 3 over the entire length, and at least when the dielectric breakdown occurs between the end portion 3 a, that is, the ground container 2 and the conductor 3, the contact interface 6 a of the end surface of the solid insulator coating 6. When the creepage length between the tip of the cylindrical portion 7 and the tip of the cylindrical portion 7 is L1, the creepage length between the end opposite to the contact interface 6a of the solid insulator coating 6 and the tip of the cylindrical portion 7 is L2. It is sufficient to provide the solid insulator coating 6 in a range where L1 ≦ L2 or a range where the difference between L1 and L2 becomes small even if L1> L2. That is, by providing the solid insulator coating 6 over the entire length of the conductor 3, the withstand voltage between the ground container 2 and the conductor 3 can be increased over the entire length of the conductor 3, but when the insulating connector 9 is provided, Since this portion is a portion having a small withstand voltage, it is necessary to increase the withstand voltage of this portion. By applying the solid insulator coating 6 to at least the end portion 3a of the conductor 3, it is possible to increase the withstand voltage at least at a portion where the withstand voltage should be increased. In this embodiment, the outer diameter of the conductor 3 and the outer diameter of the connector conductor 4 are the same, and the contact interface 6 a on the end face of the solid insulator coating 6 is formed between the solid insulator body 5 and the contact surface 6 a.

筒状部7は固体絶縁体によって成形されたシースであり、固体絶縁物本体5と一体成形されている。即ち、固体絶縁物本体5と同じ固体絶縁材料によって成形されている。筒状部7の横断面形状は、導体3の横断面形状と相似形になっている。本実施形態の導体3の横断面形状は円形であるので、筒状部7の横断面形状も円形になっている。筒状部7は導体3と同心円状に配置されている。筒状部7は固体絶縁物本体5の両面に形成され、接続する2本の導体3の軸線方向に形成されている。   The cylindrical portion 7 is a sheath formed of a solid insulator and is integrally formed with the solid insulator body 5. That is, it is formed of the same solid insulating material as the solid insulating body 5. The cross-sectional shape of the cylindrical portion 7 is similar to the cross-sectional shape of the conductor 3. Since the cross-sectional shape of the conductor 3 of this embodiment is circular, the cross-sectional shape of the cylindrical part 7 is also circular. The cylindrical portion 7 is arranged concentrically with the conductor 3. The cylindrical part 7 is formed on both surfaces of the solid insulator body 5 and is formed in the axial direction of the two conductors 3 to be connected.

ギャップ8は、固体絶縁物被覆6と筒状部7の間に全周にわたって設けられている。ギャップ8の距離(ギャップ長)は、固体絶縁物被覆6と筒状部7との間に電界集中が起こらない程度の距離となっている。即ち、ギャップ長が短いと、固体絶縁物被覆6と筒状部7との間に電界の集中を引き起こすので、この電界集中を実質的に影響のない程度まで抑えることができる距離L3のギャップ8が設けられている。なお、ギャップ長は距離L3以上であれば良いが、ギャップ長を増加させると、筒状部7と接地容器2との距離が短くなることから絶縁耐圧が減少する。このため、接地容器2との距離を考慮してギャップ長を決定することが好ましい。なお、適切なギャップ長は、筒状部7の長さ、電圧、絶縁ガス1の種類・濃度・圧力等によって変化するので、例えば実験や計算等を行って適宜決定することが好ましい。ギャップ長の一例としては、例えば5mmである。ただし、5mmに限るものではない。   The gap 8 is provided over the entire circumference between the solid insulator coating 6 and the cylindrical portion 7. The distance (gap length) of the gap 8 is such a distance that electric field concentration does not occur between the solid insulator coating 6 and the cylindrical portion 7. That is, if the gap length is short, an electric field concentration is caused between the solid insulator coating 6 and the cylindrical portion 7, so that the gap 8 having a distance L3 that can suppress the electric field concentration to a level that does not substantially affect the electric field concentration. Is provided. The gap length may be equal to or longer than the distance L3. However, if the gap length is increased, the distance between the cylindrical portion 7 and the grounding container 2 is shortened, so that the withstand voltage is reduced. For this reason, it is preferable to determine the gap length in consideration of the distance from the grounded container 2. Note that the appropriate gap length varies depending on the length, voltage, type, concentration, pressure, etc. of the insulating gas 1, and therefore, it is preferable to appropriately determine the gap length by, for example, experiments or calculations. An example of the gap length is 5 mm, for example. However, it is not limited to 5 mm.

次に、導体接続装置の作用について説明する。   Next, the operation of the conductor connection device will be described.

導体3に固体絶縁物被覆6を施すことで、接地容器2と導体3との間の絶縁耐圧を増加させることができる。この場合、固体絶縁物被覆6の端面の接触界面6aが発生しないように導体3の接続部分も含めて全ての部分に連続した固体絶縁物被覆6を施すことも考えられる。しかしながら、導体3の熱伸縮、固体絶縁物被覆6の長期信頼性、施工性、将来のタンク(接地容器2)開放の可能性等を考慮すると、導体3の接続にコネクタ導体4を使用することが好ましい。そのため、固体絶縁物被覆6を全ての部分で連続したものにすることは困難あり、接触界面6aが発生する。接触界面6aが発生する場合、絶縁破壊は接触界面6aを介して生じる可能性が高く、したがって、この部分での絶縁耐圧を大きくする必要がある。   By applying the solid insulator coating 6 to the conductor 3, the withstand voltage between the ground container 2 and the conductor 3 can be increased. In this case, it is also conceivable to apply the continuous solid insulator coating 6 to all portions including the connection portion of the conductor 3 so that the contact interface 6a at the end face of the solid insulator coating 6 does not occur. However, considering the thermal expansion and contraction of the conductor 3, the long-term reliability of the solid insulating coating 6, the workability, the possibility of opening the tank (grounding container 2) in the future, the connector conductor 4 should be used for the connection of the conductor 3. Is preferred. Therefore, it is difficult to make the solid insulator coating 6 continuous in all parts, and a contact interface 6a is generated. When the contact interface 6a occurs, it is highly possible that the dielectric breakdown occurs through the contact interface 6a. Therefore, it is necessary to increase the withstand voltage at this portion.

本発明の導体接続装置によって接触界面6aを介して生じる絶縁破壊に対して絶縁耐圧を大きくすることができる。即ち、筒状部7を設けることで、接地容器2と接触界面6aとの間に生じる放電の沿面長が増加するので、その分だけ絶縁耐圧を向上させることができる。また、筒状部7と固体絶縁物被覆6との間にギャップ8が設けられており、筒状部7と固体絶縁物被覆6との間に接触界面が存在することがないので、接触界面のボイド等に起因した電界集中を防止することができ、絶縁耐圧の低下を防止することができる。   With the conductor connecting device of the present invention, the withstand voltage can be increased against the dielectric breakdown that occurs through the contact interface 6a. That is, by providing the cylindrical portion 7, the creeping length of the discharge generated between the ground container 2 and the contact interface 6 a increases, so that the withstand voltage can be improved accordingly. In addition, since a gap 8 is provided between the cylindrical portion 7 and the solid insulator coating 6 and no contact interface exists between the cylindrical portion 7 and the solid insulator coating 6, the contact interface Electric field concentration caused by voids and the like can be prevented, and a decrease in withstand voltage can be prevented.

また、筒状部7の長さを変えることで沿面長の増加を調節することができるので、絶縁耐圧の大きさ調節が容易である。   In addition, since the increase in creepage length can be adjusted by changing the length of the cylindrical portion 7, the magnitude of the withstand voltage can be easily adjusted.

このように本発明の導体接続装置の使用によって絶縁耐圧を大きくすることができるので、絶縁ガス1として、SFガスよりも絶縁能力に劣るNガス、COガス等の使用が可能になる。即ち、絶縁ガス1としてNガス、COガス等を使用する場合には、SFガスを使用する場合に比べて圧力を高くする必要がある。例えば、0.5MPa(平均値)のSFガスと同等の絶縁耐力を得るためには、Nガス、COガスの圧力を2.0MPaまで上昇させる必要がある。ガス圧の増加により、接地容器2等の耐圧性を高めることが必要となり、GISが実用的なものではなくなる。あるいは、接地容器2と導体3との距離を延長させる必要があり、GISが大型化して実用的なものではなくなる。 As described above, since the withstand voltage can be increased by using the conductor connection device of the present invention, it is possible to use N 2 gas, CO 2 gas, or the like, which is inferior to SF 6 gas, as the insulating gas 1. . That is, when N 2 gas, CO 2 gas or the like is used as the insulating gas 1, it is necessary to increase the pressure as compared with the case where SF 6 gas is used. For example, in order to obtain a dielectric strength equivalent to 0.5 MPa (average value) SF 6 gas, it is necessary to increase the pressure of N 2 gas and CO 2 gas to 2.0 MPa. Due to the increase in gas pressure, it is necessary to increase the pressure resistance of the ground container 2 and the like, and the GIS is not practical. Alternatively, the distance between the ground container 2 and the conductor 3 needs to be extended, and the GIS becomes large and is not practical.

しかしながら、導体3に固体絶縁物被覆6を施し、本発明の導体接続装置を使用することで、絶縁耐圧を増加させることができるので、Nガス、COガスを使用する場合であってもGISを実用的なものにすることができる。逆に、同じ絶縁ガス1を使用する場合には、接地容器2を小型化することができ、GISをよりコンパクトにすることができる。 However, since the dielectric breakdown voltage can be increased by applying the solid insulator coating 6 to the conductor 3 and using the conductor connection device of the present invention, even when N 2 gas or CO 2 gas is used. The GIS can be made practical. Conversely, when the same insulating gas 1 is used, the ground container 2 can be reduced in size, and the GIS can be made more compact.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、筒状部7にシールド電極11を埋め込んでも良い。この場合の例を図2に示す。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the scope of the present invention. For example, the shield electrode 11 may be embedded in the cylindrical portion 7. An example of this case is shown in FIG.

また、上述の説明では、導体3の外径とコネクタ導体4の外径を同一にしていたが、例えば図3に示すように、導体3の外径よりもコネクタ導体4の外径を小さくしても良い。また、図4に示すように、固体絶縁物被覆6の外径とコネクタ導体4の外径を同一にしても良い。   In the above description, the outer diameter of the conductor 3 and the outer diameter of the connector conductor 4 are the same. For example, as shown in FIG. 3, the outer diameter of the connector conductor 4 is made smaller than the outer diameter of the conductor 3. May be. Further, as shown in FIG. 4, the outer diameter of the solid insulator coating 6 and the outer diameter of the connector conductor 4 may be the same.

また、上述の説明では、導体接続装置を絶縁コネクタ9に適用していたが、適用可能なものとしては絶縁コネクタ9に限るものではなく、例えば絶縁スペーサ10等にも適用可能である。図5に絶縁スペーサ10に適用した例を示す。なお、この場合にも筒状部7にシールド電極11を埋め込んでも良い。   In the above description, the conductor connecting device is applied to the insulating connector 9, but the applicable device is not limited to the insulating connector 9, and can be applied to, for example, the insulating spacer 10. FIG. 5 shows an example applied to the insulating spacer 10. In this case, the shield electrode 11 may be embedded in the cylindrical portion 7.

また、図6に示すように、筒状部7の近傍の固体絶縁物被覆6の外周面に沿面長を延長させる障害部材12を設けても良い。この場合には上述のL2の沿面長をかせぐことができるので、固体絶縁物被覆6を導体3の全長にわたって設けない場合に、固体絶縁物被覆6を設ける範囲を狭くすることができる。   In addition, as shown in FIG. 6, an obstruction member 12 that extends the creeping length may be provided on the outer peripheral surface of the solid insulator coating 6 in the vicinity of the cylindrical portion 7. In this case, since the creepage length of the above-described L2 can be increased, when the solid insulator coating 6 is not provided over the entire length of the conductor 3, the range in which the solid insulator coating 6 is provided can be narrowed.

さらに、筒状部7の内周面7aと、固体絶縁物被覆6の外周面の筒状部7に臨む部分6bとのうち、少なくともいずれか一方に周方向に環状の突部18を設けても良い。筒状部7の内周面7aと固体絶縁物被覆6の部分6bの両方に突部18を設けた実施形態を図16に示す。筒状部7側の突部18(以下、固体絶縁物被覆6側の突部18と区別する場合には突部18Aという)と固体絶縁物被覆6側の突部18(以下、筒状部7側の突部18Aと区別する場合には突部18Bという)は、導体3の軸線方向にずらして互い違いになるようにすることが好ましい。ただし、必ずしも突部18Aと突部18Bを互い違いにしなくても良い。本実施形態では、例えば4つの突部18Aと4つの突部18Bを互い違いに設けている。ただし、突部18A,18Bの数は4つに限るものではなく、その他の個数でも良い。各突部18A,18Bの横断面形状は例えば半円形状を成している。ただし、必ずしも突部18A,18Bの横断面形状は半円形状に限るものではなく、他の形状でも良いが、角のない形状であることが好ましい。角部分が電界の特異点になるのを防止するためである。本実施形態では、筒状部7側の突部18Aは一つ一つ独立しており、固体絶縁物被覆6側の突部18Bは一体化されている。ただし、筒状部7側の突部18Aを一体化させても良く、固体絶縁物被覆6側の突部18Bを一つ一つ独立させても良い。突部18A,18Bは、例えばエポキシ樹脂、ポリエチレン等の固体絶縁材料で形成されている。本実施形態では突部18Aを筒状部7と別に形成し、突部18Bを固体絶縁物被覆6と別に形成しているが、突部18Aを筒状部7と一体成形し、突部18Bを固体絶縁物被覆6と一体成形しても良い。突部18Aは筒状部7対して、突部18B固体絶縁物被覆6に対して例えば接着剤によって固着されている。また、本実施形態では、突部18Aの内径と突部18Bの外径を同一にしている。ただし、突部18Aの内径を突部18Bの外径よりも大きくしても良いし、突部18Aの内径を突部18Bの外径よりも小さくしても良い。   Further, an annular protrusion 18 is provided in the circumferential direction on at least one of the inner peripheral surface 7a of the cylindrical portion 7 and the portion 6b facing the cylindrical portion 7 on the outer peripheral surface of the solid insulator coating 6. Also good. An embodiment in which protrusions 18 are provided on both the inner peripheral surface 7a of the cylindrical portion 7 and the portion 6b of the solid insulator coating 6 is shown in FIG. A projection 18 on the cylindrical portion 7 side (hereinafter referred to as a projection 18A when distinguished from the projection 18 on the solid insulator coating 6 side) and a projection 18 on the solid insulator coating 6 side (hereinafter referred to as a cylindrical portion). It is preferable that the protrusions 18 </ b> B are distinguished from the 7-side protrusions 18 </ b> A by being shifted in the axial direction of the conductor 3. However, the protrusion 18A and the protrusion 18B are not necessarily staggered. In the present embodiment, for example, four protrusions 18A and four protrusions 18B are provided alternately. However, the number of protrusions 18A and 18B is not limited to four, and may be any other number. The cross-sectional shape of each protrusion 18A, 18B has a semicircular shape, for example. However, the cross-sectional shape of the protrusions 18A and 18B is not necessarily limited to a semicircular shape, and other shapes may be used, but a shape without corners is preferable. This is to prevent the corner portion from becoming a singular point of the electric field. In the present embodiment, the protrusions 18A on the cylindrical part 7 side are independent one by one, and the protrusions 18B on the solid insulator coating 6 side are integrated. However, the projections 18A on the cylindrical portion 7 side may be integrated, or the projections 18B on the solid insulator coating 6 side may be made independent one by one. The protrusions 18A and 18B are formed of a solid insulating material such as an epoxy resin or polyethylene. In this embodiment, the protrusion 18A is formed separately from the cylindrical portion 7, and the protrusion 18B is formed separately from the solid insulator coating 6. However, the protrusion 18A is integrally formed with the cylindrical portion 7, and the protrusion 18B. May be integrally formed with the solid insulator coating 6. The protrusion 18A is fixed to the protrusion 18B solid insulator coating 6 with respect to the cylindrical portion 7 by, for example, an adhesive. In the present embodiment, the inner diameter of the protrusion 18A and the outer diameter of the protrusion 18B are the same. However, the inner diameter of the protrusion 18A may be larger than the outer diameter of the protrusion 18B, or the inner diameter of the protrusion 18A may be smaller than the outer diameter of the protrusion 18B.

突部18Aを設けることで、筒状部7の内周面を伝わる接地容器2と接触界面6aとの間の沿面長がより一層長くなり、突部18Bを設けることで、固体絶縁物被覆6の外周面を伝わる接地容器2と接触界面6aとの間の沿面長がより一層長くなる。また、仮に接地容器2と接触界面6aとの間に絶縁破壊が生じるとすると、その放電が筒状部7の内周面に沿う場合には突部18Aを乗り越えることが逆電界となり、固体絶縁物被覆6の外周面に沿う場合には突部18Bを乗り越えることが逆電界となる。これらのため、接地容器2と接触界面6aとの間の絶縁破壊をより一層生じ難くすることができる。   By providing the protrusion 18A, the creepage length between the ground container 2 and the contact interface 6a that travels on the inner peripheral surface of the cylindrical portion 7 is further increased, and by providing the protrusion 18B, the solid insulator coating 6 is provided. The creepage length between the ground container 2 and the contact interface 6a that travels along the outer peripheral surface of the contact surface 6a is further increased. Further, if dielectric breakdown occurs between the ground container 2 and the contact interface 6a, when the discharge is along the inner peripheral surface of the cylindrical portion 7, overcoming the protrusion 18A becomes a reverse electric field, and solid insulation is caused. In the case of being along the outer peripheral surface of the object covering 6, overcoming the protrusion 18B becomes a reverse electric field. For these reasons, the dielectric breakdown between the ground container 2 and the contact interface 6a can be made more difficult to occur.

なお、上述の説明では、横断面形状が半円形状の突部18を複数設けていたが、例えば図17に示すように、傾斜面18cを有する突部18を設けても良い。本実施形態では、筒状部7側の突部18Aと固体絶縁物被覆6側の突部18Bの両方を傾斜面18cを有する突部にしている。ただし、突部18Aと突部18Bの両方を傾斜面18cを有するものにする必要はなく、例えば図18に示すように、固体絶縁物被覆6側の突部18Bのみを傾斜面18cを有するものにしても良く、逆に筒状部7側の突部18Aのみを傾斜面18cを有するものにしても良い。突部18が傾斜面18cを有するものの場合にも、接地容器2と接触界面6aとの間の沿面長をより一層長くできると共に、仮に絶縁破壊が生じるとすると逆電界となる部分を作ることができるので、絶縁破壊をより一層生じ難くすることができる。   In the above description, a plurality of protrusions 18 having a semicircular cross-sectional shape are provided. However, for example, as shown in FIG. 17, a protrusion 18 having an inclined surface 18c may be provided. In the present embodiment, both the protruding portion 18A on the cylindrical portion 7 side and the protruding portion 18B on the solid insulator coating 6 side are protruding portions having inclined surfaces 18c. However, it is not necessary that both the protrusion 18A and the protrusion 18B have the inclined surface 18c. For example, as shown in FIG. 18, only the protrusion 18B on the solid insulator coating 6 side has the inclined surface 18c. Alternatively, only the protrusion 18A on the cylindrical portion 7 side may have the inclined surface 18c. Even in the case where the protrusion 18 has the inclined surface 18c, the creepage length between the ground container 2 and the contact interface 6a can be further increased, and if a dielectric breakdown occurs, a portion that becomes a reverse electric field can be formed. As a result, dielectric breakdown can be further prevented from occurring.

また、上述の説明では、筒状部7の内周面7aと固体絶縁物被覆6の部分6bの両方に突部18を設けていたが、必ずしも両方に設ける必要はなく、いずれか一方にのみ突部18を設けるようにしても良い。即ち、筒状部7の内周面7aと固体絶縁物被覆6の部分6bの両方に突部18を設けることで、絶縁破壊が生じる経路が筒状部7の内周面に沿う場合と固体絶縁物被覆6の外周面に沿う場合のいずれであっても絶縁破壊をより一層生じ難くすることができるが、絶縁破壊が生じる経路が上記2つの経路のうちいずれか一方であることが予測できる場合等には予測できる経路にのみ突部18を設けるようにしても良い。例えば、GISやGIL等のガス絶縁電力機器では導体3から接地容器2に向けて絶縁破壊が生じると予測できるので、ギャップ8が大きく、導体3から生じた絶縁破壊が接続界面6aから固体絶縁物本体5の側面に沿って筒状部7の内周面に伝わり、筒状部7の先端から接地容器2へと伝わることが予測できる場合等には筒状部7側の突部18Aのみを設けても良い。   Further, in the above description, the protrusions 18 are provided on both the inner peripheral surface 7a of the cylindrical portion 7 and the portion 6b of the solid insulator coating 6, but it is not always necessary to provide both, and only one of them is provided. The protrusion 18 may be provided. That is, by providing the protrusions 18 on both the inner peripheral surface 7a of the cylindrical portion 7 and the portion 6b of the solid insulator coating 6, the path where dielectric breakdown occurs is along the inner peripheral surface of the cylindrical portion 7 and solid. In any case along the outer peripheral surface of the insulator coating 6, it is possible to make the dielectric breakdown more difficult to occur, but it can be predicted that the path where the dielectric breakdown occurs is one of the above two paths. In some cases, the protrusion 18 may be provided only on a predictable route. For example, in a gas insulated power device such as GIS or GIL, it can be predicted that dielectric breakdown will occur from the conductor 3 toward the ground container 2, so that the gap 8 is large and the dielectric breakdown generated from the conductor 3 is solid insulation from the connection interface 6a. When it can be predicted that it is transmitted along the side surface of the main body 5 to the inner peripheral surface of the cylindrical portion 7 and from the tip of the cylindrical portion 7 to the grounding container 2, only the protruding portion 18A on the cylindrical portion 7 side is used. It may be provided.

本発明の導体接続装置の使用によって絶縁耐圧即ち耐電圧を増加させることができることを確認するための実験を行った。   An experiment was conducted to confirm that the withstand voltage, that is, the withstand voltage can be increased by using the conductor connecting device of the present invention.

導体接続装置の検討を行うにあたって、以下の2つのコンセプトを考えた。
(i)接続部の沿面長の増加
(ii)接触界面6aの電界集中の緩和
沿面放電を考えるとき、沿面長の増加に比例するほどには耐電圧は増加しないが、沿面長の増加は確実に耐電圧の増加につながる。したがって、GISまたはGILの接続箇所において、できる限り(または合理的に)沿面放電に対する沿面長を増加できるようにした(沿面長を適用箇所に応じて任意に設定できる)。
In examining the conductor connection device, the following two concepts were considered.
(I) Increase in creepage length of connection
(Ii) Relaxation of electric field concentration at contact interface 6a When considering creeping discharge, the withstand voltage does not increase as much as the increase in creepage length, but the increase in creeping length surely leads to an increase in withstand voltage. Therefore, the creepage length against creeping discharge can be increased as much as possible (or reasonably) at the connection location of GIS or GIL (the creepage length can be arbitrarily set according to the application location).

電界の集中する場所は放電の起点となる。したがって、耐電圧の上昇のためには、極力電界集中を避ける必要がある。導体3の接続部分で固体絶縁物被覆6同士が接続される場合、固体絶縁物被覆6の端面の接触界面6aには微小ギャップ(ボイド)の存在が避けられず、この微小ギャップは電界の集中を引き起こす。また、左右から接続する場合、接続部の表面を完全に平坦とすることは困難である。たとえ微小であっても段差があれば、電界の集中を引き起こすことになり、電気的な弱点となる。   The place where the electric field concentrates becomes the starting point of discharge. Therefore, it is necessary to avoid electric field concentration as much as possible in order to increase the withstand voltage. When the solid insulator coatings 6 are connected to each other at the connection portion of the conductor 3, a minute gap (void) cannot be avoided at the contact interface 6a on the end face of the solid insulator coating 6, and this minute gap is a concentration of electric field. cause. Moreover, when connecting from right and left, it is difficult to make the surface of a connection part completely flat. Even if it is minute, if there is a step, it will cause concentration of the electric field, which will be an electrical weak point.

以上の点を考慮し、実験では以下の5つのパターンを検討した。実際の実験配置は後述するように、簡単のために平行平板電極系で行ったが、ここでは実機におけるハイブリッド絶縁方式(導体3を絶縁ガス1と固体絶縁物被覆6とで絶縁する方式)の接続について理解を容易にするために、各コンセプトを同軸円筒モデルで示す。   Considering the above points, the following five patterns were examined in the experiment. As will be described later, the actual experimental arrangement was performed using a parallel plate electrode system for the sake of simplicity. Here, a hybrid insulation method (method in which the conductor 3 is insulated by the insulating gas 1 and the solid insulator coating 6) in an actual machine is used. To facilitate understanding of the connection, each concept is shown as a coaxial cylinder model.

(1)固体絶縁物被覆6なし(構造A)
コネクタ導体4について固体絶縁物被覆6なしの場合を図7に示す。本方式はハイブリッド絶縁方式ではなく、単純な気中絶縁方式である。今回の実験の中で、ハイブリッド絶縁方式による絶縁耐力の向上率を比較するための基準として設定した。
(1) Without solid insulator coating 6 (Structure A)
FIG. 7 shows a case where the connector conductor 4 has no solid insulator coating 6. This method is not a hybrid insulation method but a simple air insulation method. In this experiment, it was set as a standard for comparing the improvement rate of dielectric strength by the hybrid insulation method.

(2)シールド電極方式(構造B,C)
シールド電極方式を用いた接続装置を図8および図2に示す。本方式は導体接続装置内部にシールド電極11を埋め込むことで、固体絶縁物被覆6の接続部側の電界を緩和する方式である。本方式では、導体3(中心導体)の固体絶縁物被覆6と筒状部7との間に接触界面13がある場合(構造B:図8)、および両者の間にギャップ8を設けることで接触界面13を除した場合(構造C:図2)を検討した。
(2) Shield electrode method (Structures B and C)
A connection device using the shield electrode system is shown in FIGS. In this method, the shield electrode 11 is embedded in the conductor connection device, thereby relaxing the electric field on the connection portion side of the solid insulator coating 6. In this system, when there is a contact interface 13 between the solid insulator coating 6 of the conductor 3 (center conductor) and the cylindrical portion 7 (structure B: FIG. 8), and by providing a gap 8 between them The case where the contact interface 13 was removed (structure C: FIG. 2) was examined.

(3)絶縁物シース方式(構造D,E)
絶縁物シース方式を用いた接続装置を図9および図1に示す。本方式は導体接続装置のうち、中心導体3を電気的に接続する部分以外はすべて樹脂である。すなわち、固体の接触界面13の電界緩和をシールド電極11等で積極的には行わない。この場合もシールド電極方式と同様に、中心導体3の固体絶縁物被覆6と筒状部7との間に接触界面13がある場合(構造D:図9)、および両者の間にギャップ8を設けることで接触界面13を除した場合(構造E:図1)を検討した。
(3) Insulator sheath method (Structures D and E)
A connecting device using an insulator sheath method is shown in FIGS. This system is all resin except the part which electrically connects the center conductor 3 among conductor connection apparatuses. That is, the electric field relaxation of the solid contact interface 13 is not actively performed by the shield electrode 11 or the like. Also in this case, as in the shield electrode system, when the contact interface 13 is present between the solid insulator coating 6 of the center conductor 3 and the cylindrical portion 7 (structure D: FIG. 9), a gap 8 is provided between them. The case where the contact interface 13 was removed by the provision (structure E: FIG. 1) was examined.

構造Aを除くすべてのハイブリッド絶縁方式においては、いずれの場合も導体接続装置のアーム(筒状部7)を軸方向に延長することで、沿面長を任意に設定できる。   In all the hybrid insulation systems except the structure A, the creepage length can be arbitrarily set by extending the arm (tubular portion 7) of the conductor connection device in the axial direction in any case.

次に、実験配置および電圧印加方法について説明する。   Next, an experimental arrangement and a voltage application method will be described.

図10に実験配置を示す。なお、図10(a)中のC−C線は、このC−C線を軸として回転対称にすると同軸円筒モデルと等しくなることを意味する。また、図10(b)は(a)において模擬接続装置14の付近のみを図示している。   FIG. 10 shows the experimental arrangement. Note that the CC line in FIG. 10A is equivalent to the coaxial cylindrical model when rotationally symmetric about the CC line. FIG. 10B shows only the vicinity of the simulated connection device 14 in FIG.

実際のGIS、GILは同軸円筒構造であるが、実験では平坦部直径290mmの平板電極系で実験を行い、雰囲気ガスは0.1MPa(abs.)のSFとした。同図において、上部電極15(平坦部直径290mm)が実際のGISの接地タンク(接地容器2)、下部電極16(平坦部直径290mm)が中心導体3に相当する。下部電極16上に中心導体3の固体絶縁物被覆6を模擬したシリコンゴム17(直径300mm、厚さ5mm)を設置し、その上に直径120mm、厚さ20mmの模擬接続装置14を設置することでハイブリッド絶縁(絶縁ガスと固体絶縁物被覆とによる絶縁)を構成した。模擬接続装置14下面の中央にはロッド14a(模擬接続装置14と同一材料。後述するシールド電極11方式の場合は、SUS)がついており、これがシリコンゴム17を貫通している。したがって、この場合の全路破壊は、上部電極15と模擬接続装置14間の気中絶縁破壊、および模擬接続装置14上の沿面放電、もしくは模擬接続装置14とシリコンゴム17との接触界面における界面放電を経て、模擬接続装置14下面中央のシリコンゴム17貫通部を放電進展し、下部電極16に達することで完了する。すなわち、同軸円筒構成(図1,図2,図7,図8,図9)の場合と同じである。シリコンゴム17のうち、下部電極16との接触面には導電性塗料を塗布しており、電極とシリコンゴム17の間にボイドが生じても電界集中が生じないようにしている。また、配置の都合上、上部電極15に電圧を印加している。 The actual GIS and GIL have a coaxial cylindrical structure. In the experiment, the experiment was performed using a flat plate electrode system having a flat portion diameter of 290 mm, and the atmospheric gas was SF 6 of 0.1 MPa (abs.). In the drawing, the upper electrode 15 (flat portion diameter 290 mm) corresponds to an actual GIS ground tank (ground container 2), and the lower electrode 16 (flat portion diameter 290 mm) corresponds to the center conductor 3. A silicon rubber 17 (diameter 300 mm, thickness 5 mm) simulating the solid insulator coating 6 of the central conductor 3 is installed on the lower electrode 16, and a simulated connection device 14 having a diameter of 120 mm and a thickness of 20 mm is installed thereon. The hybrid insulation (insulation by insulating gas and solid insulator coating) was constructed. At the center of the lower surface of the simulated connection device 14 is a rod 14a (same material as the simulated connection device 14; SUS in the case of the shield electrode 11 method described later), which penetrates the silicon rubber 17. Therefore, the all-path breakdown in this case is the air breakdown between the upper electrode 15 and the simulated connection device 14 and the creeping discharge on the simulated connection device 14 or the interface at the contact interface between the simulated connection device 14 and the silicon rubber 17. The discharge progresses through the silicon rubber 17 penetrating portion at the center of the lower surface of the simulated connection device 14 through the discharge, and is completed by reaching the lower electrode 16. That is, it is the same as the case of the coaxial cylindrical configuration (FIG. 1, FIG. 2, FIG. 7, FIG. 8, FIG. 9). A conductive paint is applied to the contact surface of the silicon rubber 17 with the lower electrode 16 so that electric field concentration does not occur even if a void occurs between the electrode and the silicon rubber 17. In addition, a voltage is applied to the upper electrode 15 for convenience of arrangement.

模擬接続装置14は、前述したように、固体絶縁物被覆6なし、シールド電極方式、および絶縁物シース方式の3種類を用いた。シールド電極方式および絶縁物シース方式については、図10(a)に示す模擬接続装置14と固体絶縁物被覆6(シリコンゴム17)との間に接触界面13のある場合、および同図(b)に示すように模擬接続装置14とシリコンゴム17の間にギャップ(g3=5mm)を設けることで接触界面を除した場合で実験を行った。ギャップが狭い場合はかえって電界の集中を招くことになるが、実験では模擬接続装置14の上部高電圧側電極側が気中の最大電界となるよう設定した(各配置における電界計算結果は後述する)。   As described above, three types of the simulated connection device 14 were used: the solid insulator coating 6 not provided, the shield electrode method, and the insulator sheath method. As for the shield electrode method and the insulator sheath method, the case where the contact interface 13 exists between the simulated connection device 14 shown in FIG. 10A and the solid insulator coating 6 (silicon rubber 17), and FIG. As shown in FIG. 4, the experiment was performed in the case where the contact interface was removed by providing a gap (g3 = 5 mm) between the simulated connection device 14 and the silicon rubber 17. If the gap is narrow, the concentration of the electric field will be caused, but in the experiment, the upper high voltage side electrode side of the simulated connection device 14 is set to be the maximum electric field in the air (the electric field calculation results in each arrangement will be described later). .

各模擬接続装置14の詳細を図11に示す。固体絶縁物被覆なし(同図(a))は、ステンレス製で鏡面仕上げを施してある。この条件は、上述の構造Aに相当する。全路破壊は上部電極15とステンレス製の模擬接続装置14間の気中破壊で完了する。シールド電極方式(同図(b))は、鏡面仕上げを施したステンレス製電極をエポキシ(固体絶縁物被覆6)でモールドしたものであり、絶縁物シース方式(同図(a))は、すべてアクリル(PMMA)である。このシールド電極方式、絶縁物シース方式は、上述のとおり、接触界面13のある場合(図10(a))、および接触界面13のない場合(図4(b))について実験を行った。これは、構造B、C(シールド方式)、および構造D、E(絶縁物シース方式)に相当する。   Details of each simulated connection device 14 are shown in FIG. Without a solid insulator coating ((a) in the figure), it is made of stainless steel and has a mirror finish. This condition corresponds to the structure A described above. All-path destruction is completed by air destruction between the upper electrode 15 and the stainless steel simulated connection device 14. The shield electrode method (Fig. (B)) is a mirror-finished stainless steel electrode molded with epoxy (solid insulator coating 6), and the insulator sheath method (Fig. (A)) is all Acrylic (PMMA). As described above, the shield electrode method and the insulator sheath method were tested for the case where the contact interface 13 was present (FIG. 10A) and the case where the contact interface 13 was not present (FIG. 4B). This corresponds to the structures B and C (shield method) and the structures D and E (insulator sheath method).

上下電極間のギャップ長、各模擬接続装置14の配置は、事前に電界計算を実施し、気中の最大電界(模擬接続装置14の上面端部付近)がほぼ一致するように設定した。模擬接続装置14が絶縁物シース方式もしくはシールド電極方式で、シリコンゴム17との接触界面13が存在する場合(構造B、D)、最大電界点は模擬接続装置14、シリコンゴム17、 SFガスによる三重点付近となるが、実験では模擬接続装置14の上面における最大電界で整理することとした。 The gap length between the upper and lower electrodes and the arrangement of each simulated connection device 14 were set in advance so that the maximum electric field in the air (near the upper end portion of the simulated connection device 14) was substantially matched by performing electric field calculation in advance. When the simulated connection device 14 is an insulator sheath method or a shield electrode method and the contact interface 13 with the silicon rubber 17 exists (structures B and D), the maximum electric field point is the simulated connection device 14, the silicon rubber 17, SF 6 gas. In the experiment, the maximum electric field on the upper surface of the simulated connection device 14 was arranged.

実験条件を表1にまとめ、電界計算結果を図12に示す。電界計算は、電荷重畳法を用い、簡単のため接地側電極の固体絶縁物(シリコンゴム17:厚さ5mm)は考慮しないこととした。シリコンゴム17が単純な平板で厚さが薄いため電界を乱すことが無く、シリコンゴム17を考慮しない場合でも、前述の気中最大電界はほとんど変化しない(例えば、図12(a)の場合、高電圧側電極に1kV印加した時の最大電界値は、シリコンゴム17を考慮する場合0.717kV/cm、考慮しない場合で0.716kV/cm)。   The experimental conditions are summarized in Table 1, and the electric field calculation results are shown in FIG. The electric field calculation uses a charge superposition method, and for simplicity, the solid insulator (silicon rubber 17: thickness 5 mm) of the ground side electrode is not considered. Since the silicon rubber 17 is a simple flat plate and has a small thickness, the electric field is not disturbed, and even when the silicon rubber 17 is not taken into consideration, the above-described maximum electric field in the air hardly changes (for example, in the case of FIG. 12A, The maximum electric field value when 1 kV is applied to the high voltage side electrode is 0.717 kV / cm when the silicon rubber 17 is considered, and 0.716 kV / cm when the silicon rubber 17 is not considered.

印加電圧は図13に示す正・負の標準雷インパルス(1.2/48μs)とし、50%スパークオーバ電圧(V50)および最低破壊電圧(V50−3σ)を推定するための電圧印加法はステップ上昇法を用いた。ステップ上昇法は、昇降法などと同様に絶縁破壊の50%電圧や最低スパークオーバ電圧の推定に用いられる電圧印加法である。本実験で使用したステップ上昇法による試験の手順は以下の通りである(図14)。
(1)予想される全路破壊電圧値の50%〜80%の電圧を印加する。
(2)全路破壊が生じない場合、一定の電圧幅ΔV(今回は平均4kV)だけ電圧を上昇させて再び電圧を印加する。
(3)(2)の操作を全路破壊が生じるまで行う。
(4)(1)〜(3)を20回繰り返す(絶縁破壊電圧の取得回数nを20とする)。
The applied voltage is a positive / negative standard lightning impulse (1.2 / 48 μs) shown in FIG. 13, and the voltage application method for estimating the 50% sparkover voltage (V50) and the minimum breakdown voltage (V50-3σ) is a step. The ascent method was used. The step-up method is a voltage application method used for estimating the 50% breakdown voltage and the minimum sparkover voltage as in the case of the elevation method. The test procedure using the step-up method used in this experiment is as follows (FIG. 14).
(1) A voltage of 50% to 80% of an expected all-path breakdown voltage value is applied.
(2) When all the roads do not break, the voltage is increased by a certain voltage width ΔV (average 4 kV this time), and the voltage is applied again.
(3) The operation of (2) is performed until the whole road is destroyed.
(4) Repeat (1) to (3) 20 times (the number of acquisitions n of the dielectric breakdown voltage is 20).

ステップ上昇法では、絶縁破壊が生じるごとに印加電圧を開始レベルまで戻すために破壊確率の小さい低電圧における絶縁破壊を捕らえることができる。また、絶縁破壊と次の絶縁破壊までの間隔が必然的に長くなるため、前回の絶縁破壊の影響(例えば、空間の残留電荷の影響など)を避けることができるなどのメリットがある。また、今回の実験では2台のスチルカメラを用いて放電様相を観察した。   In the step-up method, dielectric breakdown at a low voltage with a low breakdown probability can be captured in order to return the applied voltage to the start level every time dielectric breakdown occurs. In addition, since the interval between the dielectric breakdown and the next dielectric breakdown is inevitably long, there is an advantage that the influence of the previous dielectric breakdown (for example, the influence of the residual charge in the space) can be avoided. In this experiment, the discharge mode was observed using two still cameras.

(模擬接続装置14と放電進展様相)
観察の結果、いずれの場合も、気中ギャップ(図10(a)のg1)の絶縁破壊部分は模擬接続装置14の上面端部であった。この部分は、前述したとおり気中の最大電界部分である(接触界面13が存在する場合の三重点付近を除く)。
(Simulated connection device 14 and discharge progress)
As a result of the observation, the dielectric breakdown part of the air gap (g1 in FIG. 10A) was the upper end part of the simulated connection device 14 in any case. This part is the maximum electric field part in the air as described above (except for the vicinity of the triple point when the contact interface 13 exists).

接触界面13がある場合、印加電圧の極性および模擬接続装置14の材質によらず、模擬接続装置14とシリコンゴム17の接触界面13を放電が進展して全路破壊に至る場合と、三重点付近のシリコンゴム17を貫通破壊して全路破壊に至る場合があった。いずれの場合も絶縁破壊電圧に有意な差は無かった。また、一度貫通破壊を生じた供試体であっても貫通破壊した場所が選択的に破壊することは無く、その後界面放電による全路破壊を生じたり、異なる場所で貫通破壊を生じたりしたため、20回の破壊においてシリコンゴム17は交換しなかった。構造B,Dについては、接続模擬部下のシリコンゴム17に貫通破壊痕があった。後述するが、接触界面13が無い場合(構造CおよびE)は貫通破壊を生じることはなく、接触界面13がある場合の特有の現象であった。これは、三重点付近が電界の特異点となることから、気中(図10のギャップg1)の絶縁破壊によらず、この付近では界面放電もしくは貫通破壊が発生しているものと考えられる。今回の実験では、貫通破壊の場合と界面放電の場合で絶縁破壊電圧に有意な差が無かったことから、仮にシリコンゴム17よりも貫通破壊に対する絶縁耐力が高い固体絶縁物を使用しても、絶縁破壊電圧の向上は難しいと考えられる。   When there is the contact interface 13, regardless of the polarity of the applied voltage and the material of the simulated connection device 14, the discharge progresses on the contact interface 13 between the simulated connection device 14 and the silicon rubber 17, resulting in all-path destruction, and the triple point. In some cases, the silicon rubber 17 in the vicinity was penetrated and destroyed, leading to destruction of the entire road. In all cases, there was no significant difference in breakdown voltage. In addition, even in the specimen that once caused the penetration failure, the place where the penetration failure did not occur selectively, and then the entire path was destroyed due to the interface discharge, or the penetration failure occurred at a different location. The silicon rubber 17 was not exchanged during each break. Regarding the structures B and D, there was a penetration fracture mark in the silicon rubber 17 under the connection simulation portion. As will be described later, when there is no contact interface 13 (structures C and E), penetration failure does not occur, which is a characteristic phenomenon when the contact interface 13 is present. This is presumably because interfacial discharge or penetration breakdown occurs in the vicinity of the triple point near the triple point, regardless of the dielectric breakdown in the air (gap g1 in FIG. 10). In this experiment, since there was no significant difference in the breakdown voltage between the case of the through breakdown and the case of the interface discharge, even if a solid insulator having a higher dielectric strength against the through breakdown than the silicon rubber 17 is used, It is considered difficult to improve the breakdown voltage.

模擬接続装置14がシールド電極方式で、接触界面13がない場合(構造C)、印加電圧の極性によらず、全ての場合で模擬接続装置14表面の沿面放電により全路破壊を生じていた。すなわち、模擬接続装置14とシリコンゴム17が向かい合っている部分(模擬接続装置14の下面側)においても、沿面放電はシリコンゴム17表面ではなく模擬接続装置14の表面を進展していた。これはシールド電極方式の沿面放電がいわゆる背後電極ありの沿面放電であり、放電が進展しやすいためであると考えられる。シリコンゴム17側も背後電極が存在するが、シリコンゴム17の沿面放電のためには、模擬接続装置14とシリコンゴム17間の気中ギャップ(g3)を絶縁破壊する必要があり、結果的にシールド電極方式模擬接続装置14沿面の方が進展しやすかったものと考えられる。   When the simulated connection device 14 is a shield electrode type and there is no contact interface 13 (Structure C), all-path destruction occurred due to creeping discharge on the surface of the simulated connection device 14 regardless of the polarity of the applied voltage. That is, even in the portion where the simulated connection device 14 and the silicon rubber 17 face each other (the lower surface side of the simulated connection device 14), the creeping discharge propagates on the surface of the simulated connection device 14 instead of the surface of the silicon rubber 17. This is considered to be because the creeping discharge of the shield electrode type is a so-called creeping discharge with a back electrode, and the discharge is likely to progress. Although a back electrode exists on the silicon rubber 17 side, in order for creeping discharge of the silicon rubber 17, it is necessary to break down the air gap (g 3) between the simulated connection device 14 and the silicon rubber 17. It is considered that the creeping of the shield electrode type simulated connection device 14 was easier to progress.

模擬接続装置14が絶縁物シース方式の場合(構造E)、印加電圧の極性によらず、ほとんどの場合でシリコンゴム17表面の沿面放電により全路破壊を生じていた。模擬接続装置14の下面において、途中までは模擬接続装置14に沿って進展しても、最終的には気中ギャップ(g3)を絶縁破壊し、シリコンゴム17表面に放電が移行し沿面放電を形成していた。これはシールド電極方式の場合と異なり、模擬接続装置14中には電極が存在しないために模擬接続装置14側に放電を保持する吸引効果がなく、気中ギャップ(g3)を絶縁破壊して背後電極のあるシリコンゴム17側に放電が移行したものと考えられる。   When the simulated connection device 14 is of the insulator sheath type (Structure E), all-path destruction was caused by creeping discharge on the surface of the silicon rubber 17 in most cases regardless of the polarity of the applied voltage. Even if it progresses along the simulated connection device 14 up to the middle on the lower surface of the simulated connection device 14, the air gap (g3) is eventually broken down, and the discharge is transferred to the surface of the silicon rubber 17 to cause creeping discharge. Was forming. This is different from the shield electrode type in that there is no electrode in the simulated connection device 14, so there is no suction effect for holding the discharge on the simulated connection device 14 side, and the air gap (g 3) is dielectrically broken to the rear. It is considered that the discharge has shifted to the silicon rubber 17 side where the electrodes are provided.

(50%破壊電圧および最低破壊電圧の推定)
ステップ上昇法により推定された50%スパークオーバ電圧(V50)および最低破壊電圧(V50−3σ)を表2および図15に示す。表2より、いずれの模擬接続装置14の場合でも、50%破壊電圧は正極性の方が低いことがわかる。正極性の場合、沿面放電が進展しやすいことが知られており、絶縁破壊電圧が低下しているものと考えられる。同表にはV50およびV50−3σについて、それぞれ模擬接続装置14が絶縁被覆なしの場合(構造A)の値を基準(100%)とした場合の向上率も示している。
(Estimation of 50% breakdown voltage and minimum breakdown voltage)
The 50% sparkover voltage (V50) and the minimum breakdown voltage (V50-3σ) estimated by the step-up method are shown in Table 2 and FIG. From Table 2, it can be seen that in any of the simulated connection devices 14, the 50% breakdown voltage is lower in the positive polarity. In the case of positive polarity, it is known that creeping discharge is likely to progress, and it is considered that the dielectric breakdown voltage is lowered. The table also shows the improvement rates when V50 and V50-3σ are based on the value (100%) when the simulated connection device 14 has no insulation coating (structure A).

接触界面13が存在する場合(構造B,D)は、模擬接続装置14がシールド電極方式の方が絶縁物シース方式の場合よりも若干高いが、いずれも絶縁破壊電圧の向上率は小さい(絶縁物シース方式の場合、負極性のV50−3σは逆に97.1%と減少している)。シールド電極方式の方が若干高いのは、ボイドの存在が避けられない接触界面13の電界が緩和されるためと考えられるが、上述したとおり接触界面13の三重点付近に電界の特異点が存在するため、絶縁破壊電圧が向上し難いものと考えられる(今回の実験における向上率は、V50の正極性で8%、負極性で10%、V50−3σの正極性で14%、負極性で17%程度)。   In the case where the contact interface 13 exists (structures B and D), the simulated connection device 14 is slightly higher in the shield electrode method than in the insulator sheath method, but the improvement rate of the breakdown voltage is small (insulation) In the case of the physical sheath method, the negative polarity V50-3σ is conversely reduced to 97.1%). The reason why the shield electrode method is slightly higher is thought to be because the electric field of the contact interface 13 where the presence of voids cannot be avoided is relaxed, but as described above, there exists an electric field singularity near the triple point of the contact interface 13. Therefore, it is considered that the breakdown voltage is difficult to improve (the improvement rate in this experiment is 8% for the positive polarity of V50, 10% for the negative polarity, 14% for the positive polarity of V50-3σ, and negative polarity) About 17%).

接触界面13が存在しない場合(構造C,E)には、絶縁物シース方式の方がシールド電極方式の場合よりも高い。前述の通り、シールド電極方式の場合の放電は、いわゆる背後電極ありの沿面放電であるため、放電が進展しやすく絶縁破壊電圧が向上しにくいものと考えられる(シールド電極方式の場合、今回の実験における向上率はV50の正極性で12%、負極性で15%、V50−3σの正極性で15%、負極性で25%程度)。結果的にもっとも耐電圧が向上したのは、電界の特異点となる三重点が無く、模擬接続装置14に背後電極の無い「絶縁物シース方式・接触界面13なし(構造E)」の場合であり、V50およびV50−3σともに正極性で約50%、負極性で約40%向上している。前述したとおり、この場合の放電進展は模擬接続装置14背面で気中ギャップ(g3)を絶縁破壊し、背後電極のあるシリコンゴム17の沿面放電へと移行する。この耐電圧の上昇分は背後電極の無い模擬接続装置14の沿面放電電圧と模擬接続装置14背面の気中ギャップ(g3)の絶縁破壊電圧の向上によるものと推定される。したがって、模擬接続装置14の沿面長を長くするとともに、模擬接続装置14背面のギャップ(g3)を最適化することで更なる絶縁性能の向上が期待できる(g3の拡大により、g3部分の気中破壊を抑制できれば更なる耐電圧の向上が期待できる。g3が狭すぎると電界集中を起こし、かえって絶縁性能の低下を招く可能性がある)。この接続部沿面長と接続部背面ギャップ(g3)は、ガス種・ガス圧力(気中の絶縁破壊性能)とともに相関関係があると考えられ、沿面の形状も含め、今後最適条件の検討を行う予定である。さらにこの形状の場合、シールド電極11がある場合に比べて、同じ形状における気中(接続部の表面)の最大電界を低減できるメリットがある。すなわち今回の実験の場合、表1に示すとおり模擬接続装置14の表面電界が一定になるような配置とするとき、シールド電極11がある場合(構造C)の実ギャップ長(図10のg2:高電圧側電極と接地側電極の距離)が46mmであるのに対し、シールド電極11が無い場合(構造E)は32.5mmと3割程度コンパクトである。   When the contact interface 13 does not exist (structures C and E), the insulator sheath method is higher than the shield electrode method. As described above, the discharge in the shield electrode method is a so-called creeping discharge with a back electrode, so it is considered that the discharge is likely to progress and the breakdown voltage is difficult to improve (in the case of the shield electrode method, this experiment). (The improvement rate is about 12% for the positive polarity of V50, 15% for the negative polarity, 15% for the positive polarity of V50-3σ, and about 25% for the negative polarity). As a result, the withstand voltage was most improved in the case of “insulator sheath method / no contact interface 13 (structure E)” in which there is no triple point as a singular point of the electric field and the back electrode is not provided in the simulated connection device 14. Yes, both V50 and V50-3σ are improved by about 50% in the positive polarity and about 40% in the negative polarity. As described above, the progress of the discharge in this case breaks down the air gap (g3) on the back of the simulated connection device 14 and shifts to the creeping discharge of the silicon rubber 17 having the back electrode. The increase in the withstand voltage is estimated to be due to the improvement of the dielectric breakdown voltage of the creeping discharge voltage of the simulated connection device 14 without the back electrode and the air gap (g3) on the back of the simulated connection device 14. Therefore, further improvement of the insulation performance can be expected by increasing the creeping length of the simulated connection device 14 and optimizing the gap (g3) on the back surface of the simulated connection device 14 (by increasing g3, If breakdown can be suppressed, further improvement in withstand voltage can be expected.If g3 is too narrow, electric field concentration may occur, which may lead to deterioration of insulation performance). It is considered that the creepage length of the connecting part and the gap at the back of the connecting part (g3) are correlated with the gas type and gas pressure (dielectric breakdown performance in the air), and the optimum conditions including the shape of the creepage will be studied in the future. Is scheduled. Furthermore, in the case of this shape, there is an advantage that the maximum electric field in the air (surface of the connection portion) in the same shape can be reduced as compared with the case where the shield electrode 11 is provided. That is, in the case of this experiment, when the surface electric field of the simulated connection device 14 is set to be constant as shown in Table 1, the actual gap length when the shield electrode 11 is present (structure C) (g2 in FIG. 10: Whereas the distance between the high voltage side electrode and the ground side electrode is 46 mm, the case without the shield electrode 11 (structure E) is 32.5 mm, which is about 30% compact.

以上の結果を踏まえ、実際のGIS,GIL等の同軸円筒構造に適用した場合の概念を図1,図5に示す。図1は中心導体3の接続のみの場合、図5はスペーサ部で中心導体3の接続を行う場合である。固体絶縁物被覆6−筒状部7の接触界面13がほとんど無く、現行機器と同じ差込み方式で導体3を連結できるため施工も容易である。   Based on the above results, the concept when applied to an actual coaxial cylindrical structure such as GIS or GIL is shown in FIGS. FIG. 1 shows the case where only the central conductor 3 is connected, and FIG. 5 shows the case where the central conductor 3 is connected at the spacer portion. Since there is almost no contact interface 13 of the solid insulator coating 6-cylindrical part 7 and the conductor 3 can be connected by the same insertion method as the current equipment, the construction is also easy.

以上をまとめると、次の通りである。
(1)シールド電極方式(構造B、C)は、接続部の電界を緩和できるが、模擬接続装置14が背後電極つきの固体絶縁物となるため沿面放電が進展しやすく、比較的向上率の良かった構造Cの場合でも、向上率は正極性で15%、負極性で25%程度であった。
(2)絶縁物シース方式においては、接触界面13がある場合(構造D)はほとんど耐電圧が向上しない。これは接触界面13のボイドおよび三重点の影響によるものと考えられる。接触界面13が無い場合(構造E)は、接触界面13のボイド、三重点、および背後電極の効果がないことから、実験の条件の中で最も耐電圧が向上し、正極性で50%、負極性で40%程度向上した。
The above is summarized as follows.
(1) The shield electrode method (Structures B and C) can alleviate the electric field at the connection part, but the simulated connection device 14 becomes a solid insulator with a back electrode, so that creeping discharge tends to progress and the improvement rate is relatively good. Even in the case of Structure C, the improvement rate was about 15% for the positive polarity and about 25% for the negative polarity.
(2) In the insulator sheath method, when the contact interface 13 is present (structure D), the withstand voltage is hardly improved. This is thought to be due to the influence of voids and triple points on the contact interface 13. When there is no contact interface 13 (structure E), since there is no effect of the void, triple point, and back electrode of the contact interface 13, the withstand voltage is most improved among the experimental conditions, and the positive polarity is 50%. The negative polarity improved by about 40%.

以上より、「シールド電極方式、固体絶縁物接触界面13なし(構造C)」と「絶縁物シース方式、固体絶縁物接触界面13なし(構造E)」の場合、耐電圧が向上することが確認できた。特に構造Eの場合、耐電圧が顕著に向上することが確認できた。   From the above, it is confirmed that the withstand voltage is improved in the case of “shielded electrode method, no solid insulator contact interface 13 (structure C)” and “insulator sheath method, no solid insulator contact interface 13 (structure E)”. did it. In particular, in the case of the structure E, it was confirmed that the withstand voltage was remarkably improved.

突部18を設けることで絶縁破壊がより一層生じ難くなることを確認するための実験を行った。実験には、図10に示す実施例1の実験と同じ装置を使用した。ただし、シリコンゴム17に代えて、厚さ5mmのアクリル板19(図19(b)参照)で固体絶縁物被覆6を模擬した。模擬接続装置14としては、絶縁物シース方式(図11(a))のものを2グループ準備し、そのうち1グループには、図19に示すように固体絶縁物被覆6を模擬したアクリル板19に臨む部分に突起18Aを模擬した突起20Aを設けた。また、固体絶縁物被覆6を模擬したアクリル板19も2グループ準備し、そのうち1グループには模擬接続装置14に臨む部分に突起18Bを模擬した突起20Bを設けた。各突起20A,20Bは2つずつ設けられており、互い違いになるように同心円状に配置した。各突起20A,20Bの高さを5mm、模擬接続装置14とアクリル板との間隔(g3)を10mm、模擬接続装置14の厚さを20mmとした。また、模擬接続装置14の直径(シース長)を120mmとした。気中ギャップg1を2.5mm、実ギャップ長g2を37.5mmとした。   An experiment was conducted to confirm that the provision of the protrusion 18 makes it more difficult for dielectric breakdown to occur. In the experiment, the same apparatus as in the experiment of Example 1 shown in FIG. 10 was used. However, the solid insulator coating 6 was simulated with an acrylic plate 19 (see FIG. 19B) having a thickness of 5 mm instead of the silicon rubber 17. As the simulated connection device 14, two groups of the insulator sheath type (FIG. 11A) are prepared, and one group includes an acrylic plate 19 simulating the solid insulator coating 6 as shown in FIG. Protrusions 20A simulating the protrusions 18A were provided at the facing portions. In addition, two groups of acrylic plates 19 simulating the solid insulator coating 6 were prepared, and one group was provided with a projection 20B simulating the projection 18B at a portion facing the simulated connection device 14. Each of the protrusions 20A and 20B is provided in two, and is arranged concentrically so as to be staggered. The height of each protrusion 20A, 20B was 5 mm, the distance (g3) between the simulated connection device 14 and the acrylic plate was 10 mm, and the thickness of the simulated connection device 14 was 20 mm. The diameter (sheath length) of the simulated connection device 14 was 120 mm. The air gap g1 was 2.5 mm, and the actual gap length g2 was 37.5 mm.

実験は、突起20Aの無い模擬接続装置14と突起20Bの無いアクリル板19との組み合わせ(バリアなし)と、突起20Aを有する模擬接続装置14と突起20Bを有するアクリル板19との組み合わせ(Wバリア)について行なった。上述の実施例1の実験では印加電圧は図13に示す正・負の標準雷インパルス(1.2/48μs)としたが、本実験では図13に示す正の標準雷インパルス(1.2/48μs)とした。また、50%スパークオーバ電圧(V50)および最低破壊電圧(V50−3σ)を推定するための電圧印加法は、上述の実施例1の実験と同じステップ上昇法を用いた。   In the experiment, a combination of the simulated connection device 14 without the projection 20A and the acrylic plate 19 without the projection 20B (no barrier), and a combination of the simulated connection device 14 with the projection 20A and the acrylic plate 19 with the projection 20B (W barrier). ). In the experiment of Example 1 described above, the applied voltage was the positive / negative standard lightning impulse (1.2 / 48 μs) shown in FIG. 13, but in this experiment, the positive standard lightning impulse (1.2 / 48 μs) shown in FIG. 48 μs). The voltage application method for estimating the 50% sparkover voltage (V50) and the minimum breakdown voltage (V50-3σ) was the same step-up method as in the experiment of Example 1 described above.

ステップ上昇法により推定された最低破壊電圧(V50−3σ)を表3および図20に示す。Wバリアの場合はアクリル板19が貫通破壊したたため、アクリル板19の準備枚数との関係で2回しか実験をおこなうことができなかった。しかしながら、いずれの場合も絶縁破壊電圧が228.2kVであったため、図20ではラインで示している。一方、バリアなしの場合は167.5kVであった。したがって、バリアなしの場合に対するWバリアの場合の最低破壊電圧の向上率は36%であった。この結果、突起18を設けることで絶縁破壊がより一層生じ難くなることを確認することができた。   Table 3 and FIG. 20 show the minimum breakdown voltage (V50-3σ) estimated by the step-up method. In the case of the W barrier, the acrylic plate 19 was penetrated and destroyed, so that the experiment could be performed only twice in relation to the number of prepared acrylic plates 19. However, in any case, since the dielectric breakdown voltage was 228.2 kV, it is indicated by a line in FIG. On the other hand, it was 167.5 kV when there was no barrier. Therefore, the improvement rate of the minimum breakdown voltage in the case of the W barrier with respect to the case without the barrier was 36%. As a result, it has been confirmed that the provision of the protrusion 18 makes it more difficult for dielectric breakdown to occur.

本発明のガス絶縁電力機器の導体接続装置の第1の実施形態を示す断面図である。It is sectional drawing which shows 1st Embodiment of the conductor connection apparatus of the gas insulated power equipment of this invention. 本発明のガス絶縁電力機器の導体接続装置の第2の実施形態を示す断面図である。It is sectional drawing which shows 2nd Embodiment of the conductor connection apparatus of the gas insulated power equipment of this invention. 本発明のガス絶縁電力機器の導体接続装置の第3の実施形態を示す断面図である。It is sectional drawing which shows 3rd Embodiment of the conductor connection apparatus of the gas insulated power equipment of this invention. 本発明のガス絶縁電力機器の導体接続装置の第4の実施形態を示す断面図である。It is sectional drawing which shows 4th Embodiment of the conductor connection apparatus of the gas insulated power equipment of this invention. 本発明のガス絶縁電力機器の導体接続装置の第5の実施形態を示す断面図である。It is sectional drawing which shows 5th Embodiment of the conductor connection apparatus of the gas insulated power equipment of this invention. 本発明のガス絶縁電力機器の導体接続装置の第6の実施形態を示す断面図である。It is sectional drawing which shows 6th Embodiment of the conductor connection apparatus of the gas insulated power equipment of this invention. 本発明の効果を確認するために想定した第1の比較例の概念を示す断面図である。It is sectional drawing which shows the concept of the 1st comparative example assumed in order to confirm the effect of this invention. 本発明の効果を確認するために想定した第2の比較例の概念を示す断面図である。It is sectional drawing which shows the concept of the 2nd comparative example assumed in order to confirm the effect of this invention. 本発明の効果を確認するために想定した第3の比較例の概念を示す断面図である。It is sectional drawing which shows the concept of the 3rd comparative example assumed in order to confirm the effect of this invention. 本発明の効果を確認するための実験で使用した装置を示し、(a)は模擬接続装置と固体絶縁物被覆との間に接触界面がある場合(構造A,B,D)の図、(b)は模擬接続装置と固体絶縁物被覆との間に接触界面がない場合(構造C,E)の図である。The apparatus used in the experiment for confirming the effect of the present invention is shown, (a) is a diagram (structure A, B, D) when there is a contact interface between the simulated connection device and the solid insulator coating, b) is a diagram in the case where there is no contact interface between the simulated connection device and the solid insulator coating (structures C and E). 模擬接続装置を示し、(a)は固体絶縁物被覆なしの場合(SUSの場合と絶縁物シース方式の場合)の断面図、(b)は固体絶縁物被覆がある場合の断面図である。A simulated connection device is shown, in which (a) is a cross-sectional view when there is no solid insulator coating (in the case of SUS and an insulator sheath system), and (b) is a cross-sectional view when there is a solid insulator coating. 各構造における電界計算結果を示し、(a)は固体絶縁物被覆なし(構造A)の場合の図、(b)はシールド電極方式・接触界面あり(構造B)の場合の図、(c)はシールド電極方式・接触界面なし(構造C)の場合の図、(d)は絶縁物シース方式・接触界面あり(構造D)の場合の図、(e)は絶縁物シース方式・接触界面なし(構造E)の場合の図である。The electric field calculation result in each structure is shown, (a) is a diagram in the case of no solid insulator coating (structure A), (b) is a diagram in the case of a shield electrode type / contact interface (structure B), (c) Is the figure in the case of the shield electrode method and no contact interface (structure C), (d) is the figure in the case of the insulator sheath method and contact interface (structure D), and (e) is the insulator sheath method and no contact interface. It is a figure in the case of (structure E). 印加電圧波形(標準雷インパルス)を示す図である。It is a figure which shows an applied voltage waveform (standard lightning impulse). ステップ上昇法の概念を示す図である。It is a figure which shows the concept of the step rising method. 50%破壊電圧値および最低破壊電圧値を示し、(a)は正極性についての図、(b)は負極性についての図である。The 50% breakdown voltage value and the minimum breakdown voltage value are shown, (a) is a diagram regarding positive polarity, and (b) is a diagram regarding negative polarity. 本発明のガス絶縁電力機器の導体接続装置の第7の実施形態を示す断面図である。It is sectional drawing which shows 7th Embodiment of the conductor connection apparatus of the gas insulated power equipment of this invention. 本発明のガス絶縁電力機器の導体接続装置の第8の実施形態を示す断面図である。It is sectional drawing which shows 8th Embodiment of the conductor connection apparatus of the gas insulated power equipment of this invention. 本発明のガス絶縁電力機器の導体接続装置の第9の実施形態を示す断面図である。It is sectional drawing which shows 9th Embodiment of the conductor connection apparatus of the gas insulated power equipment of this invention. 本発明の効果を確認するための実験で使用した模擬接続装置とアクリル板を示し、(a)は模擬接続装置とアクリル板に設けられた突起の位置関係を示す平面図、(b)は模擬接続装置とアクリル板の断面図である。The simulation connection apparatus and acrylic board which were used in the experiment for confirming the effect of this invention are shown, (a) is a top view which shows the positional relationship of the projection provided in the simulation connection apparatus and the acrylic board, (b) is simulation. It is sectional drawing of a connection apparatus and an acrylic board. 50%破壊電圧値および最低破壊電圧値(正極性)を示す図である。It is a figure which shows a 50% breakdown voltage value and the minimum breakdown voltage value (positive polarity).

符号の説明Explanation of symbols

1 絶縁ガス
2 接地容器
3 導体
4 コネクタ導体
5 固体絶縁物本体
3a 導体の端部
6 固体絶縁物被覆
6a 固体絶縁物被覆の端面の接触界面
6b 固体絶縁物被覆の外周面の筒状部に臨む部分
7 筒状部
7a 筒状部の内周面
8 ギャップ
9 絶縁コネクタ
10 絶縁スペーサ
11 シールド電極
18 突部
DESCRIPTION OF SYMBOLS 1 Insulation gas 2 Grounding container 3 Conductor 4 Connector conductor 5 Solid insulator main body 3a End 6 of a conductor Solid insulation coating 6a Contact interface 6b of the end surface of a solid insulation coating It faces the cylindrical part of the outer peripheral surface of a solid insulation coating Part 7 Tubular part 7a Inner peripheral surface 8 of the tubular part Gap 9 Insulating connector 10 Insulating spacer 11 Shield electrode 18 Projection

Claims (5)

絶縁ガスが封入された接地容器内に収容された導体を接続するコネクタ導体の外周面を覆う固体絶縁物本体と、前記導体の少なくとも端部外周面を被覆し、端面が前記コネクタ導体又は前記固体絶縁物本体との間で接触界面となる固体絶縁物被覆と、前記固体絶縁物本体に設けられ、前記固体絶縁物被覆を囲んで前記接地容器と前記固体絶縁物被覆の端面の接触界面との間の沿面長を延長させる筒状部を備え、前記筒状部と前記固体絶縁物被覆との間には接触界面を排除するギャップが設けられていることを特徴とするガス絶縁電力機器の導体接続装置。 A solid insulator body that covers an outer peripheral surface of a connector conductor that connects a conductor housed in a grounded container filled with an insulating gas, and covers at least an outer peripheral surface of the conductor, and the end surface is the connector conductor or the solid A solid insulator coating serving as a contact interface with the insulator body; and a contact interface between the ground container and an end surface of the solid insulator coating provided on the solid insulator body and surrounding the solid insulator coating. A conductor of a gas-insulated power device comprising a cylindrical portion extending a creepage length between the cylindrical portion and a gap for eliminating a contact interface between the cylindrical portion and the solid insulator coating. Connected device. 前記固体絶縁物本体は、前記導体の接続部分を支持する絶縁スペーサ、又は前記導体を接続する絶縁コネクタであることを特徴とする請求項1記載のガス絶縁電力機器の導体接続装置。   2. The conductor connection device for a gas-insulated power device according to claim 1, wherein the solid insulator body is an insulating spacer that supports a connecting portion of the conductor or an insulating connector that connects the conductor. 前記筒状部は 固体絶縁体によって成形されたシースであることを特徴とする請求項1記載のガス絶縁電力機器の導体接続装置。   2. The conductor connection device for a gas-insulated power device according to claim 1, wherein the cylindrical portion is a sheath formed of a solid insulator. 前記筒状部にはシールド電極が埋め込まれていることを特徴とする請求項1記載のガス絶縁電力機器の導体接続装置。   The conductor connection device for gas insulated power equipment according to claim 1, wherein a shield electrode is embedded in the cylindrical portion. 前記筒状部の内周面と、前記固体絶縁物被覆の外周面の前記筒状部に臨む部分とのうち、少なくともいずれか一方に周方向に環状の突部が設けられていることを特徴とする請求項1記載のガス絶縁電力機器の導体接続装置。   At least one of the inner peripheral surface of the cylindrical portion and the portion of the outer peripheral surface of the solid insulator coating facing the cylindrical portion is provided with an annular protrusion in the circumferential direction. The conductor connection device for gas-insulated power equipment according to claim 1.
JP2008236038A 2008-03-18 2008-09-16 Conductor connection device for gas insulated power equipment Expired - Fee Related JP5198989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008236038A JP5198989B2 (en) 2008-03-18 2008-09-16 Conductor connection device for gas insulated power equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008069066 2008-03-18
JP2008069066 2008-03-18
JP2008236038A JP5198989B2 (en) 2008-03-18 2008-09-16 Conductor connection device for gas insulated power equipment

Publications (2)

Publication Number Publication Date
JP2009261215A JP2009261215A (en) 2009-11-05
JP5198989B2 true JP5198989B2 (en) 2013-05-15

Family

ID=41387901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008236038A Expired - Fee Related JP5198989B2 (en) 2008-03-18 2008-09-16 Conductor connection device for gas insulated power equipment

Country Status (1)

Country Link
JP (1) JP5198989B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2568553A1 (en) 2011-09-12 2013-03-13 Eaton Industries (Netherlands) B.V. Busbar connection
JP6021355B2 (en) * 2012-02-29 2016-11-09 株式会社東芝 Conductor connection structure
JP5761108B2 (en) * 2012-04-06 2015-08-12 日立金属株式会社 Solid insulation bus termination connection
JP6055269B2 (en) * 2012-10-24 2016-12-27 株式会社東芝 Electrical equipment connection device
GB201223009D0 (en) 2012-12-20 2013-01-30 Eaton Ind Netherlands Bv Conductor system for use in a dielectric
CN107294030B (en) * 2017-07-25 2022-10-14 广东吉熙安电缆附件有限公司 Tubular bus connecting structure
WO2019140245A1 (en) 2018-01-12 2019-07-18 Tyton Biosciences, Llc Methods for recycling cotton and polyester fibers from waste textiles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129986A (en) * 1976-04-23 1977-10-31 Toshiba Corp Piping bus
JPS56106015U (en) * 1980-01-16 1981-08-18
JP4429205B2 (en) * 2005-05-16 2010-03-10 三菱電機株式会社 Gas insulation equipment

Also Published As

Publication number Publication date
JP2009261215A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP5198989B2 (en) Conductor connection device for gas insulated power equipment
Mauseth et al. Streamer inception and propagation for air insulated rod-plane gaps with barriers
KR100856719B1 (en) Lightning Arrester
Souza et al. Analysis of the impulse breakdown behavior of covered cables used in compact distribution lines
Yamamoto et al. Creeping discharge in PFAE oil traveling over pressboard surface with small alien substances
KR100787569B1 (en) Lightning arrester
WO2000072417A1 (en) Creeping discharge lightning arrestor
WO2009006993A3 (en) Reactor for disinfecting liquids contaminated with bacteria by using high-voltage pulse technology and method therefor
RU2721082C2 (en) Electrosurgical cable with weak electromagnetic field
KR101316542B1 (en) Apparatus for generating a high frequency pulse and apparatus for testing a coaxial protector using the same
KR20080035556A (en) Lightning arrester
US6504092B1 (en) Method of preventing insulated wire breakage and momentary interruption
CN103941165B (en) GIS device experimental rig and method
Asokan et al. Electrical discharge behavior of micro-gaps
KR20040010455A (en) Earth electrode of functional for electric power and method for manufacturing the same
JP6269556B2 (en) Sensor and partial discharge detection device
RU2453979C1 (en) Low-induction high-voltage vacuum transition
Do et al. An experimental study on the effect of DC bias on streamer initiation and propagation in a dielectric liquid under impulse voltage
US10199810B2 (en) Rejuvenation of subsea electrical cable insulation
JP2015206772A (en) Partial discharge measurement device and partial discharge measurement method
JP4681391B2 (en) Degradation diagnosis method for low-voltage cables
Shinkai et al. A study on hybrid insulation composition joint using gas and solid insulator for gas‐insulated power equipment
Podporkin et al. Lightning protection of medium voltage overhead lines with covered conductors by antenna-type long flashover arresters
Huang et al. China State Grid Fujian Electric Power Research Institute, Fuzhou 350007, China
Nishi et al. Characteristics of creeping discharge along aerial insulated wire under impulse voltages with various wave front durations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5198989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees