JP5198744B2 - Catalyst structure - Google Patents

Catalyst structure Download PDF

Info

Publication number
JP5198744B2
JP5198744B2 JP2006199442A JP2006199442A JP5198744B2 JP 5198744 B2 JP5198744 B2 JP 5198744B2 JP 2006199442 A JP2006199442 A JP 2006199442A JP 2006199442 A JP2006199442 A JP 2006199442A JP 5198744 B2 JP5198744 B2 JP 5198744B2
Authority
JP
Japan
Prior art keywords
catalyst
gas
catalyst structure
elements
catalyst element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006199442A
Other languages
Japanese (ja)
Other versions
JP2008023461A (en
Inventor
博之 吉村
良憲 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006199442A priority Critical patent/JP5198744B2/en
Publication of JP2008023461A publication Critical patent/JP2008023461A/en
Application granted granted Critical
Publication of JP5198744B2 publication Critical patent/JP5198744B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

本発明は、ボイラや焼却炉等より排出される有毒成分を含んだ排ガスを触媒を用いて除去するための排ガス処理などに用いる触媒構造体に関するものである。   The present invention relates to a catalyst structure used for exhaust gas treatment for removing exhaust gas containing a toxic component discharged from a boiler, an incinerator, or the like using a catalyst.

ボイラや焼却炉等の燃焼設備からは、燃料や空気中の窒素の燃焼による窒素酸化物(NOx)等の大気汚染物質が排出されている。NOxは光化学スモッグの原因となる物質であるため排ガス中のNOxの除去(脱硝)は重要であり、この方法としては触媒法である選択的接触還元法が幅広く用いられている。これは、アンモニア等の還元剤を吹き込んだ排ガスを触媒反応器に流通させることで化学反応を起こさせ、排ガス中に含まれるNOxを還元させる方法である。   Air pollutants such as nitrogen oxides (NOx) due to combustion of nitrogen in fuel and air are discharged from combustion facilities such as boilers and incinerators. Since NOx is a substance that causes photochemical smog, it is important to remove NOx from the exhaust gas (denitration). As this method, a selective catalytic reduction method that is a catalytic method is widely used. This is a method in which a chemical reaction is caused by flowing exhaust gas into which a reducing agent such as ammonia is blown into a catalytic reactor to reduce NOx contained in the exhaust gas.

また、燃焼設備から排出する排ガスや生産設備から排出するオフガス中に含まれるアンモニアや一酸化炭素、有機物等の処理にも触媒の酸化反応により上記成分を酸化分解させる触媒法が用いられている。この場合、還元剤は不要であるが、いずれにせよ触媒を用いて排ガス中の有害物質を浄化する方法として有効である。   In addition, a catalytic method in which the above components are oxidatively decomposed by an oxidation reaction of a catalyst is also used for treatment of ammonia, carbon monoxide, organic matter, etc. contained in exhaust gas discharged from a combustion facility or off-gas discharged from a production facility. In this case, a reducing agent is unnecessary, but in any case, it is effective as a method for purifying harmful substances in exhaust gas using a catalyst.

これらの触媒法に用いられる触媒の形状は、板状、ハニカム状、粒状、円筒状、リボン状及びペレット状等様々のものが可能であるが、このうち板状触媒は他の形状よりも圧力損失が低いという利点を有する。さらに板状触媒は、金属製もしくはセラミック製の基板に触媒成分を塗布して成形する工法や、あらかじめ必要強度を保つように成形された担体の表面に触媒成分を担持する工法など、多種の工法で製造する事が出来るという利点を有する。   The catalyst used in these catalytic methods can have various shapes such as a plate, honeycomb, granule, cylinder, ribbon, and pellet. Of these, the plate catalyst has a higher pressure than other shapes. It has the advantage of low loss. Furthermore, the plate-shaped catalyst has various methods such as a method in which a catalyst component is applied to a metal or ceramic substrate and molded, and a method in which the catalyst component is supported on the surface of a carrier that has been molded in advance to maintain the required strength. It has the advantage that it can be manufactured with.

また、板状以外の形状の触媒の場合には触媒内部に基板や担体が含まれないため、触媒自身の強度を高くして強度を保持しなければならず、一部触媒の反応効率を犠牲にする必要があるのに対し、板状触媒は基板や担体で強度を保持することが出来るため、触媒成分は反応効率を最大限にするような組成にすることができるという利点も有する。板状触媒は必要に応じて基板を選定する事によりダストを多く含むガス(例えば石炭焚ボイラ排ガス)への適用においても摩耗に強いという特徴を持っている。   In the case of a catalyst having a shape other than a plate shape, since the substrate and the carrier are not included inside the catalyst, the strength of the catalyst itself must be increased to maintain the strength, and the reaction efficiency of a part of the catalyst is sacrificed. On the other hand, since the strength of the plate catalyst can be maintained by the substrate or the carrier, the catalyst component also has an advantage that the composition of the catalyst component can be maximized. The plate-like catalyst has a feature that it is resistant to wear even when applied to a gas containing a lot of dust (for example, coal-fired boiler exhaust gas) by selecting a substrate as required.

ところで、板状触媒を実機に適用する際は、複数の板状触媒(以下、触媒エレメントということがある)を積層させてユニット化し、これを複数積み重ねて触媒反応器に充填する。触媒エレメントをユニット化する際に必要なことは、板状の触媒(触媒エレメント)を充填用箱(触媒ユニット枠)内で均等に保持できる構造を持たせることである。従来、触媒エレメントを前記箱内で均等に保持するために図5の触媒エレメント6や図6の触媒エレメント7のように触媒エレメント6,7自身の平面に対して上下に複数の突条部(折り曲げ部)6a,7aを設けて、該突条部6a,7aに積層する板状触媒の間隔保持機能を保たせた触媒エレメント6,7の積層状の構造体が用いられてきた。   By the way, when applying a plate-like catalyst to an actual machine, a plurality of plate-like catalysts (hereinafter sometimes referred to as catalyst elements) are stacked to form a unit, and a plurality of these are stacked and filled into a catalyst reactor. What is necessary when unitizing the catalyst elements is to provide a structure that can uniformly hold the plate-like catalyst (catalyst element) within the filling box (catalyst unit frame). Conventionally, in order to hold the catalyst elements evenly in the box, a plurality of protrusions (up and down) with respect to the plane of the catalyst elements 6 and 7 themselves, such as the catalyst element 6 in FIG. 5 and the catalyst element 7 in FIG. A laminated structure of catalyst elements 6 and 7 having bent portions) 6a and 7a and maintaining the spacing maintaining function of the plate catalyst laminated on the protrusions 6a and 7a has been used.

ユニット化した触媒エレメントの形状を設計する際に重要な点は、各触媒エレメントによって囲まれる被処理ガスの流路断面の流速分布にむらを生じさせないことである。同一触媒成分を用いても、ガスの流速にばらつきがある場合の脱硝率は、均一にガスが流れている場合に比べて低くなる。   An important point in designing the shape of the unitized catalyst element is to prevent unevenness in the flow velocity distribution in the cross section of the flow path of the gas to be treated surrounded by each catalyst element. Even when the same catalyst component is used, the denitration rate when there is a variation in the gas flow rate is lower than when the gas is flowing uniformly.

図7には突条部8aがガス流れに対して平行な方向に複数個設けられた触媒エレメント8と突条部9aがガス流れに対して傾斜した方向に複数個設けられた触媒エレメント9を一つずつ交互に積み重ねたユニット化した触媒(これを触媒構造体ということがある)の一部分を斜視図で示す(特許文献1参照)。   FIG. 7 shows a catalyst element 8 having a plurality of protrusions 8a provided in a direction parallel to the gas flow and a catalyst element 9 having a plurality of protrusions 9a provided in a direction inclined with respect to the gas flow. A part of a unitized catalyst (which may be referred to as a catalyst structure) alternately stacked one by one is shown in a perspective view (see Patent Document 1).

図7に示す突条部8a,9aを設けたタイプの触媒構造体では、各触媒エレメント8,9によって囲まれる流路断面の形状がガス流れ方向で、それぞれ相違するため、触媒構造体内部でのガス流れの流速分布に微視的なむらが生じやすく、互いに均一なガス流れとするように形状を適正化するには労力を要する。   In the catalyst structure of the type provided with the protrusions 8a and 9a shown in FIG. 7, the shape of the flow path cross section surrounded by the catalyst elements 8 and 9 is different in the gas flow direction. Therefore, microscopic unevenness is likely to occur in the gas flow velocity distribution, and labor is required to optimize the shape so that the gas flows are uniform.

上記課題を打破すべく、突条部のない平板状の触媒エレメントを等間隔にユニット枠に組み込む検討がされているが、平板状の触媒エレメントではたわみが生じてしまうことから実用が困難であった。このたわみは、平板状の触媒エレメントを薄板化すればするほど著しくなる。   In order to overcome the above-mentioned problems, it has been studied to incorporate flat catalyst elements having no protrusions into the unit frame at equal intervals. However, since the flat catalyst elements are bent, it is difficult to put into practical use. It was. This deflection becomes more significant as the flat catalyst element is made thinner.

一方、触媒性能を高効率にする構造体として、複数の板状触媒を間隔を開けて積層した触媒エレメントの突条部(折り曲げ部)をガス流れ方向に沿って配置した構造体を所定期間使用した後、突条部がガス流れに直交する向きになるように置き換えて、このガス流れに対する傾斜角度を変えて積層することで、排ガスと触媒との接触面積(滞留時間)を稼ぐ方法(特開平9−122448号公報)がある。しかしながら、この構造体は、ガス流れの圧力損失が高く、また、石炭焚ボイラプラントなどのばいじんを含んだ排ガス浄化触媒として適用した場合には、ばいじんの詰まりが起こることは明らかである。さらに、前記突条部(折り曲げ部)への灰の衝突により摩耗することが予想される。
国際公開第96/14920号パンフレット 特開平9−122448号公報
On the other hand, as a structure that enhances the catalyst performance, a structure in which the protrusions (bent parts) of the catalyst elements in which a plurality of plate-shaped catalysts are stacked at intervals is arranged along the gas flow direction is used for a predetermined period. After that, the protrusion is replaced so that it is perpendicular to the gas flow, and the inclination angle with respect to the gas flow is changed and laminated, thereby increasing the contact area (residence time) between the exhaust gas and the catalyst (special (Kaihei 9-122448). However, this structure has a high pressure loss of the gas flow, and when applied as an exhaust gas purification catalyst containing soot such as a coal fired boiler plant, it is clear that soot clogging occurs. Furthermore, it is expected to be worn by ash collision with the ridge (folded portion).
International Publication No. 96/14920 Pamphlet JP-A-9-122448

上記したように、特許文献1、2に記載された触媒構造体には、ガス流れの圧力損失が比較的大きく、また、石炭焚ボイラプラントなどのばいじんを含んだ排ガス浄化触媒として適用した場合には、ばいじんの詰まりが比較的起こり易いことがある。   As described above, the catalyst structures described in Patent Documents 1 and 2 have a relatively large pressure loss in the gas flow, and when applied as an exhaust gas purification catalyst containing dust from a coal-fired boiler plant or the like. May be relatively susceptible to dust clogging.

本発明の課題は、上記従来技術の問題点を解決して触媒エレメント内を流れる被処理ガスの流速分布の均一化によって触媒の本来の性能を最大限に引き出すこと、及び、ガス流れの圧力損失の上昇を抑えたまま触媒性能の高効率化を図ると共に薄板化に伴う平板状の触媒エレメントのたわみを抑えることを可能とする触媒構造体を提案することである。   The object of the present invention is to solve the above-mentioned problems of the prior art, to maximize the original performance of the catalyst by making the flow velocity distribution of the gas to be processed flowing in the catalyst element uniform, and to reduce the pressure loss of the gas flow It is to propose a catalyst structure that makes it possible to improve the efficiency of the catalyst performance while suppressing the rise of the catalyst and to suppress the deflection of the flat catalyst element accompanying the thinning.

上記課題を解決するための手段は以下の通りである。
請求項1記載の発明は、ガス浄化触媒を表面に担持し、平坦部と該平坦部を間隔を隔てて仕切る互いに平行な位置に長手方向全体に亘って長手方向に直交する方向の断面が曲面形状の帯状突起からなる突条部とが交互に繰り返して配置され、該断面が曲面形状の帯状突起からなる突条部と前記平坦部のみからな一枚の平板状の触媒エレメントを、前記突条部の長手方向がガス流れに直交する方向に配置し、かつ該突条部の高さより大きい間隔を設けて複数枚、等間隔に積層してユニット枠内に保持した触媒構造体である。
Means for solving the above problems are as follows.
According to the first aspect of the present invention, the gas purification catalyst is supported on the surface, and the cross section in the direction perpendicular to the longitudinal direction is curved over the entire longitudinal direction at parallel positions that partition the flat portion and the flat portion with an interval. and protrusions made of a strip-shaped projection shape is arranged alternately and repeatedly, a single plate-shaped catalyst elements of the cross section is that Do since only the flat portion and the protruding portion made of a strip-shaped protrusion having a curved surface, wherein A catalyst structure in which the longitudinal direction of the ridges is arranged in a direction perpendicular to the gas flow, and a plurality of sheets are provided at intervals larger than the height of the ridges and are stacked at equal intervals and held in the unit frame. .

請求項2記載の発明は、複数の触媒エレメントの前記積層間隔(P)が3mm乃至10mmとなるようにした請求項1記載の触媒構造体である。   The invention according to claim 2 is the catalyst structure according to claim 1, wherein the stacking interval (P) of the plurality of catalyst elements is 3 mm to 10 mm.

請求項3記載の発明は、触媒エレメントの前記積層間隔(P)に対する突条部の触媒エレメント平面に対する高さ(H)の比(H/P)が0.1乃至0.6mmとなるようにした請求項1記載の触媒構造体である。   In a third aspect of the invention, the ratio (H / P) of the height (H) of the protrusions to the catalyst element plane with respect to the stacking interval (P) of the catalyst elements is 0.1 to 0.6 mm. The catalyst structure according to claim 1.

請求項4記載の発明は、前記突条部の高さ(H)に対する突条部の幅(W)の比(W/H)が1mm乃至5mmとなるようにした請求項1記載の触媒構造体である。   The invention according to claim 4 is the catalyst structure according to claim 1, wherein a ratio (W / H) of the width (W) of the protrusion to the height (H) of the protrusion is 1 mm to 5 mm. Is the body.

請求項5記載の発明は、前記突条部の高さ(H)に対する一つの触媒エレメント上に隣接する2つの突条部の間隔(L)の比(L/H)が5mm乃至15mmとなるようにした請求項1記載の触媒構造体である。   In the invention according to claim 5, the ratio (L / H) of the distance (L) between two ridges adjacent on one catalyst element to the height (H) of the ridge is 5 mm to 15 mm. The catalyst structure according to claim 1, which is configured as described above.

従来の突条部(折り曲がり部)を持つ触媒エレメントをユニット化した場合には、ガスが流れる流路断面に微視的な流速のばらつきが生じるといった問題があったが、本発明では触媒エレメントはガス流れ方向に長手方向が沿った突条部(折り曲がり部)を持たない構造であり、触媒エレメントをユニット化した触媒構造体の各ガス流路断面も図2に示すように互いに同一形状を有する構造とすることができるため、該流路を流れるガスの流速分布には微視的なばらつきやガスの吹き抜けは生じず、触媒自身の持つ性能を十分に発揮させる事が出来る。   When a conventional catalyst element having a protruding portion (bent portion) is unitized, there is a problem that a microscopic flow velocity variation occurs in the cross section of the flow path through which the gas flows. Is a structure that does not have a protrusion (bent portion) along the longitudinal direction in the gas flow direction, and each gas passage section of the catalyst structure in which the catalyst elements are unitized has the same shape as shown in FIG. Therefore, the flow rate distribution of the gas flowing through the flow path does not cause microscopic variations or gas blowout, and the performance of the catalyst itself can be fully exhibited.

また、本発明は、ガス流れ方向に直交する方向に断面曲面形状の帯状突起からなる突条部があるので、触媒エレメントが剛性を持ち、平板では避けられない触媒エレメントのたわみを抑えることが可能となる。   In addition, since the present invention has a protrusion formed of a band-shaped protrusion having a curved cross section in a direction perpendicular to the gas flow direction, the catalyst element has rigidity and can suppress the deflection of the catalyst element that cannot be avoided with a flat plate. It becomes.

さらに、図3に示す通り、2つの触媒エレメント1,1間に流れるガスの動きに注目すると、図3(b)に断面を示す平板のみからなる触媒エレメント5,5を間隔を開けて積層した触媒構造体の場合はガス流れが層流であるために触媒表面にガス境膜2が形成されることによって境膜2での物質移動が律速となるのに対して、図3(a)に断面を示す本発明の触媒エレメント1,1の場合は、断面曲面形状の帯状突起からなる突条部(山部)1aでガスの剥離が発生し、これにより境膜が破壊されることによってガスの触媒表面への移動が促進される。
以上のように本発明の突条部1aを有する触媒エレメント1は平板のみからなる触媒エレメント5に比べて触媒性能が高くなる。
Further, as shown in FIG. 3, when attention is paid to the movement of the gas flowing between the two catalyst elements 1 and 1, catalyst elements 5 and 5 each consisting of only a flat plate having a cross section shown in FIG. In the case of the catalyst structure, since the gas flow is laminar, the gas transfer film 2 is formed on the catalyst surface, so that the mass transfer in the flow film 2 becomes rate-determining, whereas FIG. In the case of the catalyst elements 1 and 1 of the present invention showing a cross section, gas separation occurs at the protruding portion (mountain portion) 1a formed of a strip-shaped protrusion having a curved cross-sectional shape, and thereby the boundary film is destroyed, whereby the gas Is promoted to the catalyst surface.
As described above, the catalytic element 1 having the protruding portion 1a of the present invention has higher catalytic performance than the catalytic element 5 made of only a flat plate.

本発明の触媒エレメント1の突条部1aが高すぎたり、隣接する2つの突条部1a,1aの間隔が狭すぎたりすると触媒表面へのガスの移動が遅くなるため、前記した突条部の高さ(H)、突条部の間隔(L)、触媒エレメントの積層間隔(P)の間の寸法関係を備えた範囲とする必要がある。   Since the protrusion 1a of the catalyst element 1 of the present invention is too high, or the distance between the two adjacent protrusions 1a, 1a is too narrow, gas movement to the catalyst surface becomes slow. The height (H), the interval between the protrusions (L), and the stacking interval (P) of the catalyst elements must have a dimensional relationship.

また、本発明は、触媒構造体中をガスが流れるときのガス流速の不均一化をなくし、触媒性能を十分に発揮させることができるものであれば、触媒構造体を構成する各触媒エレメントに適用される触媒の組成にはこだわらない。触媒エレメント自身も金属製もしくはセラミック製の基板に塗布するものや、担体の表面に担持するものなど、いくつかの工法で製造することが出来るが、平板形状の触媒エレメントとするものであれば、特に工法による制限はなく、また上記以外の平板形状の触媒エレメントの製造方法を用いても良く、また複数の触媒エレメントの製造方法を組み合わせてもよい。   Further, the present invention eliminates the non-uniformity of the gas flow rate when the gas flows through the catalyst structure, and can provide each catalyst element constituting the catalyst structure as long as the catalyst performance can be sufficiently exerted. It does not stick to the composition of the applied catalyst. The catalyst element itself can be manufactured by several methods, such as those applied to a metal or ceramic substrate, or those supported on the surface of the carrier, but if it is a flat catalyst element, There is no particular limitation by the construction method, and a flat plate-shaped catalyst element manufacturing method other than the above may be used, or a plurality of catalyst element manufacturing methods may be combined.

また、本発明は、触媒エレメントの形状による触媒性能向上を目的としており、その用途は脱硝触媒や酸化触媒に限定されるものでもなく、被反応物質を含むガスを触媒エレメントに流通させて触媒反応を生じさせるプロセス一般に適用可能である。   In addition, the present invention aims to improve the catalyst performance by the shape of the catalyst element, and its use is not limited to a denitration catalyst or an oxidation catalyst, but a catalyst reaction is performed by circulating a gas containing a reactant to the catalyst element. It is generally applicable to processes that produce

本発明の触媒構造体の触媒エレメント自体には積層する触媒エレメント同士の間隔(触媒ピッチ)を保持する突条部を持たないため、ユニット枠に触媒エレメントの間隔(触媒ピッチ)を保持させるための間隔保持部材を設ける必要がある。この間隔保持部材は、複数の触媒エレメントの前記間隔を保持できるものであればいかなるものでも良く、制限はない。しかし、例えば図4のように角棒や丸棒を間隔保持部材4として触媒エレメント1の両端部に設けるか、又はユニット枠3に間隔保持部材4を支持する切れ込みを入れたものを用いても良い。   Since the catalyst element itself of the catalyst structure of the present invention does not have a protrusion that holds the interval between the catalyst elements to be stacked (catalyst pitch), the unit frame is provided with the interval between the catalyst elements (catalyst pitch). It is necessary to provide a spacing member. Any member can be used as the spacing member as long as it can retain the spacing between the plurality of catalyst elements, and there is no limitation. However, for example, as shown in FIG. 4, square bars or round bars may be provided at both ends of the catalyst element 1 as the spacing member 4, or a unit frame 3 with a notch that supports the spacing member 4 may be used. good.

請求項1記載の本発明により、均一なガスの流速分布を持ち、ガス流れの圧力損失も低く、さらに触媒性能を高効率化することが出来る触媒構造体を提供することができる。   According to the first aspect of the present invention, it is possible to provide a catalyst structure that has a uniform gas flow velocity distribution, a low pressure loss of the gas flow, and can improve the catalyst performance.

また、請求項2〜5記載の発明は、請求項1記載の発明の効果に加えて、触媒構造体の各種の寸法を規定することで、ガス流れの圧力損失と触媒性能のバランスを適切にすることができる。   In addition to the effect of the invention of claim 1, the inventions of claims 2 to 5 appropriately balance the pressure loss of the gas flow and the catalyst performance by defining various dimensions of the catalyst structure. can do.

以下本発明の実施例を図面と共に説明する。   Embodiments of the present invention will be described below with reference to the drawings.

脱硝触媒として酸化チタン酸粉末に、三酸化モリブデン(MoO3)、メタバナジン酸アンモニウム(NH4VO3)、及びシリカゾルを加え、更にアルミニウム化合物粉末と無機繊維を水分調整して混練して触媒ペーストを得た。これを金属エキスパンドメタルに塗布し、突条部1aの高さ(H);2mm、突条部1aの幅(W);6mm、隣接する2つの突条部1aの間隔(L);20mmの形状にローラで成形加工し、さらに500℃で焼成処理して触媒エレメント1を得た。そして図4に示すユニット枠3の内部に間隔保持部材4により触媒ピッチ(P);6mmとして複数の触媒エレメント1を積層して触媒構造体を得た。 As a denitration catalyst, molybdenum trioxide (MoO 3 ), ammonium metavanadate (NH 4 VO 3 ), and silica sol are added to titanic acid powder, and the aluminum compound powder and inorganic fiber are mixed and kneaded to adjust the moisture content. Obtained. This is applied to a metal expanded metal, the height (H) of the ridge portion 1a: 2 mm, the width (W) of the ridge portion 1a: 6 mm, and the interval (L) between two adjacent ridge portions 1a: 20 mm. The catalyst element 1 was obtained by molding into a shape with a roller and further firing at 500 ° C. And the catalyst structure was obtained by laminating | stacking the several catalyst element 1 as catalyst pitch (P); 6mm by the space | interval holding member 4 inside the unit frame 3 shown in FIG.

実施例1と同様に板状触媒エレメント1を調製し、P=6mm、H=2mm、W=2mm、L=20mmとした。   A plate-like catalyst element 1 was prepared in the same manner as in Example 1, and P = 6 mm, H = 2 mm, W = 2 mm, and L = 20 mm.

実施例1と同様に板状触媒エレメント1を調製し、P=6mm、H=2mm、W=4mm、L=20mmとした。   A plate-like catalyst element 1 was prepared in the same manner as in Example 1, and P = 6 mm, H = 2 mm, W = 4 mm, and L = 20 mm.

実施例1と同様に板状触媒エレメント1を調製し、P=6mm、H=2mm、W=6mm、L=10mmとした。   A plate-like catalyst element 1 was prepared in the same manner as in Example 1, and P = 6 mm, H = 2 mm, W = 6 mm, and L = 10 mm.

実施例1と同様に板状触媒エレメント1を調製し、P=6mm、H=2mm、W=6mm、L=30mmとした。 Similarly prepared plate catalyst element 1 as in Example 1, was P = 6mm, H = 2m m , W = 6mm, and L = 30 mm.

実施例1と同様に板状触媒エレメント1を調製し、P=6mm、H=2mm、W=8mm、L=20mmとした。   A plate-like catalyst element 1 was prepared in the same manner as in Example 1, and P = 6 mm, H = 2 mm, W = 8 mm, and L = 20 mm.

実施例1と同様に板状触媒エレメント1を調製し、P=6mm、H=3mm、W=6mm、L=30mmとした。   A plate-like catalyst element 1 was prepared in the same manner as in Example 1, and P = 6 mm, H = 3 mm, W = 6 mm, and L = 30 mm.

実施例1と同様に板状触媒エレメント1を調製し、P=6mm、H=3mm、W=9mm、L=30mmとした。   A plate-like catalyst element 1 was prepared in the same manner as in Example 1, and P = 6 mm, H = 3 mm, W = 9 mm, and L = 30 mm.

実施例1と同様に板状触媒エレメント1を調製し、P=6mm、H=1mm、W=2mm、L=10mmとした。   A plate-like catalyst element 1 was prepared in the same manner as in Example 1, and P = 6 mm, H = 1 mm, W = 2 mm, and L = 10 mm.

比較例1Comparative Example 1

ステンレス製エキスパンドメタルに触媒成分を塗布して得られた平板の両側の平面にガス流れと並行する方向に(ガス流れ方向に対して0°の角度で)突条部6aの長手方向が形成されるように、折り曲げて触媒エレメント6とし、該触媒エレメント6をユニット枠3内で積層することで図5に示す触媒構造体を製作した。当該触媒構造体の触媒組成及び触媒ピッチは実施例1と同じとした。   The longitudinal direction of the protrusion 6a is formed in a plane parallel to the gas flow (at an angle of 0 ° with respect to the gas flow direction) on both sides of the flat plate obtained by applying the catalyst component to the stainless steel expanded metal. As shown in FIG. 5, the catalyst element 6 was folded to form the catalyst element 6, and the catalyst element 6 was stacked in the unit frame 3. The catalyst composition and catalyst pitch of the catalyst structure were the same as in Example 1.

比較例2Comparative Example 2

ステンレス製エキスパンドメタルに触媒成分を塗布して得られた平板の両側の平面にガス流れ方向に対して30°の角度を持たせて突条部7aの長手方向が形成されるように、折り曲げて触媒エレメント7とし、該触媒エレメント7を図6のように折り曲げ部を積層時に突条部7aが隣接する触媒エレメント1とはずれた位置に配置されるように積層して図示しないユニット枠内で積層することで触媒構造体を製作した。触媒組成及び触媒ピッチは実施例1と同じとした。   Folded so that the longitudinal direction of the ridge 7a is formed by giving an angle of 30 ° to the gas flow direction on both sides of the flat plate obtained by applying the catalyst component to the stainless steel expanded metal. A catalyst element 7 is formed, and the catalyst element 7 is laminated in a unit frame (not shown) so that the protruding portion 7a is disposed at a position deviated from the adjacent catalyst element 1 when the bent portion is laminated as shown in FIG. As a result, a catalyst structure was manufactured. The catalyst composition and catalyst pitch were the same as in Example 1.

比較例3Comparative Example 3

ステンレス製エキスパンドメタルに触媒成分を塗布して得られた平板を折り曲げ部を設けずに触媒エレメントとし、該触媒エレメントをユニット枠内に積層して触媒構造体を製作した。触媒組成及び触媒ピッチは実施例1と同じとした。   A flat plate obtained by applying a catalyst component to a stainless steel expanded metal was used as a catalyst element without providing a bent portion, and the catalyst element was laminated in a unit frame to produce a catalyst structure. The catalyst composition and catalyst pitch were the same as in Example 1.

上記実施例及び比較例の構成を表1に纏めた。

Figure 0005198744
The configurations of the above examples and comparative examples are summarized in Table 1.
Figure 0005198744

また、上記実施例及び比較例のそれぞれの触媒をベンチ排ガス試験装置に充填し表2に示した条件で図4〜図6の図面手前側からガスを導入して、図面奥側にガスが抜けるようにガスを流して試験を実施した。その結果(脱硝率及び圧損比)を表3に示す。   Further, each of the catalysts of the above examples and comparative examples is filled in a bench exhaust gas test apparatus, and gas is introduced from the front side of the drawings in FIGS. 4 to 6 under the conditions shown in Table 2, and the gas escapes to the back side of the drawings. The test was carried out with flowing gas. The results (denitration rate and pressure loss ratio) are shown in Table 3.

Figure 0005198744
Figure 0005198744

Figure 0005198744
Figure 0005198744

表3に示す結果から、本発明の触媒構造体を用いると、排ガスの均一な流速分布が得られるため触媒本来が持つ性能を十分に発揮することができ、さらに波形触媒エレメントによる脱硝活性の高効率化が達成でき、同一条件で比較例1に示す従来の折り曲げ部を持つ触媒エレメントからなる触媒構造体に比べて圧力損失比の上昇を抑えつつ高い脱硝率を得ることができた。   From the results shown in Table 3, when the catalyst structure of the present invention is used, the uniform flow rate distribution of the exhaust gas can be obtained, so that the performance inherent in the catalyst can be sufficiently exerted, and further, the denitration activity by the corrugated catalyst element is high. Efficiency could be achieved, and a high denitration rate could be obtained while suppressing an increase in the pressure loss ratio as compared with the conventional catalyst structure composed of the catalyst element having the bent portion shown in Comparative Example 1 under the same conditions.

本発明は排ガスの脱硝処理など、ガスの触媒処理装置に適用できる。   The present invention can be applied to a gas catalyst treatment apparatus such as denitration treatment of exhaust gas.

本発明の実施例の触媒エレメントの斜視図である。It is a perspective view of the catalyst element of the Example of this invention. 本発明の実施例の触媒エレメントを積層した触媒構造体の断面形状図である。It is a cross-sectional shape figure of the catalyst structure which laminated | stacked the catalyst element of the Example of this invention. 本発明の実施例の触媒エレメント間のガス流れの状態を示す図(図3(a))と従来技術の触媒エレメント間のガス流れの状態を示す図(図3(b))である。It is a figure (FIG.3 (a)) which shows the state of the gas flow between the catalyst elements of the Example of this invention, and a figure (FIG.3 (b)) which shows the state of the gas flow between the catalyst elements of a prior art. 本発明の実施例の触媒エレメントをユニット枠内で積層した触媒構造体の断面図である。It is sectional drawing of the catalyst structure which laminated | stacked the catalyst element of the Example of this invention within the unit frame. 従来技術の触媒エレメントを積層した触媒構造体の斜視図である。It is a perspective view of the catalyst structure which laminated | stacked the catalyst element of the prior art. 従来技術の触媒エレメントを積層した触媒構造体の一部を示す斜視図である。It is a perspective view which shows a part of catalyst structure which laminated | stacked the catalyst element of the prior art. 従来技術の触媒エレメントを積層した触媒構造体の一部を示す斜視図である。It is a perspective view which shows a part of catalyst structure which laminated | stacked the catalyst element of the prior art.

符号の説明Explanation of symbols

1,5,6,7,8,9 触媒エレメント
1a,6a,7a,8a,9a 突条部
2 境膜
3 ユニット枠
4 間隔保持部材
1,5,6,7,8,9 Catalyst element 1a, 6a, 7a, 8a, 9a Projection part 2 Boundary film 3 Unit frame 4 Spacing member

Claims (5)

ガス浄化触媒を表面に担持し、平坦部と該平坦部を間隔を隔てて仕切る互いに平行な位置に長手方向全体に亘って長手方向に直交する方向の断面が曲面形状の帯状突起からなる突条部とが交互に繰り返して配置され、該断面が曲面形状の帯状突起からなる突条部と前記平坦部のみからな一枚の平板状の触媒エレメントを、前記突条部の長手方向がガス流れに直交する方向に配置し、かつ該突条部の高さより大きい間隔を設けて複数枚、等間隔に積層してユニット枠内に保持したことを特徴とする触媒構造体。 A ridge comprising a belt-like projection having a curved cross section in a direction perpendicular to the longitudinal direction over the entire longitudinal direction at a position parallel to each other and carrying the gas purification catalyst on the surface and partitioning the flat portion and the flat portion at intervals. parts and are arranged alternately and repeatedly, a single plate-shaped catalyst elements of the cross section is that Do since only the flat portion and the protruding portion made of a strip-shaped protrusion having a curved surface, a longitudinal direction of the gas of the ridges A catalyst structure, wherein the catalyst structure is arranged in a direction orthogonal to the flow, and is provided in a unit frame by laminating a plurality of sheets at an interval larger than the height of the ridge portion and at equal intervals. 複数の触媒エレメントの前記積層間隔(P)が3mm乃至10mmとなるようにしたことを特徴とする請求項1記載の触媒構造体。   The catalyst structure according to claim 1, wherein the stacking interval (P) of the plurality of catalyst elements is 3 mm to 10 mm. 触媒エレメントの前記積層間隔(P)に対する突条部の触媒エレメント平面に対する高さ(H)の比(H/P)が0.1乃至0.6mmとなるようにしたことを特徴とする請求項1記載の触媒構造体。   The ratio (H / P) of the height (H) of the protrusions to the catalyst element plane with respect to the stacking interval (P) of the catalyst elements is set to 0.1 to 0.6 mm. 2. The catalyst structure according to 1. 前記突条部の高さ(H)に対する突条部の幅(W)の比(W/H)が1mm乃至5mmとなるようにしたことを特徴とする請求項1記載の触媒構造体。   2. The catalyst structure according to claim 1, wherein a ratio (W / H) of the width (W) of the protrusion to the height (H) of the protrusion is 1 mm to 5 mm. 前記突条部の高さ(H)に対する一つの触媒エレメント上に隣接する2つの突条部の間隔(L)の比(L/H)が5mm乃至15mmとなるようにしたことを特徴とする請求項1記載の触媒構造体。   The ratio (L / H) of the distance (L) between two ridges adjacent on one catalyst element to the height (H) of the ridge is 5 mm to 15 mm. The catalyst structure according to claim 1.
JP2006199442A 2006-07-21 2006-07-21 Catalyst structure Active JP5198744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199442A JP5198744B2 (en) 2006-07-21 2006-07-21 Catalyst structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199442A JP5198744B2 (en) 2006-07-21 2006-07-21 Catalyst structure

Publications (2)

Publication Number Publication Date
JP2008023461A JP2008023461A (en) 2008-02-07
JP5198744B2 true JP5198744B2 (en) 2013-05-15

Family

ID=39114652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199442A Active JP5198744B2 (en) 2006-07-21 2006-07-21 Catalyst structure

Country Status (1)

Country Link
JP (1) JP5198744B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5491342B2 (en) * 2010-10-04 2014-05-14 バブコック日立株式会社 Exhaust gas treatment catalyst and catalyst structure
CN110072621A (en) * 2016-12-15 2019-07-30 三菱日立电力***株式会社 The regeneration method of used denitrating catalyst
TWI667070B (en) * 2016-12-21 2019-08-01 日商三菱日立電力系統股份有限公司 Method of regenerating used denitration catalyst

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123450A (en) * 1986-11-12 1988-05-27 Babcock Hitachi Kk Catalyst device for removing nitrogen oxide in exhaust gas
JPH11342317A (en) * 1998-05-29 1999-12-14 Masanori Yoshinaga Air cleaning device
JP2002177793A (en) * 2000-10-02 2002-06-25 Nippon Soken Inc Ceramic support and ceramic catalytic body

Also Published As

Publication number Publication date
JP2008023461A (en) 2008-02-07

Similar Documents

Publication Publication Date Title
US7438876B2 (en) Multi-stage heat absorbing reactor and process for SCR of NOx and for oxidation of elemental mercury
JP4293569B2 (en) Catalyst structure and gas purification device
KR101735304B1 (en) Honeycomb monolith structure with cells having elongated cross-section
US9724683B2 (en) Catalyst structure
KR100674348B1 (en) Exhaust emission control catalyst structure and device
WO2014076938A1 (en) Catalyst structure for exhaust gas cleaning
JP5911855B2 (en) Catalyst module, catalytic reactor, method of treating fluid stream, and chemical species capture device
US10882031B2 (en) Catalyst for treating an exhaust gas, an exhaust system and a method
KR101931667B1 (en) Honeycomb monolith structure
JP5198744B2 (en) Catalyst structure
JP2013529543A5 (en)
JP2008126148A (en) Exhaust gas denitration device
US10737258B2 (en) Honeycomb catalyst for removal of nitrogen oxides in flue and exhaust gasses and method of preparation thereof
JP3759832B2 (en) Plate-shaped catalyst structure and catalytic reaction apparatus using the catalyst structure
KR20230082733A (en) SCR system equipped with soot blower that prevents dust in the exhaust gas generated during the cement manufacturing process from adhering to the SCR catalyst
JP2010253366A (en) Catalytic structure
JP5804909B2 (en) Exhaust gas purification catalyst structure and manufacturing method thereof
WO2020059760A1 (en) Catalyst structure for purifying exhaust gas
JP4977456B2 (en) Catalyst structure and exhaust gas purification apparatus using the catalyst structure
JP6978827B2 (en) Exhaust gas purification catalyst unit
JP2014113569A (en) Catalyst structure for purifying exhaust gas
JP3900312B2 (en) Catalyst structure and method for producing the catalyst structure
JPH0910599A (en) Unit-plate-shaped catalyst, plate-shaped catalyst structure, and gas purification apparatus
JP2002361098A (en) Denitration catalyst structure and method for denitrating waste gas using the same
JP2020116490A (en) Catalyst structure for purifying exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5198744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350