JP5196494B2 - Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same - Google Patents

Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same Download PDF

Info

Publication number
JP5196494B2
JP5196494B2 JP2009116118A JP2009116118A JP5196494B2 JP 5196494 B2 JP5196494 B2 JP 5196494B2 JP 2009116118 A JP2009116118 A JP 2009116118A JP 2009116118 A JP2009116118 A JP 2009116118A JP 5196494 B2 JP5196494 B2 JP 5196494B2
Authority
JP
Japan
Prior art keywords
visible light
composition
light responsive
total
content ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009116118A
Other languages
Japanese (ja)
Other versions
JP2010264351A (en
Inventor
仁 草間
和弘 佐山
ニイニイ ワン
雄悟 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009116118A priority Critical patent/JP5196494B2/en
Publication of JP2010264351A publication Critical patent/JP2010264351A/en
Application granted granted Critical
Publication of JP5196494B2 publication Critical patent/JP5196494B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Compounds Of Iron (AREA)
  • Catalysts (AREA)
  • Light Receiving Elements (AREA)
  • Hybrid Cells (AREA)

Description

本発明は可視光応答性の組成物とこれを用いた光電極・光触媒・光センサーに関するものである。   The present invention relates to a visible light responsive composition and a photoelectrode / photocatalyst / photosensor using the composition.

近年、太陽光エネルギーを利用するための光電極、太陽光により環境汚染物質を分解除去する光触媒、両者を用いる水の分解反応による水素製造、及び光を定量的に測定するための光電変換素子型の光センサーが注目されており、それらの材料として様々な半導体の研究開発が行われている。酸化チタンはその代表的なものであり、実用的に最も多く用いられている。
しかし、この酸化チタンはバンドギャップが大きいため太陽光の大部分を占める可視光領域に吸収性がなく、太陽光を有効に利用することができない。また酸化チタンは吸収性のある紫外光領域が極めて弱い室内光や自動車の車内光では機能しない。
このための対策として、新たに利用可能な可視光応答性組成物を開発するため、酸化チタン等の既存の組成物に他の元素を微量ドープするなどの改良研究や全く新規な可視光応答性組成物を探索する研究が行われている(例えば、非特許文献1、2)。
しかしながら、様々な元素を異なった割合で含む組成物の組み合わせの数は膨大なため、新規な組成物を合成しその可視光応答性を評価するには多くの時間と労力が必要であり、その研究開発はこれまであまり進展していなかった。
そこで本発明者らは、多種類の元素を様々な比率で含む組成物の薄膜自動合成装置と、その薄膜の光照射に対する光電流応答性の自動評価装置を新たに開発し、可視光応答性を有し、光電極や光触媒、及び光センサー材料として有望な新規な組成物の高速探索研究を進めてきている(特許文献1)。本発明者らは、その過程でFe−Zr−Ti系の組成について着目し、研究開発を進め、Feが20%から80%、Zrが20%から50%、Tiが0%から30%の範囲にある可視光応答性複合酸化物を見いだした(特許文献2)。しかしながら、Fe−Zr−Ti以外の組成のものについては、未だ研究開発はあまり進展していない。
In recent years, a photoelectrode for using solar energy, a photocatalyst that decomposes and removes environmental pollutants by sunlight, hydrogen production by water decomposition reaction using both, and a photoelectric conversion element type for quantitatively measuring light Optical sensors are attracting attention, and various semiconductors are being researched and developed as their materials. Titanium oxide is a typical example and is most frequently used in practice.
However, since this titanium oxide has a large band gap, the visible light region that occupies most of the sunlight has no absorbability, and sunlight cannot be used effectively. Titanium oxide does not function in indoor light or in-car light of an automobile where the absorbing ultraviolet light region is extremely weak.
As a countermeasure for this, in order to develop a newly usable visible light responsive composition, improvement research such as doping a small amount of other elements into an existing composition such as titanium oxide or a completely new visible light responsiveness Studies for searching for compositions have been conducted (for example, Non-Patent Documents 1 and 2).
However, since the number of combinations of compositions containing various elements in different proportions is enormous, it takes a lot of time and labor to synthesize a new composition and evaluate its visible light response. R & D has not made much progress so far.
Therefore, the present inventors newly developed a thin film automatic synthesis apparatus for compositions containing various kinds of elements in various ratios, and an automatic evaluation apparatus for photocurrent response to light irradiation of the thin film, and visible light responsiveness. Research has been conducted on a high-speed search for a novel composition that is promising as a photoelectrode, photocatalyst, and photosensor material (Patent Document 1). In the process, the present inventors paid attention to the composition of the Fe—Zr—Ti system, and proceeded with research and development. Fe was 20% to 80%, Zr was 20% to 50%, and Ti was 0% to 30%. The visible light responsive complex oxide in the range was found (Patent Document 2). However, research and development have not progressed much for compositions other than Fe-Zr-Ti.

特開2006−300812号公報JP 2006-300812 A 特開2009−73708号公報JP 2009-73708 A

「光触媒標準研究法」、東京図書、2005年1月"Photocatalyst Standard Research Method", Tokyo Books, January 2005 Chemistry of Materials, 第20巻, 12号、3803〜3805頁 (2008)Chemistry of Materials, Vol. 20, No. 12, pp. 3803-3805 (2008)

以上のような背景から、本発明は、発明者らによるこれまでの検討をさらに深化、発展させて、可視光照射に対して光電流応答性を有し、光電極材料・光触媒材料・光センサー材料となり得る新規な組成物と、これにより構成される新しい光電極・光触媒・光センサー、及びこれら光電極・光触媒による新しい水分解方法を提供することを課題としている。   Against the background as described above, the present invention further deepens and develops the investigations made so far by the inventors and has photocurrent responsiveness to visible light irradiation, and is a photoelectrode material / photocatalyst material / photosensor. It is an object of the present invention to provide a novel composition that can be used as a material, a new photoelectrode / photocatalyst / photosensor constituted by the composition, and a new water decomposition method using the photoelectrode / photocatalyst.

本発明者らは、上記課題を解決するために鋭意検討し、上記した特許文献1に記載の装置を用いて新規な可視光応答性組成物を探索研究した結果、可視光照射に対しても光電流応答性を示す、光電極・光触媒・光センサーの材料となる新規な組成物を知見し、本発明を完成するに至った。酸素以外の3種類以上元素の特定の比率において非常に効果が大きいことを見いだしたものであり、手動での探索ではほぼ見つからなかった特殊な組成物である。   The present inventors diligently studied to solve the above-mentioned problems, and as a result of exploring and researching a novel visible light responsive composition using the apparatus described in Patent Document 1 described above, the present inventors have also performed visible light irradiation. The inventors have found a novel composition that exhibits photocurrent response and can be used as materials for photoelectrodes, photocatalysts, and photosensors, and have completed the present invention. It has been found to be very effective at a specific ratio of three or more elements other than oxygen, and is a special composition that was hardly found by manual search.

すなわち、この本発明は以下のことを特徴としている。
(1)Fe、Zr、M、酸素からなる可視光応答性組成物であって、MはAl、Zn、In、Sn、Taからなる群から選ばれた1種の元素であり、Fe、Zr、Mの合計を100%としたときの元素含有比(モル比)がFe:50〜85%、Zr:8〜48%、M:0.01〜29%の範囲内にあることを特徴とする可視光応答性組成物。
(2)前記元素MがAlであり、Fe、Zr、Alの合計を100%としたときの元素含有比が、Fe:60〜85%、Zr:8〜39%、Al:0.05〜25%の範囲内にある可視光応答性組成物。
(3)前記元素MがZnであり、Fe、Zr、Znの合計を100%としたときの元素含有比が、Fe:60〜85%、Zr:8〜35%、Zn:0.05〜25%の範囲内にある可視光応答性組成物。
(4)前記元素MがInであり、Fe、Zr、Inの合計を100%としたときの元素含有比が、Fe:55〜75%、Zr:10〜40%、In:0.05〜25%の範囲内にある可視光応答性組成物。
(5)前記元素MがSnであり、Fe、Zr、Snの合計を100%としたときの元素含有比が、Fe:55〜80%、Zr:15〜43%、Sn:1〜10%の範囲内にある可視光応答性組成物。
(6)前記元素MがTaであり、Fe、Zr、Taの合計を100%としたときの元素含有比が、Fe:55〜85%、Zr:8〜40%、Ta:0.1〜20%の範囲内にある可視光応答性組成物。
(7)上記いずれかの可視光応答性組成物をもって構成されている光電極。
(8)上記いずれかの可視光応答性組成物をもって構成されている光触媒。
(9)上記いずれかの可視光応答性組成物をもって構成されている光センサー。
(10)上記(7)に記載の光電極及び/又は上記(8)に記載の光触媒による水分解方法。
That is, the present invention is characterized by the following.
(1) A visible light responsive composition comprising Fe, Zr, M, and oxygen, wherein M is one element selected from the group consisting of Al, Zn, In, Sn, Ta, Fe, Zr The element content ratio (molar ratio) when the total of M is 100% is in the range of Fe: 50 to 85%, Zr: 8 to 48%, and M: 0.01 to 29%. A visible light responsive composition.
(2) The element M is Al, and the element content ratio when the total of Fe, Zr, and Al is 100% is Fe: 60 to 85%, Zr: 8 to 39%, Al: 0.05 to Visible light responsive composition in the range of 25%.
(3) The element content ratio when the element M is Zn and the total of Fe, Zr, and Zn is 100% is Fe: 60 to 85%, Zr: 8 to 35%, Zn: 0.05 to Visible light responsive composition in the range of 25%.
(4) When the element M is In and the total content of Fe, Zr, and In is 100%, the element content ratio is Fe: 55 to 75%, Zr: 10 to 40%, In: 0.05 to Visible light responsive composition in the range of 25%.
(5) The element M is Sn, and the element content ratio when the total of Fe, Zr, and Sn is 100% is Fe: 55 to 80%, Zr: 15 to 43%, Sn: 1 to 10% Visible light responsive composition in the range of.
(6) The element M is Ta, and the element content ratio when the total of Fe, Zr, and Ta is 100% is Fe: 55 to 85%, Zr: 8 to 40%, Ta: 0.1 Visible light responsive composition in the range of 20%.
(7) A photoelectrode comprising any one of the above visible light responsive compositions.
(8) A photocatalyst comprising any one of the above visible light responsive compositions.
(9) An optical sensor comprising any one of the above visible light responsive compositions.
(10) The water splitting method using the photoelectrode according to (7) and / or the photocatalyst according to (8).

光電流は光電極材料として用いたときの性能を示すものであり、また光触媒が機能するための電荷分離の度合を示している。本発明の組成物は可視光照射によって電荷分離を生じて光電流を発生させることから、可視光応答性光電極や可視光応答性光触媒の材料として用いることができる。これらを用いて水を還元し水素を発生させ、光エネルギーを水素に変換することができる。また、特定の波長域のみの光センサーとして、可視光域にのみ分光感度を有する光センサーの材料を提供することができる。   The photocurrent indicates the performance when used as a photoelectrode material, and indicates the degree of charge separation for the photocatalyst to function. Since the composition of the present invention generates a photocurrent by generating charge separation by irradiation with visible light, it can be used as a material for a visible light responsive photoelectrode or a visible light responsive photocatalyst. These can be used to reduce water to generate hydrogen and convert light energy to hydrogen. In addition, as an optical sensor having only a specific wavelength region, a material for an optical sensor having spectral sensitivity only in the visible light region can be provided.

本発明の可視光応答性組成物は、Fe、Zr、M、酸素の4元素を必須のものとして含むものである。ここで元素MとはAl、Zn、In、Sn、Taからなる群から選ばれた1種の元素を指し、Fe、Zr、Mの合計を100%としたときの元素含有比(モル比)がFe:50〜85%(望ましくは55〜80%、さらに望ましくは60〜75%)、Zr:8〜48%(望ましくは10〜35%、さらに望ましくは15〜35%)、M:0.01〜29%(望ましくは0.1〜20%、さらに望ましくは0.1〜10%)の範囲内にある。本発明の可視光応答性組成物は、基本的には、上記4元素からなるが、可視光応答性を大幅に低下させない限度において、他の元素の含有を排除しようとするものではない。また、他の元素を含有している場合でも、他の元素は、含有比からは除外し、合計に加算しない。   The visible light responsive composition of the present invention contains four elements of Fe, Zr, M, and oxygen as essential elements. Here, the element M refers to one element selected from the group consisting of Al, Zn, In, Sn, and Ta, and the element content ratio (molar ratio) when the total of Fe, Zr, and M is 100%. Fe: 50-85% (desirably 55-80%, more desirably 60-75%), Zr: 8-48% (desirably 10-35%, more desirably 15-35%), M: 0 0.01 to 29% (desirably 0.1 to 20%, more desirably 0.1 to 10%). The visible light responsive composition of the present invention basically comprises the above four elements, but does not intend to exclude the inclusion of other elements as long as the visible light responsiveness is not significantly reduced. Even when other elements are contained, other elements are excluded from the content ratio and are not added to the total.

組成物がFe、Zr、Al、酸素のとき、酸素以外の3元素それぞれの含有比(モル比)は、その合計100%として、Feが60から85%(望ましくは63から80%、さらに望ましくは64から66%)、Zrが8から39%(望ましくは10から35%、さらに望ましくは28から34.9%)、Alが0.05から25%(望ましくは0.1から20%、さらに望ましくは0.1から3%)の範囲内にあることを特徴としている。また、他の元素を含有している場合でも、他の元素は、含有比からは除外し、合計に加算しない。   When the composition is Fe, Zr, Al, and oxygen, the content ratio (molar ratio) of each of the three elements other than oxygen is 100% in total, and Fe is 60 to 85% (preferably 63 to 80%, more preferably Is 64 to 66%), Zr is 8 to 39% (preferably 10 to 35%, more preferably 28 to 34.9%), Al is 0.05 to 25% (preferably 0.1 to 20%, More preferably, it is within the range of 0.1 to 3%. Even when other elements are contained, other elements are excluded from the content ratio and are not added to the total.

組成物がFe、Zr、Zn、酸素のとき、酸素以外の3元素それぞれの含有比(モル比)は、その合計100%として、Feが60から85%(望ましくは68から80%、さらに望ましくは69から75%)、Zrが8から35%(望ましくは10から30%、さらに望ましくは20から30%)、Znが0.05から25%(望ましくは0.1から12%、さらに望ましくは0.1から10%)の範囲内にあることを特徴としている。また、他の元素を含有している場合でも、他の元素は、含有比からは除外し、合計に加算しない。   When the composition is Fe, Zr, Zn, and oxygen, the content ratio (molar ratio) of each of the three elements other than oxygen is 60% to 85% (preferably 68 to 80%, more desirably, assuming that the total content is 100%) 69 to 75%), Zr 8 to 35% (preferably 10 to 30%, more preferably 20 to 30%), Zn 0.05 to 25% (preferably 0.1 to 12%, more preferably Is in the range of 0.1 to 10%). Even when other elements are contained, other elements are excluded from the content ratio and are not added to the total.

組成物がFe、Zr、In、酸素のとき、酸素以外の3元素それぞれの含有比(モル比)は、その合計100%として、Feが55から75%(望ましくは60から70%、さらに望ましくは63から65%)、Zrが10から40%(望ましくは20から35%、さらに望ましくは34から35%)、Inが0.05から25%(望ましくは0.1から20%、さらに望ましくは0.4から4%)の範囲内にあることを特徴としている。また、他の元素を含有している場合でも、他の元素は、含有比からは除外し、合計に加算しない。   When the composition is Fe, Zr, In, and oxygen, the content ratio (molar ratio) of each of the three elements other than oxygen is 100% in total, and Fe is 55 to 75% (preferably 60 to 70%, more preferably 63 to 65%), Zr 10 to 40% (preferably 20 to 35%, more preferably 34 to 35%), In 0.05 to 25% (preferably 0.1 to 20%, more preferably Is in the range of 0.4 to 4%). Even when other elements are contained, other elements are excluded from the content ratio and are not added to the total.

組成物がFe、Zr、Sn、酸素のとき、酸素以外の3元素それぞれの含有比(モル比)は、その合計100%として、Feが55%から80%(望ましくは60から75%、さらに望ましくは65から73%)、Zrが15から43%(望ましくは18から32%、さらに望ましくは19から29%)、Snが1から10%(望ましくは2から8%、さらに望ましくは3から8%)の範囲内にあることを特徴としている。また、他の元素を含有している場合でも、他の元素は、含有比からは除外し、合計に加算しない。   When the composition is Fe, Zr, Sn, and oxygen, the content ratio (molar ratio) of each of the three elements other than oxygen is 100% in total, and Fe is 55% to 80% (preferably 60 to 75%, more preferably Desirably 65 to 73%), Zr 15 to 43% (desirably 18 to 32%, more desirably 19 to 29%), Sn 1 to 10% (desirably 2 to 8%, more desirably 3 to 3%) 8%). Even when other elements are contained, other elements are excluded from the content ratio and are not added to the total.

組成物がFe、Zr、Ta、酸素のとき、酸素以外の3元素それぞれの含有比(モル比)は、その合計100%として、Feが55から85%(望ましくは59から80%、さらに望ましくは60から70%)、Zrが8から40%(望ましくは10から34%、さらに望ましくは27から32%)、Taが0.1から20%(望ましくは0.3から10%、さらに望ましくは1.0から10%)の範囲内にあることを特徴としている。また、他の元素を含有している場合でも、他の元素は、含有比からは除外し、合計に加算しない。   When the composition is Fe, Zr, Ta, and oxygen, the content ratio (molar ratio) of each of the three elements other than oxygen is 100% in total, and Fe is 55 to 85% (preferably 59 to 80%, more preferably 60 to 70%), Zr is 8 to 40% (preferably 10 to 34%, more preferably 27 to 32%), Ta is 0.1 to 20% (preferably 0.3 to 10%, more preferably Is in the range of 1.0 to 10%). Even when other elements are contained, other elements are excluded from the content ratio and are not added to the total.

本発明の可視光応答性組成物の望ましい実施態様は、次のとおりである。
(1)Fe、Zr、Mの合計を100%としたときの元素含有比(モル比)がFe:55〜80%、Zr:10〜35%、M:0.1〜20%の範囲内にある可視光応答性組成物。
(2)Fe、Zr、Mの合計を100%としたときの元素含有比(モル比)がFe:60〜75%、Zr:15〜35%、M:0.1〜10%の範囲内にある可視光応答性組成物。
(3)前記元素MがAlであり、Fe、Zr、Alの合計を100%としたときの元素含有比が、Fe:63〜80%、Zr:10〜35%、Al:0.1〜20%の範囲内にある可視光応答性組成物。
(4)Fe、Zr、Alの合計を100%としたときの元素含有比が、Fe:64〜66%、Zr:28〜34.9%、Al:0.1〜3%の範囲内にある前記(3)の可視光応答性組成物。
(5)前記元素MがZnであり、Fe、Zr、Znの合計を100%としたときの元素含有比が、Fe:68〜80%、Zr:10〜30%、Zn:0.1〜12%の範囲内にある可視光応答性組成物。
(6)Fe、Zr、Znの合計を100%としたときの元素含有比が、Fe:69〜75%、Zr:20〜30%、Zn:0.1〜10%の範囲内にある前記(5)の可視光応答性組成物。
(7)前記元素MがInであり、Fe、Zr、Inの合計を100%としたときの元素含有比が、Fe:60〜70%、Zr:20〜35%、In:0.1〜20%の範囲内にある可視光応答性組成物。
(8)Fe、Zr、Inの合計を100%としたときの元素含有比が、Fe:63〜65%、Zr:34〜35%、In:0.4〜4%の範囲内にある前記(7)の可視光応答性組成物。
(9)前記元素MがSnであり、Fe、Zr、Snの合計を100%としたときの元素含有比が、Fe:60〜75%、Zr:18〜32%、Sn:2〜8%の範囲内にある可視光応答性組成物。
(10)Fe、Zr、Snの合計を100%としたときの元素含有比が、Fe:65〜73%、Zr:19〜29%、Sn:3〜8%の範囲内にある前記(9)の可視光応答性組成物。
(11)前記元素MがTaであり、Fe、Zr、Taの合計を100%としたときの元素含有比が、Fe:59〜80%、Zr:10〜34%、Ta:0.3〜10%の範囲内にある可視光応答性組成物。
(12)Fe、Zr、Taの合計を100%としたときの元素含有比が、Fe:60〜70%、Zr:27〜32%、Ta:1.0〜10%の範囲内にある前記(11)の可視光応答性組成物。
Preferred embodiments of the visible light responsive composition of the present invention are as follows.
(1) Element content ratio (molar ratio) when the total of Fe, Zr, and M is 100% is in the range of Fe: 55-80%, Zr: 10-35%, M: 0.1-20% Visible light responsive composition.
(2) Element content ratio (molar ratio) when the total of Fe, Zr, and M is 100% is in the range of Fe: 60 to 75%, Zr: 15 to 35%, M: 0.1 to 10% Visible light responsive composition.
(3) The element content ratio when the element M is Al and the total of Fe, Zr, and Al is 100% is Fe: 63-80%, Zr: 10-35%, Al: 0.1 Visible light responsive composition in the range of 20%.
(4) The element content ratio when the total of Fe, Zr, and Al is 100% is in the range of Fe: 64-66%, Zr: 28-34.9%, Al: 0.1-3%. The visible light responsive composition according to (3) above.
(5) The element M is Zn, and the element content ratio when the total of Fe, Zr, and Zn is 100% is Fe: 68-80%, Zr: 10-30%, Zn: 0.1 Visible light responsive composition in the range of 12%.
(6) The element content ratio when the total of Fe, Zr, and Zn is 100% is in the range of Fe: 69 to 75%, Zr: 20 to 30%, and Zn: 0.1 to 10%. The visible light responsive composition of (5).
(7) When the element M is In and the total content of Fe, Zr, and In is 100%, the element content ratio is Fe: 60 to 70%, Zr: 20 to 35%, In: 0.1 to 0.1 Visible light responsive composition in the range of 20%.
(8) The element content ratio when the total of Fe, Zr, and In is 100% is in the range of Fe: 63 to 65%, Zr: 34 to 35%, and In: 0.4 to 4%. The visible light responsive composition of (7).
(9) The element M is Sn, and the element content ratio when the total of Fe, Zr, and Sn is 100% is Fe: 60 to 75%, Zr: 18 to 32%, Sn: 2 to 8% Visible light responsive composition in the range of.
(10) The element content ratio when the total of Fe, Zr, and Sn is 100% is in the range of Fe: 65 to 73%, Zr: 19 to 29%, Sn: 3 to 8% (9 ) Visible light responsive composition.
(11) The element content ratio when the element M is Ta and the total of Fe, Zr, and Ta is 100% is Fe: 59 to 80%, Zr: 10 to 34%, Ta: 0.3 to Visible light responsive composition in the range of 10%.
(12) The element content ratio when the total of Fe, Zr, and Ta is 100% is in the range of Fe: 60 to 70%, Zr: 27 to 32%, and Ta: 1.0 to 10%. The visible light responsive composition of (11).

本発明の組成物を用いて光電極を構成すると、上記した元素の含有比(モル比)の範囲において、可視光照射によって電荷分離を生じて大きな光電流が発生する。   When a photoelectrode is constituted using the composition of the present invention, charge separation occurs due to visible light irradiation and a large photocurrent is generated within the range of the above-described element content ratio (molar ratio).

本発明の組成物は、熱分解法や混合粉末の焼結法、電着法あるいはスパッタリング等のような気相成膜法等の各種の方法により製造可能とされるが、なかでも、熱分解法で作製することが好ましい。例えば、薄膜形状に作製する場合(塗布熱分解法)については詳細を実施例において説明する。この熱分解法ではそれぞれの元素を含む溶液(場合によってはコロイド溶液や懸濁液など)を良く混合して原料液を調製し、それを焼成することで組成物を作製する。熱分解法には、元素含有比(モル比)の正確な制御ができる、溶液で混合するので均一な組成物を作製できる、薄膜形状にする場合(塗布熱分解法)は塗布と焼成を繰り返して積層することで精密なものが作製できる等の利点がある。本発明に用いる熱分解法は、それぞれの元素を含む液を混合して焼成する方法ならばよく、ゾルゲル法、錯体重合法、有機金属分解法等も挙げることができる。薄膜の多孔性や溶液粘度を制御するためにポリエチレングリコールやエチルセルロースなどポリマーや有機物を溶液に添加しても良い。   The composition of the present invention can be produced by various methods such as a thermal decomposition method, a mixed powder sintering method, an electrodeposition method, a vapor deposition method such as sputtering, and the like. It is preferable to prepare by the method. For example, in the case of producing a thin film (coating pyrolysis method), details will be described in Examples. In this pyrolysis method, a solution containing each element (in some cases, a colloidal solution, a suspension, etc.) is mixed well to prepare a raw material solution, which is fired to produce a composition. In the thermal decomposition method, the element content ratio (molar ratio) can be accurately controlled, and a uniform composition can be prepared by mixing with a solution. In the case of a thin film shape (coating pyrolysis method), coating and baking are repeated. There is an advantage that a precise one can be produced by laminating the layers. The thermal decomposition method used in the present invention may be any method in which a liquid containing each element is mixed and fired, and examples thereof include a sol-gel method, a complex polymerization method, and an organometallic decomposition method. In order to control the porosity and solution viscosity of the thin film, a polymer or an organic substance such as polyethylene glycol or ethyl cellulose may be added to the solution.

本発明の組成物は、均一組成の複合酸化物でも良いし、ドーピング化合物でも良い。また複数の化合物が混合した状態で存在していても良い。
酸素や空気中で焼成して本組成物を合成すれば、通常は最も安定な組成の酸化物になるが、雰囲気ガスを制御して酸化物以外の組成物を合成しても良い。例えば、NHやHS、CHガスを流しながら合成すれば、N、S、Cを一部含んだ組成物を合成できる。
光電極や光センサーとして利用する場合は、本発明の組成物を導電性基板上に固定する。例えば、導電性ガラスや金属などの耐熱性の導電性基板上に各元素を含んだ溶液を塗布して熱分解法で成膜する。
The composition of the present invention may be a complex oxide having a uniform composition or a doping compound. A plurality of compounds may exist in a mixed state.
If the composition is synthesized by firing in oxygen or air, the oxide having the most stable composition is usually obtained, but a composition other than the oxide may be synthesized by controlling the atmospheric gas. For example, a composition containing a part of N, S, and C can be synthesized by synthesizing while flowing NH 3 , H 2 S, and CH 4 gas.
When used as a photoelectrode or photosensor, the composition of the present invention is fixed on a conductive substrate. For example, a solution containing each element is applied onto a heat-resistant conductive substrate such as conductive glass or metal, and a film is formed by a thermal decomposition method.

本組成物は、光電極として用いる場合は、基板に強く接合し且つ多孔質であることが望ましい。また、光触媒として用いる場合は比較的高い表面積で且つ結晶性が高いことが望ましい。   When the composition is used as a photoelectrode, it is desirable that the composition is strongly bonded to the substrate and is porous. When used as a photocatalyst, it is desirable that the surface area is relatively high and the crystallinity is high.

そして、本発明によれば、上記の組成物を用いての光電極、光触媒及び光センサーが提供されることになる。   And according to this invention, the photoelectrode, photocatalyst, and photosensor using said composition are provided.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこの実施例によって何ら限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.

(実施例1〜77、参考例1〜23、比較例1〜89)
組成物薄膜の自動合成装置(特許文献1)を用いて塗布熱分解法によりFe−Zr−B、Fe−Zr−Al、Fe−Zr−Zn、Fe−Zr−Sr、Fe−Zr−Y、Fe−Zr−In、Fe−Zr−Sn、Fe−Zr−Taの3元系薄膜ライブラリーを合成した。この薄膜ライブラリーはそれぞれの元素の含有比が異なった組成物の薄膜を一枚の導電性ガラス基板上に間隔を置いて作製したものである。それぞれの3元系元素の含有量は表1〜8のように変化させた。
(Examples 1-77, Reference Examples 1-23, Comparative Examples 1-89)
Fe-Zr-B, Fe-Zr-Al, Fe-Zr-Zn, Fe-Zr-Sr, Fe-Zr-Y, by a coating pyrolysis method using an automatic composition thin film synthesis apparatus (Patent Document 1) A ternary thin film library of Fe-Zr-In, Fe-Zr-Sn, and Fe-Zr-Ta was synthesized. This thin film library is prepared by forming thin films of compositions having different content ratios of elements on a single conductive glass substrate at intervals. The content of each ternary element was changed as shown in Tables 1-8.

塗布する原料溶液は、シンメトリックス社製のFe、Zr、B、Al、Zn、Sr、Y、In、Sn、Taの有機錯体溶液をモル濃度が0.2Mとなるように酢酸ブチルで希釈し、それらの体積比を変えて混合することによりそれぞれの含有量のモル比を調整した。それらの溶液には増粘剤として10重量%のエチルセルロースの酢酸ブチル溶液を体積比で3倍量加えて混合した。なお、Fe−Zr−Yの3元系については、希釈液として、上記酢酸ブチルに代えて酢酸ブチルとキシレンの混合液を用いた。
導電性ガラス基板にそれぞれの溶液を所定の位置に塗布し焼成することを4回繰り返して積層膜を合成した。焼成は空気中550℃で0.5時間、700℃でさらに0.5時間行った。これらを(実施例1〜77、参考例1〜23、比較例1〜89)とした。
The raw material solution to be applied is diluted with butyl acetate so that the molar concentration is 0.2 M, an organic complex solution of Fe, Zr, B, Al, Zn, Sr, Y, In, Sn, and Ta manufactured by Symmetrics. The molar ratio of each content was adjusted by changing the volume ratio and mixing. These solutions were mixed with a 10% by weight ethyl cellulose butyl acetate solution as a thickening agent in a volume ratio of 3 times. For the Fe-Zr-Y ternary system, a mixed solution of butyl acetate and xylene was used as a diluent instead of the butyl acetate.
Each solution was applied to a predetermined position on a conductive glass substrate and fired four times to synthesize a laminated film. Firing was performed in air at 550 ° C. for 0.5 hour and at 700 ° C. for another 0.5 hour. These were designated as (Examples 1 to 77, Reference Examples 1 to 23, Comparative Examples 1 to 89).

組成物の可視光応答性は光電流を測定して評価した。光電流は組成物の電荷分離能力や可視光反応性を示す尺度であり、大きいほど性能が高い。作製した組成物の薄膜ライブラリーを、水酸化ナトリウムでpH7.0に調整した0.1Mのリン酸二水素ナトリウム溶液中に入れ、420nmより短波長をカットするフィルターを装着した300WのXeランプを直径1mmのホールスリットを通して3.2mWで照射しながら、1V(vs.Ag/AgCl)おいて光電流を測定した。対極には白金を用いており、その上では電流値に対応した水素が発生する。なお、M成分が同じ実施例、参考例、比較例は同一の導電性ガラス基板上で薄膜ライブラリーを合成しているので光電流の値を相互に比較できるが、M成分の異なる実施例、参考例、比較例は同一の導電性ガラス基板に薄膜ライブラリーが存在せず光電流測定を薄膜ライブラリーごとに行うのでそのバックグラウンドが同一ではなく光電流の値を直接相互に比較できない。表1〜8に光電流の測定結果を示した。
なお、酸化チタンについても、本発明の実施例と同様に薄膜ライブラリーを合成して光電流を測定したが、光電流はほとんど生じなかった(0μA)。
Visible light responsiveness of the composition was evaluated by measuring photocurrent. The photocurrent is a scale indicating the charge separation ability and visible light reactivity of the composition, and the larger the performance, the higher the performance. A 300 W Xe lamp equipped with a filter that cuts a wavelength shorter than 420 nm is placed in a 0.1 M sodium dihydrogen phosphate solution adjusted to pH 7.0 with sodium hydroxide. The photocurrent was measured at 1 V (vs. Ag / AgCl) while irradiating at 3.2 mW through a 1 mm diameter hole slit. Platinum is used for the counter electrode, on which hydrogen corresponding to the current value is generated. In addition, since the thin film library is synthesized on the same conductive glass substrate in Examples, Reference Examples, and Comparative Examples in which the M component is the same, the photocurrent values can be compared with each other. In the reference example and the comparative example, since the thin film library does not exist on the same conductive glass substrate and the photocurrent measurement is performed for each thin film library, the background is not the same and the photocurrent values cannot be directly compared with each other. Tables 1 to 8 show the photocurrent measurement results.
As for titanium oxide, a photocurrent was measured by synthesizing a thin film library in the same manner as in the example of the present invention, but almost no photocurrent was generated (0 μA).

Figure 0005196494
Figure 0005196494

Figure 0005196494
Figure 0005196494

Figure 0005196494
Figure 0005196494

Figure 0005196494
Figure 0005196494

Figure 0005196494
Figure 0005196494

Figure 0005196494
Figure 0005196494

Figure 0005196494
Figure 0005196494

Figure 0005196494
Figure 0005196494

表1〜8から明らかなように、Fe、Zrと、第3の成分として、B、Al、Zn、Sr、Y、In、Sn、Taの1種とを選択することにより所定の光電流の値を示し、その全ての例において、酸化チタンをはるかに上回る可視光応答性を示した。
第3の成分として、本発明のMに包含されないB、Sr、Yを選択した場合についても、下記の(a)、(b)、(c)の組成物のように成分量を調整することにより、Fe100%をはじめとする比較例1〜14、比較例40〜52を上回り、特に、B、Srの場合は2倍以上の大きな光電流が測定されたことから(表1、表4、表5参照)、これら(a)、(b)、(c)の組成物は、優れた可視光応答性を示すものといえる。
(a)組成物がFe、Zr、B、酸素のとき、酸素以外の3元素それぞれの含有比(モル比)は、その合計100%として、Feが20から80%、望ましくは30から70%、Zrが5から40%、望ましくは10から30%、Bが5から70%、望ましくは10から50%の範囲内にある組成物。
(b)組成物がFe、Zr、Sr、酸素のとき、酸素以外の3元素それぞれの含有比(モル比)は、その合計100%として、Feが60から71%、望ましくは64から70%、Zrが28から35.99%、望ましくは29から35%、Srが0.01から2%、望ましくは0.1から1%の範囲内にある組成物。
(c)組成物がFe、Zr、Y、酸素のとき、酸素以外の3元素それぞれの含有比(モル比)は、その合計100%として、Feが55から85%、望ましくは60から80%、Zrが5から40%、望ましくは10から30%、Yが5から15%、望ましくは9から11%の範囲内にある組成物。
As can be seen from Tables 1-8, by selecting Fe, Zr and one of B, Al, Zn, Sr, Y, In, Sn, and Ta as the third component, a predetermined photocurrent can be obtained. All the examples showed visible light responsiveness far exceeding that of titanium oxide.
Even when B, Sr, or Y not included in M of the present invention is selected as the third component, the amount of the component should be adjusted as in the following compositions (a), (b), and (c). From Comparative Examples 1 to 14 and Comparative Examples 40 to 52 including Fe 100%, in particular, in the case of B and Sr, a photocurrent more than twice as large was measured (Tables 1, 4 and 4). These compositions (a), (b), and (c) can be said to exhibit excellent visible light responsiveness.
(A) When the composition is Fe, Zr, B, and oxygen, the content ratio (molar ratio) of each of the three elements other than oxygen is 100% in total, and Fe is 20 to 80%, preferably 30 to 70%. A composition wherein Zr is in the range of 5 to 40%, preferably 10 to 30%, B is in the range of 5 to 70%, preferably 10 to 50%.
(B) When the composition is Fe, Zr, Sr, and oxygen, the content ratio (molar ratio) of each of the three elements other than oxygen is 60% to 71%, preferably 64 to 70%, assuming that the total content is 100%. , Zr in the range of 28 to 35.99%, preferably 29 to 35%, and Sr in the range of 0.01 to 2%, preferably 0.1 to 1%.
(C) When the composition is Fe, Zr, Y, and oxygen, the content ratio (molar ratio) of each of the three elements other than oxygen is 100% in total, and Fe is 55 to 85%, preferably 60 to 80%. A composition wherein Zr is in the range of 5 to 40%, preferably 10 to 30%, Y is 5 to 15%, preferably 9 to 11%.

第3の成分として、本発明のMに包含されるAl、Zn、In、Sn、Taを選択し、その組成をFe:50〜85%、Zr:8〜48%、M:0.01〜29%とした場合は、比較例に比べ顕著に大きな光電流の値を示した。上述のとおり、M成分の異なる実施例、参考例、比較例の光電流の値は、直接相互に比較できないが、Fe100%の組成物(比較例1、比較例15、比較例29、比較例40、比較例46、比較例53、比較例62、比較例75)を基準とし8つの第3成分の間で可視光応答性を比較すると、Y<B<Sr<Al<In<Ta<Zn<Snの順に高いことが分かった。
これらのことから、第3成分としてのMをAl、Zn、In、Sn、Taとし、本発明の組成物のように元素含有比を調整することにより、上記参考例のFe−Zr−B、Fe−Zr−Sr、Fe−Zr−Yをもさらに大きく上回る顕著な可視光応答性が得られることが分かった。
As the third component, Al, Zn, In, Sn, Ta included in M of the present invention is selected, and the composition is Fe: 50 to 85%, Zr: 8 to 48%, M: 0.01 to In the case of 29%, the photocurrent value was significantly larger than that of the comparative example. As described above, the photocurrent values of Examples, Reference Examples and Comparative Examples having different M components cannot be directly compared with each other, but the composition of Fe 100% (Comparative Example 1, Comparative Example 15, Comparative Example 29, Comparative Example) 40, Comparative Example 46, Comparative Example 53, Comparative Example 62, and Comparative Example 75), when comparing the visible light responsiveness among the eight third components, Y <B <Sr <Al <In <Ta <Zn It turned out that it is high in order of <Sn.
From these, M as the third component is Al, Zn, In, Sn, Ta, and by adjusting the element content ratio as in the composition of the present invention, Fe-Zr-B of the above reference example, It was found that remarkable visible light responsiveness far exceeding that of Fe-Zr-Sr and Fe-Zr-Y was obtained.

本発明の組成物により光電極を構成すると可視光の吸収利用が促進され、水の分解による水素製造のような光電極による太陽光のより効率的な利用が可能になる。また建物の室内や自動車内のように紫外光が弱い場所においても、本発明の組成物により構成する光触媒によって室内光や車内光を用いて環境汚染物質の除去や消臭を可能にする。さらに可視光域の光にのみ反応する光センサーの材料を提供することが出来る。   When the photoelectrode is constituted by the composition of the present invention, the absorption and utilization of visible light is promoted, and more efficient use of sunlight by the photoelectrode such as hydrogen production by water decomposition becomes possible. Further, even in a place where ultraviolet light is weak such as in a building or in a car, the photocatalyst constituted by the composition of the present invention can be used to remove or deodorize environmental pollutants using indoor light or in-car light. Furthermore, a material for an optical sensor that reacts only to light in the visible light range can be provided.

Claims (10)

Fe、Zr、M、酸素からなる可視光応答性組成物であって、MはAl、Zn、In、Sn、Taからなる群から選ばれた1種の元素であり、Fe、Zr、Mの合計を100%としたときの元素含有比(モル比)がFe:50〜85%、Zr:8〜48%、M:0.01〜29%の範囲内にあることを特徴とする可視光応答性組成物。   A visible light responsive composition comprising Fe, Zr, M, and oxygen, wherein M is one element selected from the group consisting of Al, Zn, In, Sn, and Ta, and Fe, Zr, M Visible light characterized in that the element content ratio (molar ratio) when the total is 100% is in the range of Fe: 50 to 85%, Zr: 8 to 48%, M: 0.01 to 29% Responsive composition. 前記元素MがAlであり、Fe、Zr、Alの合計を100%としたときの元素含有比(モル比)が、Fe:60〜85%、Zr:8〜39%、Al:0.05〜25%の範囲内にあることを特徴とする請求項1に記載の可視光応答性組成物。   The element M is Al, and the element content ratio (molar ratio) when the total of Fe, Zr, and Al is 100% is Fe: 60 to 85%, Zr: 8 to 39%, Al: 0.05 The visible light responsive composition according to claim 1, which is in a range of ˜25%. 前記元素MがZnであり、Fe、Zr、Znの合計を100%としたときの元素含有比(モル比)が、Fe:60〜85%、Zr:8〜35%、Zn:0.05〜25%の範囲内にあることを特徴とする請求項1に記載の可視光応答性組成物。   The element M is Zn, and the element content ratio (molar ratio) when the total of Fe, Zr, and Zn is 100% is Fe: 60 to 85%, Zr: 8 to 35%, Zn: 0.05 The visible light responsive composition according to claim 1, which is in a range of ˜25%. 前記元素MがInであり、Fe、Zr、Inの合計を100%としたときの元素含有比(モル比)が、Fe:55〜75%、Zr:10〜40%、In:0.05〜25%の範囲内にあることを特徴とする請求項1に記載の可視光応答性組成物。   The element M is In, and the element content ratio (molar ratio) when the total of Fe, Zr, and In is 100% is Fe: 55 to 75%, Zr: 10 to 40%, In: 0.05 The visible light responsive composition according to claim 1, which is in a range of ˜25%. 前記元素MがSnであり、Fe、Zr、Snの合計を100%としたときの元素含有比(モル比)が、Fe:55〜80%、Zr:15〜43%、Sn:1〜10%の範囲内にあることを特徴とする請求項1に記載の可視光応答性組成物。   The element M is Sn, and the element content ratio (molar ratio) when the total of Fe, Zr, and Sn is 100% is Fe: 55 to 80%, Zr: 15 to 43%, Sn: 1 to 10 The visible light responsive composition according to claim 1, wherein the composition is in the range of%. 前記元素MがTaであり、Fe、Zr、Taの合計を100%としたときの元素含有比(モル比)が、Fe:55〜85%、Zr:8〜40%、Ta:0.1〜20%の範囲内にあることを特徴とする請求項1に記載の可視光応答性組成物。   The element M is Ta, and the element content ratio (molar ratio) when the total of Fe, Zr, and Ta is 100% is Fe: 55 to 85%, Zr: 8 to 40%, Ta: 0.1 The visible light responsive composition according to claim 1, which is in a range of ˜20%. 請求項1から6のいずれかに記載の可視光応答性組成物をもって構成されていることを特徴とする光電極。   A photoelectrode comprising the visible light responsive composition according to claim 1. 請求項1から6のいずれかに記載の可視光応答性組成物をもって構成されていることを特徴とする光触媒。   A photocatalyst comprising the visible light responsive composition according to any one of claims 1 to 6. 請求項1から6のいずれかに記載の可視光応答性組成物をもって構成されていることを特徴とする光センサー。   An optical sensor comprising the visible light responsive composition according to any one of claims 1 to 6. 請求項7に記載の光電極及び/又は請求項8に記載の光触媒による水分解方法。   A water splitting method using the photoelectrode according to claim 7 and / or the photocatalyst according to claim 8.
JP2009116118A 2009-05-13 2009-05-13 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same Expired - Fee Related JP5196494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116118A JP5196494B2 (en) 2009-05-13 2009-05-13 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116118A JP5196494B2 (en) 2009-05-13 2009-05-13 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same

Publications (2)

Publication Number Publication Date
JP2010264351A JP2010264351A (en) 2010-11-25
JP5196494B2 true JP5196494B2 (en) 2013-05-15

Family

ID=43361832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116118A Expired - Fee Related JP5196494B2 (en) 2009-05-13 2009-05-13 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same

Country Status (1)

Country Link
JP (1) JP5196494B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115952B2 (en) * 2013-06-28 2017-04-19 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6048752B2 (en) * 2013-06-28 2016-12-21 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6044992B2 (en) * 2013-06-28 2016-12-14 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6229469B2 (en) * 2013-12-11 2017-11-15 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6388837B2 (en) * 2015-02-26 2018-09-12 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6359473B2 (en) * 2015-02-26 2018-07-18 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6352206B2 (en) * 2015-02-26 2018-07-04 国立研究開発法人産業技術総合研究所 Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053911B2 (en) * 2003-03-19 2008-02-27 株式会社日本触媒 Photocatalyst and method for producing photocatalyst
JP4812074B2 (en) * 2005-04-22 2011-11-09 独立行政法人産業技術総合研究所 Inorganic compound thin film library manufacturing apparatus and manufacturing method
JP4565239B2 (en) * 2005-09-12 2010-10-20 独立行政法人産業技術総合研究所 Zirconium oxide photofunctional oxide
JP5290554B2 (en) * 2007-09-21 2013-09-18 独立行政法人産業技術総合研究所 Composite oxide, semiconductor photoelectrode and photocatalyst using the same

Also Published As

Publication number Publication date
JP2010264351A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5196494B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP5207399B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
Ge et al. Direct‐laser‐writing of metal sulfide‐graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing
Pisanu et al. Enhanced air-stability of Sn-based hybrid perovskites induced by dimethylammonium (DMA): synthesis, characterization, aging and hydrogen photogeneration of the MA 1− x DMA x SnBr 3 system
Zheng et al. Highly enhancing photoelectrochemical performance of facilely-fabricated Bi-induced (002)-oriented WO3 film with intermittent short-time negative polarization
JP5207398B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP2014156434A (en) Functional metal-organic framework material containing novel composite particles
CN112295576A (en) Cs3Bi2Br9/TiO2Perovskite heterojunction, preparation method thereof and application of perovskite heterojunction in photocatalytic toluene oxidation
JP5354587B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
WO2017043586A1 (en) Method for synthesizing metal sulfur halide and/or metal selenium halide with metal oxyhalide as starting material, and method for producing semiconductor material using same
JP5360817B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP5290554B2 (en) Composite oxide, semiconductor photoelectrode and photocatalyst using the same
JP6359473B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6352206B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
Chintakrinda et al. Ionothermal Synthesis and Photoactivity of Ti17 and Ti19‐Oxo Clusters Functionalized by Sulfate and 1, 10‐Phenanthroline Ligands
JP6333757B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6115952B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6048752B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6120330B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6433815B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6388837B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6230059B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6044992B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6404144B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same
JP6229469B2 (en) Visible light responsive composition and photoelectrode, photocatalyst, and photosensor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196494

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees