JP5196448B2 - Reactive compounds containing aminooxy groups - Google Patents

Reactive compounds containing aminooxy groups Download PDF

Info

Publication number
JP5196448B2
JP5196448B2 JP2009547151A JP2009547151A JP5196448B2 JP 5196448 B2 JP5196448 B2 JP 5196448B2 JP 2009547151 A JP2009547151 A JP 2009547151A JP 2009547151 A JP2009547151 A JP 2009547151A JP 5196448 B2 JP5196448 B2 JP 5196448B2
Authority
JP
Japan
Prior art keywords
group
substituted
compound
unsubstituted
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009547151A
Other languages
Japanese (ja)
Other versions
JPWO2009082020A1 (en
Inventor
康雄 小松
直 小島
謙 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
DNA Chip Research Inc
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
DNA Chip Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, DNA Chip Research Inc filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009547151A priority Critical patent/JP5196448B2/en
Publication of JPWO2009082020A1 publication Critical patent/JPWO2009082020A1/en
Application granted granted Critical
Publication of JP5196448B2 publication Critical patent/JP5196448B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/18Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C235/16Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C279/00Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups
    • C07C279/04Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton
    • C07C279/14Derivatives of guanidine, i.e. compounds containing the group, the singly-bound nitrogen atoms not being part of nitro or nitroso groups having nitrogen atoms of guanidine groups bound to acyclic carbon atoms of a carbon skeleton being further substituted by carboxyl groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2458/00Labels used in chemical analysis of biological material
    • G01N2458/15Non-radioactive isotope labels, e.g. for detection by mass spectrometry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する分子に対して高い反応性を有する化合物、該化合物を含む標識試薬、及び該化合物を用いた生体分子固定化用支持体に関する。   The present invention relates to a compound having high reactivity with a molecule having an aldehyde group, a hemiacetal group, a carboxyl group or a keto group, a labeling reagent containing the compound, and a support for immobilizing a biomolecule using the compound. .

アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基に反応する構造として、一級アミノ基、アミノオキシ基などが知られている。一級アミノ基の場合は、不安定なシッフベースを形成するため、その結合を還元して安定化させる必要がある。一方、アミノオキシ基は高い反応性を有し、アミノ基のように還元剤を必要としない。このため、アルデヒド基を有する分子を効率的に検出する試薬として、アミノオキシ基をもった試薬がこれまで広く利用されてきた(非特許文献1、非特許文献2)。この試薬(ARP;Aldehyde Reactive Probe)は、アミノオキシ基とビオチンがリンカーを介して結合したシンプルな構造を有する。この試薬を、標的分子に反応させて結合させ、ビオチン−アビジン複合体形成を利用して、蛍光又は発光など分光学的な検出法により標的分子を検出することができる。
この試薬を用いて定量する代表的な分子として、RNA及びDNAなどの核酸がある。RNAには、遺伝子をコードしたmRNA、タンパク質合成に関与するrRNA、及びtRNAの他に、種々の機能性RNAが存在していることが近年明らかになってきた。これらの機能性RNAは、細胞内でタンパク質の発現などにおいて機能し、癌化にも関与していることが報告されている。そのため、mRNAとこれら機能性RNAの細胞内量を正確に定量することは、遺伝子相互作用の詳細な解明や疾病の診断にもつながる。また、DNAは種々の環境因子によって損傷を受け、その代表的な損傷に塩基部が失われたアベイシックサイト(アプリニックサイト;APサイト)がある。アベイシックサイトはヘミアセタール構造とアルデヒド構造の平衡状態で存在し、上記ARP試薬を作用させるとアルデヒド構造に反応するため、アベイシックサイトを検出することが可能になっている。種々の化学物質、環境因子のDNAに対する損傷度を測定して見積もることで、食品に含まれる化学物質、紫外線等の遺伝子変異原性評価にも役立つ。
生体分子の中でも特にDNA及びRNAを正確に定量するには、標的分子に対して高い反応性を有する試薬が必要である。しかしながら、これまでに用いられてきた試薬はその反応効率が不十分で、多量の試薬を作用させる必要があった。そのため、多くの条件下で標的分子を定量する必要がある場合には、コスト高となり時間を要していた。この他、糖鎖などの反応にもアミノオキシ基が用いられているが、反応性が不十分であった。
そのため、生体分子のなかでも特にこれらRNA、DNAなどの分子に対し、少量でも迅速に反応する新規な試薬の開発が望まれていた。
Biochemistry 31,3703−3708(1992) Biochemistry 32,8276−8283(1993)
As structures that react with aldehyde groups, hemiacetal groups, carboxyl groups, or keto groups, primary amino groups, aminooxy groups, and the like are known. In the case of a primary amino group, in order to form an unstable Schiff base, it is necessary to reduce and stabilize the bond. On the other hand, the aminooxy group has high reactivity and does not require a reducing agent like the amino group. For this reason, reagents having aminooxy groups have been widely used as reagents for efficiently detecting molecules having an aldehyde group (Non-patent Documents 1 and 2). This reagent (ARP; Aldehyde Reactive Probe) has a simple structure in which an aminooxy group and biotin are bonded via a linker. This reagent is allowed to react with and bind to a target molecule, and the target molecule can be detected by a spectroscopic detection method such as fluorescence or luminescence using biotin-avidin complex formation.
Representative molecules to be quantified using this reagent include nucleic acids such as RNA and DNA. In recent years, it has become clear that various functional RNAs exist in addition to mRNA encoding a gene, rRNA involved in protein synthesis, and tRNA. It has been reported that these functional RNAs function in the expression of proteins in cells and are involved in canceration. Therefore, accurate quantification of intracellular amounts of mRNA and these functional RNAs leads to detailed elucidation of gene interactions and diagnosis of diseases. In addition, DNA is damaged by various environmental factors, and there is an abasic site (aponic site; AP site) in which the base portion is lost due to typical damage. The abasic site exists in an equilibrium state of a hemiacetal structure and an aldehyde structure, and reacts with the aldehyde structure when the ARP reagent is acted on, so that the abasic site can be detected. By measuring and estimating the degree of damage of various chemical substances and environmental factors to DNA, it is useful for evaluating chemical mutagenicity such as chemical substances contained in foods and ultraviolet rays.
In order to accurately quantify DNA and RNA among biomolecules in particular, a reagent having high reactivity with a target molecule is required. However, the reagents used so far have inadequate reaction efficiency, and a large amount of reagents must be allowed to act. Therefore, when it is necessary to quantify the target molecule under many conditions, the cost is high and time is required. In addition, aminooxy groups are used for reactions such as sugar chains, but the reactivity is insufficient.
Therefore, it has been desired to develop a novel reagent that reacts quickly with a small amount of biomolecules, particularly RNA and DNA.
Biochemistry 31, 3703-3708 (1992) Biochemistry 32,8276-8283 (1993)

本発明の課題は、アルデヒド基などのアミノオキシ基と反応性の官能基を有する生体分子に対して高い反応性を有する化合物を提供することである。
本発明者らは、アミノオキシ基、芳香族基及び親水性基を有する化合物が、アルデヒド基などのアミノオキシ基と反応性の官能基を有する生体分子に対して高い反応性を有することを見出し、本発明を完成するに至った。
すなわち、本発明は以下の発明を包含する。
(1)一般式1:
−NH−O−L−D−L−A (1)
(式中、Rは、水素原子、アルキル基又はアミノ基の保護基であり、Dは、2価の芳香族基であり、Lは、直接結合又はリンカー基であり、Lは、直接結合又はリンカー基であり、Aは親水性基を含む有機基である)
で表される化合物又はその塩。
(2)Aが、親水性基として、置換又は無置換のグアニジノ基、置換又は無置換のポリエチレングリコール基、カルボキシル基、アミノオキシ基及びヒドロキシル基からなる群から選択される少なくとも1つの基を含む、(1)記載の化合物又はその塩。
(3)Aが、親水性基として、置換又は無置換のグアニジノ基を含む、(2)記載の化合物又はその塩。
(4)Aが、以下の一般式2:
(式中、X及びXは、水素原子又は有機基である)
で表される、(1)〜(3)のいずれかに記載の化合物又はその塩。
(5)Dが、置換若しくは無置換のフェニレン基、置換若しくは無置換のアントリレン基、置換若しくは無置換のナフチレン基、置換若しくは無置換のフェナントリレン基、置換若しくは無置換のアントラキノリレン、又は置換若しくは無置換のアクリジニレンである、(1)〜(4)のいずれかに記載の化合物又はその塩。
(6)Dが、以下の一般式:
(式中、一方の結合部位がL又はOに結合し、他方の結合部位がL又はAに結合する)
で表される2価の芳香族基、及びこれらの芳香族基において芳香環が1〜3個の置換基を有する芳香族基から選択される、(5)記載の化合物又はその塩。
(7) Lが、以下の一般式3又は4:
(式中、Rは、置換若しくは無置換のC1−9アルキレン基又は−(CH−(OCHCH−(CH−であり、ここで、o〜qは、それぞれ独立して0〜15の整数であり、o+p+qは、1〜15である)
のいずれかで表される2価の基であり、Lが、以下の一般式5又は6:
(式中、Rは、置換若しくは無置換のC1−9アルキレン基又は−(CH−(OCHCH−(CH−であり、ここで、r〜tは、それぞれ独立して0〜15の整数であり、r+s+tは、1〜15であるである)
のいずれかで表される2価の基である、(1)〜(6)のいずれかに記載の化合物又はその塩。
(8)以下の一般式7:
(式中、Rは、水素原子又はアミノ基の保護基であり、nは、1〜5の整数であり、mは、1〜5の整数であり、R〜Rは、それぞれ独立して、水素原子又は置換基であり、X及びXは、水素原子又は有機基である)
で表される、(1)記載の化合物又はその塩。
(9)以下の一般式8:
(式中、Rは、水素原子又はアミノ基の保護基であり、nは、1〜5の整数であり、R〜Rは、それぞれ独立して、水素原子又は置換基であり、Xは、水素原子又は有機基である)
で表される、(1)記載の化合物又はその塩。
(10)以下の一般式:
(式中、R及びRは、それぞれ独立して、水素原子又はアミノ基の保護基であり、n及びiは、それぞれ独立して、1〜5の整数であり、R〜Rは、それぞれ独立して、水素原子又は置換基である)
で表される、(1)記載の化合物又はその塩。
(11)Aが標識基をさらに含む、(1)〜(9)のいずれかに記載の化合物又はその塩。
(12)X及びXの少なくとも一方が有機基であり、該有機基が標識基である、(4)、(8)、又は(9)記載の化合物又はその塩。
(13)アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する生体分子を標識するための試薬であって、(11)又は(12)記載の化合物又はその塩を含む前記試薬。
(14)(11)又は(12)記載の化合物と、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する生体分子とが結合してなる標識化生体分子であって、該化合物のアミノオキシ基と該生体分子のアルデヒド基、ヘミアセタール基、カルボキシル基又はケト基とが反応して共有結合を形成している、前記標識化生体分子。
(15)アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する生体分子を固定化するための生体分子固定化用支持体であって、担体及び該担体表面に存在する(1)〜(10)のいずれかに記載の化合物又はその塩の層を含む、前記支持体。
本発明により、アルデヒド基などのアミノオキシ基と反応性の官能基を有する生体分子に対して高い反応性を有する化合物が提供される。
An object of the present invention is to provide a compound having high reactivity with a biomolecule having a functional group reactive with an aminooxy group such as an aldehyde group.
The present inventors have found that a compound having an aminooxy group, an aromatic group and a hydrophilic group has high reactivity with a biomolecule having a functional group reactive with an aminooxy group such as an aldehyde group. The present invention has been completed.
That is, the present invention includes the following inventions.
(1) General formula 1:
R 1 -NH-O-L 1 -D-L 2 -A (1)
(Wherein R 1 is a hydrogen atom, an alkyl group or an amino group protecting group, D is a divalent aromatic group, L 1 is a direct bond or a linker group, and L 2 is A direct bond or a linker group, and A is an organic group containing a hydrophilic group)
Or a salt thereof.
(2) A includes at least one group selected from the group consisting of a substituted or unsubstituted guanidino group, a substituted or unsubstituted polyethylene glycol group, a carboxyl group, an aminooxy group, and a hydroxyl group as a hydrophilic group. (1) A compound or a salt thereof.
(3) The compound or salt thereof according to (2), wherein A contains a substituted or unsubstituted guanidino group as a hydrophilic group.
(4) A is the following general formula 2:
(Wherein, X 1 and X 2 are a hydrogen atom or an organic group)
The compound or its salt in any one of (1)-(3) represented by these.
(5) D is a substituted or unsubstituted phenylene group, a substituted or unsubstituted anthrylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted phenanthrylene group, a substituted or unsubstituted anthraquinolylene, or substituted or unsubstituted The compound or salt thereof according to any one of (1) to (4), which is unsubstituted acridinylene.
(6) D is the following general formula:
(Wherein one binding site binds to L 1 or O and the other binding site binds to L 2 or A)
The compound or its salt as described in (5) selected from the bivalent aromatic group represented by these, and the aromatic group in which an aromatic ring has 1-3 substituents in these aromatic groups.
(7) L 1 is the following general formula 3 or 4:
(Wherein R 3 is a substituted or unsubstituted C 1-9 alkylene group or — (CH 2 ) o — (OCH 2 CH 2 ) p — (CH 2 ) q —, where o to q Are each independently an integer of 0 to 15, and o + p + q is 1 to 15)
A divalent group represented by any one of, L 2 is the following general formula 5 or 6:
(Wherein R 4 is a substituted or unsubstituted C 1-9 alkylene group or — (CH 2 ) r — (OCH 2 CH 2 ) s — (CH 2 ) t —, where r to t Are each independently an integer of 0-15, and r + s + t is 1-15.)
The compound or its salt in any one of (1)-(6) which is a bivalent group represented by either.
(8) The following general formula 7:
(In the formula, R 1 is a hydrogen atom or a protecting group for an amino group, n is an integer of 1 to 5, m is an integer of 1 to 5, and R a to R f are each independent. And a hydrogen atom or a substituent, and X 1 and X 2 are a hydrogen atom or an organic group)
The compound or its salt as described in (1) represented by these.
(9) The following general formula 8:
(In the formula, R 1 is a hydrogen atom or a protecting group for an amino group, n is an integer of 1 to 5, and R a to R f are each independently a hydrogen atom or a substituent, X 2 is a hydrogen atom or an organic group)
The compound or its salt as described in (1) represented by these.
(10) The following general formula:
(In the formula, R 1 and R 5 are each independently a hydrogen atom or an amino-protecting group, n and i are each independently an integer of 1 to 5, and R a to R f Each independently represents a hydrogen atom or a substituent)
The compound or its salt as described in (1) represented by these.
(11) The compound or salt thereof according to any one of (1) to (9), wherein A further comprises a labeling group.
(12) The compound or salt thereof according to (4), (8), or (9), wherein at least one of X 1 and X 2 is an organic group, and the organic group is a labeling group.
(13) A reagent for labeling a biomolecule having an aldehyde group, a hemiacetal group, a carboxyl group, or a keto group, the reagent comprising the compound or a salt thereof according to (11) or (12).
(14) A labeled biomolecule obtained by binding a compound according to (11) or (12) and a biomolecule having an aldehyde group, a hemiacetal group, a carboxyl group or a keto group, wherein the aminooxy of the compound The labeled biomolecule, wherein a group and a aldehyde group, a hemiacetal group, a carboxyl group, or a keto group of the biomolecule react to form a covalent bond.
(15) A biomolecule immobilization support for immobilizing a biomolecule having an aldehyde group, a hemiacetal group, a carboxyl group or a keto group, which is present on the carrier and the surface of the carrier (1) to (10) The said support body containing the layer of the compound or its salt in any one of).
According to the present invention, a compound having high reactivity with a biomolecule having a functional group reactive with an aminooxy group such as an aldehyde group is provided.

図1aはDNAのアベイシックサイトを表し、図1bはDNAのアベイシックサイトへの反応を表し、図1cはRNAの3’末端酸化反応を表す。
図2は、3’末端が酸化されたRNA(F−Lr17Xox)に対するARPとaoNgの結合反応を示す。ssは1本鎖を表し、括弧内に反応部位で形成される塩基対(XY)の組み合わせを示す。Gray bar,ARP;black bar,aoNg。
図3は、アベイシックサイトを有するDNAへのARPとaoNgの結合反応を示す。アベイシックサイトを有するDNAの一本鎖(ss)及び二本鎖(ds)に対し、37℃、42℃、47℃で反応を行ったときの速度定数のグラフを示す。
図4は、2’−デオキシウリジンを含むDNAに対するARP、aoNg、aoNg−bioの結合反応を示す。2’−デオキシウリジンを含むDNA2本鎖をUDGで処理した後に、標識試薬(ARP、aoNg、aoNg−bio)を添加し、各時間の反応産物の精製率を調べた。反応液のポリアクリルアミドゲルによる分析の結果と、各時間の反応率のグラフを示した。
図5は、アベイシックサイトを含む2本鎖DNA間の架橋反応の結果を示す。2’−デオキシウリジンを含むDNAをUDGで処理してアベイシックサイトを生成させた後にaoNaoを反応させた。反応液のポリアクリルアミドゲルによる分析の結果と、各時間の反応率のグラフを示した。
本明細書は、本願の優先権の基礎である特願2007−330315号の明細書、特許請求の範囲、及び図面に記載された内容を包含する。
FIG. 1a shows the basic site of DNA, FIG. 1b shows the reaction to the basic site of DNA, and FIG. 1c shows the 3 ′ end oxidation reaction of RNA.
FIG. 2 shows the binding reaction of ARP and aoNg to RNA (F-Lr17Xox) oxidized at the 3 ′ end. ss represents a single strand, and indicates a combination of base pairs (XY) formed at the reaction site in parentheses. Gray bar, ARP; black bar, aoNg.
FIG. 3 shows the binding reaction of ARP and aoNg to DNA having a basic site. The graph of the rate constant when reacting at 37 degreeC, 42 degreeC, and 47 degreeC with respect to the single strand (ss) and double strand (ds) of DNA which has an abasic site is shown.
FIG. 4 shows the binding reaction of ARP, aoNg, and aoNg-bio to DNA containing 2′-deoxyuridine. After DNA double strands containing 2′-deoxyuridine were treated with UDG, labeling reagents (ARP, aoNg, aoNg-bio) were added, and the purification rate of the reaction product at each time was examined. The result of the analysis of the reaction solution by polyacrylamide gel and the graph of the reaction rate at each time are shown.
FIG. 5 shows the results of a cross-linking reaction between double-stranded DNAs containing a basic site. DNA containing 2′-deoxyuridine was treated with UDG to form a basic site, and then aoNao was reacted. The result of the analysis of the reaction solution by polyacrylamide gel and the graph of the reaction rate at each time are shown.
This specification includes the contents described in the specification, claims, and drawings of Japanese Patent Application No. 2007-330315 which is the basis of the priority of the present application.

一実施形態において本発明は、一般式1:
−NH−O−L−D−L−A (1)
(式中、Rは、水素原子、アルキル基(好ましくはC1−6アルキル基)又はアミノ基の保護基であり、Dは、2価の芳香族基であり、Lは、直接結合又はリンカー基であり、Lは、直接結合又はリンカー基であり、Aは、親水性基を含む有機基である)で表される化合物又はその塩(以下、本発明の化合物と称する場合がある)に関する。
塩としては、例えば、無機酸との塩、有機酸との塩、及び塩基性又は酸性アミノ酸との塩などが挙げられる。無機酸との塩の好適な例としては、塩酸、臭化水素酸、硝酸、硫酸、リン酸などとの塩が挙げられる。有機酸との塩の好適な例としては、酢酸、トリフルオロ酢酸、フマル酸、シュウ酸、酒石酸、マレイン酸、クエン酸、コハク酸、リンゴ酸、メタンスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸などとの塩が挙げられる。塩基性アミノ酸との塩の好適な例としては、アルギニン、リジン、オルニチンなどとの塩が挙げられる。酸性アミノ酸との塩の好適な例としては、アスパラギン酸、グルタミン酸などとの塩が挙げられる。
本発明の化合物は、無水物であっても、溶媒和物であってもよい。一般式1の化合物又はその塩の溶媒和物もまた本発明の化合物に包含される。ここで溶媒は溶質(一般式1の化合物又はその塩)の生物活性を妨げるものでなければ特に制限されない。適当な溶媒の具体例としては、水、メタノール、エタノール及び酢酸が含まれる。好ましくは、溶媒は水である。
一般式1のRにおけるアミノ基の保護基は、特に制限されないが、例えば、アシル基、カルバメート基、トリアルキルシリル基、フタリル基、カルボキシアルキルカルボニル基、トシル基、トリフルオロアセチル基、トリチル基、及びモノ又はジ置換トリチル基が挙げられ、好ましくはアルキル基である。これらの基は置換されていてもよい。
は、好ましくは炭素数1〜10、より好ましくは炭素数1〜6の、置換若しくは無置換のアルキル基である。アルキル基は、直鎖でも分岐鎖でもよい。ここで、置換基としては、例えば、フッ素、塩素、臭素及びヨウ素から選ばれるハロゲン原子、ヒドロキシル基、メルカプト基、アミノ基、C1−6アルキル基、C1−6アルキルアミノ基、カルバモイル基、チオカルボキシ基、スルホ基、スルフィノ基、イソシアナト基、ニトロ基、シアノ基、C2−6アルケニル基、C3−10シクロアルキル基、C1−10アルコキシ基、C1−10アシル基、C1−10アルコキシカルボニル基並びにカルボキシル基等を挙げることができる。置換基が複数存在する場合、各置換基は同一でも異なっていてもよい。置換基の数は、好ましくは1〜3個である。
本明細書において「C1−6アルキル基」等の記載における「C1−6」等の表現は、その基が1〜6個の炭素原子を含むことをさす、該基は直鎖でも分岐鎖でもよい。
一般式1のDにおける2価の芳香族基は、ベンゼン環を有するものであればよく、縮合環中にベンゼン環を有するものでもよい。2価の芳香族基としては、5〜25個の炭素原子、好ましくは6〜20個の炭素原子を含む単環式又は多環式の2価の芳香族基が挙げられる。より具体的には、置換又は無置換のフェニレン基、置換又は無置換のピリジレン基、置換又は無置換のピリダジニル基、置換又は無置換のピリミジニレン基、置換又は無置換のピラジニレン基、置換又は無置換のフリレン基、置換又は無置換のチエニレン基、置換又は無置換のピロリレン基、置換又は無置換のイミダゾリレン基、置換又は無置換のチアゾリレン基、置換又は無置換のオキサゾリレン基、置換又は無置換のナフチレン基、置換又は無置換のアントリレン基、置換又は無置換のピレニレン基、置換又は無置換のインダニレン基、置換又は無置換のテトラヒドロナフチレン基、置換又は無置換のキノリレン基、イソキノリレン基、置換又は無置換のシンノリニレン基、置換又は無置換のキナゾリニレン基、置換又は無置換のキノキサリニレン基、置換又は無置換のナフチリジニレン基、置換又は無置換のフタラジニレン基、置換又は無置換のインドリレン基、置換又は無置換のイソインドリレン基、置換又は無置換のベンゾフリレン基、置換又は無置換のベンゾチエニレン基、置換又は無置換のインダゾリレン基、置換又は無置換のベンゾイミダゾリレン基、置換又は無置換のベンゾチアゾリレン基、置換若しくは無置換のフェナントリレン基、置換若しくは無置換のアントラキノリレン、又は置換若しくは無置換のアクリジニレンが挙げられる。Dとしては、置換又は無置換のフェニレン基、置換又は無置換のアントリレン基、置換又は無置換のナフチレン基、及び置換若しくは無置換のフェナントリレン基、置換若しくは無置換のアントラキノリレン、又は置換若しくは無置換のアクリジニレンが好ましく、特に置換又は無置換のアントリレン基及び置換又は無置換のナフチレン基が好ましい。
より具体的には、Dは、以下の一般式:
(式中、一方の結合部位がL又はOに結合し、他方の結合部位がL又はAに結合する)
で表される2価の芳香族基、及びこれらの芳香族基において芳香環が1〜3個の置換基を有する芳香族基から選択される。
あるいは、Dは、以下の一般式:
(式中、一方の結合部位がL又はOに結合し、他方の結合部位がL又はAに結合する)
で表される2価の芳香族基、及びこれらの芳香族基において芳香環が1〜3個の置換基を有する芳香族基から選択される。
あるいは、Dとしては、以下の一般式:
で表される2価の芳香族基、及びこれらの芳香族基において芳香環が1〜3個の置換基を有する芳香族基もまた好ましい。
一般式1のDにおける芳香族基の置換基としては、例えば、フッ素、塩素、臭素及びヨウ素から選ばれるハロゲン原子、ヒドロキシル基、メルカプト基、アミノ基、オキソ基、C1−6アルキル基、C1−6アルキルアミノ基、カルバモイル基、チオカルボキシ基、スルホ基、スルフィノ基、イソシアナト基、ニトロ基、シアノ基、C2−6アルケニル基、C3−10シクロアルキル基、C1−10アルコキシ基、C1−10アシル基、C1−10アルコキシカルボニル基並びにカルボキシル基等を挙げることができる。置換基が複数存在する場合、各置換基は同一でも異なっていてもよい。置換基の数は、好ましくは1〜10個、好ましくは1〜3個である。
一般式1のLにおけるリンカー基は、アミノオキシ基の酸素原子と芳香族基Dを結合する基であって、式1の化合物の反応性を阻害しないものであれば特に制限されない。リンカー基は、通常、2価の有機基、例えば主鎖に1〜15個、好ましくは1〜12個の炭素原子並びに/又は複素原子(酸素、窒素又は硫黄原子)を含む2価の有機基である。主鎖に含まれる原子の数は、リンカー基がつなぐ原子間において最短距離を形成する鎖に含まれる原子の数をさす。Lとしては、例えば、−(CH−(OCHCH−(CH−が挙げられる。ここで、o〜qは、それぞれ独立して0〜15の整数であり、o+p+qは、1〜15である。
としては、例えば、以下の一般式3又は4:
(式中、Rは、置換若しくは無置換のC1−9アルキレン基又は−(CH−(OCHCH−(CH−であり、ここで、o〜qは、それぞれ独立して0〜15の整数であり、o+p+qは、1〜15である)
で表される2価の基も例示できる。一般式3においては、Rがアミノオキシ基の酸素原子に結合し、−NH−の窒素原子が芳香族基Dに結合する。一般式4においては、Rがアミノオキシ基の酸素原子に結合し、−(CO)−の炭素原子が芳香族基Dに結合する。
ここでC1−9アルキレン基の置換基としては、例えば、フッ素、塩素、臭素及びヨウ素から選ばれるハロゲン原子、ヒドロキシル基、メルカプト基、アミノ基、C1−6アルキル基、C1−6アルキルアミノ基、カルバモイル基、チオカルボキシ基、スルホ基、スルフィノ基、イソシアナト基、ニトロ基、シアノ基、C2−6アルケニル基、C3−10シクロアルキル基、C1−10アルコキシ基、C1−10アシル基、C1−10アルコキシカルボニル基並びにカルボキシル基等を挙げることができる。置換基が複数存在する場合、各置換基は同一でも異なっていてもよい。置換基の数は、好ましくは1〜3個である。
一般式1のLにおけるリンカー基は、芳香族基Dと親水性基を含む有機基Aとを結合する基であって、式1の化合物の反応性を阻害しないものであれば特に制限されない。リンカー基は、通常、2価の有機基、例えば主鎖に1〜15個、好ましくは1〜12個の炭素原子及び/又は複素原子(酸素、窒素又は硫黄原子)を含む2価の有機基である。Lとしては、例えば、−(CH−(OCHCH−(CH−が挙げられる。ここで、r〜tは、それぞれ独立して0〜15の整数であり、r+s+tは、1〜15である。
としては、例えば、以下の一般式5又は6:
(式中、Rは、置換若しくは無置換のC1−9アルキレン基又は−(CH−(OCHCH−(CH−であり、ここで、r〜tは、それぞれ独立して0〜15の整数であり、r+s+tは、1〜15である)
で表される2価の基も例示できる。一般式5においては、−NH−の窒素原子が芳香族基Dに結合し、Rが親水性基を有する有機基Aに結合する。一般式6においては、−(CO)−の炭素原子が芳香族基Dに結合し、Rが親水性基を有する有機基Aに結合する。C1−9アルキレン基の置換基は、一般式3又は4について記載したのと同様である。
一般式1のAにおける親水性基を含む有機基は、親水性基を少なくとも1つ含む有機基であれば特に制限されず、親水性基を複数、例えば、2〜3個含んでいてもよい。Aが複数の親水性基を含む場合、それらは同一でも異なっていてもよい。本発明の化合物においてAが親水性基を含むことにより、化合物の水溶性が向上し、標的分子との相互作用を向上させることができる。その結果、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する分子との反応性を向上させることができる。
有機基Aは、好ましくは親水性基として、置換又は無置換のグアニジノ基、置換又は無置換のポリエチレングリコール基、カルボキシル基、アミノオキシ基及びヒドロキシル基からなる群から選択される少なくとも1つの親水性基、より好ましくは置換又は無置換のグアニジノ基を含む。
グアニジノ基及びポリエチレングリコール基の置換基としては、例えば、フッ素、塩素、臭素及びヨウ素から選ばれるハロゲン原子、ヒドロキシル基、メルカプト基、アミノ基、C1−6アルキル基、C1−6アルキルアミノ基、カルバモイル基、チオカルボキシ基、スルホ基、スルフィノ基、イソシアナト基、ニトロ基、シアノ基、C2−6アルケニル基、C3−10シクロアルキル基、C1−10アルコキシ基、C1−10アシル基、C1−10アルコキシカルボニル基、カルボキシル基並びにグアニジノ基等を挙げることができる。
置換又は無置換のグアニジノ基は、例えば、以下の一般式2:
(式中、X及びXは、水素原子又は有機基である)
で表される。ここでX及びXにおける有機基は、グアニジノ基の親水性を妨げるものでなければ特に制限されず、例えば、上記グアニジノ基の置換基が例示できる。
本発明において、置換又は無置換のグアニジノ基には、以下の一般式2’及び2”:
(式中、X〜Xは、水素原子又は有機基である)
で表される基も包含される。ここでX〜Xにおける有機基は、グアニジノ基の親水性を妨げるものでなければ特に制限されず、例えば、上記グアニジノ基の置換基が例示できる。
本発明の化合物におけるアミノオキシ基は、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基、特にアルデヒド基と高い反応性で共有結合を形成できることから、本発明の化合物は、アミノオキシ基は、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する化合物、例えば生体分子に、高い反応性で結合させることができる。親水性基として置換又は無置換のグアニジノ基を含む本発明の化合物は、核酸、特に2本鎖の核酸に対し、高い反応性で結合させることができる。
有機基Aは、さらに標識基を有していてもよい。本発明の化合物は、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する生体分子と高い反応性をもって結合しうることから、有機基Aが標識基を有する本発明の化合物をこのような生体分子と反応させることにより、該生体分子を効率的に標識することができる。従って、一実施形態において本発明は、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する生体分子を標識するための試薬であって、標識基を有する本発明の化合物を含む前記標識試薬に関する。本発明はまた、本発明の化合物と、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する生体分子とが結合してなる標識化生体分子であって、該化合物のアミノオキシ基と該生体分子のアルデヒド基、ヘミアセタール基、カルボキシル基又はケト基とが反応して共有結合を形成している、前記標識化生体分子に関する。
アルデヒド基、ヘミアセタール基、カルボキシル基、又はケトン基を有する生体分子としては、ポリペプチド、ポリヌクレオチド及び糖鎖などが挙げられる。ポリペプチドには、ペプチド、オリゴペプチド及びタンパク質が包含される。ポリヌクレオチドには、DNA、RNA及び非天然型核酸等の核酸が包含され、これらは1本鎖でも2本鎖でもよく、又、ポリヌクレオチドにはオリゴヌクレオチドも包含される。本発明においてポリヌクレオチドの塩基長は、通常2〜10000塩基、好ましくは2〜1000塩基である。核酸の任意の位置に、アルデヒド基、ヘミアセタール基、カルボキシル基、又はケトン基を複数導入または生成させることが可能であり、こうして得られたアルデヒド基、ヘミアセタール基、カルボキシル基、又はケトン基を有する非天然型核酸も本発明においてポリヌクレオチドに包含される。また、ポリヌクレオチドには、DNA及びRNAの誘導体、例えば、3’末端のヒドロキシル基が酸化されたアルデヒド基を有するRNA、アベイシックサイトを有するDNA、及びそのヒドロキシル基が酸化されてアルデヒド基となったものも包含される。特に、核酸におけるこれらの基の導入、生成、及びそれらの基に対する標識に関して以下に記載する。
核酸におけるアルデヒド基の生成方法は幾つかの種類に分けることができる。その代表的な方法の一つに、アベイシックサイト(またはアプリニックサイト(APサイト))形成を通してのアルデヒド構造の形成がある。核酸のアベイシックサイトは、核酸の塩基部分が除去された糖部分の構造を示し(図1−a)、閉環と開環構造の平衡で存在している。アベイシックサイトは、閉環状態ではヘミアセタール構造であるが、開環型ではアルデヒド構造となっており、アミノオキシ基を作用させるとそのアルデヒド構造に反応する(図1−b)。
このアベイシックサイトは、天然の核酸や非天然型核酸を酸性条件で処理することによって生成させることができる。非天然型核酸としては、2−ピリミジドン体(Tetrahedron Letters,31,175−178(1990))、2’−デオキシ−キサントシン体(Nucleic Acids Research,31,1045−1051(2003))、1−デアザ−2’−デオキシグアノシン体(Org Lett,7,709−712(2005))などが挙げられる。また、その他にも特別な反応条件でヘミアセタール構造の保護基を脱保護させてアベイシックサイトを形成する2’−デオキシ−D−リボース誘導体(非特許文献6;非特許文献7)なども知られている。
また、上記のように誘導体を用いてアベイシックサイトを生成させる他に、損傷塩基をオリゴヌクレオチド又はポリヌクレオチドに導入後、その損傷塩基を除去する酵素で処理し、アベイシックサイトを生成させる方法もある。この損傷塩基には、2’−デオキシウリジン、5−ヒドロキシメチル−2’−デオキシシチジンなどが挙げられ、2’−デオキシウリジンに対してはウラシルNグリコシラーゼを作用させることによってアベイシックサイトを生成させることができる。2’−デオキシウリジンは、化学合成によっても、またそのトリリン酸体(dUTP)を基質に用いてDNAポリメラーゼによる伸張反応を行うことによっても、オリゴヌクレオチドおよびポリヌクレオチド中に複数導入することが可能である。この2’−デオキシウリジンをDNA中に取り込ませてウラシルNグリコシラーゼを作用させて生成したアベイシックサイトを標識後にDNAを断片化させ、その断片を化学的に標識するキット(Ribo−SPIA(登録商標))も市販されている(特表2005−534304)。この市販キット中に含まれる標識試薬と本発明の試薬の構造は異なり、本発明の試薬を用いることによって、より迅速、かつ高収率で標的核酸を標識することが可能となる。
アベイシックサイトを経由せずにアルデヒド基を核酸中に生成させる方法もある。例えばあらかじめ非天然型核酸をオリゴヌクレオチドに導入し、その後酸化反応を行うことでアルデヒド基を生成させることが可能である(Tetrahedron Letters,37,9067−9070(1996))。また、RNAの場合には、天然型であってもアルデヒド基を形成可能である。例えばRNAの3’末端の2’位、3’位の水酸基を過ヨウ素酸等によって酸化させ、その3’末端にアルデヒド基を発生させることが可能である(図1−c)。この場合、2’位と3’位にアルデヒド基が生じるため、アミノオキシ基及び標識基を有する化合物を作用させると2’位または3’位においてRNAが標識される。
ケトン基を持つ非天然型核酸も報告されており(Org Lett,3,3983−3986(2001))、これらを導入した核酸に対し、本発明のアミノオキシ基を有する化合物を反応させることでケト基に対して標識することも可能である。
標識基は、標識物質を含む基をさす。標識物質としては、生体分子の標識に慣用される標識物質、例えば、放射性同位元素、色素(蛍光色素、発光色素)、ジゴキシゲニン(DIG)、ビオチン、メチレンブルー、フェロセンなどを例示できるがこれらに限定されない。
本発明の化合物が標識基を含む態様において、有機基Aが、上記一般式2のグアニジノ基を含むか、又は一般式2のグアニジノ基である場合は、X及びXのどちらかが有機基であり、該有機基が上記標識基であることが好ましい。有機基Aが、上記一般式2’又は2”のグアニジノ基であるかこれを含む場合も、X〜Xのいずれか、又はX若しくはXが標識基であることが好ましい。
その場合、標識物質は、グアニジノ基の窒素原子に直接結合していてもよいし、リンカーを介して結合していてもよい。リンカーとしては、特に制限されないが、通常、2価の有機基、例えば主鎖に1〜15個、好ましくは1〜12個の炭素原子及び/又は複素原子(酸素、窒素又は硫黄原子)を含む2価の有機基である。例えば、−(CH−(OCHCH−(CH−NH−が挙げられる。ここで、v、w及びxは、それぞれ独立して0〜15の整数であり、v+w+xは、1〜15である。好ましくは、−(CH−(OCHCH−NH−である。
標識物質としてビオチンを含む標識基(一般式2においては、X又はX)としては、以下の式:
で表される基を例示することができる。
有機基Aが、標識基が結合したグアニジノ基を含む有機基である本発明の化合物は、特に、核酸に標識を付すために好適に用いることができる。
本発明の標識試薬によって標識された生体分子は、様々な検出系によって定量可能である。そのため、本標識試薬は検出系、検出機器の影響を受けず、高い汎用性をもつため、広く利用される可能性を有する。
あるいは、有機基Aは、生体分子基を含んでいてもよい。生体分子基は、糖鎖、ポリヌクレオチド(オリゴヌクレオチドを含む)、ポリペプチド(例えば、酵素)などの生体分子を含む基をさす。Aがポリヌクレオチドを含む場合、PCRのプライマーとして用いることができる。例えば、本発明の化合物を標的分子に結合させた後、鋳型DNAと蛍光またはビオチンなどで標識された基質(dNTP)共存下でプライマーの伸長反応を行った場合、ポリヌクレオチドに蛍光物質(またはビオチンなど)が取り込まれ、それによって標的分子が標識される。
有機基Aが、上記一般式2のグアニジノ基を含むか、又は一般式2のグアニジノ基である場合は、X及びXのどちらかが有機基であり、該有機基が上記生体分子基であることが好ましい。有機基Aが、上記一般式2’の基を含むか、又は一般式2’の基である場合は、X〜Xのいずれかが有機基であり、該有機基が上記生体分子基であることが好ましい。上記一般式2”の基を含むか、又は一般式2”の基である場合は、X及びXのどちらかが有機基であり、該有機基が上記生体分子基であることが好ましい。その場合、生体分子は、グアニジノ基の窒素原子に直接結合していてもよいし、リンカーを介して結合していてもよい。リンカーは、上記標識基におけるリンカーと同様である。
本発明の化合物におけるアミノオキシ基は、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する分子、例えば生体分子に、高い反応性で結合することから、担体の表面に本発明の化合物の層を形成し、本発明の化合物を介して生体分子を担体に固定化することができる。従って、一実施形態において本発明は、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する生体分子を固定化するための生体分子固定化用支持体であって、担体及び該担体表面に存在する本発明の化合物の層を含む、前記支持体に関する。
本発明の化合物の層の形成は、単に本発明の化合物を担体上に塗布することにより実施してもよいし、担体上の官能基と共有結合を形成することにより実施してもよい。
担体上の官能基と共有結合を形成する場合、本発明の化合物における有機基Aは、担体への結合に適した官能基を含むことが好ましい。そのような官能基としては、固定化しようとする担体上に存在する官能基と共有結合を形成しうる基が挙げられ、例えば、活性エステル基、エポキシ基、アルデヒド基、カルボジイミド基、イソチオシアネート基又はイソシアネート基と共有結合しうる基(例えば、アミノ基、アミノオキシ基など)、あるいはマレイミド基又はジスルフィド基と反応しうる基(例えば、メルカプト基など)等が挙げられる。これらの官能基は保護された形態でもよい。保護された形態とは、官能基の水素原子が保護基で置換された形態を意味する。アミノ基、アミノオキシ基などの保護基としては、特に制限されないが、アルキル基、アシル基、カルバメート基、トリアルキルシリル基、フタリル基、カルボキシアルキルカルボニル基、トシル基、トリフルオロアセチル基、トリチル基、及びモノ又はジ置換トリチル基が挙げられる。モノ置換トリチル基としては、例えば、モノアルコキシトリチル基、好ましくは炭素数1〜4、より好ましくは炭素数1のアルコキシ基を有するモノアルコキシトリチル基、具体的には、モノメトキシトリチル基、モノエトキシトリチル基、モノプロポキシトリチル基、モノイソプロポキシトリチル基及びモノブトキシトリチル基が挙げられる。
本発明の化合物を結合させる担体の材料としては、例えば、石英ガラス、ホウ珪酸ガラス及びソーダライムガラスなどのガラス、シリコン、金属、繊維、木材、紙、セラミックス、プラスチック(例えば、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ABS樹脂、ナイロン、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、塩化ビニル樹脂)が挙げられる。本発明においては、ガラス、シリコン、セラミックス又はプラスチックを使用するのが好ましい。上記担体の表面に本発明の化合物の層を形成する。担体に官能基を導入する場合、導入する官能基としては、例えば、活性エステル基、エポキシ基、アミノ基、クロロ基、ジスルフィド基、アルデヒド基、マレイイミド基、カルボジイミド基、イソチオシアナト基、イソシアナト基等が挙げられる。アミノ基またはアミノオキシ基を有する本発明の化合物を結合する場合は、活性エステル基、エポキシ基、アルデヒド基、カルボジイミド基、イソチオシアネート基、イソシアネート基が導入された担体を用いるのが好ましく、メルカプト基を有する本発明の化合物を結合する場合は、マレイミド基、ジスルフィド基が導入された担体を用いるのが好ましい。
担体の形状は、特に制限されず、基板状、糸状、球状、ビーズ状、多角形状、粉末状、多孔質状などが挙げられ、本発明においては基板状が好ましい。
置換又は無置換のグアニジノ基を含む有機基Aを有する本発明の化合物は、核酸に特異的に結合し得ることから、当該化合物を担体に結合させることにより、優れた核酸固定化用支持体を製造することができる。得られた核酸固定化用支持体にDNAなどの核酸を固定化することにより、効率的にマイクロアレイを製造するができる。
本発明の化合物により、特に、RNA及びDNAなどの核酸への標識反応を効率化することができ、遺伝子検出に要する時間を短縮することができる。さらに本発明の化合物の高い反応性によって、検出感度の向上、及び検出値の定量化が可能となり、遺伝子に関わるより詳細な情報を正確に得ることができる。また、担体上に本発明の化合物の層を形成し、その表面上で標的生体分子との結合反応を行う場合にも、担体上で効率的に標的生体分子の捕捉が行えるようになり、生体分子の同定に応用することができる。
以下、本発明を実施例により説明するが、本発明の範囲は実施例に限定されない。
In one embodiment, the present invention provides compounds of general formula 1:
R 1 -NH-OL 1 -D-L 2 -A (1)
(Wherein R 1 Is a hydrogen atom, an alkyl group (preferably C 1-6 An alkyl group) or a protecting group for amino group, D is a divalent aromatic group, L 1 Is a direct bond or a linker group and L 2 Is a direct bond or a linker group, and A is an organic group containing a hydrophilic group) or a salt thereof (hereinafter sometimes referred to as a compound of the present invention).
Examples of the salt include a salt with an inorganic acid, a salt with an organic acid, and a salt with a basic or acidic amino acid. Preferable examples of the salt with inorganic acid include salts with hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid and the like. Preferable examples of the salt with an organic acid include acetic acid, trifluoroacetic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, malic acid, methanesulfonic acid, benzenesulfonic acid, and p-toluenesulfone. And salts with acids. Preferable examples of the salt with basic amino acid include salts with arginine, lysine, ornithine and the like. Preferable examples of the salt with acidic amino acid include salts with aspartic acid, glutamic acid and the like.
The compound of the present invention may be an anhydride or a solvate. Solvates of the compound of general formula 1 or salts thereof are also encompassed in the compounds of the present invention. Here, the solvent is not particularly limited as long as it does not interfere with the biological activity of the solute (the compound of general formula 1 or its salt). Specific examples of suitable solvents include water, methanol, ethanol and acetic acid. Preferably the solvent is water.
R in general formula 1 1 The amino-protecting group in is not particularly limited, but examples thereof include acyl groups, carbamate groups, trialkylsilyl groups, phthalyl groups, carboxyalkylcarbonyl groups, tosyl groups, trifluoroacetyl groups, trityl groups, and mono- or di-substituted groups. A trityl group is mentioned, Preferably it is an alkyl group. These groups may be substituted.
R 1 Is preferably a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms. The alkyl group may be linear or branched. Here, as the substituent, for example, a halogen atom selected from fluorine, chlorine, bromine and iodine, a hydroxyl group, a mercapto group, an amino group, C 1-6 Alkyl group, C 1-6 Alkylamino group, carbamoyl group, thiocarboxy group, sulfo group, sulfino group, isocyanato group, nitro group, cyano group, C 2-6 Alkenyl group, C 3-10 A cycloalkyl group, C 1-10 Alkoxy group, C 1-10 Acyl group, C 1-10 Examples thereof include an alkoxycarbonyl group and a carboxyl group. When a plurality of substituents are present, each substituent may be the same or different. The number of substituents is preferably 1 to 3.
In this specification, “C 1-6 “C” in the description of “alkyl group” 1-6 The expression "" means that the group contains 1 to 6 carbon atoms, which group may be linear or branched.
The divalent aromatic group in D of General Formula 1 may be any group having a benzene ring, and may have a benzene ring in the condensed ring. Examples of the divalent aromatic group include monocyclic or polycyclic divalent aromatic groups containing 5 to 25 carbon atoms, preferably 6 to 20 carbon atoms. More specifically, a substituted or unsubstituted phenylene group, a substituted or unsubstituted pyridylene group, a substituted or unsubstituted pyridazinyl group, a substituted or unsubstituted pyrimidinylene group, a substituted or unsubstituted pyrazinylene group, a substituted or unsubstituted group Furylene group, substituted or unsubstituted thienylene group, substituted or unsubstituted pyrrolylene group, substituted or unsubstituted imidazolylene group, substituted or unsubstituted thiazolylene group, substituted or unsubstituted oxazolylene group, substituted or unsubstituted naphthylene Group, substituted or unsubstituted anthrylene group, substituted or unsubstituted pyrenylene group, substituted or unsubstituted indanylene group, substituted or unsubstituted tetrahydronaphthylene group, substituted or unsubstituted quinolylene group, isoquinolylene group, substituted or unsubstituted Substituted cinnolinylene group, substituted or unsubstituted quinazolinylene group, substituted or unsubstituted quinoki Linylene group, substituted or unsubstituted naphthyridinylene group, substituted or unsubstituted phthalazinylene group, substituted or unsubstituted indolylene group, substituted or unsubstituted isoindolinylene group, substituted or unsubstituted benzofurylene group, substituted or unsubstituted A benzothienylene group, a substituted or unsubstituted indazolylene group, a substituted or unsubstituted benzimidazolylene group, a substituted or unsubstituted benzothiazolylene group, a substituted or unsubstituted phenanthrylene group, a substituted or unsubstituted anthraquinolylene, or A substituted or unsubstituted acridinylene is mentioned. D is a substituted or unsubstituted phenylene group, a substituted or unsubstituted anthrylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted phenanthrylene group, a substituted or unsubstituted anthraquinolylene, or a substituted or unsubstituted Substituted acridinylene is preferable, and a substituted or unsubstituted anthrylene group and a substituted or unsubstituted naphthylene group are particularly preferable.
More specifically, D represents the following general formula:
(Wherein one binding site is L 1 Or the other binding site is L 2 Or bind to A)
And the aromatic ring in these aromatic groups is selected from aromatic groups having 1 to 3 substituents.
Alternatively, D is the following general formula:
(Wherein one binding site is L 1 Or the other binding site is L 2 Or bind to A)
And the aromatic ring in these aromatic groups is selected from aromatic groups having 1 to 3 substituents.
Alternatively, as D, the following general formula:
A divalent aromatic group represented by the formula (1) and an aromatic group in which the aromatic ring has 1 to 3 substituents are also preferable.
Examples of the substituent of the aromatic group in D of the general formula 1 include a halogen atom selected from fluorine, chlorine, bromine and iodine, a hydroxyl group, a mercapto group, an amino group, an oxo group, C 1-6 Alkyl group, C 1-6 Alkylamino group, carbamoyl group, thiocarboxy group, sulfo group, sulfino group, isocyanato group, nitro group, cyano group, C 2-6 Alkenyl group, C 3-10 A cycloalkyl group, C 1-10 Alkoxy group, C 1-10 Acyl group, C 1-10 Examples thereof include an alkoxycarbonyl group and a carboxyl group. When a plurality of substituents are present, each substituent may be the same or different. The number of substituents is preferably 1 to 10, preferably 1 to 3.
L in general formula 1 1 The linker group in is a group that binds the oxygen atom of the aminooxy group and the aromatic group D, and is not particularly limited as long as it does not inhibit the reactivity of the compound of Formula 1. The linker group is usually a divalent organic group, for example, a divalent organic group containing 1 to 15, preferably 1 to 12 carbon atoms and / or a hetero atom (oxygen, nitrogen or sulfur atom) in the main chain. It is. The number of atoms contained in the main chain refers to the number of atoms contained in the chain that forms the shortest distance between the atoms connected by the linker group. L 1 For example,-(CH 2 ) o -(OCH 2 CH 2 ) p -(CH 2 ) q -. Here, o to q are each independently an integer of 0 to 15, and o + p + q is 1 to 15.
L 1 As, for example, the following general formula 3 or 4:
(Wherein R 3 Is substituted or unsubstituted C 1-9 An alkylene group or-(CH 2 ) o -(OCH 2 CH 2 ) p -(CH 2 ) q Where o to q are each independently an integer of 0 to 15 and o + p + q is 1 to 15)
The bivalent group represented by these can be illustrated. In general formula 3, R 3 Is bonded to the oxygen atom of the aminooxy group, and the nitrogen atom of —NH— is bonded to the aromatic group D. In general formula 4, R 3 Is bonded to the oxygen atom of the aminooxy group, and the carbon atom of — (CO) — is bonded to the aromatic group D.
Where C 1-9 Examples of the substituent of the alkylene group include a halogen atom selected from fluorine, chlorine, bromine and iodine, a hydroxyl group, a mercapto group, an amino group, C 1-6 Alkyl group, C 1-6 Alkylamino group, carbamoyl group, thiocarboxy group, sulfo group, sulfino group, isocyanato group, nitro group, cyano group, C 2-6 Alkenyl group, C 3-10 A cycloalkyl group, C 1-10 Alkoxy group, C 1-10 Acyl group, C 1-10 Examples thereof include an alkoxycarbonyl group and a carboxyl group. When a plurality of substituents are present, each substituent may be the same or different. The number of substituents is preferably 1 to 3.
L in general formula 1 2 The linker group in is a group that binds the aromatic group D and the organic group A containing a hydrophilic group, and is not particularly limited as long as it does not inhibit the reactivity of the compound of Formula 1. The linker group is usually a divalent organic group, for example, a divalent organic group containing 1 to 15, preferably 1 to 12 carbon atoms and / or hetero atoms (oxygen, nitrogen or sulfur atoms) in the main chain. It is. L 2 For example,-(CH 2 ) r -(OCH 2 CH 2 ) s -(CH 2 ) t -. Here, r to t are each independently an integer of 0 to 15, and r + s + t is 1 to 15.
L 2 As, for example, the following general formula 5 or 6:
(Wherein R 4 Is substituted or unsubstituted C 1-9 An alkylene group or-(CH 2 ) r -(OCH 2 CH 2 ) s -(CH 2 ) t Where r to t are each independently an integer of 0 to 15 and r + s + t is 1 to 15)
The bivalent group represented by these can be illustrated. In the general formula 5, a nitrogen atom of —NH— is bonded to the aromatic group D, and R 4 Binds to an organic group A having a hydrophilic group. In the general formula 6, a carbon atom of — (CO) — is bonded to the aromatic group D, and R 4 Binds to an organic group A having a hydrophilic group. C 1-9 The substituents of the alkylene group are the same as those described for the general formula 3 or 4.
The organic group containing a hydrophilic group in A of the general formula 1 is not particularly limited as long as it is an organic group containing at least one hydrophilic group, and may contain a plurality of, for example, 2 to 3, hydrophilic groups. . When A contains a plurality of hydrophilic groups, they may be the same or different. When A contains a hydrophilic group in the compound of the present invention, the water solubility of the compound can be improved and the interaction with the target molecule can be improved. As a result, the reactivity with a molecule having an aldehyde group, a hemiacetal group, a carboxyl group, or a keto group can be improved.
The organic group A is preferably at least one hydrophilic group selected from the group consisting of a substituted or unsubstituted guanidino group, a substituted or unsubstituted polyethylene glycol group, a carboxyl group, an aminooxy group and a hydroxyl group as a hydrophilic group. Groups, more preferably substituted or unsubstituted guanidino groups.
Examples of the substituent of the guanidino group and the polyethylene glycol group include a halogen atom selected from fluorine, chlorine, bromine and iodine, a hydroxyl group, a mercapto group, an amino group, C 1-6 Alkyl group, C 1-6 Alkylamino group, carbamoyl group, thiocarboxy group, sulfo group, sulfino group, isocyanato group, nitro group, cyano group, C 2-6 Alkenyl group, C 3-10 A cycloalkyl group, C 1-10 Alkoxy group, C 1-10 Acyl group, C 1-10 An alkoxycarbonyl group, a carboxyl group, a guanidino group, etc. can be mentioned.
The substituted or unsubstituted guanidino group includes, for example, the following general formula 2:
(Where X 1 And X 2 Is a hydrogen atom or an organic group)
It is represented by Where X 1 And X 2 The organic group in is not particularly limited as long as it does not interfere with the hydrophilicity of the guanidino group, and examples thereof include substituents of the above guanidino group.
In the present invention, the substituted or unsubstituted guanidino group includes the following general formulas 2 ′ and 2 ″:
(Where X 3 ~ X 7 Is a hydrogen atom or an organic group)
The group represented by these is also included. Where X 3 ~ X 7 The organic group in is not particularly limited as long as it does not interfere with the hydrophilicity of the guanidino group, and examples thereof include substituents of the above guanidino group.
The aminooxy group in the compound of the present invention can form a covalent bond with high reactivity with an aldehyde group, a hemiacetal group, a carboxyl group or a keto group, particularly an aldehyde group. It is possible to bind to a compound having a group, a hemiacetal group, a carboxyl group or a keto group, for example, a biomolecule with high reactivity. The compound of the present invention containing a substituted or unsubstituted guanidino group as a hydrophilic group can be bound with high reactivity to a nucleic acid, particularly a double-stranded nucleic acid.
The organic group A may further have a labeling group. Since the compound of the present invention can bind to a biomolecule having an aldehyde group, a hemiacetal group, a carboxyl group, or a keto group with high reactivity, the compound of the present invention in which the organic group A has a labeling group is used as such a living body. By reacting with a molecule, the biomolecule can be labeled efficiently. Therefore, in one embodiment, the present invention relates to a reagent for labeling a biomolecule having an aldehyde group, a hemiacetal group, a carboxyl group or a keto group, the labeling reagent comprising the compound of the present invention having a labeling group. . The present invention also provides a labeled biomolecule formed by binding a compound of the present invention to a biomolecule having an aldehyde group, a hemiacetal group, a carboxyl group, or a keto group, and the aminooxy group of the compound and the biomolecule The present invention relates to the labeled biomolecule in which a aldehyde group, a hemiacetal group, a carboxyl group, or a keto group of the molecule reacts to form a covalent bond.
Examples of biomolecules having an aldehyde group, a hemiacetal group, a carboxyl group, or a ketone group include polypeptides, polynucleotides, and sugar chains. Polypeptides include peptides, oligopeptides and proteins. Polynucleotides include nucleic acids such as DNA, RNA, and non-natural nucleic acids, which may be single-stranded or double-stranded, and polynucleotides include oligonucleotides. In the present invention, the base length of the polynucleotide is usually 2 to 10000 bases, preferably 2 to 1000 bases. A plurality of aldehyde groups, hemiacetal groups, carboxyl groups, or ketone groups can be introduced or generated at any position of the nucleic acid, and the aldehyde group, hemiacetal group, carboxyl group, or ketone group thus obtained can be introduced. The non-natural nucleic acid having is also included in the polynucleotide in the present invention. Polynucleotides also include derivatives of DNA and RNA, such as RNA having an aldehyde group in which the hydroxyl group at the 3 ′ end is oxidized, DNA having an abasic site, and the hydroxyl group being oxidized to an aldehyde group. Are also included. In particular, the introduction, generation and labeling of these groups in nucleic acids is described below.
Methods for generating aldehyde groups in nucleic acids can be divided into several types. One of the typical methods is the formation of an aldehyde structure through the formation of a basic site (or apnic site (AP site)). The abasic site of a nucleic acid shows the structure of a sugar moiety from which the base portion of the nucleic acid has been removed (FIG. 1-a), and exists in an equilibrium between a closed ring and an open ring structure. The abasic site has a hemiacetal structure in the ring-closed state, but has an aldehyde structure in the ring-opening type, and reacts with the aldehyde structure when an aminooxy group is allowed to act (FIG. 1-b).
This abasic site can be generated by treating a natural nucleic acid or a non-natural nucleic acid under acidic conditions. Non-natural nucleic acids include 2-pyrimidone (Tetrahedron Letters, 31, 175-178 (1990)), 2′-deoxy-xanthosine (Nucleic Acids Research, 31, 1045-1051 (2003)), 1-deaza. -2'-deoxyguanosine body (Org Lett, 7, 709-712 (2005)) etc. are mentioned. In addition, 2′-deoxy-D-ribose derivatives (Non-patent Document 6; Non-patent Document 7) that form a basic site by deprotecting a protecting group having a hemiacetal structure under special reaction conditions are also known. It has been.
In addition to generating a basic site using a derivative as described above, there is also a method for generating an abasic site by introducing a damaged base into an oligonucleotide or polynucleotide and then treating with an enzyme that removes the damaged base. is there. Examples of the damaged base include 2′-deoxyuridine, 5-hydroxymethyl-2′-deoxycytidine, and the like, and abasic site is generated by acting uracil N glycosylase on 2′-deoxyuridine. be able to. A plurality of 2′-deoxyuridines can be introduced into oligonucleotides and polynucleotides by chemical synthesis or by performing an extension reaction with DNA polymerase using the triphosphate (dUTP) as a substrate. is there. This 2′-deoxyuridine is incorporated into DNA and a basic site produced by the action of uracil N glycosylase is labeled, then the DNA is fragmented, and the fragment is chemically labeled (Ribo-SPIA (registered trademark)). )) Is also commercially available (Special Table 2005-534304). The structure of the labeling reagent contained in this commercially available kit and the reagent of the present invention is different, and by using the reagent of the present invention, it becomes possible to label the target nucleic acid more rapidly and with a high yield.
There is also a method of generating an aldehyde group in a nucleic acid without going through an abasic site. For example, an aldehyde group can be generated by introducing a non-natural nucleic acid into an oligonucleotide in advance and then performing an oxidation reaction (Tetrahedron Letters, 37, 9067-9070 (1996)). In the case of RNA, an aldehyde group can be formed even in a natural type. For example, it is possible to oxidize the 2′-position and 3′-position hydroxyl group of the 3 ′ end of RNA with periodic acid or the like to generate an aldehyde group at the 3 ′ end (FIG. 1-c). In this case, since an aldehyde group is generated at the 2′-position and the 3′-position, when a compound having an aminooxy group and a labeling group is allowed to act, RNA is labeled at the 2′-position or the 3′-position.
Non-natural nucleic acids having a ketone group have also been reported (Org Lett, 3, 3983-3986 (2001)), and the nucleic acid into which these are introduced is reacted with the compound having an aminooxy group of the present invention. It is also possible to label the group.
The labeling group refers to a group containing a labeling substance. Examples of labeling substances include, but are not limited to, labeling substances commonly used for labeling biomolecules, such as radioisotopes, dyes (fluorescent dyes, luminescent dyes), digoxigenin (DIG), biotin, methylene blue, and ferrocene. .
In an embodiment in which the compound of the present invention contains a labeling group, when the organic group A contains a guanidino group of the above general formula 2 or a guanidino group of the general formula 2, 1 And X 2 Is an organic group, and the organic group is preferably the labeling group. When the organic group A is a guanidino group of the above general formula 2 ′ or 2 ″ or contains this, 3 ~ X 5 Or X 6 Or X 7 Is preferably a labeling group.
In that case, the labeling substance may be directly bonded to the nitrogen atom of the guanidino group or may be bonded via a linker. Although it does not restrict | limit especially as a linker, Usually, a divalent organic group, for example, 1-15 in a main chain, Preferably it contains 1-12 carbon atoms and / or a hetero atom (oxygen, nitrogen, or a sulfur atom). It is a divalent organic group. For example,-(CH 2 ) v -(OCH 2 CH 2 ) w -(CH 2 ) x -NH- is mentioned. Here, v, w, and x are each independently an integer of 0-15, and v + w + x is 1-15. Preferably,-(CH 2 ) 2 -(OCH 2 CH 2 ) 2 -NH-.
A labeling group containing biotin as a labeling substance (in the general formula 2, X 1 Or X 2 ) As the following formula:
The group represented by these can be illustrated.
The compound of the present invention in which the organic group A is an organic group containing a guanidino group to which a labeling group is bonded can be preferably used for labeling a nucleic acid.
The biomolecule labeled with the labeling reagent of the present invention can be quantified by various detection systems. For this reason, the present labeling reagent is not affected by the detection system and the detection equipment, and has high versatility, so that it can be widely used.
Alternatively, the organic group A may contain a biomolecular group. The biomolecule group refers to a group containing a biomolecule such as a sugar chain, a polynucleotide (including an oligonucleotide), and a polypeptide (for example, an enzyme). When A contains a polynucleotide, it can be used as a primer for PCR. For example, after the compound of the present invention is bound to a target molecule and a primer extension reaction is carried out in the presence of a template DNA and a substrate labeled with fluorescence or biotin (dNTP), a fluorescent substance (or biotin) is added to the polynucleotide. Etc.) are incorporated thereby labeling the target molecule.
When the organic group A contains a guanidino group of the above general formula 2 or is a guanidino group of the general formula 2, 1 And X 2 Is an organic group, and the organic group is preferably the biomolecular group. When the organic group A contains a group of the above general formula 2 ′ or is a group of the general formula 2 ′, X 3 ~ X 5 Is an organic group, and the organic group is preferably the biomolecular group. If it contains a group of general formula 2 ″ or is a group of general formula 2 ″, X 6 And X 7 Is an organic group, and the organic group is preferably the biomolecular group. In that case, the biomolecule may be directly bonded to the nitrogen atom of the guanidino group or may be bonded via a linker. The linker is the same as the linker in the labeling group.
Since the aminooxy group in the compound of the present invention binds to a molecule having an aldehyde group, a hemiacetal group, a carboxyl group or a keto group, such as a biomolecule, with high reactivity, the layer of the compound of the present invention is formed on the surface of the carrier. And the biomolecule can be immobilized on a carrier via the compound of the present invention. Therefore, in one embodiment, the present invention provides a biomolecule immobilization support for immobilizing a biomolecule having an aldehyde group, a hemiacetal group, a carboxyl group, or a keto group, which is present on the carrier and the surface of the carrier. To the support, comprising a layer of the compound of the invention.
Formation of the layer of the compound of the present invention may be carried out by simply applying the compound of the present invention on a carrier, or by forming a covalent bond with a functional group on the carrier.
When forming a covalent bond with the functional group on a support | carrier, it is preferable that the organic group A in the compound of this invention contains the functional group suitable for the coupling | bonding to a support | carrier. Examples of such a functional group include groups capable of forming a covalent bond with a functional group present on the carrier to be immobilized, such as an active ester group, an epoxy group, an aldehyde group, a carbodiimide group, and an isothiocyanate group. Alternatively, a group that can be covalently bonded to an isocyanate group (for example, an amino group, an aminooxy group, and the like), a group that can react with a maleimide group or a disulfide group (for example, a mercapto group), and the like can be given. These functional groups may be in protected form. The protected form means a form in which a hydrogen atom of a functional group is substituted with a protecting group. The protecting group such as amino group and aminooxy group is not particularly limited, but is alkyl group, acyl group, carbamate group, trialkylsilyl group, phthalyl group, carboxyalkylcarbonyl group, tosyl group, trifluoroacetyl group, trityl group. And mono- or di-substituted trityl groups. Examples of the mono-substituted trityl group include a monoalkoxytrityl group, preferably a monoalkoxytrityl group having 1 to 4 carbon atoms, more preferably an alkoxy group having 1 carbon atom, specifically a monomethoxytrityl group and a monoethoxy group. Examples include a trityl group, a monopropoxytrityl group, a monoisopropoxytrityl group, and a monobutoxytrityl group.
Examples of the material for the carrier to which the compound of the present invention is bound include glass such as quartz glass, borosilicate glass and soda lime glass, silicon, metal, fiber, wood, paper, ceramics, plastic (for example, polyester resin, polyethylene resin). Polypropylene resin, ABS resin, nylon, acrylic resin, fluororesin, polycarbonate resin, polyurethane resin, methylpentene resin, phenol resin, melamine resin, epoxy resin, vinyl chloride resin). In the present invention, glass, silicon, ceramics or plastic is preferably used. A layer of the compound of the present invention is formed on the surface of the carrier. When introducing a functional group into the carrier, examples of the functional group to be introduced include an active ester group, an epoxy group, an amino group, a chloro group, a disulfide group, an aldehyde group, a maleimide group, a carbodiimide group, an isothiocyanato group, an isocyanato group, and the like. Can be mentioned. When linking the compound of the present invention having an amino group or aminooxy group, it is preferable to use a carrier having an active ester group, an epoxy group, an aldehyde group, a carbodiimide group, an isothiocyanate group or an isocyanate group introduced, and a mercapto group In the case of binding the compound of the present invention having a carrier, it is preferable to use a carrier having a maleimide group or a disulfide group introduced therein.
The shape of the carrier is not particularly limited, and examples thereof include a substrate shape, a thread shape, a spherical shape, a bead shape, a polygonal shape, a powder shape, and a porous shape. In the present invention, the substrate shape is preferable.
Since the compound of the present invention having an organic group A containing a substituted or unsubstituted guanidino group can specifically bind to a nucleic acid, an excellent support for immobilizing a nucleic acid can be obtained by binding the compound to a carrier. Can be manufactured. By immobilizing nucleic acids such as DNA on the obtained support for immobilizing nucleic acid, a microarray can be efficiently produced.
With the compound of the present invention, in particular, the labeling reaction to nucleic acids such as RNA and DNA can be made efficient, and the time required for gene detection can be shortened. Furthermore, the high reactivity of the compound of the present invention makes it possible to improve the detection sensitivity and quantify the detected value, so that more detailed information related to the gene can be obtained accurately. In addition, when a layer of the compound of the present invention is formed on a carrier and a binding reaction with a target biomolecule is carried out on the surface, the target biomolecule can be efficiently captured on the carrier, It can be applied to molecular identification.
EXAMPLES Hereinafter, although an Example demonstrates this invention, the scope of the present invention is not limited to an Example.

(実施例1)アミノオキシナフタレン試薬(aoNg、化合物6およびaoNg−biotin、化合物10)の合成
薄層クロマトグラフィーはKieselgel 60F254プレート(Merck社)上で行った。カラムクロマトグラフィーにはWakogel C−200(和光純薬工業)を用いた。H NMR及び13C NMRはテトラメチルシランを内部標準とし、JEOL JNM−EX270を用いて測定した。
aoNg、化合物6の合成
スキーム1
−(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物2)
アルゴン雰囲気下、1,5−ジアミノナフタレン(化合物1)440mg(2.80mmol)及びN−トリチルアミノオキシ酢酸1.00g(3.00mmol)をジメチルホルムアミド(DMF)30mlに溶解し、EDC[塩酸1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド]590mg(3.10mmol)を加え、室温で20時間撹拌した。反応液に酢酸エチル200mlを加え、水70mlで4回洗浄した。溶液を減圧下濃縮した後、酢酸エチルで3回共沸し、生じた沈殿を酢酸エチル(20ml)とヘキサン(120ml)の混合溶液に懸濁させた。沈殿を吸引濾過により濾取して標記化合物(化合物2)1.03g(収率72%)を淡茶色粉状物質として得た。
FAB−LRMS m/z 473.3(M);FAB−HRMS 計算値:473.2103(C3127[M]),実測値:473.2093.
H NMR(270MHz,DMSO−d)δ:9.33(br s,1H,NH),8.38(br s,1H,NH),7.93(d,1H,naph,J=8.6Hz),7.64(d,1H,naph,J=7.3Hz),7.34−7.25(m,16H,Tr and naph),7.20(t,1H,naph,J=8.2Hz),6.99(d,1H,naph,J=8.2Hz),6.70(d,1H,naph,J=7.3Hz),5.78(br s,2H,NH),4.20(s,2H,CH).
13C NMR(67.8MHz,DMSO−d)δ:168.26(C),144.96(C),144.01(C),132.13(C),128.70(CH),127.57(CH),126.68(CH),123.05(C),122.76(CH),121.06(CH),119.88(CH),109.15(CH),107.58(CH),73.64(C),73.31(CH)。
−[2−(トリフルオロアセチルアミノ)エチルカルボニル]−N −(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物3)
アルゴン雰囲気下、N−(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物2)1.00g(2.11mmol)及びN−トリフルオロアセチル−β−アラニン780mg(4.22mmol)をジメチルホルムアミド25mlに溶解し、EDC[塩酸1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド]810mg(4.22mmol)を加え、室温で17時間撹拌した。反応液に酢酸エチル220mlを加え、水80mlで4回洗浄した。溶液を減圧下濃縮後、シリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル−ヘキサン)により精製して標記化合物(化合物3)961mg(収率71%)を白色固体状物質として得た。
FAB−LRMS m/z 640.3(M);FAB−HRMS 計算値:640.2297(C3631[M]),実測値:640.2308.
H NMR(270MHz,DMSO−d)δ:10.04(s,1H,NH),9.61(s,2H,NH and NH),8.36(s,1H,NH),7.94(d,1H,naph,J=8.6Hz),7.74−7.69(m,3H,naph),7.55−7.48(m,2H,naph),7.35−7.25(m,15H,Tr),4.23(s,2H,CH),3.56(br t,2H,CH,J=6.8Hz),2.78(t,2H,CH,J=6.8Hz).
13C NMR(67.8MHz,DMSO−d)δ:169.27(C),168.76(C),156.12(C,q,J=35.8Hz),144.01(C),133.57(C),132.73(C),128.73(CH),128.46(C),128.41(C),127.58(CH),126.70(CH),125.36(CH),125.11(CH),122.04(CH),120.52(CH),119.67(CH),115.80(C,q,J=287.9Hz),73.67(C),73.33(CH),36.04(CH),34.80(CH)。
−(2−アミノエチルカルボニル)−N −(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物4)
−[2−(トリフルオロアセチルアミノ)エチルカルボニル]−N−(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物3)950mg(1.48mmol)にエタノール40ml及び濃アンモニア水20mlを加えて耐圧ガラス容器に密封し、60℃で4時間加熱した。溶液を室温に戻した後、減圧下濃縮し、残渣をアセトニトリルで3回共沸して標記化合物(化合物4)を淡黄色泡状物質として得た。本化合物はこれ以上の精製を行わず、次の反応に用いた。
FAB−LRMS m/z 545.4(MH);FAB−HRMS 計算値:545.2553(C3433[MH]),実測値:545.2573.
H NMR(270MHz,DMSO−d)δ:10.19(s,1H,NH),9.62(s,1H,NH),8.34(s,1H,NH),7.98(d,1H,naph,J=8.2Hz),7.80(br s,2H,NH),7.75−7.70(m,3H,naph),7.58−7.49(m,2H,naph),7.38−7.25(m,15H,Tr),4.23(s,2H,CH),3.16(t,2H,CH,J=6.6Hz),2.89(t,2H,CH,J=6.6Hz).
13C NMR(67.8MHz,DMSO−d)δ:168.89(C),168.78(C),143.98(C),133.29(C),132.77(C),128.70(CH),128.49(C),128.29(C),127.56(CH),126.70(CH),125.32(CH),125.19(CH),122.13(CH),121.94(CH),120.49(CH),119.82(CH),73.64(C),73.30(CH),35.11(CH),32.82(CH)。
−(2−グアニジノエチルカルボニル)−N −(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物5)
アルゴン雰囲気下、前反応により合成したN−(2−アミノエチルカルボニル)−N−(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物4)全量(1.48mmol)をジメチルホルムアミド15mlに溶解し、塩酸1H−ピラゾール−1−カルボキシアミジン320mg(2.20mmol)及びトリエチルアミン0.61ml(4.40mmol)を加え、室温で6時間撹拌した。反応液に酢酸エチル150mlを加え、水50mlで4回洗浄した。溶液を減圧下濃縮後、シリカゲルカラムクロマトグラフィー(溶出溶媒:エタノール−クロロホルム)により精製して標記化合物(化合物5)567mg(収率66%)を淡茶色泡状物質として得た。
FAB−LRMS m/z 587.3(MH);FAB−HRMS 計算値:587.2771(C3535[MH]),実測値:587.2772.
H NMR(270MHz,DMSO−d)δ:10.11(s,1H,NH),9.61(s,1H,NH),8.34(s,1H,NH),7.96(m,1H,naph),7.75−7.70(m,3H,naph),7.67(br s,1H,NH),7.57−7.48(m,2H,naph),7.38−7.26(m,15H,Tr),7.25(br s,3H,NH and NH),4.23(s,2H,CH),3.49(dt,2H,CH,J=5.6,6.3Hz),2.79(t,2H,CH,J=6.3Hz).
13C NMR(67.8MHz,DMSO−d)δ:169.39(C),168.60(C),156.52(C),143.83(C),133.30(C),132.60(C),128.55(CH),128.33(C),128.22(C),127.40(CH),126.53(CH),125.17(CH),125.02(CH),121.93(CH),121.79(CH),120.36(CH),119.62(CH),73.49(C),73.14(CH),36.97(CH),34.88(CH)。
−(アミノオキシアセチル)−N −(2−グアニジノエチルカルボニル)−1,5−ジアミノナフタレン・2塩酸塩(化合物6)
アルゴン雰囲気下、N−(2−グアニジノエチルカルボニル)−N−(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物5)59mg(0.10mmol)を塩化メチレン4.0mlに溶解し、濃塩酸60μlを加え、室温で2.5時間撹拌した。反応液中に生じた白色の沈殿物質を塩化メチレンで洗浄した後に、エタノール(2ml)とジエチルエーテル(3ml)の混合溶液に懸濁させ、沈殿を吸引濾過により濾取して標記化合物(化合物6)26mg(収率62%)を白色粉状物質として得た。
FAB−LRMS m/z 345.2(MH);FAB−HRMS 計算値:345.1675(C1621[MH]),実測値:345.1687.
H NMR(270MHz,DMSO−d)δ:11.01(br s,1H,NH),10.40(s,1H,NHCO),10.24(s,1H,NHCO),7.99(t,2H,naph,J=8.1Hz),7.78(br t,1H,NH,J=5.8Hz),7.73−7.69(m,2H,naph),7.56(dd,1H,naph,J=4.0,8.3Hz),7.53(dd,1H,naph,J=4.0,7.9Hz),7.28(br s,4H),4.92(s,2H,CH),3.50(dt,2H,CH,J=5.8,6.3Hz),2.80(t,2H,CH,J=6.3Hz)。
13C NMR(67.8MHz,DMSO−d)δ:169.50(C),166.87(C),156.81(C),133.43(C),132.58(C),128.53(C),128.47(C),125.25(CH),125.11(CH),122.13(CH),122.06(CH),120.76(CH),120.19(CH),72.15(CH),37.17(CH),35.18(CH)。
aoNg−biotin試薬(以下aoNg−bio;化合物10)の合成
スキーム2
−〔2−(N −フルオレニルメチルオキシカルボニルチオウレイド)エチルカルボニル〕−N −(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物7)
アルゴン雰囲気下、N−(2−アミノエチルカルボニル)−N−(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物4)(化合物3より前述の方法により合成、1.00mmol)を塩化メチレン−アセトニトリルの混合溶液(1:2)15mlに溶解した。別のガラス容器にフルオレニルメチルオキシカルボニルイソチオシアナート310mg(1.10mmol)およびジイソプロピルエチルアミン0.19ml(1.10mmol)を塩化メチレン20mlに溶解し、ここに上記化合物4の溶液をゆっくりと滴下して加え、さらに室温で1時間撹拌した。反応液を減圧下濃縮した後、生じた沈殿を酢酸エチル(15ml)とヘキサン(30ml)の混合溶液に懸濁させた。沈殿を吸引濾過により濾取して標記化合物(化合物7)780mg(収率94%)を淡茶色粉状物質として得た。
FAB−LRMS m/z 825.2(M);FAB−HRMS 計算値:825.2985(C5043S[M]),実測値:825.2985.
H NMR(270MHz,DMSO−d)δ:11.42(br s,1H,NH),10.16(br t,1H,NH,J=5.5Hz),10.07(br s,1H,NH),9.58(br s,1H,NH),8.35(br s,1H,NH),7.93(m,1H,naph),7.91−7.82(m,4H,Fmoc),7.73−7.67(m,3H,naph),7.52−7.38(m,4H,naph and Fmoc),7.36−7.24(m,17H,Fmoc and Tr),4.36−4.33(m,2H,Fmoc−CH),4.29−4.25(m,1H,Fmoc−CH),4.23(s,2H,CH),3.95(dd,2H,CH,J=5.5,6.1Hz),2.89(t,2H,CH,J=6.1Hz)。
13C NMR(67.8MHz,DMSO−d)δ:179.14(C),169.96(C),168.71(C),153.10(C),143.98(C),143.10(C),140.50(C),133.47(C),132.71(C),128.70(CH),128.41(C),128.31(C),127.64(CH),127.56(CH),126.95(CH),126.69(CH),125.42(CH),125.34(CH),125.10(CH),121.93(CH),120.44(CH),119.97(CH),119.63(CH),73.64(C),73.31(CH),67.14(CH),45.99(CH),40.93(CH),34.19(CH)。
−〔2−(N −{2−〔2−(2−ビオチニルアミノエトキシ)エトキシ〕エチル}−N −フルオレニルメチルオキシカルボニルグアニジノ)エチルカルボニル〕−N −(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物8)
アルゴン雰囲気下、N−〔2−(N−フルオレニルメチルオキシカルボニルチオウレイド)エチルカルボニル〕−N−(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物7)410mg(0.50mmol)をジメチルホルムアミド15mlに溶解し、0℃に冷却した。この溶液にジイソプロピルエチルアミン0.26ml(1.50mmol)を加えた後、(+)−ビオチニル−3,6−ジオキサオクタンジアミン・2/3酢酸塩310mg(0.75mmol)および塩化第二水銀205mg(0.75mmol)のジメチルホルムアミド溶液(7ml)をゆっくりと滴下して加え、さらに0℃で1時間撹拌した。反応液に酢酸エチル80mlを加えた後、セライト濾過により沈殿物を除去した。ろ液に酢酸エチルを加えて全量を150mlとし、水50mlで4回洗浄した。溶液を減圧下濃縮後、シリカゲルカラムクロマトグラフィー(溶出溶媒:エタノール−クロロホルム)により精製して標記化合物(化合物8)300mg(収率51%)を白色泡状物質として得た。
FAB−LRMS m/z 1166.6(MH);FAB−HRMS 計算値:1166.5174(C6672S[MH]),実測値:1166.5165。
H NMR(270MHz,DMSO−d)δ:10.05(br s,1H,NH),9.58(br s,1H,NH),8.35(br s,1H,NH),7.95−7.87(m,3H,naph and Fmoc),7.81(br t,1H,NH,J=5.6Hz),7.72−7.63(m,5H,naph and Fmoc),7.52−7.37(m,4H,naph and Fmoc),7.34−7.24(m,17H,Fmoc and Tr),6.40(br s,1H,NH),6.35(br s,1H,NH),4.30−4.23(m,6H),4.09(m,1H),3.51(m,8H),3.40−3.36(m,4H),3.18(m,2H),3.05(m,1H),2.82−2.76(m,3H),2.56(d,1H,J=12.2Hz),2.05(t,2H,J=7.3Hz),1.62−1.37(m,4H),1.33−1.27(m,2H)。
−〔2−(N −{2−〔2−(2−ビオチニルアミノエトキシ)エトキシ〕エチル}−N −フルオレニルメチルオキシカルボニルグアニジノ)エチルカルボニル〕−N −(アミノオキシアセチル)−1,5−ジアミノナフタレン(化合物9)
アルゴン雰囲気下、N−〔2−(N−{2−〔2−(2−ビオチニルアミノエトキシ)エトキシ〕エチル}−N−フルオレニルメチルオキシカルボニルグアニジノ)エチルカルボニル〕−N−(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物8)292mg(0.25mmol)を塩化メチレン10mlに溶解し、トリフルオロ酢酸280μl(3.8mmol)およびトリイソプロピルシラン510μl(2.5mmol)を加えて室温で30分撹拌した。反応液にクロロホルム60mlを加え、飽和炭酸水素ナトリウム溶液30mlで2回、水30mlで1回、飽和食塩水30mlで1回洗浄し、硫酸ナトリウムにより乾燥した。有機層を減圧下濃縮した後、生じた沈殿をクロロホルム2.5mlとエタノール2.5mlの混合溶媒に溶解し、この溶液を撹拌させたジエチルエーテル25mlに滴下した。生じた白色の沈殿物質を吸引濾過により濾取して標記化合物(化合物9)184mg(収率80%)を白色粉状物質として得た。
FAB−LRMS m/z 924.4(MH);FAB−HRMS 計算値:924.4078(C4758S[MH]),実測値:924.4053.
H NMR(270MHz,DMSO−d)δ:10.17(br s,1H,NH),9.95(br s,1H,NH),7.97−7.89(m,4H,naph and Fmoc),7.82(br t,1H,NH,J=5.5Hz),7.71−7.66(m,4H),7.53(t,2H,J=7.6Hz),7.42(t,2H,J=7.3Hz),7.31(m,2H),6.41(br s,1H,NH),6.37(br s,1H,NH),4.46(m,2H),4.37(s,2H,CH),4.34−4.26(m,2H),4.10(m,1H),3.55−3.47(m,8H),3.39−3.34(m,4H),3.17(m,2H),3.05(m,1H),2.87(m,2H),2.79(dd,1H,J=5.3,12.2Hz),2.56(d,1H,J=12.2Hz),2.04(t,2H,J=7.4Hz),1.62−1.37(m,4H),1.27(m,2H).
13C NMR(67.8MHz,DMSO−d)δ:172.05(C),169.16(C),162.59(C),143.41(C),140.64(C),133.36(C),133.16(C),128.92(C),128.54(C),127.65(CH),127.03(CH),125.31(CH),125.23(CH),125.04(CH),122.50(CH),122.17(CH),120.56(CH),120.38(CH),120.10(CH),73.88(CH),69.57(CH),69.29(CH),69.01(CH),67.02(CH),60.91(CH),59.06(CH),55.31(CH),46.22(CH),39.72(CH),38.26(CH),34.97(CH),28.08(CH),27.92(CH),25.14(CH)。
−〔2−(N −{2−〔2−(2−ビオチニルアミノエトキシ)エトキシ〕エチル}グアニジノ)エチルカルボニル〕−N −(アミノオキシアセチル)−1,5−ジアミノナフタレン(化合物10)
アルゴン雰囲気下、N−〔2−(N−{2−〔2−(2−ビオチニルアミノエトキシ)エトキシ〕エチル}−N−フルオレニルメチルオキシカルボニルグアニジノ)エチルカルボニル〕−N−(アミノオキシアセチル)−1,5−ジアミノナフタレン(化合物9)50mg(0.054mmol)を1,4−ジオキサン3mlとメタノール3mlの混合溶媒に溶解し、ピペリジン220μl(2.2mmol)を加えて室温で20時間撹拌した。反応液を減圧下濃縮した後、残渣を水30mlに溶解し、クロロホルム20mlで6回洗浄した。水層を減圧下濃縮後、凍結乾燥して標記化合物(化合物10)35mg(収率93%)を白色綿状物質として得た。
FAB−LRMS m/z 702.4(MH);FAB−HRMS 計算値:702.3397(C3248S[MH]),実測値:702.3405.
H NMR(270MHz,DMSO−d)δ:10.11(br s,1H,NH),9.88(br s,1H,NH),7.96(d,1H,naph,J=8.6Hz),7.90(d,1H,naph,J=8.3Hz),7.84(t,1H,NH,J=5.3Hz),7.71−7.65(m,2H,naph),7.58−7.50(m,2H,naph),6.57(br s,2H,NHO),6.41(br s,1H,NH),6.37(br s,1H,NH),4.30(m,1H,bio),4.27(s,2H,CH),4.11(m,1H),3.52(m,8H),3.39(t,2H,J=5.8Hz),3.31(m,2H),3.19(m,2H),3.07(m,1H),2.84−2.78(m,3H),2.57(d,1H,J=12.2Hz),2.06(t,2H,J=7.3Hz),1.64−1.41(m,4H),1.29(m,2H).
13C NMR(67.8MHz,DMSO−d)δ:172.10(C),169.73(C),169.69(C),162.59(C),155.86(C),133.39(C),133.30(C),129.03(C),128.47(C),125.31(CH),125.23(CH),122.63(CH),122.00(CH),120.53(CH),120.37(CH),74.30(CH),69.57(CH),69.31(CH),69.01(CH),68.46(CH),60.91(CH),59.06(CH),55.31(CH),40.96(CH),39.83(CH),38.25(CH),37.28(CH),34.98(CH),34.91(CH),28.08(CH),27.93(CH),25.15(CH)。
(実施例2)Bisアミノオキシナフタレン試薬(以下aoNao;化合物12)の合成
スキーム3
,N −ビス(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物11)
アルゴン雰囲気下、1,5−ジアミノナフタレン(化合物1)158mg(1.00mmol)をピリジン30mlに溶解し、N−トリチルアミノオキシ酢酸333mg(1.00mmol)およびEDC[塩酸1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド]230mg(1.20mmol)を加え、室温で撹拌した。反応開始3時間後、6時間後にそれぞれN−トリチルアミノオキシ酢酸333mg(1.00mmol)およびEDC230mg(1.20mmol)を追加して、さらに室温で16時間撹拌した。反応液を減圧下濃縮した後、沈殿を水20mlに懸濁し、酢酸エチル50mlで1回、クロロホルム20mlで3回洗浄した。水層の白色沈殿物質を吸引濾過により濾取し、さらにエタノールおよびエーテルで洗浄して標記化合物(化合物11)550mg(収率70%)を白色粉状物質として得た。
FAB−LRMS m/z(+NaI)789.3(MH),811.3([MNa]);FAB−HRMS 計算値:811.3260(C5244Na[MNa]),実測値:811.3274。
H NMR(270MHz,DMSO−d)δ:9.62(br s,2H,NH),8.36(br s,2H,NH),7.77−7.71(m,4H,naph),7.52(t,2H,naph,J=7.9Hz),7.41−7.25(m,30H,Tr),4.23(s,4H,CH)。
13C NMR(67.8MHz,DMSO−d)δ:168.89(C),144.07(C),132.90(C),128.78(CH),127.63(CH),126.76(CH),125.43(CH),123.80(C),122.15(CH),120.11(CH),73.61(C),73.27(CH)。
,N −ビス(アミノオキシアセチル)−1,5−ジアミノナフタレン(化合物12)
アルゴン雰囲気下、N,N−ビス(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物11)394mg(0.50mmol)をクロロホルム20mlに懸濁して氷冷し、トリフルオロ酢酸0.94ml(10.0mmol)およびトリイソプロピルシラン1.02ml(5.0mmol)を加えた。反応液を室温に戻して3.5時間撹拌した。反応液に水40mlおよびクロロホルム10mlを加えて沈殿物を溶解した後に分液し、さらに水層をクロロホルム30mlで2回、酢酸エチル30mlで1回洗浄した。続いて、水層にアセトニトリル60mlを加えた後、DOWEW(1×4−100(OHフォーム)により中和した。DOWEW(1×4−100を濾過して除き、さらに80%のアセトニトリル水溶液でDOWEW(1×4−100を洗浄した。溶液を合わせて減圧下濃縮した後、残渣を水30mlに溶解してC−18カラムカラムクロマトグラフィー(溶出溶媒:水−アセトニトリル)により精製することで、標記化合物(化合物12)109mg(収率72%)を白色粉状物質として得た。
FAB−LRMS m/z 305.2(MH);FAB−HRMS 計算値:305.1250(C1417[MH]),実測値:305.1259.
H NMR(270MHz,DMSO−d)δ:9.88(s,2H,NH),7.93(d,2H,naph,J=8.6Hz),7.66(d,2H,naph,J=7.2Hz),7.54(dd,2H,naph,J=7.2,8.6Hz),6.57(s,4H,NH),4.28(s,4H,CH)。
13C NMR(67.8MHz,DMSO−d)δ:169.75(C),133.35(C),129.11(C),125.41(CH),122.66(CH),120.75(CH),74.42(CH)。
(実施例3)オリゴヌクレオチドの合成と精製
オリゴヌクレオチドの合成はApplied Biosystems 394型DNA/RNAシンセサイザー上で行った。0.2又は1μmolスケールで合成した。HPLCにはGilsonの装置を用い、分析はWaters996フォトダイオードアレイ検出器を用いて行った。
逆相HPLC溶液
A溶液 5% アセトニトリル/0.1M TEAA(pH7.0)
B溶液 25% アセトニトリル/0.1M TEAA(pH7.0)
カラム温度:50℃
カラムは、μ−ボンダスフィアー(C−18)カラムΦ3.9x150mm(ウォーターズ製)を使用した。
イオン交換HPLC溶液
A溶液 20% アセトニトリル
B溶液 20% アセトニトリル、2M ギ酸アンモニウム
カラム温度:50℃
カラムは、TSK−GEL DEAE−2SW Φ4.6x250mm(東ソー社)を使用した。
HPLC条件
条件1 B溶液の% 20→40%/20分
条件2 B溶液の% 35→55%/20分
(実施例4)オリゴヌクレオチド(RNA)の酸化反応
オリゴヌクレオチド(F−Lr17X:X=A,G,C,U)(1.6nmol)を、100mMリン酸バッファー(pH7)及び800μM過ヨウ素酸ナトリウムに溶解し(反応液総量200μl)、37℃、90分で酸化反応を行った。反応後、NAP10カラム(GEヘルスケア)で脱塩し、得られた酸化オリゴヌクレオチド(F−Lr17Xox)をUV定量した。
(実施例5)酸化オリゴヌクレオチド(RNA)へのARP、aoNgの標識反応
一本鎖への反応
酸化オリゴヌクレオチド(F−Lr17Xox;X=A,G,C,U)(12pmol)を1Mリン酸バッファー(pH7)3μl及び滅菌水21μlに溶解した後、あらかじめ滅菌水に溶解させた2mM 標識試薬(ARP又は実施例1で調製したaoNg)6μlを加え、37℃で反応を開始した。ARP(Aldehyde Reactive Probe;DOJINDO社)は、以下の構造を有する。
一定時間後に2.5μlをサンプリングしてloading solution mix 5μl(50mM EDTA,10M 尿素,0.1% BPB;4μl、40mM グルタルアルデヒド;1μlを混合して調製)に加えて反応を止めた。その後、変性20%ポリアクリルアミドゲル(19:1)で解析した。各バンドのフルオレセインの蛍光強度を測定し、反応効率を算出した。反応の結果を図2に示した。
二本鎖での反応
二本鎖で反応を行う場合は、酸化オリゴヌクレオチド(F−Lr17Xox)(12pmol)に相補鎖AS32Y(24pmol)を加えて、その他の反応条件は一本鎖の反応と同様に行った。
F−Lr17Xoxの一本鎖(ss F−Lr17Xox)、及び相補鎖(AS32Y)の2本鎖について、ARP又はaoNgとの結合率を測定し、見かけの反応速度定数を算出した。RNAの3’末端の塩基の種類がいずれの場合でも、aoNgはARPよりも高い反応性を示した。また、一本鎖よりも二本鎖を形成した場合に、反応効率が上がることが明らかになった。
(実施例6)RNAの、酸化から標識の連続反応
実施例4、5では、あらかじめRNAを酸化して精製した後に標識反応を行った。次にRNAの酸化から標識までを連続して行うことが可能であるかを確かめる実験を行った。RNA(F−Lr17X;X=A,G,C,U)(12pmol)を、150mMリン酸バッファー(pH7)及び150μM過ヨウ素酸ナトリウムに溶解し(反応液総量20μl)、37℃、60分で酸化反応を行った。続いて2mM DTT 5μlを添加して37℃、30分加温し、240μM aoNg(又はaoNg−bio)5μlを加えて37℃で標識反応を行った(反応液総量30μl)。実施例5と同様に一定時間後にサンプリングして解析した。反応の結果、酸化に用いた過剰の過ヨウ素酸ナトリウムを還元することで、酸化から標識反応まで連続して行えることを確認した。
(実施例7)アベイシックサイトを含むオリゴヌクレオチドの合成
アベイシックホスホロアミダイト試薬(Glen Res.社)を用いて、アベイシックサイト(Z)を含むオリゴヌクレオチド(F−20Z)を合成した。F−20Zは、5’ F−GAATTGCTTGGAAGAZGTTT 3’を表す。合成したオリゴヌクレオチドは、通常の方法に従い濃アンモニア水で脱保護反応を行った後、40%酢酸4mLを加えて室温で4時間攪拌しTBDMS基の脱保護を行った。反応後、減圧下酢酸を留去し、さらに水を加えて減圧下で溶媒を留去した。この操作を数回繰り返して酢酸を取り除いた。その後、滅菌水にオリゴヌクレオチドを溶解し、逆相HPLC、イオン交換HPLCによって精製した。F−20Zの相補鎖となるSp35も同様に合成し精製した(表4、表5)。Sp35Cは、3’ CGAAAGTAACCTTAACGAACCTTCTCCAAAGAACGA 5’を表す。各HPLCの条件は、F−Lr17X及びAS32Yの精製と同様とした。
HPLC条件
条件1 B溶液の% 20→40%/20分
条件2 B溶液の% 35→55%/20分
条件3 B溶液の% 30→50%/20分
(実施例8)アベイシックサイトを含むオリゴヌクレオチドの酸化
実施例7で調製したアベイシックサイトを含むオリゴヌクレオチドF−20Z(2.6nmol)を、100mMリン酸バッファー(pH7)及び10mM 過ヨウ素酸ナトリウムに溶解し、37℃、60分で酸化反応を行った。反応後、NAP5カラム(GEヘルスケア)で脱塩し、濃縮後、変性20%ポリアクリルアミドゲル(19:1)によって精製した。ゲル片からはYMCカートリッジ(100mg/1ml)を用いて脱塩した。得られた酸化オリゴヌクレオチド(F−20Zox)をUVで定量し、反応に供した。
(実施例9)アベイシックサイトへのARP、aoNgの標識反応
一本鎖への反応
酸化されたF−20Zox(12pmol)を1M リン酸緩衝液(pH7)3μl及び滅菌水15μlに溶解し、90℃で1分加熱し氷冷した。10秒後に室温で5分放置して37℃で5分間プレインキュベーションした。続いて、あらかじめ滅菌水に溶解しておいた標識試薬(5mM ARP又はaoNg)12μlを加えて37℃、42℃又は47℃で標識反応を開始した。一定時間後に2.5μlをサンプリングしてloading solution mix 5μl(50mM EDTA,10M 尿素,0.1% BPB;4μl、200mM グルタルアルデヒド;1μlを混合して調製)に加えて反応を止めた。その後、変性20%ポリアクリルアミドゲル(19:1)で解析した。各バンドのフルオレセインの蛍光強度を測定し、反応効率を算出した。反応の結果を図3に示す。
二本鎖での反応
二本鎖で反応を行う場合は、酸化オリゴヌクレオチド(F−20Zox)(12pmol)に相補鎖Sp35C(14.4pmol)を加え、その他の反応条件は一本鎖の反応と同様に行った。反応の結果を図3に示す。
F−20Z中のアベイシックサイトZに対して試薬が反応した。DNAに対しても、aoNgの方が高い反応性を示した。特に二本鎖に対してはARPの反応効率は一本鎖と同じであったが、aoNgでは反応効率が大きく向上した。
(実施例10)2’−デオキシウリジン(dU)を含むオリゴヌクレオチドの合成と精製
5’末端がフルオレセインで標識され、dUを鎖内にもったオリゴヌクレオチド(F−20dU)およびその相補鎖(Sp20dU)は、2’−デオキシウリジンホスホロアミダイト試薬(Glen Res.社)を用いてDNA自動合成機によって合成した。F−20dUは、5’ F−GAATTGCTdUGGAAGAGGTTT 3’を、Sp20dUは、3’ CTTAACGAdUCCTTCTCCAAA 5’を表す。合成オリゴヌクレオチドは通常の方法に従って脱保護した後、逆相HPLCで分取、精製した(表6)。HPLCの条件などを以下に示す。
逆相HPLC溶液
A溶液 5% アセトニトリル/0.1M TEAA(pH7.0);
B溶液 25% アセトニトリル/0.1M TEAA(pH7.0)
カラム温度:室温
カラムは、Inertsil ODS−3(C−18)カラムΦ3.0x300mm(GL Science社)を使用した。
HPLC条件
条件4 B溶液の% 40→60%/20分
(実施例11)2’−デオキシウリジンを含むDNAへのARP、aoNg、aoNg−bioの標識反応
本発明の化合物が2’−デオキシウリジン(dU)とウラシルDNAグリコシラーゼ(UDG)から生成したアベイシックサイトに反応するかどうかを評価する実験を行った。
dUを含むDNA、F−20dU(12pmol)と、その相補鎖(Sp35C;24pmol)を、UDGバッファー(x10,3μl)を含む溶液(総量29.5μl)に溶解させた。Sp35Cは、3’ CGAAAGTAACCTTAACGAACCTTCTCCAAAGAACGA 5’を表す。反応液を90℃で1分加熱し氷冷した後、37℃で5分間プレインキュベーションし、そこにUDG(1unit,0.5μl)を加え、総量30μlで37℃、60分間反応を行った。その後、90℃で1分加熱して酵素を失活させ、氷冷で10分、室温で5分放置した。この反応液にあらかじめ溶解させた10mMに調整した標識試薬(ARP、aoNg、aoNg−bio)6μlを加えて37℃で標識反応を開始した。一定時間後に2.5μlをサンプリングしてloading solution mix 5μl(50mM EDTA,10M 尿素,0.1% BPB;4μl、200mM グルタルアルデヒド;1μlを混合して調製)に加えて反応を止めた。その後、変性20%ポリアクリルアミドゲル(19:1)で解析した(図4)。各バンドのフルオレセインの蛍光強度を測定し、反応効率を算出した(図4)。
aoNg、ARP、aoNg−bioの反応速度定数は、それぞれ0.51min−1、0.03min−1、0.17min−1であったことから、aoNgおよびaoNg−bioの方が高い反応効率を示すことが明らかとなった。
(実施例12)aoNaoのDNAへの反応
dUを含むDNA、F−20dU(12pmol)と、その相補鎖(Sp20dU;13.2pmol)を、UDGバッファー(x10,3μl)を含む溶液(総量29.5μl)に溶解させた。Sp20dUは、3’ CTTAACGAdUCCTTCTCCAAA 5’を表す。反応液を90℃で1分加熱し氷冷した後、37℃で5分間プレインキュベーションし、そこにUDG(1unit,0.5μl)を加え、総量30μlで37℃、60分間反応を行った。その後、90℃で1分加熱して酵素を失活させ、氷冷で10分、室温で5分放置した。この反応液にあらかじめ溶解させた2mM aoNao 6μlを加えて37℃で標識反応を開始した。同様の反応をF−20dU、1本鎖のみでも行った。一定時間後に3μlをサンプリングしてloading solution mix 5μl(50mM EDTA,10M 尿素,0.1% BPB;4μl、200mM グルタルアルデヒド;1μlを混合して調製)に加えて反応を止めた。その後、変性20%ポリアクリルアミドゲル(19:1)で解析した(図5)。各バンドのフルオレセインの蛍光強度を測定し、反応効率を算出した(図5)。aoNaoは2本鎖間を架橋するように反応できることを確認した。
(実施例13)aoNdg−biotin試薬(以下aoNdg−bio;化合物16)の合成
スキーム4
1−(N −フルオレニルメチルオキシカルボニルチオウレイド)−N −(トリチルアミノオキシアセチル)−5−アミノナフタレン(化合物13)
アルゴン雰囲気下、フルオレニルメチルオキシカルボニルイソチオシアナート850mg(3.01mmol)およびジイソプロピルエチルアミン0.52ml(3.01mmol)を塩化メチレン30mlに溶解し、0℃に冷却した。ここにN−(トリチルアミノオキシアセチル)−1,5−ジアミノナフタレン(化合物2)1.19g(2.51mmol)の塩化メチレン溶液(30ml)をゆっくりと滴下して加え、さらに室温に戻して1.5時間撹拌した。反応液を減圧下濃縮後、シリカゲルカラムクロマトグラフィー(溶出溶媒:酢酸エチル−ヘキサン)により精製して標記化合物(化合物13)1.04g(収率55%)を白色固体状物質として得た。
FAB−LRMS m/z 755.3(MH),777.2([M+Na]);FAB−HRMS 計算値:777.2511(C4738SNa[M+Na]),実測値:777.2486.
H NMR(270MHz,DMSO−d)δ:11.81(s,1H,NH),11.60(s,1H,NH),9.66(s,1H,NH),
8.37(s,1H,NH),7.94−7.85(m,6H),7.78−7.68(m,3H),7.61−7.53(m,1H),7.49−7.41(m,2H),7.38−7.27(m,17H),4.49(d,2H,Fmoc−CH,J=7.3Hz),4.37(t,1H,Fmoc−CH,J=7.3Hz),4.23(s,2H,CH).
13C NMR(67.8MHz,DMSO−d)δ:180.59(C),168.96(C),153.56(C),144.08(C),143.23(C),140.65(C),134.68(C),133.14(C),129.79(C),128.79(CH),128.61(C),127.77(CH),127.64(CH),127.07(CH),126.77(CH),126.10(CH),125.58(CH),125.43(CH),125.31(CH),122.34(CH),121.98(CH),121.28(CH),120.08(CH),119.93(CH),73.62(C),73.30(CH),67.42(CH),45.99(CH)。
1−(N −{2−〔2−(2−ビオチニルアミノエトキシ)エトキシ〕エチル}−N −フルオレニルメチルオキシカルボニルグアニジノ)−N −(トリチルアミノオキシアセチル)−5−アミノナフタレン(化合物14)
アルゴン雰囲気下、1−(N−フルオレニルメチルオキシカルボニルチオウレイド)−N−(トリチルアミノオキシアセチル)−5−アミノナフタレン(化合物13)910mg(1.20mmol)をジメチルホルムアミド20mlに溶解して0℃に冷却した。この溶液に(+)−ビオチニル−3,6−ジオキサオクタンジアミン540mg(1.44mmol)、塩化第二水銀360mg(1.32mmol)およびジイソプロピルエチルアミン0.50ml(2.88mmol)のジメチルホルムアミド溶液(15ml)をゆっくりと滴下して加え、さらに0℃で1.5時間撹拌した。反応液に酢酸エチル150mlを加えた後、セライト濾過により沈殿物を除去した。ろ液に酢酸エチルを加えて全量を350mlとし、水120mlで4回、飽和食塩水120mlで1回洗浄し、硫酸ナトリウムにより乾燥した。溶液を減圧下濃縮後、シリカゲルカラムクロマトグラフィー(溶出溶媒:エタノール−クロロホルム)により精製して標記化合物(化合物14)963mg(収率73%)を白色泡状物質として得た。
FAB−LRMS m/z 1095.5(MH);FAB−HRMS 計算値:1095.4803(C6367S[MH]),実測値:1095.4796.
H NMR(270MHz,DMSO−d)δ:9.61(br s,1H,NH),8.33(br s,1H,NH),7.89−7.75(m,6H),7.61−7.47(m,3H),7.42−7.25(m,20H),6.39(br s,1H,NH),6.33(br s,1H,NH),4.30−4.24(m,6H),4.10(m,1H),3.49(m,6H),3.38−3.33(m,4H),3.16(m,2H),3.06(m,1H),2.79(dd,1H,J=5.3,12.2Hz),2.56(d,1H,J=12.2Hz),2.04(t,2H,J=7.3Hz),1.63−1.37(m,4H),1.32−1.23(m,2H)。
1−(N −{2−〔2−(2−ビオチニルアミノエトキシ)エトキシ〕エチル}−N −フルオレニルメチルオキシカルボニルグアニジノ)−N −(アミノオキシアセチル)−5−アミノナフタレン(化合物15)
アルゴン雰囲気下、1−(N−{2−〔2−(2−ビオチニルアミノエトキシ)エトキシ〕エチル}−N−フルオレニルメチルオキシカルボニルグアニジノ)−N−(トリチルアミノオキシアセチル)−5−アミノナフタレン(化合物14)170mg(0.16mmol)を塩化メチレン15mlに溶解して0℃に冷却し、トリフルオロ酢酸180μl(2.4mmol)およびトリイソプロピルシラン330μl(1.6mmol)を加えた。反応液を室温に戻して30分撹拌した後、反応液にクロロホルム65mlを加え、飽和炭酸水素ナトリウム溶液35mlで1回、水35mlで1回、飽和食塩水35mlで1回洗浄し、硫酸ナトリウムにより乾燥した。溶液を減圧下濃縮後、シリカゲルカラムクロマトグラフィー(溶出溶媒:メタノール−クロロホルム)により精製して標記化合物(化合物15)86mg(収率65%)を白色泡状物質として得た。
FAB−LRMS m/z 853.4(MH);FAB−HRMS 計算値:853.3707(C4453S[MH]),実測値:853.3713.
H NMR(270MHz,DMSO−d)δ:9.90(br s,1H,NH),8.02(m,1H),7.89−7.71(m,5H),7.78(br s,1H,NH),7.62−7.31(m,8H),6.56(br s,2H,NH),6.39(br s,1H,NH),6.33(br s,1H,NH),4.29−4.26(m,6H),4.10(m,1H),3.48(m,6H),3.36(m,4H),3.16(m,2H),3.06(m,1H),2.80(dd,1H,J=5.0,12.5Hz),2.56(d,1H,J=12.5Hz),2.04(t,2H,J=7.3Hz),1.66−1.38(m,4H),1.28(m,2H).
13C NMR(67.8MHz,DMSO−d)δ:172.07(C),169.68(C),162.64(C),144.15(C),140.63(C),127.45(CH),126.98(CH),125.04(CH),120.04(CH),74.37(CH),69.47(CH),69.14(CH),68.81(CH),66.04(CH),60.99(CH),59.15(CH),55.37(CH),46.67(CH),39.79(CH),38.37(CH),35.04(CH),28.14(CH),27.99(CH),25.21(CH)。
1−(N −{2−〔2−(2−ビオチニルアミノエトキシ)エトキシ〕エチル}グアニジノ)−N −(アミノオキシアセチル)−5−アミノナフタレン(化合物16、酢酸塩)
アルゴン雰囲気下、1−(N−{2−〔2−(2−ビオチニルアミノエトキシ)エトキシ〕エチル}−N−フルオレニルメチルオキシカルボニルグアニジノ)−N−(アミノオキシアセチル)−5−アミノナフタレン(化合物15)85mg(0.10mmol)を1,4−ジオキサン4mlとメタノール4mlの混合溶媒に溶解し、ピペリジン0.40ml(4.0mmol)を加えて室温で16時間撹拌した。反応液を減圧下濃縮した後、残渣を水35mlに溶解し、酢酸エチル15mlで3回洗浄した。水層を減圧下濃縮後、C18カートリッジカラムクロマトグラフィー(溶出溶媒:アセトニトリル−0.1M TEAA溶液)により精製して粗精製物(52mg)を得た。この粗精製物の一部を2%酢酸水溶液5mlに溶解して、再度C18カートリッジカラムクロマトグラフィー(溶出溶媒:アセトニトリル−水)により精製して標記化合物(化合物16、酢酸塩)9.2mgを白色綿状物質として得た。
FAB−LRMS m/z 631.3(MH);FAB−HRMS 計算値:631.3026(C2943S[MH]),実測値:631.3005.
H NMR(270MHz,DMSO−d)δ:9.94(s,1H,NH),9.64(br s,1H,NH),8.07(m,1H,nap),7.82(m,1H),7.81(d,1H,J=8.2Hz,nap),7.73(d,1H,J=6.9Hz,nap),7.62(m,2H,nap),7.55(m,2H),7.51(m,1H,nap),6.55(s,2H,NHO),6.39(s,1H,NH),6.35(s,1H,NH),4.31(m,1H),4.29(s,2H,CH),4.12(br dd,1H,J=4.3,7.6Hz),3.58(m,6H),3.42(m,4H),3.21(m,2H),3.09(m,1H),2.81(dd,1H,J=5.0,12.5Hz),2.57(d,1H,J=12.5Hz),2.07(t,2H,J=7.3Hz),1.64−1.42(m,4H),1.30(m,2H).
13C NMR(67.8MHz,DMSO−d)δ:172.10(C),169.68(C),162.59(C),155.75(C),133.72(C),130.44(C),129.39(C),126.32(CH),125.81(CH),123.00(CH),119.87(CH),74.27(CH),69.66(CH),69.38(CH),69.06(CH),68.52(CH),60.92(CH),59.08(C),55.31(CH),41.22(CH),39.73(CH),38.27(CH),35.00(CH),28.08(CH),27.94(CH),25.16(CH)。
(実施例14)
実施例11と同様のオリゴヌクレオチドを用い、同じ条件でaoNdg−bioの反応効率を調べた。反応の結果、aoNdg−bioの反応速度定数は、0.23min−1であったことから、aoNg、aoNg−bioと同様に、ARPよりもaoNdg−bioの方が高い反応効率を示すことが明らかとなった。
本明細書中で引用した全ての刊行物、特許及び特許出願をそのまま参考として本明細書中にとり入れるものとする。
[配列表]
Example 1 Synthesis of aminooxynaphthalene reagent (aoNg, Compound 6 and aoNg-biotin, Compound 10)
  Thin layer chromatography was performed on Kieselgel 60F254 plates (Merck). For column chromatography, Wakogel C-200 (Wako Pure Chemical Industries) was used.1H NMR and13C NMR was measured using JEOL JNM-EX270 with tetramethylsilane as an internal standard.
aoNg, Synthesis of Compound 6
Scheme 1
N 1 -(Tritylaminooxyacetyl) -1,5-diaminonaphthalene (Compound 2)
  Under an argon atmosphere, 440 mg (2.80 mmol) of 1,5-diaminonaphthalene (compound 1) and 1.00 g (3.00 mmol) of N-tritylaminooxyacetic acid were dissolved in 30 ml of dimethylformamide (DMF), and EDC [hydrochloric acid 1 -Ethyl-3- (3-dimethylaminopropyl) carbodiimide] (590 mg, 3.10 mmol) was added, and the mixture was stirred at room temperature for 20 hours. 200 ml of ethyl acetate was added to the reaction solution, and the mixture was washed 4 times with 70 ml of water. The solution was concentrated under reduced pressure, then azeotroped three times with ethyl acetate, and the resulting precipitate was suspended in a mixed solution of ethyl acetate (20 ml) and hexane (120 ml). The precipitate was collected by suction filtration to obtain 1.03 g (yield 72%) of the title compound (Compound 2) as a light brown powder.
FAB-LRMS m / z 473.3 (M+FAB-HRMS calculated value: 473.2103 (C31H27N3O2[M+]), Measured value: 473.2093.
11 H NMR (270 MHz, DMSO-d6) Δ: 9.33 (br s, 1H, NH), 8.38 (br s, 1H, NH), 7.93 (d, 1H, naph, J = 8.6 Hz), 7.64 (d, 1H, naph, J = 7.3 Hz), 7.34-7.25 (m, 16H, Tr and naph), 7.20 (t, 1H, naph, J = 8.2 Hz), 6.99 (d , 1H, naph, J = 8.2 Hz), 6.70 (d, 1H, naph, J = 7.3 Hz), 5.78 (br s, 2H, NH2), 4.20 (s, 2H, CH2).
13C NMR (67.8 MHz, DMSO-d6) Δ: 168.26 (C), 144.96 (C), 144.01 (C), 132.13 (C), 128.70 (CH), 127.57 (CH), 126.68 (CH ), 123.05 (C), 122.76 (CH), 121.06 (CH), 119.88 (CH), 109.15 (CH), 107.58 (CH), 73.64 (C) 73.31 (CH2).
N 1 -[2- (trifluoroacetylamino) ethylcarbonyl] -N 5 -(Tritylaminooxyacetyl) -1,5-diaminonaphthalene (Compound 3)
  N in argon atmosphere11.00 g (2.11 mmol) of-(tritylaminooxyacetyl) -1,5-diaminonaphthalene (compound 2) and 780 mg (4.22 mmol) of N-trifluoroacetyl-β-alanine are dissolved in 25 ml of dimethylformamide, 810 mg (4.22 mmol) of EDC [1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride] was added, and the mixture was stirred at room temperature for 17 hours. To the reaction solution, 220 ml of ethyl acetate was added and washed 4 times with 80 ml of water. The solution was concentrated under reduced pressure and purified by silica gel column chromatography (elution solvent: ethyl acetate-hexane) to obtain 961 mg (yield 71%) of the title compound (Compound 3) as a white solid substance.
FAB-LRMS m / z 640.3 (M+FAB-HRMS calculated value: 640.2297 (C36H31F3N4O4[M+]), Measured value: 640.2308.
11 H NMR (270 MHz, DMSO-d6) Δ: 10.04 (s, 1H, NH), 9.61 (s, 2H, NH and NH), 8.36 (s, 1H, NH), 7.94 (d, 1H, naph, J = 8.6 Hz), 7.74-7.69 (m, 3H, naph), 7.55-7.48 (m, 2H, naph), 7.35-7.25 (m, 15H, Tr), 4.23 (s, 2H, CH2), 3.56 (br t, 2H, CH2, J = 6.8 Hz), 2.78 (t, 2H, CH2, J = 6.8 Hz).
13C NMR (67.8 MHz, DMSO-d6) Δ: 169.27 (C), 168.76 (C), 156.12 (C, q, J = 35.8 Hz), 144.01 (C), 133.57 (C), 132.73 ( C), 128.73 (CH), 128.46 (C), 128.41 (C), 127.58 (CH), 126.70 (CH), 125.36 (CH), 125.11 (CH ), 122.04 (CH), 120.52 (CH), 119.67 (CH), 115.80 (C, q, J = 287.9 Hz), 73.67 (C), 73.33 (CH2), 36.04 (CH2), 34.80 (CH2).
N 1 -(2-Aminoethylcarbonyl) -N 5 -(Tritylaminooxyacetyl) -1,5-diaminonaphthalene (compound 4)
  N1-[2- (trifluoroacetylamino) ethylcarbonyl] -N5To 950 mg (1.48 mmol) of-(tritylaminooxyacetyl) -1,5-diaminonaphthalene (Compound 3), 40 ml of ethanol and 20 ml of concentrated aqueous ammonia were added, sealed in a pressure-resistant glass container, and heated at 60 ° C. for 4 hours. The solution was returned to room temperature and concentrated under reduced pressure, and the residue was azeotroped three times with acetonitrile to obtain the title compound (Compound 4) as a pale yellow foam. This compound was used in the next reaction without further purification.
FAB-LRMS m / z 545.4 (MH+); FAB-HRMS calculated value: 545.2553 (C34H33N4O3[MH+]), Measured value: 545.2573.
11 H NMR (270 MHz, DMSO-d6) Δ: 10.19 (s, 1H, NH), 9.62 (s, 1H, NH), 8.34 (s, 1H, NH), 7.98 (d, 1H, naph, J = 8. 2Hz), 7.80 (br s, 2H, NH2), 7.75-7.70 (m, 3H, naph), 7.58-7.49 (m, 2H, naph), 7.38-7.25 (m, 15H, Tr), 4.23 (S, 2H, CH2), 3.16 (t, 2H, CH2, J = 6.6 Hz), 2.89 (t, 2H, CH2, J = 6.6 Hz).
13C NMR (67.8 MHz, DMSO-d6) Δ: 168.89 (C), 168.78 (C), 143.98 (C), 133.29 (C), 132.77 (C), 128.70 (CH), 128.49 (C ), 128.29 (C), 127.56 (CH), 126.70 (CH), 125.32 (CH), 125.19 (CH), 122.13 (CH), 121.94 (CH) , 120.49 (CH), 119.82 (CH), 73.64 (C), 73.30 (CH2), 35.11 (CH2), 32.82 (CH2).
N 1 -(2-Guanidinoethylcarbonyl) -N 5 -(Tritylaminooxyacetyl) -1,5-diaminonaphthalene (Compound 5)
  N synthesized by pre-reaction under argon atmosphere1-(2-Aminoethylcarbonyl) -N5-(Tritylaminooxyacetyl) -1,5-diaminonaphthalene (compound 4) (Total amount: 1.48 mmol) was dissolved in 15 ml of dimethylformamide, and 320 mg (2.20 mmol) of 1H-pyrazole-1-carboxyamidine hydrochloride and triethylamine 0 were dissolved. .61 ml (4.40 mmol) was added and stirred at room temperature for 6 hours. 150 ml of ethyl acetate was added to the reaction solution, and the mixture was washed 4 times with 50 ml of water. The solution was concentrated under reduced pressure and purified by silica gel column chromatography (elution solvent: ethanol-chloroform) to obtain 567 mg (yield 66%) of the title compound (Compound 5) as a light brown foam.
FAB-LRMS m / z 587.3 (MH+); FAB-HRMS calculated value: 5872771 (C35H35N6O3[MH+]), Measured value: 5872772.
11 H NMR (270 MHz, DMSO-d6) Δ: 10.11 (s, 1H, NH), 9.61 (s, 1H, NH), 8.34 (s, 1H, NH), 7.96 (m, 1H, naph), 7.75 -7.70 (m, 3H, naph), 7.67 (brs, 1H, NH), 7.57-7.48 (m, 2H, naph), 7.38-7.26 (m, 15H) , Tr), 7.25 (br s, 3H, NH2  and NH), 4.23 (s, 2H, CH2), 3.49 (dt, 2H, CH2, J = 5.6, 6.3 Hz), 2.79 (t, 2H, CH2, J = 6.3 Hz).
13C NMR (67.8 MHz, DMSO-d6) Δ: 169.39 (C), 168.60 (C), 156.52 (C), 143.83 (C), 133.30 (C), 132.60 (C), 128.55 (CH ), 128.33 (C), 128.22 (C), 127.40 (CH), 126.53 (CH), 125.17 (CH), 125.02 (CH), 121.93 (CH) 121.79 (CH), 120.36 (CH), 119.62 (CH), 73.49 (C), 73.14 (CH2), 36.97 (CH2), 34.88 (CH2).
N 5 -(Aminooxyacetyl) -N 1 -(2-Guanidinoethylcarbonyl) -1,5-diaminonaphthalene dihydrochloride (Compound 6)
  N in argon atmosphere1-(2-Guanidinoethylcarbonyl) -N5-(Tritylaminooxyacetyl) -1,5-diaminonaphthalene (Compound 5) 59 mg (0.10 mmol) was dissolved in 4.0 ml of methylene chloride, 60 μl of concentrated hydrochloric acid was added, and the mixture was stirred at room temperature for 2.5 hours. The white precipitate formed in the reaction solution was washed with methylene chloride, suspended in a mixed solution of ethanol (2 ml) and diethyl ether (3 ml), and the precipitate was collected by suction filtration to give the title compound (Compound 6). ) 26 mg (62% yield) was obtained as a white powder.
FAB-LRMS m / z 345.2 (MH+); FAB-HRMS calculated value: 345.1675 (C16H21N6O3[MH+]), Measured value: 345.1687.
11 H NMR (270 MHz, DMSO-d6) Δ: 11.01 (br s, 1H, NH), 10.40 (s, 1H, NHCO), 10.24 (s, 1H, NHCO), 7.99 (t, 2H, naph, J = 8) .1 Hz), 7.78 (br t, 1 H, NH, J = 5.8 Hz), 7.73-7.69 (m, 2 H, naph), 7.56 (dd, 1 H, naph, J = 4) 0.03, 8.3 Hz), 7.53 (dd, 1H, naph, J = 4.0, 7.9 Hz), 7.28 (br s, 4H), 4.92 (s, 2H, CH2), 3.50 (dt, 2H, CH2, J = 5.8, 6.3 Hz), 2.80 (t, 2H, CH2, J = 6.3 Hz).
13C NMR (67.8 MHz, DMSO-d6) Δ: 169.50 (C), 166.87 (C), 156.81 (C), 133.43 (C), 132.58 (C), 128.53 (C), 128.47 (C ), 125.25 (CH), 125.11 (CH), 122.13 (CH), 122.06 (CH), 120.76 (CH), 120.19 (CH), 72.15 (CH2), 37.17 (CH2), 35.18 (CH2).
Synthesis of aoNg-biotin reagent (hereinafter aoNg-bio; Compound 10)
Scheme 2
N 1 -[2- (N 3 -Fluorenylmethyloxycarbonylthioureido) ethylcarbonyl] -N 5 -(Tritylaminooxyacetyl) -1,5-diaminonaphthalene (Compound 7)
  N in argon atmosphere1-(2-Aminoethylcarbonyl) -N5-(Tritylaminooxyacetyl) -1,5-diaminonaphthalene (compound 4) (synthesized by the method described above from compound 3, 1.00 mmol) was dissolved in 15 ml of a mixed solution of methylene chloride-acetonitrile (1: 2). In another glass container, 310 mg (1.10 mmol) of fluorenylmethyloxycarbonyl isothiocyanate and 0.19 ml (1.10 mmol) of diisopropylethylamine are dissolved in 20 ml of methylene chloride, and the solution of the above compound 4 is slowly added dropwise thereto. And then stirred at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure, and the resulting precipitate was suspended in a mixed solution of ethyl acetate (15 ml) and hexane (30 ml). The precipitate was collected by suction filtration to obtain 780 mg (yield 94%) of the title compound (Compound 7) as a light brown powdery substance.
FAB-LRMS m / z 825.2 (M+FAB-HRMS calculated value: 825.2985 (C50H43N5O5S [M+]), Measured value: 825.2985.
11 H NMR (270 MHz, DMSO-d6) Δ: 11.42 (br s, 1H, NH), 10.16 (br t, 1H, NH, J = 5.5 Hz), 10.07 (br s, 1H, NH), 9.58 (br s, 1H, NH), 8.35 (br s, 1H, NH), 7.93 (m, 1H, naph), 7.91-7.82 (m, 4H, Fmoc), 7.73-7 .67 (m, 3H, naph), 7.52-7.38 (m, 4H, naph and Fmoc), 7.36-7.24 (m, 17H, Fmoc and Tr), 4.36-4. 33 (m, 2H, Fmoc-CH2), 4.29-4.25 (m, 1H, Fmoc-CH), 4.23 (s, 2H, CH2), 3.95 (dd, 2H, CH2, J = 5.5, 6.1 Hz), 2.89 (t, 2H, CH2, J = 6.1 Hz).
13C NMR (67.8 MHz, DMSO-d6) Δ: 179.14 (C), 169.96 (C), 168.71 (C), 153.10 (C), 143.98 (C), 143.10 (C), 140.50 (C ), 133.47 (C), 132.71 (C), 128.70 (CH), 128.41 (C), 128.31 (C), 127.64 (CH), 127.56 (CH) , 126.95 (CH), 126.69 (CH), 125.42 (CH), 125.34 (CH), 125.10 (CH), 121.93 (CH), 120.44 (CH), 119.97 (CH), 119.63 (CH), 73.64 (C), 73.31 (CH2), 67.14 (CH2), 45.99 (CH), 40.93 (CH2), 34.19 (CH2).
N 1 -[2- (N 3 -{2- [2- (2-biotinylaminoethoxy) ethoxy] ethyl} -N 2 -Fluorenylmethyloxycarbonylguanidino) ethylcarbonyl] -N 5 -(Tritylaminooxyacetyl) -1,5-diaminonaphthalene (Compound 8)
  N in argon atmosphere1-[2- (N3-Fluorenylmethyloxycarbonylthioureido) ethylcarbonyl] -N5410 mg (0.50 mmol) of-(tritylaminooxyacetyl) -1,5-diaminonaphthalene (Compound 7) was dissolved in 15 ml of dimethylformamide and cooled to 0 ° C. After adding 0.26 ml (1.50 mmol) of diisopropylethylamine to this solution, 310 mg (0.75 mmol) of (+)-biotinyl-3,6-dioxaoctanediamine.2 / 3 acetate and 205 mg of mercuric chloride (0.75 mmol) of a dimethylformamide solution (7 ml) was slowly added dropwise, and the mixture was further stirred at 0 ° C. for 1 hour. After adding 80 ml of ethyl acetate to the reaction solution, the precipitate was removed by celite filtration. Ethyl acetate was added to the filtrate to make a total volume of 150 ml, and it was washed 4 times with 50 ml of water. The solution was concentrated under reduced pressure and purified by silica gel column chromatography (elution solvent: ethanol-chloroform) to obtain 300 mg (yield 51%) of the title compound (Compound 8) as a white foam.
FAB-LRMS m / z 1166.6 (MH+FAB-HRMS calculated value: 1166.5174 (C66H72N9O9S [MH+]), Measured value: 1166.5165.
11 H NMR (270 MHz, DMSO-d6) Δ: 10.05 (br s, 1H, NH), 9.58 (br s, 1H, NH), 8.35 (br s, 1H, NH), 7.95-7.87 (m, 3H) , Naph and Fmoc), 7.81 (brt, 1H, NH, J = 5.6 Hz), 7.72-7.63 (m, 5H, naph and Fmoc), 7.52-7.37 (m , 4H, naph and Fmoc), 7.34-7.24 (m, 17H, Fmoc and Tr), 6.40 (brs, 1H, NH), 6.35 (brs, 1H, NH), 4 .30-4.23 (m, 6H), 4.09 (m, 1H), 3.51 (m, 8H), 3.40-3.36 (m, 4H), 3.18 (m, 2H) ), 3.05 (m, 1H), 2.82-2.76 (m, 3H), 2.56 (d, 1H, J = 1) .2Hz), 2.05 (t, 2H, J = 7.3Hz), 1.62-1.37 (m, 4H), 1.33-1.27 (m, 2H).
N 1 -[2- (N 3 -{2- [2- (2-biotinylaminoethoxy) ethoxy] ethyl} -N 2 -Fluorenylmethyloxycarbonylguanidino) ethylcarbonyl] -N 5 -(Aminooxyacetyl) -1,5-diaminonaphthalene (Compound 9)
  N in argon atmosphere1-[2- (N3-{2- [2- (2-biotinylaminoethoxy) ethoxy] ethyl} -N2-Fluorenylmethyloxycarbonylguanidino) ethylcarbonyl] -N5292 mg (0.25 mmol) of-(tritylaminooxyacetyl) -1,5-diaminonaphthalene (compound 8) was dissolved in 10 ml of methylene chloride, 280 μl (3.8 mmol) of trifluoroacetic acid and 510 μl (2.5 mmol) of triisopropylsilane. ) And stirred at room temperature for 30 minutes. To the reaction solution, 60 ml of chloroform was added, washed twice with 30 ml of saturated sodium hydrogen carbonate solution, once with 30 ml of water and once with 30 ml of saturated brine, and dried over sodium sulfate. After the organic layer was concentrated under reduced pressure, the resulting precipitate was dissolved in a mixed solvent of 2.5 ml of chloroform and 2.5 ml of ethanol, and this solution was added dropwise to 25 ml of stirred diethyl ether. The resulting white precipitate was collected by suction filtration to give 184 mg (yield 80%) of the title compound (Compound 9) as a white powder.
FAB-LRMS m / z 924.4 (MH+); FAB-HRMS calculated value: 924.4078 (C47H58N9O9S [MH+]), Measured value: 924.4053.
11 H NMR (270 MHz, DMSO-d6) Δ: 10.17 (br s, 1H, NH), 9.95 (br s, 1H, NH), 7.97-7.89 (m, 4H, naph and Fmoc), 7.82 (br t , 1H, NH, J = 5.5 Hz), 7.71-7.66 (m, 4H), 7.53 (t, 2H, J = 7.6 Hz), 7.42 (t, 2H, J = 7.3 Hz), 7.31 (m, 2H), 6.41 (brs, 1H, NH), 6.37 (brs, 1H, NH), 4.46 (m, 2H), 4.37 (S, 2H, CH2), 4.34-4.26 (m, 2H), 4.10 (m, 1H), 3.55-3.47 (m, 8H), 3.39-3.34 (m, 4H), 3.17 (m, 2H), 3.05 (m, 1H), 2.87 (m, 2H), 2.79 (dd, 1H, J = 5.3, 12.2 Hz), 2.56 ( d, 1H, J = 12.2 Hz), 2.04 (t, 2H, J = 7.4 Hz), 1.62-1.37 (m, 4H), 1.27 (m, 2H).
13C NMR (67.8 MHz, DMSO-d6) Δ: 172.05 (C), 169.16 (C), 162.59 (C), 143.41 (C), 140.64 (C), 133.36 (C), 133.16 (C ), 128.92 (C), 128.54 (C), 127.65 (CH), 127.03 (CH), 125.31 (CH), 125.23 (CH), 125.04 (CH) , 122.50 (CH), 122.17 (CH), 120.56 (CH), 120.38 (CH), 120.10 (CH), 73.88 (CH2), 69.57 (CH2), 69.29 (CH2), 69.01 (CH2), 67.02 (CH2), 60.91 (CH), 59.06 (CH), 55.31 (CH), 46.22 (CH), 39.72 (CH2), 38.26 (CH2), 34.97 (CH2), 28.08 (CH2), 27.92 (CH2), 25.14 (CH2).
N 1 -[2- (N 3 -{2- [2- (2-biotinylaminoethoxy) ethoxy] ethyl} guanidino) ethylcarbonyl] -N 5 -(Aminooxyacetyl) -1,5-diaminonaphthalene (Compound 10)
  N in argon atmosphere1-[2- (N3-{2- [2- (2-biotinylaminoethoxy) ethoxy] ethyl} -N2-Fluorenylmethyloxycarbonylguanidino) ethylcarbonyl] -N5-(Aminooxyacetyl) -1,5-diaminonaphthalene (Compound 9) 50 mg (0.054 mmol) was dissolved in a mixed solvent of 1,4-dioxane 3 ml and methanol 3 ml, and piperidine 220 μl (2.2 mmol) was added. Stir at room temperature for 20 hours. After the reaction solution was concentrated under reduced pressure, the residue was dissolved in 30 ml of water and washed 6 times with 20 ml of chloroform. The aqueous layer was concentrated under reduced pressure and lyophilized to obtain 35 mg (yield 93%) of the title compound (Compound 10) as a white cotton-like substance.
FAB-LRMS m / z 702.4 (MH+FAB-HRMS calculated value: 702.3397 (C32H48N9O7S [MH+]) Measured value: 702.3405.
11 H NMR (270 MHz, DMSO-d6) Δ: 10.11 (br s, 1 H, NH), 9.88 (br s, 1 H, NH), 7.96 (d, 1 H, naph, J = 8.6 Hz), 7.90 (d, 1H, naph, J = 8.3 Hz), 7.84 (t, 1H, NH, J = 5.3 Hz), 7.71-7.65 (m, 2H, naph), 7.58-7.50 (M, 2H, naph), 6.57 (br s, 2H, NH2O), 6.41 (brs, 1H, NH), 6.37 (brs, 1H, NH), 4.30 (m, 1H, bio), 4.27 (s, 2H, CH2), 4.11 (m, 1H), 3.52 (m, 8H), 3.39 (t, 2H, J = 5.8 Hz), 3.31 (m, 2H), 3.19 (m, 2H), 3.07 (m, 1H), 2.84-2.78 (m, 3H), 2.57 (d, 1H, J = 12.2 Hz), 2.06 (t, 2H, J = 7.3 Hz), 1.64-1.41 (m, 4H), 1.29 (m, 2H).
13C NMR (67.8 MHz, DMSO-d6) Δ: 172.10 (C), 169.73 (C), 169.69 (C), 162.59 (C), 155.86 (C), 133.39 (C), 133.30 (C ), 129.03 (C), 128.47 (C), 125.31 (CH), 125.23 (CH), 122.63 (CH), 122.00 (CH), 120.53 (CH) , 120.37 (CH), 74.30 (CH2), 69.57 (CH2), 69.31 (CH2), 69.01 (CH2), 68.46 (CH2), 60.91 (CH), 59.06 (CH), 55.31 (CH), 40.96 (CH2), 39.83 (CH2), 38.25 (CH2), 37.28 (CH2), 34.98 (CH2), 34.91 (CH2), 28.08 (CH2), 27.93 (CH2), 25.15 (CH2).
Example 2 Synthesis of Bisaminooxynaphthalene reagent (hereinafter aoNao; Compound 12)
Scheme 3
N 1 , N 5 -Bis (tritylaminooxyacetyl) -1,5-diaminonaphthalene (Compound 11)
  Under an argon atmosphere, 158 mg (1.00 mmol) of 1,5-diaminonaphthalene (Compound 1) was dissolved in 30 ml of pyridine, and 333 mg (1.00 mmol) of N-tritylaminooxyacetic acid and EDC [1-ethyl-3-hydrochloride ( 3-Dimethylaminopropyl) carbodiimide] 230 mg (1.20 mmol) was added and stirred at room temperature. After 3 hours and 6 hours from the start of the reaction, 333 mg (1.00 mmol) of N-tritylaminooxyacetic acid and 230 mg (1.20 mmol) of EDC were added, respectively, and further stirred at room temperature for 16 hours. After the reaction solution was concentrated under reduced pressure, the precipitate was suspended in 20 ml of water and washed once with 50 ml of ethyl acetate and three times with 20 ml of chloroform. The white precipitated substance in the aqueous layer was collected by suction filtration, and further washed with ethanol and ether to obtain 550 mg (yield 70%) of the title compound (Compound 11) as a white powdery substance.
FAB-LRMS m / z (+ NaI) 789.3 (MH+), 811.3 ([M+Na]+FAB-HRMS calculated value: 811.3260 (C52H44N4O4Na [M+Na]+), Measured value: 811.3274.
11 H NMR (270 MHz, DMSO-d6) Δ: 9.62 (br s, 2H, NH), 8.36 (br s, 2H, NH), 7.77-7.71 (m, 4H, naph), 7.52 (t, 2H, naph, J = 7.9 Hz), 7.41-7.25 (m, 30H, Tr), 4.23 (s, 4H, CH2).
13C NMR (67.8 MHz, DMSO-d6): 168.89 (C), 144.07 (C), 132.90 (C), 128.78 (CH), 127.63 (CH), 126.76 (CH), 125.43 (CH ), 123.80 (C), 122.15 (CH), 120.11 (CH), 73.61 (C), 73.27 (CH2).
N 1 , N 5 -Bis (aminooxyacetyl) -1,5-diaminonaphthalene (Compound 12)
  N in argon atmosphere1, N5394 mg (0.50 mmol) of bis (tritylaminooxyacetyl) -1,5-diaminonaphthalene (compound 11) was suspended in 20 ml of chloroform and cooled on ice, 0.94 ml (10.0 mmol) of trifluoroacetic acid and triisopropyl 1.02 ml (5.0 mmol) of silane was added. The reaction solution was returned to room temperature and stirred for 3.5 hours. 40 ml of water and 10 ml of chloroform were added to the reaction solution to dissolve the precipitate, followed by liquid separation. The aqueous layer was washed twice with 30 ml of chloroform and once with 30 ml of ethyl acetate. Subsequently, 60 ml of acetonitrile was added to the aqueous layer, and then DOWE (1 × 4-100 (OHFoam). DOWE (1 × 4-100 was removed by filtration, and DOWEW (1 × 4-100 was washed with 80% acetonitrile aqueous solution. After combining the solutions and concentrating under reduced pressure, the residue was dissolved in 30 ml of water and dissolved in C Purification by -18 column column chromatography (elution solvent: water-acetonitrile) gave 109 mg (yield 72%) of the title compound (Compound 12) as a white powder.
FAB-LRMS m / z 305.2 (MH+); FAB-HRMS calculated value: 305.1250 (C14H17N4O4[MH+]), Measured value: 305.1259.
11 H NMR (270 MHz, DMSO-d6) Δ: 9.88 (s, 2H, NH), 7.93 (d, 2H, naph, J = 8.6 Hz), 7.66 (d, 2H, naph, J = 7.2 Hz), 7. 54 (dd, 2H, naph, J = 7.2, 8.6 Hz), 6.57 (s, 4H, NH2), 4.28 (s, 4H, CH2).
13C NMR (67.8 MHz, DMSO-d6) Δ: 169.75 (C), 133.35 (C), 129.11 (C), 125.41 (CH), 122.66 (CH), 120.75 (CH), 74.42 (CH2).
Example 3 Oligonucleotide Synthesis and Purification
  Oligonucleotide synthesis was performed on an Applied Biosystems type 394 DNA / RNA synthesizer. Synthesized on a 0.2 or 1 μmol scale. The HPLC was performed using a Gilson apparatus and the analysis was performed using a Waters 996 photodiode array detector.
Reversed phase HPLC solution
Solution A 5% acetonitrile / 0.1M TEAA (pH 7.0)
Solution B 25% acetonitrile / 0.1M TEAA (pH 7.0)
Column temperature: 50 ° C
As the column, a μ-Bondsphere (C-18) column Φ3.9 × 150 mm (manufactured by Waters) was used.
Ion exchange HPLC solution
Solution A 20% acetonitrile
B solution 20% acetonitrile, 2M ammonium formate
Column temperature: 50 ° C
The column used was TSK-GEL DEAE-2SW Φ4.6 × 250 mm (Tosoh Corporation).
HPLC conditions
Condition 1% of solution B 20 → 40% / 20 minutes
Condition 2% of solution B 35 → 55% / 20 minutes
(Example 4) Oxidation reaction of oligonucleotide (RNA)
  Oligonucleotide (F-Lr17X: X = A, G, C, U) (1.6 nmol) was dissolved in 100 mM phosphate buffer (pH 7) and 800 μM sodium periodate (total reaction volume 200 μl), 37 ° C., The oxidation reaction was performed in 90 minutes. After the reaction, desalting was performed using a NAP10 column (GE Healthcare), and the resulting oxidized oligonucleotide (F-Lr17Xox) was subjected to UV quantification.
(Example 5) Labeling reaction of ARP and aoNg to oxidized oligonucleotide (RNA)
Reaction to single strand
  An oxidized oligonucleotide (F-Lr17Xox; X = A, G, C, U) (12 pmol) was dissolved in 3 μl of 1M phosphate buffer (pH 7) and 21 μl of sterilized water, and then 2 mM labeling reagent ( 6 μl of ARP or aoNg prepared in Example 1 was added, and the reaction was started at 37 ° C. ARP (Aldehyde Reactive Probe; DOJINDO) has the following structure.
  After a certain time, 2.5 μl was sampled and added to 5 μl of loading solution mix (50 mM EDTA, 10 M urea, 0.1% BPB; prepared by mixing 4 μl, 40 mM glutaraldehyde; 1 μl) to stop the reaction. Then, it analyzed with the denaturation 20% polyacrylamide gel (19: 1). The fluorescence intensity of fluorescein in each band was measured and the reaction efficiency was calculated. The results of the reaction are shown in FIG.
Double-stranded reaction
  When the reaction was performed in double strand, complementary strand AS32Y (24 pmol) was added to oxidized oligonucleotide (F-Lr17Xox) (12 pmol), and other reaction conditions were the same as in the single strand reaction.
  The binding rate of ARP or aoNg was measured for the single strand of F-Lr17Xox (ss F-Lr17Xox) and the double strand of the complementary strand (AS32Y), and the apparent reaction rate constant was calculated. AoNg showed higher reactivity than ARP regardless of the type of base at the 3 'end of RNA. It was also found that the reaction efficiency is increased when double strands are formed rather than single strands.
(Example 6) Continuous reaction from oxidation to labeling of RNA
  In Examples 4 and 5, the labeling reaction was performed after the RNA was previously oxidized and purified. Next, an experiment was conducted to confirm whether it was possible to continuously perform the process from RNA oxidation to labeling. RNA (F-Lr17X; X = A, G, C, U) (12 pmol) was dissolved in 150 mM phosphate buffer (pH 7) and 150 μM sodium periodate (total reaction volume 20 μl) at 37 ° C. for 60 minutes. An oxidation reaction was performed. Subsequently, 5 μl of 2 mM DTT was added and the mixture was heated at 37 ° C. for 30 minutes, and 5 μl of 240 μM aoNg (or aoNg-bio) was added, and a labeling reaction was performed at 37 ° C. (total reaction volume 30 μl). In the same manner as in Example 5, sampling was performed after a certain period of time for analysis. As a result of the reaction, it was confirmed that the excess sodium periodate used in the oxidation could be reduced to continuously perform the oxidation to the labeling reaction.
(Example 7) Synthesis of oligonucleotide containing abasic site
  Using an abasic phosphoramidite reagent (Glen Res.), An oligonucleotide (F-20Z) containing an abasic site (Z) was synthesized. F-20Z represents 5 'F-GAATTGCTTTGGAAGAZGTTT 3'. The synthesized oligonucleotide was deprotected with concentrated aqueous ammonia according to a conventional method, and then 4 mL of 40% acetic acid was added and stirred at room temperature for 4 hours to deprotect the TBDMS group. After the reaction, acetic acid was distilled off under reduced pressure, water was further added, and the solvent was distilled off under reduced pressure. This operation was repeated several times to remove acetic acid. Thereafter, the oligonucleotide was dissolved in sterile water and purified by reverse phase HPLC and ion exchange HPLC. Sp35, which is the complementary strand of F-20Z, was synthesized and purified in the same manner (Tables 4 and 5). Sp35C represents 3 'CGAAAGTAACCCTTAACGAACCTCTCTCAAAAGAACGA 5'. The conditions for each HPLC were the same as those for purification of F-Lr17X and AS32Y.
HPLC conditions
Condition 1% of solution B 20 → 40% / 20 minutes
Condition 2% of solution B 35 → 55% / 20 minutes
Condition 3% of solution B 30 → 50% / 20 minutes
(Example 8) Oxidation of oligonucleotide containing abasic site
  Oligonucleotide F-20Z (2.6 nmol) containing an abasic site prepared in Example 7 was dissolved in 100 mM phosphate buffer (pH 7) and 10 mM sodium periodate, and an oxidation reaction was performed at 37 ° C. for 60 minutes. It was. After the reaction, the solution was desalted with a NAP5 column (GE Healthcare), concentrated, and purified by a denaturing 20% polyacrylamide gel (19: 1). The gel pieces were desalted using a YMC cartridge (100 mg / 1 ml). The obtained oxidized oligonucleotide (F-20Zox) was quantified by UV and subjected to the reaction.
(Example 9) Labeling reaction of ARP and aoNg on a basic site
Reaction to single strand
  Oxidized F-20Zox (12 pmol) was dissolved in 3 μl of 1M phosphate buffer (pH 7) and 15 μl of sterilized water, heated at 90 ° C. for 1 minute, and ice-cooled. After 10 seconds, the mixture was left at room temperature for 5 minutes and preincubated at 37 ° C. for 5 minutes. Subsequently, 12 μl of a labeling reagent (5 mM ARP or aoNg) previously dissolved in sterilized water was added, and the labeling reaction was started at 37 ° C., 42 ° C. or 47 ° C. After a certain period of time, 2.5 μl was sampled and added to 5 μl of loading solution mix (50 mM EDTA, 10 M urea, 0.1% BPB; prepared by mixing 4 μl, 200 mM glutaraldehyde; 1 μl) to stop the reaction. Then, it analyzed with the denaturation 20% polyacrylamide gel (19: 1). The fluorescence intensity of fluorescein in each band was measured and the reaction efficiency was calculated. The results of the reaction are shown in FIG.
Double-stranded reaction
  When the reaction was performed in double strand, complementary strand Sp35C (14.4 pmol) was added to oxidized oligonucleotide (F-20Zox) (12 pmol), and other reaction conditions were the same as in the single strand reaction. The results of the reaction are shown in FIG.
  The reagent reacted with a basic site Z in F-20Z. Also for DNA, aoNg showed higher reactivity. Especially for double strands, the reaction efficiency of ARP was the same as that of single strands, but with aoNg, the reaction efficiency was greatly improved.
(Example 10) Synthesis and purification of oligonucleotide containing 2'-deoxyuridine (dU)
  Oligonucleotide (F-20dU) labeled with fluorescein at the 5 'end and dU in the chain and its complementary strand (Sp20dU) were prepared using 2'-deoxyuridine phosphoramidite reagent (Glen Res.). The DNA was synthesized by an automatic DNA synthesizer. F-20dU represents 5 'F-GAATTGCTdUGGAAGAGGTTT 3', and Sp20dU represents 3 'CTTAACGAdUCCTTCTCCAAA 5'. The synthetic oligonucleotide was deprotected according to a conventional method, and then separated and purified by reverse phase HPLC (Table 6). The conditions of HPLC etc. are shown below.
Reversed phase HPLC solution
Solution A 5% acetonitrile / 0.1M TEAA (pH 7.0);
Solution B 25% acetonitrile / 0.1M TEAA (pH 7.0)
Column temperature: room temperature
As the column, Inertsil ODS-3 (C-18) column Φ3.0 × 300 mm (GL Science) was used.
HPLC conditions
Condition 4% of solution B 40 → 60% / 20 minutes
(Example 11) Labeling reaction of ARP, aoNg, and aoNg-bio to DNA containing 2'-deoxyuridine
  An experiment was conducted to evaluate whether the compounds of the present invention react with abasic sites generated from 2'-deoxyuridine (dU) and uracil DNA glycosylase (UDG).
  DNA containing dU, F-20dU (12 pmol) and its complementary strand (Sp35C; 24 pmol) were dissolved in a solution (total volume 29.5 μl) containing UDG buffer (x10, 3 μl). Sp35C represents 3 'CGAAAGTAACCCTTAACGAACCTCTCTCAAAAGAACGA 5'. The reaction solution was heated at 90 ° C. for 1 minute and ice-cooled, preincubated at 37 ° C. for 5 minutes, UDG (1 unit, 0.5 μl) was added thereto, and the reaction was performed at 37 ° C. for 60 minutes in a total amount of 30 μl. Thereafter, the enzyme was inactivated by heating at 90 ° C. for 1 minute, and allowed to stand for 10 minutes on ice and 5 minutes at room temperature. The labeling reaction was started at 37 ° C. by adding 6 μl of labeling reagent (ARP, aoNg, aoNg-bio) adjusted to 10 mM dissolved in advance in this reaction solution. After a certain period of time, 2.5 μl was sampled and added to 5 μl of loading solution mix (50 mM EDTA, 10 M urea, 0.1% BPB; prepared by mixing 4 μl, 200 mM glutaraldehyde; 1 μl) to stop the reaction. Then, it analyzed by the denaturation 20% polyacrylamide gel (19: 1) (FIG. 4). The fluorescence intensity of fluorescein in each band was measured and the reaction efficiency was calculated (FIG. 4).
  The reaction rate constants of aoNg, ARP, and aoNg-bio are each 0.51 min.-1, 0.03min-10.17min-1Therefore, it was revealed that aoNg and aoNg-bio show higher reaction efficiency.
(Example 12) Reaction of aoNao to DNA
  DNA containing dU, F-20dU (12 pmol) and its complementary strand (Sp20dU; 13.2 pmol) were dissolved in a solution (total volume 29.5 μl) containing UDG buffer (x10, 3 μl). Sp20dU represents 3 'CTTAACGAdUCCTTCTCCAAA 5'. The reaction solution was heated at 90 ° C. for 1 minute and ice-cooled, preincubated at 37 ° C. for 5 minutes, UDG (1 unit, 0.5 μl) was added thereto, and the reaction was performed at 37 ° C. for 60 minutes in a total amount of 30 μl. Thereafter, the enzyme was inactivated by heating at 90 ° C. for 1 minute, and allowed to stand for 10 minutes on ice and 5 minutes at room temperature. The labeling reaction was started at 37 ° C. by adding 6 μl of 2 mM aoNao dissolved in advance in this reaction solution. A similar reaction was performed with F-20dU, single strand only. After a certain time, 3 μl was sampled and added to 5 μl of loading solution mix (50 mM EDTA, 10 M urea, 0.1% BPB; prepared by mixing 4 μl, 200 mM glutaraldehyde; 1 μl) to stop the reaction. Then, it analyzed by the denaturation 20% polyacrylamide gel (19: 1) (FIG. 5). The fluorescence intensity of fluorescein in each band was measured and the reaction efficiency was calculated (FIG. 5). It was confirmed that aoNao can react so as to crosslink between the two strands.
Example 13 Synthesis of aoNdg-biotin reagent (hereinafter aoNdg-bio; Compound 16)
Scheme 4
1- (N 3 -Fluorenylmethyloxycarbonylthioureido) -N 5 -(Tritylaminooxyacetyl) -5-aminonaphthalene (Compound 13)
  Under an argon atmosphere, 850 mg (3.01 mmol) of fluorenylmethyloxycarbonyl isothiocyanate and 0.52 ml (3.01 mmol) of diisopropylethylamine were dissolved in 30 ml of methylene chloride and cooled to 0 ° C. N here1-(Tritylaminooxyacetyl) -1,5-diaminonaphthalene (Compound 2) 1.19 g (2.51 mmol) in methylene chloride (30 ml) was slowly added dropwise, and the mixture was further returned to room temperature for 1.5 hours. Stir. The reaction mixture was concentrated under reduced pressure and purified by silica gel column chromatography (elution solvent: ethyl acetate-hexane) to obtain 1.04 g (yield 55%) of the title compound (Compound 13) as a white solid substance.
FAB-LRMS m / z 755.3 (MH+), 777.2 ([M + Na]+FAB-HRMS calculated value: 777.2511 (C47H38N4O4SNa [M + Na]+), Measured value: 777.2486.
11 H NMR (270 MHz, DMSO-d6) Δ: 11.81 (s, 1H, NH), 11.60 (s, 1H, NH), 9.66 (s, 1H, NH),
8.37 (s, 1H, NH), 7.94-7.85 (m, 6H), 7.78-7.68 (m, 3H), 7.61-7.53 (m, 1H), 7.49-7.41 (m, 2H), 7.38-7.27 (m, 17H), 4.49 (d, 2H, Fmoc-CH2, J = 7.3 Hz), 4.37 (t, 1H, Fmoc-CH, J = 7.3 Hz), 4.23 (s, 2H, CH2).
13C NMR (67.8 MHz, DMSO-d6) Δ: 180.59 (C), 168.96 (C), 153.56 (C), 144.08 (C), 143.23 (C), 140.65 (C), 134.68 (C ), 133.14 (C), 129.79 (C), 128.79 (CH), 128.61 (C), 127.77 (CH), 127.64 (CH), 127.07 (CH) , 126.77 (CH), 126.10 (CH), 125.58 (CH), 125.43 (CH), 125.31 (CH), 122.34 (CH), 121.98 (CH), 121.28 (CH), 120.08 (CH), 119.93 (CH), 73.62 (C), 73.30 (CH2), 67.42 (CH2), 45.99 (CH).
1- (N 3 -{2- [2- (2-biotinylaminoethoxy) ethoxy] ethyl} -N 2 -Fluorenylmethyloxycarbonylguanidino) -N 5 -(Tritylaminooxyacetyl) -5-aminonaphthalene (Compound 14)
  1- (N under argon atmosphere3-Fluorenylmethyloxycarbonylthioureido) -N5910 mg (1.20 mmol) of-(tritylaminooxyacetyl) -5-aminonaphthalene (Compound 13) was dissolved in 20 ml of dimethylformamide and cooled to 0 ° C. To this solution, a dimethylformamide solution of 540 mg (1.44 mmol) of (+)-biotinyl-3,6-dioxaoctanediamine, 360 mg (1.32 mmol) of mercuric chloride and 0.50 ml (2.88 mmol) of diisopropylethylamine ( 15 ml) was slowly added dropwise, and the mixture was further stirred at 0 ° C. for 1.5 hours. After adding 150 ml of ethyl acetate to the reaction solution, the precipitate was removed by Celite filtration. Ethyl acetate was added to the filtrate to a total volume of 350 ml, washed 4 times with 120 ml of water and once with 120 ml of saturated brine, and dried over sodium sulfate. The solution was concentrated under reduced pressure and purified by silica gel column chromatography (elution solvent: ethanol-chloroform) to obtain 963 mg (yield 73%) of the title compound (Compound 14) as a white foam.
FAB-LRMS m / z 1095.5 (MH+); FAB-HRMS calculated value: 1095.4803 (C63H67N8O8S [MH+]), Measured value: 10955.496.
11 H NMR (270 MHz, DMSO-d6) Δ: 9.61 (brs, 1H, NH), 8.33 (brs, 1H, NH), 7.89-7.75 (m, 6H), 7.61-7.47 (m, 3H), 7.42-7.25 (m, 20H), 6.39 (brs, 1H, NH), 6.33 (brs, 1H, NH), 4.30-4.24 (m, 6H), 4.10 (m, 1H), 3.49 (m, 6H), 3.38-3.33 (m, 4H), 3.16 (m, 2H), 3.06 (m, 1H) ), 2.79 (dd, 1H, J = 5.3, 12.2 Hz), 2.56 (d, 1H, J = 12.2 Hz), 2.04 (t, 2H, J = 7.3 Hz) 1.63-1.37 (m, 4H), 1.32-1.23 (m, 2H).
1- (N 3 -{2- [2- (2-biotinylaminoethoxy) ethoxy] ethyl} -N 2 -Fluorenylmethyloxycarbonylguanidino) -N 5 -(Aminooxyacetyl) -5-aminonaphthalene (Compound 15)
  1- (N under argon atmosphere3-{2- [2- (2-biotinylaminoethoxy) ethoxy] ethyl} -N2-Fluorenylmethyloxycarbonylguanidino) -N5170 mg (0.16 mmol) of-(tritylaminooxyacetyl) -5-aminonaphthalene (compound 14) was dissolved in 15 ml of methylene chloride, cooled to 0 ° C., 180 μl (2.4 mmol) of trifluoroacetic acid and 330 μl of triisopropylsilane (1.6 mmol) was added. The reaction solution was returned to room temperature and stirred for 30 minutes, and then added with 65 ml of chloroform, washed once with 35 ml of saturated sodium bicarbonate solution, once with 35 ml of water, and once with 35 ml of saturated brine, and then washed with sodium sulfate. Dried. The solution was concentrated under reduced pressure and purified by silica gel column chromatography (elution solvent: methanol-chloroform) to obtain 86 mg (yield 65%) of the title compound (Compound 15) as a white foam.
FAB-LRMS m / z 853.4 (MH+FAB-HRMS calculated value: 853.3707 (C44H53N8O8S [MH+]), Measured value: 853.3713.
11 H NMR (270 MHz, DMSO-d6) Δ: 9.90 (brs, 1H, NH), 8.02 (m, 1H), 7.89-7.71 (m, 5H), 7.78 (brs, 1H, NH), 7 .62-7.31 (m, 8H), 6.56 (br s, 2H, NH2), 6.39 (brs, 1H, NH), 6.33 (brs, 1H, NH), 4.29-4.26 (m, 6H), 4.10 (m, 1H), 3. 48 (m, 6H), 3.36 (m, 4H), 3.16 (m, 2H), 3.06 (m, 1H), 2.80 (dd, 1H, J = 5.0, 12. 5Hz), 2.56 (d, 1H, J = 12.5 Hz), 2.04 (t, 2H, J = 7.3 Hz), 1.6-1.38 (m, 4H), 1.28 ( m, 2H).
13C NMR (67.8 MHz, DMSO-d6) Δ: 172.07 (C), 169.68 (C), 162.64 (C), 144.15 (C), 140.63 (C), 127.45 (CH), 126.98 (CH ), 125.04 (CH), 120.04 (CH), 74.37 (CH2), 69.47 (CH2), 69.14 (CH2), 68.81 (CH2), 66.04 (CH2), 60.99 (CH), 59.15 (CH), 55.37 (CH), 46.67 (CH), 39.79 (CH2), 38.37 (CH2), 35.04 (CH2), 28.14 (CH2), 27.99 (CH2), 25.21 (CH2).
1- (N 3 -{2- [2- (2-biotinylaminoethoxy) ethoxy] ethyl} guanidino) -N 5 -(Aminooxyacetyl) -5-aminonaphthalene (Compound 16, acetate)
  1- (N under argon atmosphere3-{2- [2- (2-biotinylaminoethoxy) ethoxy] ethyl} -N2-Fluorenylmethyloxycarbonylguanidino) -N5-(Aminooxyacetyl) -5-aminonaphthalene (Compound 15) 85 mg (0.10 mmol) was dissolved in a mixed solvent of 1,4-dioxane 4 ml and methanol 4 ml, and piperidine 0.40 ml (4.0 mmol) was added. Stir at room temperature for 16 hours. After the reaction solution was concentrated under reduced pressure, the residue was dissolved in 35 ml of water and washed 3 times with 15 ml of ethyl acetate. The aqueous layer was concentrated under reduced pressure and then purified by C18 cartridge column chromatography (elution solvent: acetonitrile-0.1 M TEAA solution) to obtain a crude product (52 mg). A portion of this crude product was dissolved in 5 ml of 2% acetic acid aqueous solution and purified again by C18 cartridge column chromatography (elution solvent: acetonitrile-water) to give 9.2 mg of the title compound (Compound 16, acetate) as white. Obtained as a flocculent material.
FAB-LRMS m / z 631.3 (MH+FAB-HRMS calculated value: 631.3026 (C29H43N8O6S [MH+]), Measured value: 631.3005.
11 H NMR (270 MHz, DMSO-d6) Δ: 9.94 (s, 1H, NH), 9.64 (brs, 1H, NH), 8.07 (m, 1H, nap), 7.82 (m, 1H), 7.81 ( d, 1H, J = 8.2 Hz, nap), 7.73 (d, 1H, J = 6.9 Hz, nap), 7.62 (m, 2H, nap), 7.55 (m, 2H), 7.51 (m, 1H, nap), 6.55 (s, 2H, NH2O), 6.39 (s, 1H, NH), 6.35 (s, 1H, NH), 4.31 (m, 1H), 4.29 (s, 2H, CH2), 4.12 (br dd, 1H, J = 4.3, 7.6 Hz), 3.58 (m, 6H), 3.42 (m, 4H), 3.21 (m, 2H), 3 .09 (m, 1H), 2.81 (dd, 1H, J = 5.0, 12.5 Hz), 2.57 (d, 1H, J = 12.5 Hz), 2.07 (t, 2H, J = 7.3 Hz), 1.64-1.42 (m, 4H), 1.30 (m, 2H).
13C NMR (67.8 MHz, DMSO-d6) Δ: 172.10 (C), 169.68 (C), 162.59 (C), 155.75 (C), 133.72 (C), 130.44 (C), 129.39 (C ), 126.32 (CH), 125.81 (CH), 123.00 (CH), 119.87 (CH), 74.27 (CH2), 69.66 (CH2), 69.38 (CH2), 69.06 (CH2), 68.52 (CH2), 60.92 (CH), 59.08 (C), 55.31 (CH), 41.22 (CH2), 39.73 (CH2), 38.27 (CH2), 35.00 (CH2), 28.08 (CH2), 27.94 (CH2), 25.16 (CH2).
(Example 14)
  Using the same oligonucleotide as in Example 11, the reaction efficiency of aoNdg-bio was examined under the same conditions. As a result of the reaction, the reaction rate constant of aoNdg-bio was 0.23 min.-1From the above, it was revealed that aoNdg-bio showed higher reaction efficiency than ARP, like aoNg and aoNg-bio.
  All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety.
[Sequence Listing]

Claims (11)

一般式1:
−NH−O−L−D−L−A (1)
(式中、
は、水素原子、アルキル基又はアミノ基の保護基であり、
Dは、置換若しくは無置換のフェニレン基、置換若しくは無置換のアントリレン基、置換若しくは無置換のナフチレン基、置換若しくは無置換のフェナントリレン基、置換若しくは無置換のアントラキノリレン基、及び置換若しくは無置換のアクリジニレン基から選択される芳香族基であり、
芳香族基の置換基は、ハロゲン原子、 1−6アルキル基、トロ基、シアノ基、C2−6アルケニル基、C3−10シクロアルキル基、C1−10アルコキシ基及び1−10アシル基らなる群から選択され、
は、直接結合又は以下の一般式3又は4:
(式中、R は、C 1−9 アルキレン基又は−(CH −(OCH CH −(CH −であり、o〜qは、それぞれ独立して0〜15の整数であり、o+p+qは、1〜15である)
のいずれかで表される2価の基であり、Lは、直接結合又は以下の一般式5又は6:
(式中、R は、C 1−9 アルキレン基又は−(CH −(OCH CH −(CH −であり、r〜tは、それぞれ独立して0〜15の整数であり、r+s+tは、1〜15である)
のいずれかで表される2価の基であり、
Aは、置換又は無置換のグアニジノ基、アミノオキシ基又は保護されたアミノオキシ基であり、
グアニジノ基の置換基は、−(CH −(OCH CH −(CH −NH−ビオチンであり、v、w及びxは、それぞれ独立して0〜15の整数であり、v+w+xは、1〜15である
で表される化合物又はその塩。
General formula 1:
R 1 -NH-O-L 1 -D-L 2 -A (1)
(Where
R 1 is a protecting group for a hydrogen atom, an alkyl group or an amino group,
D is a substituted or unsubstituted phenylene group, a substituted or unsubstituted anthrylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted phenanthrylene group, a substituted or unsubstituted anthraquinolylene group, and a substituted or unsubstituted group An aromatic group selected from acridinylene groups of
Substituents of aromatic groups, halogen atoms, C 1-6 alkyl group, nitro group, cyano group, C 2-6 alkenyl group, C 3-10 cycloalkyl, C 1-10 alkoxy group and C 1- is selected from 10 acyl group or Ranaru group,
L 1 is a direct bond or the following general formula 3 or 4:
(Wherein R 3 is a C 1-9 alkylene group or — (CH 2 ) o — (OCH 2 CH 2 ) p — (CH 2 ) q —, and o to q are each independently 0 to 15 is an integer, and o + p + q is 1 to 15)
A divalent group represented by any one of, L 2 is 5 or a direct bond or the following general formula 6:
Wherein R 4 is a C 1-9 alkylene group or — (CH 2 ) r — (OCH 2 CH 2 ) s — (CH 2 ) t —, and r to t are each independently 0 to 15 is an integer, and r + s + t is 1 to 15)
A divalent group represented by any of the following :
A is a substituted or unsubstituted guanidino group, an aminooxy group or a protected aminooxy group,
The substituent of the guanidino group is — (CH 2 ) v — (OCH 2 CH 2 ) w — (CH 2 ) x —NH-biotin, and v, w and x are each independently an integer of 0 to 15 And v + w + x is 1 to 15 )
Or a salt thereof.
Aが、置換又は無置換のグアニジノ基である、請求項1記載の化合物又はその塩。  The compound or its salt of Claim 1 whose A is a substituted or unsubstituted guanidino group. Aが、以下の一般式2:
(式中、X及びXは、水素原子又は−(CH −(OCH CH −(CH −NH−ビオチンであり、v、w及びxは、それぞれ独立して0〜15の整数であり、v+w+xは、1〜15である)
で表される、請求項1又は2記載の化合物又はその塩。
A is the following general formula 2:
(Wherein, X 1 and X 2 are a hydrogen atom or — (CH 2 ) v — (OCH 2 CH 2 ) w — (CH 2 ) x —NH-biotin, wherein v, w and x are each independently And v + w + x is 1 to 15 )
The compound or its salt of Claim 1 or 2 represented by these.
Dが、以下の一般式:
(式中、一方の結合部位がL又はOに結合し、他方の結合部位がL又はAに結合する)
で表される2価の芳香族基、及びこれらの芳香族基において芳香環が1〜3個の置換基を有する芳香族基から選択される、請求項1〜3のいずれか1項記載の化合物又はその塩。
D is the following general formula:
(Wherein one binding site binds to L 1 or O and the other binding site binds to L 2 or A)
The bivalent aromatic group represented by these, and the aromatic ring in these aromatic groups are selected from the aromatic group which has 1-3 substituents of any one of Claims 1-3 Compound or salt thereof.
以下の一般式7:
(式中、Rは、水素原子又はアミノ基の保護基であり、nは、1〜5の整数であり、mは、1〜5の整数であり、R〜Rは、それぞれ独立して、水素原子又は芳香族基の置換基であり、X及びXは、水素原子又は−(CH −(OCH CH −(CH −NH−ビオチンであり、v、w及びxは、それぞれ独立して0〜15の整数であり、v+w+xは、1〜15である)
で表される、請求項1記載の化合物又はその塩。
The following general formula 7:
(In the formula, R 1 is a hydrogen atom or a protecting group for an amino group, n is an integer of 1 to 5, m is an integer of 1 to 5, and R a to R f are each independent. And X 1 and X 2 are each a hydrogen atom or — (CH 2 ) v — (OCH 2 CH 2 ) w — (CH 2 ) x —NH-biotin. Yes, v, w, and x are each independently an integer of 0-15, and v + w + x is 1-15.
The compound of Claim 1 represented by these, or its salt.
以下の一般式8:
(式中、Rは、水素原子又はアミノ基の保護基であり、nは、1〜5の整数であり、R〜Rは、それぞれ独立して、水素原子又は芳香族基の置換基であり、Xは、水素原子又は−(CH −(OCH CH −(CH −NH−ビオチンであり、v、w及びxは、それぞれ独立して0〜15の整数であり、v+w+xは、1〜15である)
で表される、請求項1記載の化合物又はその塩。
The following general formula 8:
(In the formula, R 1 is a protecting group for a hydrogen atom or an amino group, n is an integer of 1 to 5, and R a to R f are each independently a hydrogen atom or an aromatic group substitution. X 2 is a hydrogen atom or — (CH 2 ) v — (OCH 2 CH 2 ) w — (CH 2 ) x —NH-biotin, and v, w and x are each independently 0 Is an integer of ~ 15, and v + w + x is 1-15 )
The compound of Claim 1 represented by these, or its salt.
以下の一般式:
(式中、R及びRは、それぞれ独立して、水素原子又はアミノ基の保護基であり、n及びiは、それぞれ独立して、1〜5の整数であり、R〜Rは、それぞれ独立して、水素原子又は芳香族基の置換基である)
で表される、請求項1記載の化合物又はその塩。
The following general formula:
(In the formula, R 1 and R 5 are each independently a hydrogen atom or an amino-protecting group, n and i are each independently an integer of 1 to 5, and R a to R f Are each independently a hydrogen atom or a substituent of an aromatic group)
The compound of Claim 1 represented by these, or its salt.
Aが−(CH −(OCH CH −(CH −NH−ビオチンで置換されたグアニジノ基であり、v、w及びxは、それぞれ独立して0〜15の整数であり、v+w+xは、1〜15である、請求項1〜のいずれか1項記載の化合物又はその塩。A is a guanidino group substituted with — (CH 2 ) v — (OCH 2 CH 2 ) w — (CH 2 ) x —NH-biotin, and v, w and x are each independently 0 to 15 It is an integer and v + w + x is 1-15, The compound or its salt of any one of Claims 1-6 . 及びXの少なくとも一方が−(CH −(OCH CH −(CH −NH−ビオチンであり、v、w及びxは、それぞれ独立して0〜15の整数であり、v+w+xは、1〜15である、請求項3、又は記載の化合物又はその塩。At least one of X 1 and X 2 is — (CH 2 ) v — (OCH 2 CH 2 ) w — (CH 2 ) x —NH-biotin, and v, w and x are each independently 0 to 15 The compound according to claim 3, 5 or 6 , or a salt thereof , wherein v + w + x is 1 to 15 . アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する生体分子を標識するための試薬であって、一般式(1):
−NH−O−L −D−L −A (1)
(式中、
は、水素原子、アルキル基又はアミノ基の保護基であり、
Dは、置換若しくは無置換のフェニレン基、置換若しくは無置換のアントリレン基、置換若しくは無置換のナフチレン基、置換若しくは無置換のフェナントリレン基、置換若しくは無置換のアントラキノリレン基、及び置換若しくは無置換のアクリジニレン基から選択される芳香族基であり、
芳香族基の置換基は、ハロゲン原子、C 1−6 アルキル基、ニトロ基、シアノ基、C 2−6 アルケニル基、C 3−10 シクロアルキル基、C 1−10 アルコキシ基及びC 1−10 アシル基からなる群から選択され、
は、直接結合または以下の一般式3又は4:
(式中、R は、C 1−9 アルキレン基又は−(CH −(OCH CH −(CH −であり、o〜qは、それぞれ独立して0〜15の整数であり、o+p+qは、1〜15である)
のいずれかで表される2価の基であり、L は、直接結合または以下の一般式5又は6:
(式中、R は、C 1−9 アルキレン基又は−(CH −(OCH CH −(CH −であり、r〜tは、それぞれ独立して0〜15の整数であり、r+s+tは、1〜15である)
のいずれかで表される2価の基であり:
Aは、標識化されたグアニジノ基である)
で表される化合物又はその塩を含む前記試薬。
A reagent for labeling a biomolecule having an aldehyde group, a hemiacetal group, a carboxyl group or a keto group, which has the general formula (1):
R 1 -NH-O-L 1 -D-L 2 -A (1)
(Where
R 1 is a protecting group for a hydrogen atom, an alkyl group or an amino group,
D is a substituted or unsubstituted phenylene group, substituted or unsubstituted anthrylene group, substituted or unsubstituted naphthylene group, substituted or unsubstituted phenanthrylene group, substituted or unsubstituted anthraquinolylene group, and substituted or unsubstituted An aromatic group selected from acridinylene groups of
The substituent of the aromatic group includes a halogen atom, a C 1-6 alkyl group, a nitro group, a cyano group, a C 2-6 alkenyl group, a C 3-10 cycloalkyl group, a C 1-10 alkoxy group, and a C 1-10. Selected from the group consisting of acyl groups;
L 1 is a direct bond or the following general formula 3 or 4:
(Wherein R 3 is a C 1-9 alkylene group or — (CH 2 ) o — (OCH 2 CH 2 ) p — (CH 2 ) q —, and o to q are each independently 0 to 15 is an integer, and o + p + q is 1 to 15)
Wherein L 2 is a direct bond or the following general formula 5 or 6:
Wherein R 4 is a C 1-9 alkylene group or — (CH 2 ) r — (OCH 2 CH 2 ) s — (CH 2 ) t —, and r to t are each independently 0 to 15 is an integer, and r + s + t is 1 to 15)
Is a divalent group represented by:
A is a labeled guanidino group)
The said reagent containing the compound or its salt represented by these .
請求項10記載の試薬と、アルデヒド基、ヘミアセタール基、カルボキシル基又はケト基を有する生体分子とが結合してなる、生体分子が標識化された試薬であって、該試薬のアミノオキシ基と該生体分子のアルデヒド基、ヘミアセタール基、カルボキシル基又はケト基とが反応して共有結合を形成している、前記生体分子が標識化された試薬 A reagent according to claim 10, aldehyde groups, hemiacetal groups, and the biomolecules formed by bonding with a carboxyl group or keto group, a reagent biomolecule is labeled, the aminooxy group of the reagent A reagent in which the biomolecule is labeled , wherein the aldehyde group, hemiacetal group, carboxyl group or keto group of the biomolecule reacts to form a covalent bond.
JP2009547151A 2007-12-21 2008-12-19 Reactive compounds containing aminooxy groups Active JP5196448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009547151A JP5196448B2 (en) 2007-12-21 2008-12-19 Reactive compounds containing aminooxy groups

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007330315 2007-12-21
JP2007330315 2007-12-21
PCT/JP2008/073896 WO2009082020A1 (en) 2007-12-21 2008-12-19 Reactive compound having aminooxy group
JP2009547151A JP5196448B2 (en) 2007-12-21 2008-12-19 Reactive compounds containing aminooxy groups

Publications (2)

Publication Number Publication Date
JPWO2009082020A1 JPWO2009082020A1 (en) 2011-05-06
JP5196448B2 true JP5196448B2 (en) 2013-05-15

Family

ID=40801315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009547151A Active JP5196448B2 (en) 2007-12-21 2008-12-19 Reactive compounds containing aminooxy groups

Country Status (2)

Country Link
JP (1) JP5196448B2 (en)
WO (1) WO2009082020A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210032282A1 (en) * 2014-12-12 2021-02-04 National Institute Of Advanced Industrial Science And Technology Nucleic acid complex, method for forming nucleic acid hybridization, pharmaceutical composition, nucleic acid probe, and complementary-strand nucleic acid complex

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6176694B2 (en) 2014-03-14 2017-08-09 国立研究開発法人産業技術総合研究所 Method for detecting guanine and abasic sites in DNA

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928740B1 (en) * 1969-12-29 1974-07-29
JPS59163350A (en) * 1983-02-23 1984-09-14 ルセル−ユクラフ Novel derivative of hydroxylamine, manufacture, use as plantgrowth factor and composition
JPH05320117A (en) * 1990-01-25 1993-12-03 Teijin Ltd R optical isomer of oxime derivative and herbicide comprising the same as active ingredient
JP2002195990A (en) * 2000-12-25 2002-07-10 Sumika Chemical Analysis Service Ltd O-(halo alkoxy benzyl)hydroxyl amine system compound and carbonyl compound collecting material using it
JP2003535208A (en) * 2000-06-08 2003-11-25 ラ ホヤ ファーマシューティカル カンパニー Multivalent platform molecules containing high molecular weight polyethylene oxide
WO2004058687A1 (en) * 2002-12-26 2004-07-15 Shionogi Co., Ltd. Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing sugar chain structure
WO2006086517A2 (en) * 2005-02-08 2006-08-17 The Scripps Research Institute Inhibitors of transthyretin amyloid fibril formation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928740B1 (en) * 1969-12-29 1974-07-29
JPS59163350A (en) * 1983-02-23 1984-09-14 ルセル−ユクラフ Novel derivative of hydroxylamine, manufacture, use as plantgrowth factor and composition
JPH05320117A (en) * 1990-01-25 1993-12-03 Teijin Ltd R optical isomer of oxime derivative and herbicide comprising the same as active ingredient
JP2003535208A (en) * 2000-06-08 2003-11-25 ラ ホヤ ファーマシューティカル カンパニー Multivalent platform molecules containing high molecular weight polyethylene oxide
JP2002195990A (en) * 2000-12-25 2002-07-10 Sumika Chemical Analysis Service Ltd O-(halo alkoxy benzyl)hydroxyl amine system compound and carbonyl compound collecting material using it
WO2004058687A1 (en) * 2002-12-26 2004-07-15 Shionogi Co., Ltd. Method of purifying/concentrating sugar chain with sugar chain-trapping molecule and method of analyzing sugar chain structure
WO2006086517A2 (en) * 2005-02-08 2006-08-17 The Scripps Research Institute Inhibitors of transthyretin amyloid fibril formation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012036964; Journal of Organic Chemistry 67(1), 2002, p.59-65 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210032282A1 (en) * 2014-12-12 2021-02-04 National Institute Of Advanced Industrial Science And Technology Nucleic acid complex, method for forming nucleic acid hybridization, pharmaceutical composition, nucleic acid probe, and complementary-strand nucleic acid complex

Also Published As

Publication number Publication date
WO2009082020A1 (en) 2009-07-02
JPWO2009082020A1 (en) 2011-05-06

Similar Documents

Publication Publication Date Title
US11939631B2 (en) Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators
US10851407B2 (en) Left-handed gamma-peptide nucleic acids, methods of synthesis and uses therefor
US7795423B2 (en) Polynucleotide labeling reagent
JP5759723B2 (en) Nucleobase characterization
US20210206794A1 (en) Reversibly blocked nucleoside analogues and their use
AU2019271121A1 (en) Compositions and methods for chemical cleavage and deprotection of surface-bound oligonucleotides
Gießler et al. Synthesis of 3′‐BODIPY‐Labeled Active Esters of Nucleotides and a Chemical Primer Extension Assay on Beads
US11001888B2 (en) Short pendant arm linkers for nucleotides in sequencing applications
JP5733760B2 (en) Fluorogenic molecule and target nucleic acid detection method
JP4336820B2 (en) Oligonucleotide probe
JP5196448B2 (en) Reactive compounds containing aminooxy groups
JP2010122071A (en) Material-immobilized carrier having material immobilized thereon, and method for preparing material-immobilized carrier
CN101631796A (en) Compound having structure derived from mononucleoside or mononucleotide, nucleic acid, labeling substance, and method and kit for detection of nucleic acid
US11833503B2 (en) Methods and compositions for surface functionalization of optical semiconductor-integrated biochips
JP2007078399A (en) Solid support body, and dna chip
JP4119976B2 (en) 5-substituted pyrimidine deoxynucleotide derivative and method for synthesizing nucleic acid using the same
US20180258471A1 (en) Nitrodiarylethenes as fluorescence quenchers for nucleic acid probes
JP2007031388A (en) Nucleotide derivative and utilization thereof
JP2013198426A (en) Rna detective reagent, examination method, and reagent for synthesizing the rna detective reagent
JP2005500391A (en) CNA manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196448

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250