JP5196148B2 - Photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board - Google Patents

Photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board Download PDF

Info

Publication number
JP5196148B2
JP5196148B2 JP2008152805A JP2008152805A JP5196148B2 JP 5196148 B2 JP5196148 B2 JP 5196148B2 JP 2008152805 A JP2008152805 A JP 2008152805A JP 2008152805 A JP2008152805 A JP 2008152805A JP 5196148 B2 JP5196148 B2 JP 5196148B2
Authority
JP
Japan
Prior art keywords
film
resin composition
diamine
polyimide
photosensitive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008152805A
Other languages
Japanese (ja)
Other versions
JP2009300578A (en
Inventor
秀明 齋藤
正也 柿本
晃 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008152805A priority Critical patent/JP5196148B2/en
Publication of JP2009300578A publication Critical patent/JP2009300578A/en
Application granted granted Critical
Publication of JP5196148B2 publication Critical patent/JP5196148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)

Description

本発明は、フレキシブルプリント配線板の保護膜の形成等に好適に用いられる感光性樹脂組成物、及びこれを用いたポリイミド樹脂膜、フレキシブルプリント配線板に関する。   The present invention relates to a photosensitive resin composition suitably used for forming a protective film of a flexible printed wiring board, a polyimide resin film using the same, and a flexible printed wiring board.

ポリイミド樹脂は耐熱性に優れ、また良好な電気絶縁性を示すことよりプリント配線板の基材、層間接着剤、カバーレイ(保護膜)等として使用されている。また配線の微細化に伴い、保護膜としてのポリイミド樹脂を微細加工するために感光性を持たせることが検討されている。配線形成した基材上に、ポリイミド樹脂を含む感光性樹脂組成物の塗膜を形成した後、マスクを介して紫外線等を照射して露光部を変質させることで、露光部のみ(ポジ型)又は非露光部のみ(ネガ型)を除去することができ、パターン形成が可能となる。   Polyimide resins are used as a substrate for printed wiring boards, interlayer adhesives, coverlays (protective films) and the like because of their excellent heat resistance and good electrical insulation. Further, with the miniaturization of wiring, it has been studied to provide photosensitivity in order to finely process a polyimide resin as a protective film. After forming a coating film of a photosensitive resin composition containing a polyimide resin on the substrate on which the wiring is formed, the exposed portion is altered by irradiating ultraviolet rays or the like through a mask, so that only the exposed portion (positive type) Alternatively, only the non-exposed portion (negative type) can be removed, and the pattern can be formed.

このような感光性樹脂組成物として、特許文献1には、ポリイミド前駆体であるポリアミック酸を含む溶液とポジ型感光剤からなるポジ型の感光性樹脂組成物が開示されている。   As such a photosensitive resin composition, Patent Document 1 discloses a positive photosensitive resin composition comprising a solution containing polyamic acid as a polyimide precursor and a positive photosensitive agent.

一方、特許文献2にはネガ型の感光性ポリイミド樹脂を保護膜として用いた回路基板及び回路付きサスペンション基板が開示されている。回路付きサスペンション基板は、ステンレス等の金属箔基材上に絶縁層を有し、その上に銅などの金属からなる導体層のパターン回路、及びこれを被覆する絶縁層を有する。特許文献2では、金属箔基材上の絶縁層及び導体層を被覆する絶縁層としてネガ型の感光性ポリイミド樹脂を使用している。
特許第3262108号公報 特開平10−265572号公報
On the other hand, Patent Document 2 discloses a circuit board using a negative photosensitive polyimide resin as a protective film and a suspension board with circuit. The suspension board with circuit has an insulating layer on a metal foil base material such as stainless steel, and has a pattern circuit of a conductor layer made of a metal such as copper, and an insulating layer covering the insulating layer. In Patent Document 2, a negative photosensitive polyimide resin is used as an insulating layer covering the insulating layer and the conductor layer on the metal foil base material.
Japanese Patent No. 3262108 Japanese Patent Laid-Open No. 10-265572

一般にポリイミドの熱膨張係数は、シリコンや金属に比べると大きい。従って、金属やシリコンからなる基材及び導体層とポリイミドとを組み合わせたフレキシブルプリント配線板では、ポリイミドと金属との熱膨張係数の差に起因して基板に反りが生じることがある。ハードディスクドライブに使用されるサスペンション用の基板としてこのようなフレキシブルプリント配線板を使用した場合、基板の反りによりハードディスク読み取り誤差を招きやすくなる。また、ポリイミド層と金属層との間に残留応力が蓄積することでクラックや層間剥離などを生じることがある。   In general, the thermal expansion coefficient of polyimide is larger than that of silicon or metal. Therefore, in a flexible printed wiring board in which a base material or conductor layer made of metal or silicon and a polyimide are combined with a polyimide, the substrate may be warped due to a difference in thermal expansion coefficient between the polyimide and the metal. When such a flexible printed wiring board is used as a suspension substrate used in a hard disk drive, a hard disk read error is likely to occur due to warping of the substrate. In addition, accumulation of residual stress between the polyimide layer and the metal layer may cause cracks or delamination.

ポリイミドの熱膨張係数を小さくするために、特許文献2では剛直なポリマー骨格を持つネガ型の感光性ポリイミドが提案されている。このようなポリイミドは、熱膨張係数は小さくなるが、感光性を付与した際にパターニング精度が悪くなったり、また基板との接着性が弱くなったりするという問題がある。この理由として、ネガ型の感光性ポリイミドは、構造上、露光・現像後に膜として残る現像液不溶部も溶媒と相互作用しやすく、現像時に膨張しやすいことが考えられる。   In order to reduce the thermal expansion coefficient of polyimide, Patent Document 2 proposes a negative photosensitive polyimide having a rigid polymer skeleton. Although such a polyimide has a small thermal expansion coefficient, there are problems that patterning accuracy is deteriorated when the photosensitivity is imparted, and adhesion to the substrate is weakened. As a reason for this, it is conceivable that the negative photosensitive polyimide has a structure in which a developer-insoluble portion remaining as a film after exposure and development is likely to interact with the solvent and easily expand during development.

これに対し、ポジ型の感光性ポリイミドはアルカリ性水溶液で現像可能であり、上記のような問題は生じない。しかしポジ型の感光性ポリイミドの熱膨張係数を低くするために剛直なポリイミドを使用すると溶剤可溶性が低下する。   On the other hand, positive type photosensitive polyimide can be developed with an alkaline aqueous solution, and the above-mentioned problems do not occur. However, if rigid polyimide is used to lower the thermal expansion coefficient of positive photosensitive polyimide, solvent solubility is lowered.

またポジ型の低CTE(熱膨張係数)感光性ポリイミドはその構造上紫外線や可視光線を吸収しやすいため、厚膜塗布すると現像時の光が膜内部にまで充分届かなくなり、現像性が悪くなるという問題がある。このため、低CTEで厚膜形成が可能なポジ型の感光性ポリイミドは今まで得られていなかった。   Also, positive type low CTE (thermal expansion coefficient) photosensitive polyimide is easy to absorb ultraviolet rays and visible light due to its structure, so when coated with a thick film, the light at the time of development does not reach the inside of the film sufficiently, resulting in poor developability. There is a problem. For this reason, a positive photosensitive polyimide capable of forming a thick film with low CTE has not been obtained so far.

上記の問題に鑑み、本発明は、熱膨張係数を低くできるとともに、厚膜形成が可能なポジ型感光性樹脂組成物、及び、それを用いた絶縁性保護膜、フレキシブルプリント配線板を提供することを課題とする。   In view of the above problems, the present invention provides a positive-type photosensitive resin composition capable of reducing the thermal expansion coefficient and capable of forming a thick film, an insulating protective film using the same, and a flexible printed wiring board. This is the issue.

本発明は、ポリイミド前駆体樹脂及びポジ型感光剤を含有する感光性樹脂組成物であって、前記ポリイミド前駆体樹脂は、芳香族テトラカルボン酸二無水物と、2種類以上のジアミンとを縮合重合した後、ポリマーの末端をフェノール誘導体で封止したものであり、前記ジアミン又は前記芳香族テトラカルボン酸二無水物として、ビフェニル骨格を持つモノマーを2種類以上含有すると共に、ビフェニル骨格を持つモノマーの含有量は、芳香族テトラカルボン酸二無水物とジアミンとの合計量に対して50モル%以上であり、前記ジアミンとして、テトラメチルジシロキサン骨格を含むジアミンをジアミンの合計量に対して0.5モル%以上5モル%以下含有することを特徴とする、感光性樹脂組成物である(請求項1)。   The present invention is a photosensitive resin composition containing a polyimide precursor resin and a positive photosensitive agent, wherein the polyimide precursor resin condenses an aromatic tetracarboxylic dianhydride and two or more diamines. After polymerization, the ends of the polymer are sealed with a phenol derivative, and, as the diamine or aromatic tetracarboxylic dianhydride, contain two or more types of monomers having a biphenyl skeleton and a monomer having a biphenyl skeleton Is 50 mol% or more based on the total amount of the aromatic tetracarboxylic dianhydride and the diamine, and as the diamine, a diamine containing a tetramethyldisiloxane skeleton is added to the total amount of the diamine. It is a photosensitive resin composition characterized by containing 5 mol% or more and 5 mol% or less (claim 1).

剛直な成分であるビフェニル骨格を持つモノマーを2種類以上用い、その含有量を50モル%以上とすることで、熱膨張係数を低くすることができる。同時に、また柔軟なテトラメチルジシロキサン骨格を持つジアミンを少量用い、更にポリマーの末端をフェノール誘導体で封止することで溶剤可溶性を向上でき、厚膜形成が可能となる。尚ビフェニル骨格を持つモノマーは芳香族テトラカルボン酸二無水物、ジアミンのいずれであっても良いが、芳香族テトラカルボン酸二無水物、ジアミンの両方にビフェニル骨格を持つモノマーを使用することが好ましい。   The thermal expansion coefficient can be lowered by using two or more monomers having a biphenyl skeleton, which is a rigid component, and setting the content to 50 mol% or more. At the same time, by using a small amount of a diamine having a flexible tetramethyldisiloxane skeleton and further sealing the end of the polymer with a phenol derivative, solvent solubility can be improved, and a thick film can be formed. The monomer having a biphenyl skeleton may be either an aromatic tetracarboxylic dianhydride or a diamine, but it is preferable to use a monomer having a biphenyl skeleton for both the aromatic tetracarboxylic dianhydride and the diamine. .

前記ジアミン又は芳香族テトラカルボン酸二無水物として、フッ素化モノマーを2モル%以上含有することが好ましい(請求項2)。フッ素化モノマーを使用することで、ポリイミドの透明性を向上することができる。尚フッ素化モノマーは、芳香族テトラカルボン酸二無水物、ジアミンのいずれであっても良い。   The diamine or aromatic tetracarboxylic dianhydride preferably contains 2 mol% or more of a fluorinated monomer (Claim 2). By using a fluorinated monomer, the transparency of the polyimide can be improved. The fluorinated monomer may be either aromatic tetracarboxylic dianhydride or diamine.

前記芳香族テトラカルボン酸二無水物として少なくとも3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)を用い、更に前記ジアミンとしてビフェニル骨格を持つモノマーを1種以上用いると好ましい(請求項3)。このようなモノマー構成とすることで剛直な成分であるビフェニル骨格を持つモノマーの含有量を多くすることができ、ポリイミドの熱膨張係数を低くすることができる。   Preferably, at least 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA) is used as the aromatic tetracarboxylic dianhydride, and one or more monomers having a biphenyl skeleton are used as the diamine. (Claim 3). By setting it as such a monomer structure, content of the monomer with the biphenyl skeleton which is a rigid component can be increased, and the thermal expansion coefficient of a polyimide can be made low.

また本発明は、上記いずれかの感光性樹脂組成物を基材上に塗布して成膜し、加熱硬化して得られるポリイミド樹脂膜を提供する。感光性樹脂組成物の成膜後、加熱硬化する前にマスクを通して露光し、アルカリ性水溶液を用いて現像すれば、任意のパターンを形成したポリイミド樹脂膜を得ることもできる。この加熱硬化の過程で、ポリイミド前駆体(ポリアミック酸)樹脂がポリイミド樹脂となる。   Moreover, this invention provides the polyimide resin film obtained by apply | coating one of the said photosensitive resin compositions on a base material, forming into a film, and heat-hardening. After film formation of the photosensitive resin composition, it is possible to obtain a polyimide resin film in which an arbitrary pattern is formed by exposing through a mask before heat-curing and developing using an alkaline aqueous solution. In this heat curing process, the polyimide precursor (polyamic acid) resin becomes a polyimide resin.

本発明の感光性樹脂組成物はポジ型の感光性樹脂組成物であり、アルカリ性水溶液で現像できるため、現像時のポリイミド樹脂膜の膨潤が起こりにくく、寸法精度の良いポリイミド樹脂膜が得られる。また多量の有機溶媒系現像液を必要とするネガ型感光性樹脂組成物と比較して環境への負荷も少ない。   Since the photosensitive resin composition of the present invention is a positive photosensitive resin composition and can be developed with an alkaline aqueous solution, the polyimide resin film hardly swells during development, and a polyimide resin film with good dimensional accuracy can be obtained. Moreover, compared with the negative photosensitive resin composition which requires a lot of organic solvent type developing solution, there is also little load to an environment.

さらに本発明は上記製造方法によって得られ、熱膨張係数が10ppm/℃以上30ppm/℃以下であることを特徴とするポリイミド樹脂膜、及び該ポリイミド樹脂膜を保護膜として有するフレキシブルプリント配線板を提供する。   Furthermore, the present invention provides a polyimide resin film obtained by the above production method and having a thermal expansion coefficient of 10 ppm / ° C. or more and 30 ppm / ° C. or less, and a flexible printed wiring board having the polyimide resin film as a protective film. To do.

ポリイミド樹脂膜の熱膨張係数を10ppm/℃以上30ppm/℃以下とすることで、ステンレス、銅などの金属とポリイミド樹脂膜の熱膨張係数を近づけることができ、温度変化による反りの少ないフレキシブルプリント配線板が得られる。   By setting the thermal expansion coefficient of the polyimide resin film to 10 ppm / ° C. or more and 30 ppm / ° C. or less, the thermal expansion coefficient of the polyimide resin film can be made closer to metals such as stainless steel and copper, and flexible printed wiring with less warping due to temperature changes. A board is obtained.

本発明の感光性樹脂組成物によれば、熱膨張係数が低く、かつ厚膜形成が可能なポリイミド樹脂膜を得ることができる。また本発明のポリイミド樹脂膜は、その熱膨張係数を金属の熱膨張係数に近づけることができ、残留応力の少ないフレキシブルプリント配線板が得られる。   According to the photosensitive resin composition of the present invention, a polyimide resin film having a low thermal expansion coefficient and capable of forming a thick film can be obtained. In addition, the polyimide resin film of the present invention can have a thermal expansion coefficient close to that of a metal, and a flexible printed wiring board with little residual stress can be obtained.

本発明の感光性樹脂組成物の原料であるポリイミド前駆体樹脂(ポリアミック酸溶液)は、芳香族テトラカルボン酸二無水物とジアミンとの縮合重合によって得られる。この縮合重合反応は、従来のポリイミドの合成と同様な条件にて行うことができる。   The polyimide precursor resin (polyamic acid solution) that is a raw material of the photosensitive resin composition of the present invention is obtained by condensation polymerization of an aromatic tetracarboxylic dianhydride and a diamine. This condensation polymerization reaction can be performed under the same conditions as in the conventional synthesis of polyimide.

芳香族テトラカルボン酸二無水物としては、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、4,4’−オキシジフタル酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、ビシクロ(2,2,2)−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボンキシフェニル)ヘキサフルオロプロパン二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物等が例示される。   Examples of aromatic tetracarboxylic dianhydrides include 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride (PMDA), 3,3 ′, 4,4. '-Benzophenone tetracarboxylic dianhydride, 4,4'-oxydiphthalic dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic dianhydride, bicyclo (2,2,2) -oct -7-ene-2,3,5,6-tetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxylicoxyphenyl) Examples include hexafluoropropane dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, and the like.

中でも、下記式(I)で表される3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)はビフェニル骨格を持つ剛直な構造であり、ポリイミド樹脂の熱膨張係数を低くできる点で好ましい。   Among them, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA) represented by the following formula (I) has a rigid structure having a biphenyl skeleton, and has a low thermal expansion coefficient of polyimide resin. It is preferable in that it can be performed.

Figure 0005196148
Figure 0005196148

ジアミンとしては、2,2’−ジメチル4,4’−ジアミノビフェニル(mTBHG)、2,2’−ビス(トリフルオロメチル)4,4’−ジアミノビフェニル(TFMB)、2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン(Bis−A−AF)パラフェニレンジアミン(PPD)、4,4’−ジアミノジフェニルエーテル(ODA)、3,3’−ジヒドロキシ4,4’−ジアミノビフェニル、4、4’−ジヒドロキシ3,3’−ジアミノビフェニル等が例示できる。   Examples of the diamine include 2,2′-dimethyl 4,4′-diaminobiphenyl (mTBHG), 2,2′-bis (trifluoromethyl) 4,4′-diaminobiphenyl (TFMB), 2,2′-bis ( 4-Aminophenyl) hexafluoropropane (Bis-A-AF) paraphenylenediamine (PPD), 4,4′-diaminodiphenyl ether (ODA), 3,3′-dihydroxy 4,4′-diaminobiphenyl, 4, 4 Examples include '-dihydroxy 3,3'-diaminobiphenyl.

この中でも、式(II)で表される2,2’−ジメチル4,4’−ジアミノビフェニル(mTBHG)や式(III)で表される2,2’−ビス(トリフルオロメチル)4,4’−ジアミノビフェニル(TFMB)は、ビフェニル骨格を持つ剛直な構造であり、ポリイミド樹脂の熱膨張係数を低くできる点で好ましい。   Among these, 2,2′-dimethyl 4,4′-diaminobiphenyl (mTBHG) represented by formula (II) and 2,2′-bis (trifluoromethyl) 4,4 represented by formula (III) '-Diaminobiphenyl (TFMB) is a rigid structure having a biphenyl skeleton, and is preferable in that the thermal expansion coefficient of the polyimide resin can be lowered.

Figure 0005196148
Figure 0005196148

Figure 0005196148
Figure 0005196148

ビフェニル骨格を持つモノマーは、芳香族テトラカルボン酸二無水物であってもジアミンであっても良く、モノマー成分全体(芳香族テトラカルボン酸とジアミンの合計量)に対して50モル%以上とする必要がある。50モル%未満ではポリイミド樹脂の熱膨張係数を低くすることができない。さらに好ましいビフェニル骨格を持つモノマーの含有率は、70%以上である。   The monomer having a biphenyl skeleton may be an aromatic tetracarboxylic dianhydride or a diamine, and is 50 mol% or more based on the entire monomer component (total amount of aromatic tetracarboxylic acid and diamine). There is a need. If it is less than 50 mol%, the thermal expansion coefficient of the polyimide resin cannot be lowered. The content of the monomer having a more preferable biphenyl skeleton is 70% or more.

また、ジアミンとしてテトラメチルジシロキサン骨格を持つジアミンを、ジアミン成分全体に対して0.5モル%以上5モル%以下含有する必要がある。テトラメチルジシロキサン骨格を持つジアミンを少量含有することでポリイミド前駆体樹脂の溶解性が向上し、アルカリ現像液での現像性が向上する。さらにポリイミド樹脂の接着性も向上する。テトラメチルジシロキサン骨格を持つジアミンの量が0.5モル%未満では上記の効果を充分に得ることができない。一方、5モル%を超えるとポリイミド樹脂の熱膨張係数が大きくなる。   Moreover, it is necessary to contain 0.5 mol% or more and 5 mol% or less of diamine having a tetramethyldisiloxane skeleton as the diamine with respect to the entire diamine component. By containing a small amount of a diamine having a tetramethyldisiloxane skeleton, the solubility of the polyimide precursor resin is improved, and the developability with an alkaline developer is improved. Furthermore, the adhesion of the polyimide resin is also improved. If the amount of the diamine having a tetramethyldisiloxane skeleton is less than 0.5 mol%, the above effect cannot be obtained sufficiently. On the other hand, when it exceeds 5 mol%, the thermal expansion coefficient of the polyimide resin increases.

テトラメチルジシロキサン骨格を持つジアミンとは、シロキサン骨格を有しその末端に一級アミノ基を2つ有する化合物である。例えば下記式(IV)で表される物が広く採用されている。   A diamine having a tetramethyldisiloxane skeleton is a compound having a siloxane skeleton and two primary amino groups at its ends. For example, a product represented by the following formula (IV) is widely used.

Figure 0005196148
Figure 0005196148

上記の他に、下記構造式で表される物も例示される。   In addition to the above, those represented by the following structural formulas are also exemplified.

Figure 0005196148
Figure 0005196148

さらに、ジアミン又は芳香族テトラカルボン酸二無水物として、フッ素化モノマーをモノマー成分全体(芳香族テトラカルボン酸とジアミンの合計量)に対して2モル%以上含有すると好ましい。フッ素化モノマーを含有することでポリイミド樹脂の透明性(光透過性)を向上することができ、厚膜での現像性が向上する。ただしフッ素化モノマーの含有量が多くなりすぎるとポリイミド樹脂の接着性が低下し、また溶解性が悪くなるため、フッ素化モノマーの含有量は50モル%以下とすることが好ましい。   Furthermore, it is preferable to contain 2 mol% or more of a fluorinated monomer as a diamine or aromatic tetracarboxylic dianhydride with respect to the entire monomer component (total amount of aromatic tetracarboxylic acid and diamine). By containing the fluorinated monomer, the transparency (light transmittance) of the polyimide resin can be improved, and the developability with a thick film is improved. However, if the content of the fluorinated monomer is too large, the adhesiveness of the polyimide resin is lowered and the solubility is deteriorated. Therefore, the content of the fluorinated monomer is preferably 50 mol% or less.

フッ素化モノマーとしては上記の2,2’−ビス(トリフルオロメチル)4,4’−ジアミノビフェニル(TFMB)や、式(VI)で表される2,2’−ビス(4−アミノフェニル)ヘキサフルオロプロパン(BIS−A−AF)等が例示できる。   Examples of the fluorinated monomer include 2,2′-bis (trifluoromethyl) 4,4′-diaminobiphenyl (TFMB) and 2,2′-bis (4-aminophenyl) represented by the formula (VI). Examples include hexafluoropropane (BIS-A-AF).

Figure 0005196148
Figure 0005196148

本発明を構成するポリイミド前駆体樹脂は、上記の芳香族テトラカルボン酸二無水物とジアミンとを縮合重合した後、ポリマーの末端をフェノール誘導体で封止したものである。縮合重合後のポリマー(ポリアミック酸)の末端にはカルボキシル基が残存しているが、これをフェノール誘導体と反応させて封止することで、ポリマーの末端にフェノール基を導入することができ、ポリイミド前駆体樹脂の現像性が向上する。本発明を構成するポリイミド前駆体樹脂は、剛直なビフェニル骨格を持つモノマーを50モル%使用していることで可溶性が低下しやすいが、ポリマーの末端をこのように処理することで低熱膨張係数と可溶性(アルカリ性水溶液での現像性)とを両立できる。   The polyimide precursor resin constituting the present invention is obtained by condensation-polymerizing the above aromatic tetracarboxylic dianhydride and diamine, and then sealing the end of the polymer with a phenol derivative. A carboxyl group remains at the end of the polymer (polyamic acid) after condensation polymerization, but this can be reacted with a phenol derivative and sealed to introduce a phenol group to the end of the polymer. The developability of the precursor resin is improved. The polyimide precursor resin constituting the present invention tends to have low solubility due to the use of 50 mol% of a monomer having a rigid biphenyl skeleton, but by treating the end of the polymer in this way, a low thermal expansion coefficient is obtained. Both solubility (developability in an alkaline aqueous solution) can be achieved.

フェノール誘導体としては、m−アミノフェノール、p−アミノフェノール等が例示でき、m−アミノフェノールが好ましく使用できる。   Examples of the phenol derivative include m-aminophenol and p-aminophenol, and m-aminophenol can be preferably used.

芳香族テトラカルボン酸二無水物とジアミンとを縮合重合した後の反応液にフェノール誘導体を追加することで、ポリマーの末端とフェノール誘導体とが反応してポリマーの末端を封止することができる。フェノール誘導体の添加量は好ましくは0.1%以上10%以下である。   By adding a phenol derivative to the reaction liquid after the condensation polymerization of aromatic tetracarboxylic dianhydride and diamine, the end of the polymer reacts with the phenol derivative to seal the end of the polymer. The addition amount of the phenol derivative is preferably 0.1% or more and 10% or less.

本発明の感光性樹脂組成物を構成するポリイミド前駆体樹脂のGPC測定による重量平均分子量は20000〜50000の範囲が好ましい。重量平均分子量がこの範囲を超える場合は組成物の印刷性の低下、現像時の抜け残り等を発生しやすくなる。一方、重量平均分子量がこの範囲未満の場合は現像時に膜劣化が生じる、皮膜の機械強度が不十分になる、等の問題を生じる場合がある。   The weight average molecular weight by GPC measurement of the polyimide precursor resin constituting the photosensitive resin composition of the present invention is preferably in the range of 20000 to 50000. When the weight average molecular weight exceeds this range, the printability of the composition is liable to be lowered, and the remaining residue during development is likely to occur. On the other hand, if the weight average molecular weight is less than this range, problems such as film deterioration during development and insufficient mechanical strength of the film may occur.

本発明の感光性樹脂組成物を構成するポジ型感光剤とは、紫外線や可視光を照射(露光)することで酸を発生する化合物である。ポジ型感光剤としてキノンジアジド化合物を使用すると、露光部と非露光部の樹脂の溶解性の差が大きくなり現像精度が向上するため好ましい。   The positive photosensitive agent constituting the photosensitive resin composition of the present invention is a compound that generates an acid when irradiated (exposed) with ultraviolet rays or visible light. It is preferable to use a quinonediazide compound as the positive photosensitive agent because the difference in solubility between the exposed and unexposed resin is increased and the development accuracy is improved.

キノンジアジド化合物としては、1,2−ナフトキノン−2−ジアジド−5−スルホン酸エステル、1,2−ナフトキノン−2−ジアジド−4−スルホン酸エステル、2,3,4−トリヒドロキシベンゾフェノン及び2,3,4,4’−テトラヒドロキシベンゾフェノンの6−ジアゾ−ジヒドロ−5−オキソ−1−ナフタレンスルホン酸エステル等を例示できる。   Examples of the quinonediazide compound include 1,2-naphthoquinone-2-diazide-5-sulfonic acid ester, 1,2-naphthoquinone-2-diazide-4-sulfonic acid ester, 2,3,4-trihydroxybenzophenone, and 2,3. , 4,4′-tetrahydroxybenzophenone 6-diazo-dihydro-5-oxo-1-naphthalenesulfonic acid ester and the like.

本発明の感光性樹脂組成物は、上記のポリイミド前駆体樹脂とポジ型感光剤を溶媒中で混合することで得ることができる。ポジ型感光剤はポリイミド前駆体樹脂100質量部に対して5質量部〜50質量部の範囲が好ましく、より好ましくは10質量部〜40質量部である。5質量部未満の場合や50質量部を超えた場合は、パターニングが困難になる場合がある。また本発明の感光性樹脂組成物には、本発明の趣旨を損ねない範囲で、必要に応じて、種々の添加剤を含有していても良い。   The photosensitive resin composition of the present invention can be obtained by mixing the polyimide precursor resin and a positive photosensitive agent in a solvent. The positive photosensitive agent is preferably in the range of 5 to 50 parts by mass, more preferably 10 to 40 parts by mass with respect to 100 parts by mass of the polyimide precursor resin. If the amount is less than 5 parts by mass or exceeds 50 parts by mass, patterning may be difficult. Moreover, the photosensitive resin composition of this invention may contain various additives as needed in the range which does not impair the meaning of this invention.

本発明は、さらに上記の感光性樹脂組成物を基材上に塗布して成膜する工程、得られた膜を加熱して溶媒を除去する工程、溶媒を除去した膜に対して、マスクを通して露光する工程、アルカリ性水溶液を用いて現像する工程、現像後の膜を加熱硬化する工程、を有するポリイミド樹脂膜の製造方法を提供する。   The present invention further includes a step of coating the above-described photosensitive resin composition on a substrate to form a film, a step of heating the obtained film to remove the solvent, and the film from which the solvent has been removed through a mask. Provided is a method for producing a polyimide resin film, which comprises a step of exposing, a step of developing using an alkaline aqueous solution, and a step of heat-curing the film after development.

感光性樹脂組成物の塗布は、スクリーン印刷やスピンコート等、一般的な方法を用いることができる。またその後の工程についても、従来のポジ型感光性樹脂組成物を使用する場合と同様に行うことができる。現像液であるアルカリ性水溶液も従来と同様のものを用いることができ、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア等の水溶液を用いることができる。さらに現像液には水溶性の有機溶媒を添加しても良い。   For the application of the photosensitive resin composition, a general method such as screen printing or spin coating can be used. Moreover, it can carry out similarly to the case where the conventional positive type photosensitive resin composition is used also about a subsequent process. The same alkaline aqueous solution as the developer can be used, and aqueous solutions of sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, ammonia and the like can be used. Further, a water-soluble organic solvent may be added to the developer.

このようにして得られたポリイミド樹脂膜は厚膜成形が可能であり、現像時の膜厚を20μm以上にできる。更に熱膨張係数を10ppm/℃以上30ppm/℃以下とすることができる。ステンレスの熱膨張係数は約17ppm/℃、銅の熱膨張係数は約19ppm/℃であるため、本発明のポリイミド樹脂膜の熱膨張係数はこれらの金属の熱膨張係数に近く、両者を組み合わせた場合に、温度変化による反りの少ない製品を得ることができる。   The polyimide resin film thus obtained can be formed into a thick film, and the film thickness during development can be 20 μm or more. Furthermore, the thermal expansion coefficient can be 10 ppm / ° C. or more and 30 ppm / ° C. or less. Since the thermal expansion coefficient of stainless steel is about 17 ppm / ° C. and the thermal expansion coefficient of copper is about 19 ppm / ° C., the thermal expansion coefficient of the polyimide resin film of the present invention is close to the thermal expansion coefficient of these metals. In some cases, a product with less warpage due to temperature change can be obtained.

なお、熱膨張係数は熱機械分析装置(TMA)により測定することができ、−50℃から200℃までの平均値とする。   In addition, a thermal expansion coefficient can be measured with a thermomechanical analyzer (TMA), and is taken as an average value from −50 ° C. to 200 ° C.

また本発明は、上記のポリイミド樹脂膜を保護膜として有するフレキシブルプリント配線板を提供する。例えばポリイミド基材の片面に銅等の金属からなる導体配線を有し、その導体配線上に上記のポリイミド樹脂膜をカバーレイフィルム(保護膜)として有する片面フレキシブルプリント配線板が例示できる。またステンレス等の金属箔基材上にポリイミド等の絶縁層を有し、その上に銅等の金属からなる導体配線(回路)を有し、その導体配線上に該ポリイミド樹脂膜を保護膜として有する回路付きサスペンション基板も例示できる。この場合、本発明のポリイミド樹脂膜を金属箔基材上の絶縁層として使用することも可能である。この回路付きサスペンション基板は、ハードディスクドライブに使用されるサスペンション用の基板として用いられる。   Moreover, this invention provides the flexible printed wiring board which has said polyimide resin film as a protective film. For example, a single-sided flexible printed wiring board having conductor wiring made of a metal such as copper on one side of a polyimide base material and having the polyimide resin film as a coverlay film (protective film) on the conductor wiring can be exemplified. In addition, an insulating layer such as polyimide is provided on a metal foil base material such as stainless steel, conductor wiring (circuit) made of metal such as copper is provided thereon, and the polyimide resin film is used as a protective film on the conductor wiring. The suspension board with a circuit which has can also be illustrated. In this case, the polyimide resin film of the present invention can be used as an insulating layer on the metal foil substrate. This suspension board with circuit is used as a suspension board used in a hard disk drive.

次に発明を実施するための最良の形態を実施例により説明する。実施例は本発明の範囲を限定するものではない。   Next, the best mode for carrying out the invention will be described by way of examples. The examples are not intended to limit the scope of the invention.

(実施例1)
2,2’−ビス(トリフルオロメチル)4,4’−ジアミノビフェニル(TFMB)18.0g(56.3mmol)、3,3’−ジヒドロキシ−4、4’−ジアミノビフェニル(HAB)3.25g(15.0mmol)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン(APDS)0.56g(2.25mmol)をN−メチルピロリドン175gに溶解させた後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)22.1g(75.1mmol)を加えて窒素雰囲気下室温で撹拌した。1時間後、m−アミノフェノールを0.327g(3mmol)加え、40℃で4時間撹拌し反応を終えた。合成した共重合ワニスの固形分は18%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して25wt%混合して感光性樹脂組成物を得た。
Example 1
2,2′-bis (trifluoromethyl) 4,4′-diaminobiphenyl (TFMB) 18.0 g (56.3 mmol), 3,3′-dihydroxy-4,4′-diaminobiphenyl (HAB) 3.25 g (15.0 mmol), 0.53 g (2.25 mmol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (APDS) was dissolved in 175 g of N-methylpyrrolidone, and then 3, 4, 3 ′ , 4′-biphenyltetracarboxylic dianhydride (BPDA) 22.1 g (75.1 mmol) was added and stirred at room temperature under a nitrogen atmosphere. After 1 hour, 0.327 g (3 mmol) of m-aminophenol was added and stirred at 40 ° C. for 4 hours to complete the reaction. The solid content of the synthesized copolymer varnish was 18%. The varnish was mixed with 25 wt% of naphthoquinone diazide as a photosensitizer based on the solid content of the varnish to obtain a photosensitive resin composition.

厚み40μmの銅箔上に上記感光性樹脂組成物をスピンコート法によって塗布した後、90℃で30分間加熱乾燥して感光性ポリイミド前駆体の被膜を形成した。スピンコーターの回転数を変えてプリベーク後の膜厚がそれぞれ10μm、15μm、20μmのサンプルを形成した。次いでポジ型のテストパターンを介し露光量2000mJ/cmで紫外光を照射した。露光後、3.0%NaCO水溶液を用いて30℃で現像処理を行い、蒸留水で十分洗浄した後窒素気流で強制風乾燥した。その後、窒素雰囲気下で120℃で30分間、220℃で30分間、340℃で60分間の熱処理を行ってポリイミド前駆体のイミド化を行ったところ、各膜厚サンプルともに膜減りもほぼなく良好な現像パターンを保ったポリイミド樹脂膜が得られた。得られた硬化後ポリイミド膜の熱膨張係数は17ppm/℃であった。なお、熱膨張係数はセイコーインスツルメンツ(株)製熱応力歪測定装置「TMA/SS120C」を用いたTMA測定(引張試験)で行い、温度範囲−50℃→200℃→−50℃の温度上昇、下降の両方で測定して、上記温度範囲での平均値を求めた。 The photosensitive resin composition was applied on a copper foil having a thickness of 40 μm by a spin coating method, and then dried by heating at 90 ° C. for 30 minutes to form a film of a photosensitive polyimide precursor. Samples with pre-baked film thicknesses of 10 μm, 15 μm, and 20 μm were formed by changing the rotation speed of the spin coater. Next, ultraviolet light was irradiated through the positive test pattern at an exposure amount of 2000 mJ / cm 2 . After the exposure, development processing was performed at 30 ° C. using a 3.0% Na 2 CO 3 aqueous solution, and after sufficient washing with distilled water, forced air drying was performed in a nitrogen stream. Then, when the polyimide precursor was imidized by performing heat treatment at 120 ° C. for 30 minutes, 220 ° C. for 30 minutes, and 340 ° C. for 60 minutes in a nitrogen atmosphere, each film thickness sample was almost free from film loss. A polyimide resin film having a proper development pattern was obtained. The resulting cured polyimide film had a coefficient of thermal expansion of 17 ppm / ° C. The thermal expansion coefficient is measured by TMA measurement (tensile test) using a thermal stress strain measuring device “TMA / SS120C” manufactured by Seiko Instruments Inc., and the temperature rise is −50 ° C. → 200 ° C. → −50 ° C. The average value in the said temperature range was calculated | required by measuring by both falling.

(実施例2)
2,2’−ビス(トリフルオロメチル)4,4’−ジアミノビフェニル(TFMB)3.61g(11.3mmol)、2,2’−ジメチル4,4’−ジアミノビフェニル(mTBHG)12.8g(60.1mmol)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン(APDS)0.56g(2.25mmol)をN−メチルピロリドン190gに溶解させた後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)22.1g(75.1mmol)を加えて窒素雰囲気下で40℃で攪拌した。1時間後、m−アミノフェノールを0.327g(3mmol)加え、60℃でさらに3時間撹拌し反応を終えた。合成した共重合ワニスの固形分は15%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して25wt%混合して感光性樹脂組成物を得た。
(Example 2)
2,2′-bis (trifluoromethyl) 4,4′-diaminobiphenyl (TFMB) 3.61 g (11.3 mmol), 2,2′-dimethyl4,4′-diaminobiphenyl (mTBHG) 12.8 g ( 60.1 mmol), 0.53 g (2.25 mmol) of 1,3-bis (3-aminopropyl) tetramethyldisiloxane (APDS) was dissolved in 190 g of N-methylpyrrolidone, and then 3,4,3 ′, 42.1-biphenyltetracarboxylic dianhydride (BPDA) 22.1g (75.1mmol) was added, and it stirred at 40 degreeC by nitrogen atmosphere. After 1 hour, 0.327 g (3 mmol) of m-aminophenol was added and stirred at 60 ° C. for another 3 hours to complete the reaction. The synthesized copolymer varnish had a solid content of 15%. The varnish was mixed with 25 wt% of naphthoquinone diazide as a photosensitizer based on the solid content of the varnish to obtain a photosensitive resin composition.

厚み40μmの銅箔上に上記感光性樹脂組成物をスピンコート法によって塗布した後、90℃で30分間加熱乾燥して感光性ポリイミド前駆体の被膜を形成した。スピンコーターの回転数を変えてプリベーク後の膜厚がそれぞれ10μm、15μm、20μmのサンプルを形成した。次いでポジ型のテストパターンを介し露光量2000mJ/cmで紫外光を照射した。露光後、3.0%NaCO、2%NMP水溶液を用いて30℃で現像処理を行い、蒸留水で十分洗浄した後窒素気流で強制風乾燥した。その後、窒素雰囲気下で120℃で30分間、220℃で30分間、340℃で60分間の熱処理を行ってポリイミド前駆体のイミド化を行ったところ、各膜厚サンプルともに膜減りもほぼなく良好な現像パターンを保ったポリイミド樹脂膜が得られた。得られたポリイミド樹脂膜の熱膨張係数は14ppm/℃であった。 The photosensitive resin composition was applied on a copper foil having a thickness of 40 μm by a spin coating method, and then dried by heating at 90 ° C. for 30 minutes to form a film of a photosensitive polyimide precursor. Samples with pre-baked film thicknesses of 10 μm, 15 μm, and 20 μm were formed by changing the rotation speed of the spin coater. Next, ultraviolet light was irradiated through the positive test pattern at an exposure amount of 2000 mJ / cm 2 . After the exposure, development processing was performed at 30 ° C. using 3.0% Na 2 CO 3 , 2% NMP aqueous solution, washed thoroughly with distilled water, and then forced-air dried with a nitrogen stream. Then, when the polyimide precursor was imidized by performing heat treatment at 120 ° C. for 30 minutes, 220 ° C. for 30 minutes, and 340 ° C. for 60 minutes in a nitrogen atmosphere, each film thickness sample was almost free from film loss. A polyimide resin film having a proper development pattern was obtained. The thermal expansion coefficient of the obtained polyimide resin film was 14 ppm / ° C.

(実施例3)
2,2’−ビス(トリフルオロメチル)4,4’−ジアミノビフェニル(TFMB)11.1g(34.7mmol)、2,2’−ジメチル4,4’−ジアミノビフェニル(mTBHG)7.36g(34.7mmol)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン(APDS)1.12g(4.50mmol)をN−メチルピロリドン170gに溶解させた後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)22.1g(75.1mmol)を加えて窒素雰囲気下で40℃で攪拌した。1時間後、m−アミノフェノールを0.493g(4.52mmol)加え、60℃でさらに3時間撹拌し反応を終えた。合成した共重合ワニスの固形分は20%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して15wt%混合して感光性樹脂組成物を得た。
(Example 3)
11.2 g (34.7 mmol) of 2,2′-bis (trifluoromethyl) 4,4′-diaminobiphenyl (TFMB), 7.36 g of 2,2′-dimethyl4,4′-diaminobiphenyl (mTBHG) ( 34.7 mmol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (APDS) 1.12 g (4.50 mmol) was dissolved in 170 g of N-methylpyrrolidone, and then 3,4,3 ′, 42.1-biphenyltetracarboxylic dianhydride (BPDA) 22.1g (75.1mmol) was added, and it stirred at 40 degreeC by nitrogen atmosphere. After 1 hour, 0.493 g (4.52 mmol) of m-aminophenol was added and stirred at 60 ° C. for another 3 hours to complete the reaction. The synthesized copolymer varnish had a solid content of 20%. The varnish was mixed with naphthoquinone diazide as a photosensitizer at 15 wt% with respect to the solid content of the varnish to obtain a photosensitive resin composition.

得られた感光性樹脂組成物を用いて、実施例2と同様にプリベーク後の厚みが10μm、15μm、20μmであるポリイミド樹脂膜を作製した。各膜厚サンプルともに膜減りもほぼなく良好な現像パターンを保っていた。得られたポリイミド樹脂膜の熱膨張係数は22ppm/℃であった。   Using the resulting photosensitive resin composition, polyimide resin films having thicknesses of 10 μm, 15 μm, and 20 μm after pre-baking were produced in the same manner as in Example 2. In each film thickness sample, there was almost no film loss and a good development pattern was maintained. The thermal expansion coefficient of the obtained polyimide resin film was 22 ppm / ° C.

(実施例4)
2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン(BIS−A−AF)1.25g(3.74mmol)、2,2’−ジメチル4,4’−ジアミノビフェニル(mTBHG)14.3g(67.4mmol)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン(APDS)1.12g(4.50mmol)をN−メチルピロリドン180gに溶解させた後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)22.1g(75.1mmol)を加えて窒素雰囲気下で40℃で攪拌した。1時間後、m−アミノフェノールを0.493g(4.52mmol)加え、60℃でさらに3時間撹拌し反応を終えた。合成した共重合ワニスの固形分は18%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して15wt%混合して感光性樹脂組成物を得た。
Example 4
1.25 g (3.74 mmol) of 2,2-bis (4-aminophenyl) hexafluoropropane (BIS-A-AF), 14.3 g of 2,2′-dimethyl 4,4′-diaminobiphenyl (mTBHG) ( 67.4 mmol), 1,3-bis (3-aminopropyl) tetramethyldisiloxane (APDS) 1.12 g (4.50 mmol) was dissolved in 180 g of N-methylpyrrolidone, and then 3, 4, 3 ′, 42.1-biphenyltetracarboxylic dianhydride (BPDA) 22.1g (75.1mmol) was added, and it stirred at 40 degreeC by nitrogen atmosphere. After 1 hour, 0.493 g (4.52 mmol) of m-aminophenol was added and stirred at 60 ° C. for another 3 hours to complete the reaction. The solid content of the synthesized copolymer varnish was 18%. The varnish was mixed with naphthoquinone diazide as a photosensitizer at 15 wt% with respect to the solid content of the varnish to obtain a photosensitive resin composition.

得られた感光性樹脂組成物を用いて、実施例2と同様にプリベーク後の厚みが10μm、15μm、20μmであるポリイミド樹脂膜を作製した。各膜厚サンプルともに膜減りもほぼなく良好な現像パターンを保っていた。得られたポリイミド樹脂膜の熱膨張係数は18ppm/℃であった。   Using the resulting photosensitive resin composition, polyimide resin films having thicknesses of 10 μm, 15 μm, and 20 μm after pre-baking were produced in the same manner as in Example 2. In each film thickness sample, there was almost no film loss and a good development pattern was maintained. The thermal expansion coefficient of the obtained polyimide resin film was 18 ppm / ° C.

(実施例5)
2,2’−ビス(トリフルオロメチル)4,4’−ジアミノビフェニル(TFMB)15.6g(48.8mmol)、p−フェニレンジアミン(PPD)2.44g(22.5mmol)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン(APDS)0.56g(2.25mmol)をN−メチルピロリドン160gに溶解させた後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)22.1g(75.1mmol)を加えて窒素雰囲気下で40℃で攪拌した。1時間後、m−アミノフェノールを0.327g(3.00mmol)加え、60℃でさらに3時間撹拌し反応を終えた。合成した共重合ワニスの固形分は19%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して25wt%混合して感光性樹脂組成物を得た。
(Example 5)
2,2′-bis (trifluoromethyl) 4,4′-diaminobiphenyl (TFMB) 15.6 g (48.8 mmol), p-phenylenediamine (PPD) 2.44 g (22.5 mmol), 1,3- After dissolving 0.56 g (2.25 mmol) of bis (3-aminopropyl) tetramethyldisiloxane (APDS) in 160 g of N-methylpyrrolidone, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride The product (BPDA) 22.1g (75.1mmol) was added, and it stirred at 40 degreeC under nitrogen atmosphere. After 1 hour, 0.327 g (3.00 mmol) of m-aminophenol was added and stirred at 60 ° C. for another 3 hours to complete the reaction. The synthesized copolymer varnish had a solid content of 19%. The varnish was mixed with 25 wt% of naphthoquinone diazide as a photosensitizer based on the solid content of the varnish to obtain a photosensitive resin composition.

得られた感光性樹脂組成物を用いて、実施例2と同様にプリベーク後の厚みが10μm、15μm、20μmであるポリイミド樹脂膜を作製した。各膜厚サンプルともに膜減りもほぼなく良好な現像パターンを保っていた。得られたポリイミド樹脂膜の熱膨張係数は17ppm/℃であった。   Using the resulting photosensitive resin composition, polyimide resin films having thicknesses of 10 μm, 15 μm, and 20 μm after pre-baking were produced in the same manner as in Example 2. In each film thickness sample, there was almost no film loss and a good development pattern was maintained. The thermal expansion coefficient of the obtained polyimide resin film was 17 ppm / ° C.

(比較例1)
4,4’−ジアミノジフェニルエーテル(ODA)20.0g(100mmol)をN−メチルピロリドン175gに溶解させた後、無水ピロメリット酸二無水物(PMDA)21.8g(10mmol)を加えて窒素雰囲気下40℃で撹拌した。1時間後60℃でさらに5時間攪拌し反応を終えた。合成した共重合ワニスの固形分は19%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して25wt%混合して感光性樹脂組成物を得た。
(Comparative Example 1)
After dissolving 20.0 g (100 mmol) of 4,4′-diaminodiphenyl ether (ODA) in 175 g of N-methylpyrrolidone, 21.8 g (10 mmol) of pyromellitic dianhydride (PMDA) was added, and nitrogen atmosphere was added. Stir at 40 ° C. After 1 hour, the reaction was completed by further stirring for 5 hours at 60 ° C. The synthesized copolymer varnish had a solid content of 19%. The varnish was mixed with 25 wt% of naphthoquinone diazide as a photosensitizer based on the solid content of the varnish to obtain a photosensitive resin composition.

厚み40μmの銅箔上に上記感光性樹脂組成物をスピンコート法によって塗布した後、90℃で30分間加熱乾燥して感光性ポリイミド前駆体の被膜を形成した。スピンコーターの回転数を変えてプリベーク後の膜厚がそれぞれ10μm、15μm、20μmのサンプルを形成した。次いでポジ型のテストパターンを介し露光量2000mJ/cmで紫外光を照射した。露光後、3.0%NaCO、2%NMP水溶液を用いて30℃で現像処理を行ったところ、露光部・未露光部ともに1分以内に現像液に溶解し、全く露光パターンが得られなかった。また、露光、現像工程を行わずに被膜を硬化して得られたポリイミド樹脂膜の熱膨張係数は38ppm/℃であり、実施例1〜5のポリイミド樹脂膜に比べて熱膨張係数が高くなった。 The photosensitive resin composition was applied on a copper foil having a thickness of 40 μm by a spin coating method, and then dried by heating at 90 ° C. for 30 minutes to form a film of a photosensitive polyimide precursor. Samples with pre-baked film thicknesses of 10 μm, 15 μm, and 20 μm were formed by changing the rotation speed of the spin coater. Next, ultraviolet light was irradiated through the positive test pattern at an exposure amount of 2000 mJ / cm 2 . After the exposure, development processing was performed at 30 ° C. using 3.0% Na 2 CO 3 , 2% NMP aqueous solution, and both the exposed and unexposed areas were dissolved in the developer within 1 minute, and there was no exposure pattern. It was not obtained. In addition, the thermal expansion coefficient of the polyimide resin film obtained by curing the coating without performing the exposure and development steps is 38 ppm / ° C., which is higher than that of the polyimide resin films of Examples 1 to 5. It was.

(比較例2)
4,4’−ジアミノジフェニルエーテル(ODA)20.0g(100mmol)をN−メチルピロリドン260gに溶解させた後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)29.4g(99.9mmol)を加えて窒素雰囲気下40℃で撹拌した。1時間後60℃でさらに5時間攪拌し反応を終えた。合成した共重合ワニスの固形分は16%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して25wt%混合して感光性樹脂組成物を得た。
(Comparative Example 2)
After dissolving 20.0 g (100 mmol) of 4,4′-diaminodiphenyl ether (ODA) in 260 g of N-methylpyrrolidone, 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA) 29. 4 g (99.9 mmol) was added and stirred at 40 ° C. under a nitrogen atmosphere. After 1 hour, the reaction was completed by further stirring for 5 hours at 60 ° C. The solid content of the synthesized copolymer varnish was 16%. The varnish was mixed with 25 wt% of naphthoquinone diazide as a photosensitizer based on the solid content of the varnish to obtain a photosensitive resin composition.

厚み40μmの銅箔上に上記感光性樹脂組成物をスピンコート法によって塗布した後、90℃で30分間加熱乾燥して感光性ポリイミド前駆体の被膜を形成した。スピンコーターの回転数を変えてプリベーク後の膜厚がそれぞれ10μm、15μm、20μmのサンプルを形成した。次いでポジ型のテストパターンを介し露光量2000mJ/cmで紫外光を照射した。露光後、3.0%NaCO水溶液を用いて30℃で現像処理を行ったところ、10μm厚のサンプルでは良好な現像パターンが得られたが、15μm、20μm厚のサンプルでは、ピッチ(パターン幅+パターン間隔)100μm以下の細かい露光パターンが現像できなかった。また得られたポリイミド膜の熱膨張係数は31ppm/℃であった。 The photosensitive resin composition was applied on a copper foil having a thickness of 40 μm by a spin coating method, and then dried by heating at 90 ° C. for 30 minutes to form a film of a photosensitive polyimide precursor. Samples with pre-baked film thicknesses of 10 μm, 15 μm, and 20 μm were formed by changing the rotation speed of the spin coater. Next, ultraviolet light was irradiated through the positive test pattern at an exposure amount of 2000 mJ / cm 2 . After the exposure, development processing was performed at 30 ° C. using a 3.0% Na 2 CO 3 aqueous solution, and a good development pattern was obtained with the 10 μm thick sample, but with the 15 μm and 20 μm thick samples, the pitch ( (Pattern width + pattern interval) A fine exposure pattern of 100 μm or less could not be developed. Moreover, the thermal expansion coefficient of the obtained polyimide film was 31 ppm / ° C.

(比較例3)
2,2’−ビス(トリフルオロメチル)4,4’−ジアミノビフェニル(TFMB)48.0g(150mmol)をN−メチルピロリドン300gに溶解させた後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)44.1g(15mmol)を加えて窒素雰囲気下40℃で撹拌した。1時間後60℃でさらに3時間攪拌し反応を終えた。合成した共重合ワニスの固形分は19%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して25wt%混合して感光性樹脂組成物を得た。
(Comparative Example 3)
After dissolving 48.0 g (150 mmol) of 2,2′-bis (trifluoromethyl) 4,4′-diaminobiphenyl (TFMB) in 300 g of N-methylpyrrolidone, 3,4,3 ′, 4′-biphenyl was dissolved. 44.1 g (15 mmol) of tetracarboxylic dianhydride (BPDA) was added and stirred at 40 ° C. under a nitrogen atmosphere. After 1 hour, the reaction was completed by further stirring for 3 hours at 60 ° C. The synthesized copolymer varnish had a solid content of 19%. The varnish was mixed with 25 wt% of naphthoquinone diazide as a photosensitizer based on the solid content of the varnish to obtain a photosensitive resin composition.

厚み40μmの銅箔上に上記感光性樹脂組成物をスピンコート法によって塗布した後、90℃で30分間加熱乾燥して感光性ポリイミド前駆体の被膜を形成した。スピンコーターの回転数を変えてプリベーク後の膜厚がそれぞれ10μm、15μm、20μmのサンプルを形成した。次いでポジ型のテストパターンを介し露光量2000mJ/cmで紫外光を照射した。露光後、3.0%NaCO、2%NMP水溶液を用いて30℃で現像処理を行ったところ、露光部が溶解せず、全く露光パターンが得られなかった。現像液をさらにアルカリ性の強い3.0%テトラメチルアンモニウムヒドロキシド(TMAH)+3%NaOH+2%エタノールアミンに変えて現像を行ったところ、現像開始後すぐに膜全体が剥離した。また、露光、現像工程を行わずに被膜を硬化して得られたポリイミド樹脂膜の熱膨張係数は18ppm/℃であった。 The photosensitive resin composition was applied on a copper foil having a thickness of 40 μm by a spin coating method, and then dried by heating at 90 ° C. for 30 minutes to form a film of a photosensitive polyimide precursor. Samples with pre-baked film thicknesses of 10 μm, 15 μm, and 20 μm were formed by changing the rotation speed of the spin coater. Next, ultraviolet light was irradiated through the positive test pattern at an exposure amount of 2000 mJ / cm 2 . After exposure, development processing was performed at 30 ° C. using a 3.0% Na 2 CO 3 , 2% NMP aqueous solution. As a result, the exposed portion was not dissolved and no exposure pattern was obtained. When the developing solution was changed to 3.0% tetramethylammonium hydroxide (TMAH) + 3% NaOH + 2% ethanolamine, which had a stronger alkalinity, the entire film was peeled off immediately after the start of development. Moreover, the thermal expansion coefficient of the polyimide resin film obtained by hardening | curing a film without performing an exposure and image development process was 18 ppm / degreeC.

(比較例4)
2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン(BIS−A−AF)25.0g(75mmol)と、p−フェニレンジアミン(PPD)5.2g(48mmol)をN−メチルピロリドン310gに溶解させた後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)36.2g(123mmol)を加えて窒素雰囲気下で40℃で攪拌した。1時間後、60℃でさらに3時間撹拌し反応を終えた。合成した共重合ワニスの固形分は16%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して25wt%混合して感光性樹脂組成物を得た。
(Comparative Example 4)
2,2-bis (4-aminophenyl) hexafluoropropane (BIS-A-AF) 25.0 g (75 mmol) and p-phenylenediamine (PPD) 5.2 g (48 mmol) were dissolved in 310 g of N-methylpyrrolidone. Then, 36.2 g (123 mmol) of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA) was added and stirred at 40 ° C. in a nitrogen atmosphere. After 1 hour, the reaction was completed by further stirring for 3 hours at 60 ° C. The solid content of the synthesized copolymer varnish was 16%. The varnish was mixed with 25 wt% of naphthoquinone diazide as a photosensitizer based on the solid content of the varnish to obtain a photosensitive resin composition.

厚み40μmの銅箔上に上記感光性樹脂組成物をスピンコート法によって塗布した後、90℃で30分間加熱乾燥して感光性ポリイミド前駆体の被膜を形成した。スピンコーターの回転数を変えてプリベーク後の膜厚がそれぞれ10μm、15μm、20μmのサンプルを形成した。次いでポジ型のテストパターンを介し露光量2000mJ/cmで紫外光を照射した。露光後、3.0%NaCO、2%NMP水溶液を用いて30℃で現像処理を行ったところ、露光部が溶解せず、全く露光パターンが得られなかった。現像液をさらにアルカリ性の強い3.0%テトラメチルアンモニウムヒドロキシド(TMAH)+3%NaOH+2%エタノールアミンに変えて現像を行ったところ、現像開始後すぐに膜全体が剥離した。また、露光、現像工程を行わずに被膜を硬化して得られたポリイミド樹脂膜の熱膨張係数は43ppm/℃であり、実施例1〜5のポリイミド樹脂膜に比べて熱膨張係数が高くなった。 The photosensitive resin composition was applied on a copper foil having a thickness of 40 μm by a spin coating method, and then dried by heating at 90 ° C. for 30 minutes to form a film of a photosensitive polyimide precursor. Samples with pre-baked film thicknesses of 10 μm, 15 μm, and 20 μm were formed by changing the rotation speed of the spin coater. Next, ultraviolet light was irradiated through the positive test pattern at an exposure amount of 2000 mJ / cm 2 . After exposure, development processing was performed at 30 ° C. using a 3.0% Na 2 CO 3 , 2% NMP aqueous solution. As a result, the exposed portion was not dissolved and no exposure pattern was obtained. When the developing solution was changed to 3.0% tetramethylammonium hydroxide (TMAH) + 3% NaOH + 2% ethanolamine, which had a stronger alkalinity, the entire film was peeled off immediately after the start of development. Moreover, the thermal expansion coefficient of the polyimide resin film obtained by curing the film without performing the exposure and development steps is 43 ppm / ° C., which is higher than that of the polyimide resin films of Examples 1 to 5. It was.

(比較例5)
4,4’−ジアミノジフェニルエーテル(ODA)4.0g(20mmol)、2,2’−ジメチル4,4’−ジアミノビフェニル(mTBHG)15.9g(75mmol)、1,3−ビス(3−アミノプロピル)テトラメチルジシロキサン(APDS)1.24g(5mmol)をN−メチルピロリドン250gに溶解させた後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)28.4g(100mmol)を加えて窒素雰囲気下40℃で撹拌した。1時間後60℃でさらに3時間攪拌し反応を終えた。合成した共重合ワニスの固形分は15%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して25wt%混合して感光性樹脂組成物を得た。
(Comparative Example 5)
4.0 g (20 mmol) of 4,4′-diaminodiphenyl ether (ODA), 15.9 g (75 mmol) of 2,2′-dimethyl 4,4′-diaminobiphenyl (mTBHG), 1,3-bis (3-aminopropyl) ) After dissolving 1.24 g (5 mmol) of tetramethyldisiloxane (APDS) in 250 g of N-methylpyrrolidone, 28.4 g of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA) ( 100 mmol) was added and stirred at 40 ° C. under a nitrogen atmosphere. After 1 hour, the reaction was completed by further stirring for 3 hours at 60 ° C. The synthesized copolymer varnish had a solid content of 15%. The varnish was mixed with 25 wt% of naphthoquinone diazide as a photosensitizer based on the solid content of the varnish to obtain a photosensitive resin composition.

厚み40μmの銅箔上に上記感光性樹脂組成物をスピンコート法によって塗布した後、90℃で30分間加熱乾燥して感光性ポリイミド前駆体の被膜を形成した。スピンコーターの回転数を変えてプリベーク後の膜厚がそれぞれ10μm、15μm、20μmのサンプルを形成した。次いでポジ型のテストパターンを介し露光量2000mJ/cmで紫外光を照射した。露光後、3.0%NaCO水溶液を用いて30℃で現像処理を行ったところ、10μm厚のサンプルでは良好な現像パターンが得られたが、15μm、20μm厚のサンプルでは、ピッチ(パターン幅+パターン間隔)100μm以下の細かい露光パターンが現像できなかった。また得られたポリイミド膜の熱膨張係数は30ppm/℃であった。 The photosensitive resin composition was applied on a copper foil having a thickness of 40 μm by a spin coating method, and then dried by heating at 90 ° C. for 30 minutes to form a film of a photosensitive polyimide precursor. Samples with pre-baked film thicknesses of 10 μm, 15 μm, and 20 μm were formed by changing the rotation speed of the spin coater. Next, ultraviolet light was irradiated through the positive test pattern at an exposure amount of 2000 mJ / cm 2 . After the exposure, development processing was performed at 30 ° C. using a 3.0% Na 2 CO 3 aqueous solution, and a good development pattern was obtained with the 10 μm thick sample, but with the 15 μm and 20 μm thick samples, the pitch ( (Pattern width + pattern interval) A fine exposure pattern of 100 μm or less could not be developed. Moreover, the thermal expansion coefficient of the obtained polyimide film was 30 ppm / ° C.

(比較例6)
2,2’−ビス(トリフルオロメチル)4,4’−ジアミノビフェニル(TFMB)16.0g(50mmol)、パラフェニレンジアミン(PPD)16.2g(150mmol)をN−メチルピロリドン360gに溶解させた後、3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)58.8g(200mmol)を加えて窒素雰囲気下40℃で撹拌した。1時間後60℃でさらに3時間攪拌し反応を終えた。合成した共重合ワニスの固形分は20%であった。このワニスに感光剤であるナフトキノンジアジドをワニスの固形分に対して25wt%混合して感光性樹脂組成物を得た。
(Comparative Example 6)
16.0 g (50 mmol) of 2,2′-bis (trifluoromethyl) 4,4′-diaminobiphenyl (TFMB) and 16.2 g (150 mmol) of paraphenylenediamine (PPD) were dissolved in 360 g of N-methylpyrrolidone. Thereafter, 58.8 g (200 mmol) of 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA) was added and stirred at 40 ° C. in a nitrogen atmosphere. After 1 hour, the reaction was completed by further stirring for 3 hours at 60 ° C. The synthesized copolymer varnish had a solid content of 20%. The varnish was mixed with 25 wt% of naphthoquinone diazide as a photosensitizer based on the solid content of the varnish to obtain a photosensitive resin composition.

厚み40μmの銅箔上に上記感光性樹脂組成物をスピンコート法によって塗布した後、90℃で30分間加熱乾燥して感光性ポリイミド前駆体の被膜を形成した。スピンコーターの回転数を変えてプリベーク後の膜厚がそれぞれ10μm、15μm、20μmのサンプルを形成した。次いでポジ型のテストパターンを介し露光量2000mJ/cmで紫外光を照射した。露光後、3.0%NaCO、2%NMP水溶液を用いて30℃で現像処理を行い、蒸留水で十分洗浄した後窒素気流で強制風乾燥した。その後、窒素雰囲気下で120℃で30分間、220℃で30分間、340℃で60分間の熱処理を行ってポリイミド前駆体のイミド化を行ったところ、膜厚10μmのサンプルは膜減りもほぼなく良好な現像パターンを示したが、膜厚15μm、20μmのサンプルでは細部のコントラストが悪く、また60分以上現像液に浸すと非露光部に劣化が見られた。得られたポリイミド樹脂膜の熱膨張係数は14ppm/℃であった。 The photosensitive resin composition was applied on a copper foil having a thickness of 40 μm by a spin coating method, and then dried by heating at 90 ° C. for 30 minutes to form a film of a photosensitive polyimide precursor. Samples with pre-baked film thicknesses of 10 μm, 15 μm, and 20 μm were formed by changing the rotation speed of the spin coater. Next, ultraviolet light was irradiated through the positive test pattern at an exposure amount of 2000 mJ / cm 2 . After the exposure, development processing was performed at 30 ° C. using 3.0% Na 2 CO 3 , 2% NMP aqueous solution, washed thoroughly with distilled water, and then forced-air dried with a nitrogen stream. After that, when a polyimide precursor was imidized by performing heat treatment at 120 ° C. for 30 minutes, 220 ° C. for 30 minutes, and 340 ° C. for 60 minutes in a nitrogen atmosphere, the 10 μm-thick sample had almost no film loss. Although a good development pattern was shown, the contrast of details was poor in the samples having a film thickness of 15 μm and 20 μm, and deterioration was observed in the non-exposed area when immersed in the developer for 60 minutes or more. The thermal expansion coefficient of the obtained polyimide resin film was 14 ppm / ° C.

以上の結果を表1、表2にまとめる。なお、残膜率は未現像の最終硬化後サンプルの膜厚と、現像・硬化後サンプルの露光部(残膜部)膜厚とを比較して求めた。本発明の感光性樹脂組成物(実施例1〜5)では膜厚20μmでも良好に現像が行え、さらに硬化後のポリイミド樹脂膜の熱膨張係数を30ppm/℃以下と低くすることができることがわかる。   The above results are summarized in Tables 1 and 2. The remaining film ratio was obtained by comparing the film thickness of the undeveloped final cured sample with the exposed portion (residual film portion) film thickness of the developed / cured sample. It can be seen that the photosensitive resin compositions of the present invention (Examples 1 to 5) can be satisfactorily developed even with a film thickness of 20 μm, and the thermal expansion coefficient of the cured polyimide resin film can be lowered to 30 ppm / ° C. or less. .

Figure 0005196148
Figure 0005196148

Figure 0005196148
Figure 0005196148

Claims (7)

ポリイミド前駆体樹脂及びポジ型感光剤を含有する感光性樹脂組成物であって、
前記ポリイミド前駆体樹脂は、芳香族テトラカルボン酸二無水物と、2種類以上のジアミンとを縮合重合した後、ポリマーの末端をフェノール誘導体で封止したものであり、
前記ジアミン又は前記芳香族テトラカルボン酸二無水物として、ビフェニル骨格を持つモノマーを2種類以上含有すると共に、ビフェニル骨格を持つモノマーの含有量は、芳香族テトラカルボン酸二無水物とジアミンとの合計量に対して50モル%以上であり、
前記ジアミンとして、テトラメチルジシロキサン骨格を持つジアミンを、ジアミン合計量に対して0.5モル%以上5モル%以下含有することを特徴とする、感光性樹脂組成物。
A photosensitive resin composition containing a polyimide precursor resin and a positive photosensitive agent,
The polyimide precursor resin is obtained by condensing an aromatic tetracarboxylic dianhydride and two or more diamines, and then sealing the ends of the polymer with a phenol derivative.
The diamine or the aromatic tetracarboxylic dianhydride contains two or more types of monomers having a biphenyl skeleton, and the content of the monomer having a biphenyl skeleton is the sum of the aromatic tetracarboxylic dianhydride and the diamine. 50 mol% or more based on the amount,
A photosensitive resin composition comprising a diamine having a tetramethyldisiloxane skeleton as the diamine, in an amount of 0.5 mol% to 5 mol% with respect to the total amount of diamine.
前記ジアミン又は前記芳香族テトラカルボン酸二無水物として、フッ素化モノマーを芳香族テトラカルボン酸二無水物とジアミンとの合計量に対して2モル%以上含有することを特徴とする、請求項1に記載の感光性樹脂組成物。   The diamine or the aromatic tetracarboxylic dianhydride contains 2 mol% or more of a fluorinated monomer with respect to the total amount of the aromatic tetracarboxylic dianhydride and the diamine. The photosensitive resin composition as described in 2. 前記芳香族テトラカルボン酸二無水物として少なくとも3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)を含有し、前記ジアミンとして、ビフェニル骨格を持つモノマーを1種以上含有することを特徴とする、請求項1又は2に記載の感光性樹脂組成物。   The aromatic tetracarboxylic dianhydride contains at least 3,4,3 ′, 4′-biphenyltetracarboxylic dianhydride (BPDA), and the diamine contains one or more monomers having a biphenyl skeleton. The photosensitive resin composition of Claim 1 or 2 characterized by the above-mentioned. 請求項1〜3のいずれか1項に記載の感光性樹脂組成物を成膜し、加熱硬化して得られるポリイミド樹脂膜。   The polyimide resin film obtained by forming into a film the photosensitive resin composition of any one of Claims 1-3, and heat-hardening. 熱膨張係数が10ppm/℃以上30ppm/℃以下であることを特徴とする、請求項4に記載のポリイミド樹脂膜。   5. The polyimide resin film according to claim 4, wherein the thermal expansion coefficient is 10 ppm / ° C. or more and 30 ppm / ° C. or less. 請求項5に記載のポリイミド樹脂膜を、保護膜として有するフレキシブルプリント配線板。   A flexible printed wiring board having the polyimide resin film according to claim 5 as a protective film. ハードディスクドライブに使用されるサスペンション用の基板として用いられることを
特徴とする、請求項6に記載のフレキシブルプリント配線板。
The flexible printed wiring board according to claim 6, wherein the flexible printed wiring board is used as a substrate for a suspension used in a hard disk drive.
JP2008152805A 2008-06-11 2008-06-11 Photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board Active JP5196148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008152805A JP5196148B2 (en) 2008-06-11 2008-06-11 Photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008152805A JP5196148B2 (en) 2008-06-11 2008-06-11 Photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board

Publications (2)

Publication Number Publication Date
JP2009300578A JP2009300578A (en) 2009-12-24
JP5196148B2 true JP5196148B2 (en) 2013-05-15

Family

ID=41547560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008152805A Active JP5196148B2 (en) 2008-06-11 2008-06-11 Photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board

Country Status (1)

Country Link
JP (1) JP5196148B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130016375A (en) 2010-07-02 2013-02-14 도레이 카부시키가이샤 Photosensitive resin composition, photosensitive resin composition film, and semiconductor device using the photosensitive resin composition or the photosensitive resin composition film
JP6294116B2 (en) * 2013-03-29 2018-03-14 住友電気工業株式会社 Polyimide precursor resin composition, polyimide resin film, flexible printed wiring board, suspension with circuit, and hard disk drive
CN107407877B (en) * 2015-03-24 2021-01-01 东丽株式会社 Photosensitive resin composition
JP7281887B2 (en) * 2017-10-19 2023-05-26 日鉄ケミカル&マテリアル株式会社 Polyimide precursor and polyimide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419874B2 (en) * 1993-02-26 2003-06-23 株式会社東芝 Polyamic acid composition and liquid crystal element
JP4677887B2 (en) * 2004-11-24 2011-04-27 東レ株式会社 Photosensitive resin composition
JP2008009013A (en) * 2006-06-28 2008-01-17 Toray Ind Inc Colorant composition for color filter and color filter substrate
JP2009235311A (en) * 2008-03-28 2009-10-15 Toray Ind Inc Polyimide resin and heat-resistant resin composition using the same

Also Published As

Publication number Publication date
JP2009300578A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5006310B2 (en) Photosensitive ink composition for screen printing and method for forming positive relief pattern using the same
JP6724363B2 (en) Resin and photosensitive resin composition
JP3721768B2 (en) Photosensitive polyimide siloxane composition and insulating film
JP6294116B2 (en) Polyimide precursor resin composition, polyimide resin film, flexible printed wiring board, suspension with circuit, and hard disk drive
JP4969751B2 (en) Imido-benzoxazole-based polycondensate and method for producing the same
JP5497312B2 (en) Flexible printed circuit board
KR20100014914A (en) Photosensitive resin composition
JP5543811B2 (en) Negative photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board
JP6961342B2 (en) Polyimide resin and positive photosensitive resin composition
EP3734362B1 (en) Positive photosensitive resin composition, patterning process, method of forming cured film, interlayer insulation film, surface protective film, and electronic component
JP4639697B2 (en) Imide group-containing diamine, imide group-containing polyimide precursor, positive photosensitive resin composition containing the precursor, method for producing positive pattern, and electronic component
JP5196148B2 (en) Photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board
JP2011202059A (en) Resin and positive photosensitive resin composition
CN107407875B (en) Positive photosensitive resin composition, dry film, cured product and printed wiring board
JP2009235311A (en) Polyimide resin and heat-resistant resin composition using the same
JP4771412B2 (en) Photosensitive resin and method for producing the same
JP2016161894A (en) Photosensitive resin composition
JP5100716B2 (en) Negative photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board
JP5459590B2 (en) Photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board
JP2011053315A (en) Positive photosensitive polyimide resin composition and polyimide relief pattern obtained therefrom
JP2010150333A (en) Method for manufacturing polyamic acid, polyamic acid composition, and photosensitive resin composition, polyimide resin film using the same, and flexible printed wiring board
JP2008040273A (en) Photosensitive polyimide-silicone composition, protective film and flexible printed wiring board
JP5193453B2 (en) Positive photosensitive resin composition and photosensitive dry film
JPH10260531A (en) Polyimide type resin composition
JP2010072143A (en) Positive photosensitive resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250