JP5196126B2 - Biological sample reaction apparatus and biological sample reaction method - Google Patents

Biological sample reaction apparatus and biological sample reaction method Download PDF

Info

Publication number
JP5196126B2
JP5196126B2 JP2007318627A JP2007318627A JP5196126B2 JP 5196126 B2 JP5196126 B2 JP 5196126B2 JP 2007318627 A JP2007318627 A JP 2007318627A JP 2007318627 A JP2007318627 A JP 2007318627A JP 5196126 B2 JP5196126 B2 JP 5196126B2
Authority
JP
Japan
Prior art keywords
reaction
biological sample
sample reaction
chip
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007318627A
Other languages
Japanese (ja)
Other versions
JP2009136250A5 (en
JP2009136250A (en
Inventor
周史 小枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2007318627A priority Critical patent/JP5196126B2/en
Publication of JP2009136250A publication Critical patent/JP2009136250A/en
Publication of JP2009136250A5 publication Critical patent/JP2009136250A5/en
Application granted granted Critical
Publication of JP5196126B2 publication Critical patent/JP5196126B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

本発明は、核酸増幅などの生体試料反応を行うための、生体試料反応用チップ、生体試料反応装置、および生体試料反応方法に関するものである。   The present invention relates to a biological sample reaction chip, a biological sample reaction device, and a biological sample reaction method for performing a biological sample reaction such as nucleic acid amplification.

近年、僅かなDNAを短時間で増幅するPCR法が、医療や食品の分析、犯罪捜査や生物学の研究等で盛んに用いられるようになった。取り扱いが容易な卓上型のPCR検査装置も開発され、手軽にPCR法が行えるようになった。しかしながら、これらのPCR装置はPCR反応に必要な熱サイクルを実現するために、異なる温度に設定された複数のインキュベータを用意し、それらのインキュベータ間でPCR溶液の入ったチューブを移動させていた。チューブの移動機構は複雑であり、また、この方法では温度変化が急峻になるが、反応を行う上ではより緩やかな温度勾配が望ましい。また、1つのサーマルブロックを用いて、加熱冷却を繰り返す方法もあったが、温度変化に時間を要し、反応時間や消費電力の点から改善が望まれていた。   In recent years, the PCR method for amplifying a small amount of DNA in a short time has come to be actively used in medical and food analysis, criminal investigation, biological research and the like. An easy-to-handle desktop PCR testing device has also been developed, making it easy to perform PCR. However, in order to realize the thermal cycle necessary for the PCR reaction, these PCR apparatuses prepare a plurality of incubators set at different temperatures, and move the tubes containing the PCR solutions between the incubators. The moving mechanism of the tube is complicated, and the temperature change becomes steep in this method, but a gentler temperature gradient is desirable for the reaction. There was also a method of repeating heating and cooling using one thermal block, but it took time to change the temperature, and improvements were desired in terms of reaction time and power consumption.

この様な問題を解決する為、特許文献1には、DNAポリメラーゼ、鋳型DNA、プライマーDNA、及びdNTPを含む反応液を移動相として、外部に約94℃、約55℃、及び約73℃に調節された3種の加熱部が設けられた反応管内を移動させることにより、PCR反応を行う装置が開示されている。
特開平6−30776号公報
In order to solve such a problem, Patent Document 1 discloses that a reaction solution containing DNA polymerase, template DNA, primer DNA, and dNTP is used as a mobile phase at about 94 ° C., about 55 ° C., and about 73 ° C. An apparatus for performing a PCR reaction by moving in a reaction tube provided with three types of controlled heating units is disclosed.
JP-A-6-30776

しかし、特許文献1に記載された従来の装置は、1つの反応管を用いて複数の試料の反応を行おうとすると、試料の混入が生じる恐れがあった。PCR反応は僅かな試料を極度に増幅する手法であり、異なる試料の混入は避ける必要がある。複数の反応管を用いると試料の混入は避けられるが、送液ポンプが各々の反応管について必要となり装置が複雑化してしまう。   However, the conventional apparatus described in Patent Document 1 may cause sample contamination when a plurality of samples are reacted using one reaction tube. The PCR reaction is a technique for extremely amplifying a few samples, and it is necessary to avoid mixing different samples. When a plurality of reaction tubes are used, mixing of samples can be avoided, but a liquid feed pump is required for each reaction tube, and the apparatus becomes complicated.

そこで、本発明の目的は、微量な反応液で効率よく反応処理を行うことが可能で、簡易な方法で温度制御ができ、消費電力も低減可能な生体試料反応用チップ、生体試料反応装置、および生体試料反応方法を得ることである。   Therefore, an object of the present invention is to perform a reaction process efficiently with a very small amount of a reaction solution, perform temperature control by a simple method, and reduce power consumption, a biological sample reaction chip, a biological sample reaction device, And obtaining a biological sample reaction method.

本発明に係る生体試料反応用チップは、第1〜第3の反応部と、前記第1の反応部と前記第2の反応部を繋ぐ第1の流路と、前記第2の反応部と前記第3の反応部を繋ぐ第2の流路と、を備え、前記第1の流路と前記第1の反応部の成す角度をA、前記第1の流路と前記第2の反応部の成す角度をB、前記第1の流路と前記第2の流路の成す角度をCとすると、A<C、かつ、0度<B<180度、かつ、C>90度、であることを特徴とする。   The biological sample reaction chip according to the present invention includes first to third reaction units, a first flow path connecting the first reaction unit and the second reaction unit, and the second reaction unit. A second flow path connecting the third reaction section, and the angle formed by the first flow path and the first reaction section is A, the first flow path and the second reaction section. A <C, 0 <B <180 degrees, and C> 90 degrees, where B is the angle formed by C and the angle formed by the first flow path and the second flow path is C. It is characterized by that.

また、本発明に係る生体試料反応装置は、上記の生体試料反応用チップを用いて生体試料反応処理を行うための生体試料反応装置であって、水平方向の回転軸の周りに回転可能であり、前記生体試料反応用チップを収納可能な収容部と、回転軸近傍に設けられた温度調節手段を備え、前記回転軸に対して対称な温度分布を有するものである。   A biological sample reaction device according to the present invention is a biological sample reaction device for performing biological sample reaction processing using the biological sample reaction chip described above, and is rotatable around a horizontal rotation axis. And an accommodating portion capable of accommodating the biological sample reaction chip and a temperature adjusting means provided in the vicinity of the rotation axis, and having a temperature distribution symmetrical to the rotation axis.

本発明に係る生体試料反応用チップは、本発明に係る生体試料反応装置を用いて生体試料反応処理を行うのに適している。
また、前記第1〜第3の反応部と前記第1および第2の流路に反応液と混和せず前記反応液よりも比重の軽い液体が充填されており、前記液体中に反応液が液滴の状態で含まれることが望ましい。これにより、微量な反応液で効率よく反応を行うことができる。例えば、液体がミネラルオイルの場合には、反応液はミネラルオイル中に非乳化状態の液滴として含まれている。
The biological sample reaction chip according to the present invention is suitable for performing biological sample reaction processing using the biological sample reaction device according to the present invention.
Also, the first to third reaction parts and the first and second flow paths are filled with a liquid that is immiscible with the reaction liquid and has a specific gravity lower than that of the reaction liquid, and the reaction liquid is contained in the liquid. It is desirable to be contained in the state of a droplet. Thereby, it can react efficiently with a trace amount reaction liquid. For example, when the liquid is mineral oil, the reaction liquid is contained in the mineral oil as non-emulsified droplets.

また、本発明に係る生体試料反応装置は、回転軸に対して対称な温度分布が形成されるので、装置を回転させることにより、温度制御が簡単で消費電力も低い熱サイクル反応を実施することができる。   In addition, since the biological sample reaction apparatus according to the present invention forms a symmetric temperature distribution with respect to the rotation axis, the thermal cycle reaction with simple temperature control and low power consumption can be performed by rotating the apparatus. Can do.

また、前記収容部は、前記第1の反応部、前記第2の反応部、前記第3の反応部の順に前記回転軸から遠くに配置されるように、前記生体試料反応用チップを収納可能なことが望ましい。これにより、反応液を第1の反応部、第2の反応部、および第3の反応部の間で移動させることにより、3つの異なる温度状態での熱サイクル反応を実現することができる。   The accommodating portion can accommodate the biological sample reaction chip so that the first reaction portion, the second reaction portion, and the third reaction portion are arranged away from the rotation shaft in this order. It is desirable. Thereby, the thermal cycle reaction in three different temperature states is realizable by moving a reaction liquid between a 1st reaction part, a 2nd reaction part, and a 3rd reaction part.

本発明に係る生体試料反応方法は、上記の生体試料反応装置を用いた生体試料反応方法であって、前記生体試料反応装置を前記回転軸の周りに回転させることにより、前記反応液の液滴を前記第1〜第3の反応部の間で移動させ、各々の反応部で生体試料反応処理を行うものである。
本発明によれば、回転軸に対して対称な温度分布が形成されるので、反応液を第1の反応部、第2の反応部、および第3の反応部の間で移動させることにより、温度制御が簡単で消費電力も低い、熱サイクル反応を実現することができる。
The biological sample reaction method according to the present invention is a biological sample reaction method using the biological sample reaction device described above, and the droplet of the reaction liquid is obtained by rotating the biological sample reaction device around the rotation axis. Is moved between the first to third reaction units, and a biological sample reaction process is performed in each reaction unit.
According to the present invention, a symmetrical temperature distribution is formed with respect to the rotation axis, and therefore, by moving the reaction liquid between the first reaction unit, the second reaction unit, and the third reaction unit, It is possible to realize a heat cycle reaction that is simple in temperature control and low in power consumption.

また、前記生体試料反応処理は核酸増幅を含む処理であり、前記反応液には、ターゲット核酸、プライマー、核酸を増幅するための酵素、及びヌクレオチドが所定の濃度で含まれているようにすることができる。   The biological sample reaction treatment is a treatment including nucleic acid amplification, and the reaction solution contains a target nucleic acid, a primer, an enzyme for amplifying the nucleic acid, and nucleotides at a predetermined concentration. Can do.

以下、本発明の実施の形態について図面を参照して説明する。
実施の形態1.
図1は、本発明の実施の形態1によるPCR用チップ(生体試料反応用チップ)10と、PCR反応装置(生体試料反応装置)20の構成を示す斜視図である。図に示すように、PCR用チップ10は、透明基板101,102を貼り合わせて構成されており、第1のウェル(第1の反応部)103、第2のウェル(第2の反応部)104、第3のウェル(第3の反応部)105、第1の流路106、第2の流路107が形成されている。透明基板101,102は例えばガラス基板とすることができる。各々1つの第1のウェル103、第2のウェル104、第3のウェル105、第1の流路106、及び第2の流路107によって1つの反応系が形成される。本実施形態では、PCR用チップ10は1つの基板に7個の反応系を有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a perspective view showing the configuration of a PCR chip (biological sample reaction chip) 10 and a PCR reaction apparatus (biological sample reaction apparatus) 20 according to Embodiment 1 of the present invention. As shown in the figure, the PCR chip 10 is formed by bonding transparent substrates 101 and 102, and includes a first well (first reaction unit) 103 and a second well (second reaction unit). 104, a third well (third reaction portion) 105, a first flow path 106, and a second flow path 107 are formed. The transparent substrates 101 and 102 can be glass substrates, for example. One reaction system is formed by each of the first well 103, the second well 104, the third well 105, the first flow path 106, and the second flow path 107. In this embodiment, the PCR chip 10 has seven reaction systems on one substrate.

PCR反応装置20は、円筒形に形成されており、中心部に水平方向に伸びた回転軸201を有している。回転軸201はヒータ(温度調節手段)となっており、回転軸201の近傍から外側へ向かうにつれて低くなっていく温度勾配が形成されている。   The PCR reaction apparatus 20 is formed in a cylindrical shape, and has a rotating shaft 201 extending in the horizontal direction at the center. The rotating shaft 201 is a heater (temperature adjusting means), and a temperature gradient that decreases from the vicinity of the rotating shaft 201 toward the outside is formed.

PCR反応装置20は、PCR用チップ10を収納可能なスリット(収容部)202を複数有している。スリット202は、回転軸201に対して対称に放射状に配置されている。スリット202へは、PCR用チップ10を矢印Aで示すように、第1のウェル103が回転軸201に近くなるように収納することができる。このようにPCR用チップ10を収納することにより、第1のウェル103、第2のウェル104、第3のウェル105の順に回転軸201から遠くに配置されるように収納される。   The PCR reaction apparatus 20 has a plurality of slits (accommodating sections) 202 that can accommodate the PCR chip 10. The slits 202 are radially arranged symmetrically with respect to the rotation axis 201. As shown by arrow A, the PCR chip 10 can be accommodated in the slit 202 so that the first well 103 is close to the rotating shaft 201. By storing the PCR chip 10 in this manner, the first well 103, the second well 104, and the third well 105 are stored so as to be arranged far from the rotation shaft 201 in this order.

さらに、PCR反応装置20は、円筒の外周面近傍に配置されたフィルムヒータ203および回転軸201とフィルムヒータ203の間に同心円状に配置された断熱材204を備えており、温度勾配を正確にコントロールできるようになっている。また、外周面には複数の測定用ポート205が設けられている。測定用ポート205は、スリット202にPCR用チップ10を収納した時に、各々のチップに形成された7個の反応系が配置される位置と対応しており、測定用ポート205を通して外側から反応系内を測定することができるようになっている。   Furthermore, the PCR reaction apparatus 20 includes a film heater 203 disposed in the vicinity of the outer peripheral surface of the cylinder, and a heat insulating material 204 disposed concentrically between the rotating shaft 201 and the film heater 203, so that the temperature gradient can be accurately measured. It can be controlled. A plurality of measurement ports 205 are provided on the outer peripheral surface. The measurement port 205 corresponds to the position where seven reaction systems formed on each chip are arranged when the PCR chip 10 is accommodated in the slit 202, and the reaction system from the outside through the measurement port 205. The inside can be measured.

図2(A)は、PCR用チップ10の平面図である。図に示すように、第1のウェル103、第2のウェル104、第3のウェル105、第1の流路106、及び第2の流路107には、比重0.875のミネラルオイルが充填されている。第1の流路106、第2の流路107の幅は、第1のウェル103、第2のウェル104、及び第3のウェル105よりも若干狭く形成されている。これにより、ミネラルオイルの対流を制限する事ができ、第1のウェル103、第2のウェル104、及び第3のウェル105の間での温度勾配が明確に生じるようになっている。   FIG. 2A is a plan view of the PCR chip 10. As shown in the figure, the first well 103, the second well 104, the third well 105, the first channel 106, and the second channel 107 are filled with mineral oil having a specific gravity of 0.875. Has been. The widths of the first channel 106 and the second channel 107 are slightly narrower than those of the first well 103, the second well 104, and the third well 105. As a result, the convection of mineral oil can be limited, and a temperature gradient is clearly generated among the first well 103, the second well 104, and the third well 105.

ミネラルオイル中には、反応液が非乳化状態の液滴として含まれている。反応液とミネラルオイルは混和せず、反応液の比重はミネラルオイルに比べて重いため、下方に沈降する。なお、反応液と混和せず、比重が反応液よりも軽いという条件を満たす液体であれば、ミネラルオイルの代わりに用いることができる。   In the mineral oil, the reaction liquid is contained as non-emulsified droplets. The reaction liquid and mineral oil are not mixed, and the specific gravity of the reaction liquid is heavier than that of mineral oil, so it settles downward. In addition, if it is a liquid which does not mix with a reaction liquid and satisfy | fills the conditions that specific gravity is lighter than a reaction liquid, it can be used instead of mineral oil.

図2(B)は、反応系の図2(A)のB−B断面を示す図である。図に示すように、第1のウェル103、第2のウェル104、及び第3のウェル105は、それぞれ第1の流路106に対して所定の角度を成すように形成されている。本実施形態では、第1のウェル103と第1の流路106の成す角度A=60度、第2のウェル104と第1の流路106の成す角度B=60度、第2の流路107と第1の流路106の成す角度C=180度に形成されている。   FIG. 2 (B) is a view showing a BB cross section of FIG. 2 (A) of the reaction system. As shown in the figure, the first well 103, the second well 104, and the third well 105 are each formed so as to form a predetermined angle with respect to the first flow path 106. In the present embodiment, the angle A = 60 degrees formed by the first well 103 and the first flow path 106, the angle B formed by the second well 104 and the first flow path 106 = 60 degrees, the second flow path. 107 and the first flow path 106 are formed at an angle C = 180 degrees.

次に、本実施形態によるPCR用チップ10およびPCR反応装置20を用いたPCR反応の実施方法について説明する。PCR用チップ10には、上述したように、ミネラルオイルと反応液が充填されている。ここでは、反応液には、ターゲット核酸、プライマー、ポリメラーゼ、及びヌクレオチド(dNTP)が反応に適した所定の濃度で含まれている。ターゲット核酸は、例えば血液、尿、唾液、髄液のような生体サンプルから抽出したDNA、または抽出したRNAから逆転写したcDNAなどを用いることができる。PCR用チップ10の各々の反応系には、異なるターゲット核酸及びプライマーの組み合わせからなる反応液を封入しておくことができる。   Next, a method for performing a PCR reaction using the PCR chip 10 and the PCR reaction apparatus 20 according to the present embodiment will be described. As described above, the PCR chip 10 is filled with mineral oil and a reaction solution. Here, the target nucleic acid, primer, polymerase, and nucleotide (dNTP) are contained in the reaction solution at a predetermined concentration suitable for the reaction. As the target nucleic acid, for example, DNA extracted from a biological sample such as blood, urine, saliva, spinal fluid, or cDNA reversely transcribed from the extracted RNA can be used. Each reaction system of the PCR chip 10 can enclose a reaction solution composed of a combination of different target nucleic acids and primers.

反応液を封入したPCR用チップ10を図1に示すようにPCR反応装置20のスリット202に収納する。
図3は、PCR用チップ10を収納したPCR反応装置20の、回転軸201に垂直な面の断面を示す模式図である。
The PCR chip 10 enclosing the reaction solution is stored in the slit 202 of the PCR reaction apparatus 20 as shown in FIG.
FIG. 3 is a schematic diagram showing a cross section of a surface perpendicular to the rotation shaft 201 of the PCR reaction apparatus 20 in which the PCR chip 10 is housed.

ここでは、PCR反応装置20は、第1のウェル103が固定される回転軸201近傍の温度がPCR反応の熱変性温度(95℃)、第2のウェル104が固定される中間部の温度が伸長反応温度(72℃)、第3のウェル105が固定される外周部の温度がアニーリング温度(55℃)となるように、ヒーターによってコントロールされている。なお、温度の回転軸201に対する対称性を保持する点から、未使用のスリット202にもダミーのPCR用チップ10を挿入することが好ましい。   Here, in the PCR reaction apparatus 20, the temperature in the vicinity of the rotation shaft 201 where the first well 103 is fixed is the heat denaturation temperature (95 ° C.) of the PCR reaction, and the temperature of the intermediate part where the second well 104 is fixed. The elongation reaction temperature (72 ° C.) and the temperature of the outer peripheral portion to which the third well 105 is fixed are controlled by the heater so as to be the annealing temperature (55 ° C.). In addition, it is preferable to insert the dummy PCR chip 10 into the unused slit 202 from the viewpoint of maintaining the symmetry of the temperature with respect to the rotation axis 201.

ここでは、PCR反応は熱変性(95℃)→アニーリング(55℃)→伸長反応(72℃)→熱変性(95℃)の熱サイクルを、各温度状態を等間隔で繰り返すことにより行う。
PCR反応装置20が図中の矢印方向(右回り)に回転することにより、PCR用チップ10は図中の領域(1)〜(3)(図中、丸数字で示す1〜3の領域)を繰り返し通過する。図中(1)の領域(図3の断面を時計の文字盤に見立てると1時〜5時に相当する領域)にPCR用チップ10がある期間は、反応液Pは第1のウェル103に位置する。このため、PCR用チップ10が領域(1)にある間は、95℃で熱変性処理が行われる。PCR用チップ10が領域(3)から領域(1)へ入る際、ミネラルオイル中の反応液はミネラルオイルより比重が重いため第2のウェル104から第1のウェル103へ沈降する。
Here, the PCR reaction is performed by repeating a thermal cycle of thermal denaturation (95 ° C.) → annealing (55 ° C.) → extension reaction (72 ° C.) → thermal denaturation (95 ° C.) at equal intervals.
When the PCR reaction apparatus 20 rotates in the direction of the arrow (clockwise) in the figure, the PCR chip 10 has the regions (1) to (3) in the figure (regions 1 to 3 indicated by circles in the figure). Pass repeatedly. In the period of (1) in the figure (the area corresponding to 1 o'clock to 5 o'clock when the cross section of FIG. To do. For this reason, while the PCR chip 10 is in the region (1), heat denaturation treatment is performed at 95 ° C. When the PCR chip 10 enters the region (1) from the region (3), the reaction solution in the mineral oil has a higher specific gravity than the mineral oil, and thus settles from the second well 104 to the first well 103.

次に、PCR用チップ10が領域(1)から領域(2)(5時〜9時に相当する領域)へ入ると、反応液は第1のウェル103から第3のウェル105へ移動する。このため、PCR用チップ10が領域(2)にある間は、55℃でアニーリング処理が行われる。領域(1)にある間は、第1のウェル103の壁と第1の流路106が60度の角度を成しているため、反応液は壁にかかって第1のウェル103に留まっているが、領域(2)に入ると、第1の流路106及び第2の流路107を通って第3のウェル105まで沈降する。   Next, when the PCR chip 10 enters the region (1) from the region (1) (region corresponding to 5 o'clock to 9 o'clock), the reaction solution moves from the first well 103 to the third well 105. Therefore, the annealing process is performed at 55 ° C. while the PCR chip 10 is in the region (2). While in the region (1), the wall of the first well 103 and the first flow path 106 form an angle of 60 degrees, so that the reaction solution is caught on the wall and stays in the first well 103. However, when it enters the region (2), it passes through the first channel 106 and the second channel 107 and settles down to the third well 105.

次に、PCR用チップ10が領域(2)から領域(3)(9時〜1時に相当する領域)へ入ると、反応液は第3のウェル105から第2のウェル104へ移動する。このため、PCR用チップ10が領域(3)にある間は、72℃で伸長反応処理が行われる。領域(2)にある間は、第3のウェル105が最も低い位置になるため、反応液は第3のウェル105に留まっている。領域(3)に入ると、第3のウェル105よりも第2のウェル104の方が低い位置になるので、反応液は第2のウェル104に移動する。第2のウェル104の壁と第1の流路106が60度の角度を成しているため、反応液は壁にかかって第2のウェル104に留まる。   Next, when the PCR chip 10 enters the region (3) (region corresponding to 9 o'clock to 1 o'clock) from the region (2), the reaction solution moves from the third well 105 to the second well 104. For this reason, the extension reaction process is performed at 72 ° C. while the PCR chip 10 is in the region (3). While in the region (2), the third well 105 is at the lowest position, so that the reaction solution remains in the third well 105. When entering the region (3), the second well 104 is positioned lower than the third well 105, so that the reaction solution moves to the second well 104. Since the wall of the second well 104 and the first flow path 106 form an angle of 60 degrees, the reaction solution is applied to the wall and stays in the second well 104.

さらに、PCR用チップ10が領域(3)から再び領域(1)へ入り、熱変性(95℃)→アニーリング(55℃)→伸長反応(72℃)→熱変性(95℃)の熱サイクルが繰り返される。領域(3)から領域(1)へ入ると、第2のウェル104の壁で保持されていた反応液が第1のウェル103まで移動する。   Furthermore, the PCR chip 10 enters the region (1) again from the region (3), and the thermal cycle of thermal denaturation (95 ° C.) → annealing (55 ° C.) → extension reaction (72 ° C.) → thermal denaturation (95 ° C.) Repeated. When entering the region (1) from the region (3), the reaction solution held on the wall of the second well 104 moves to the first well 103.

以上のように、本実施形態によれば、PCR反応装置20を回転させることにより、PCR反応の熱サイクルを繰り返すことができる。なお、図3に示すように、本実施形態では、領域(1)〜(3)はそれぞれ円全体の3分の1を占めているため、PCR用チップ10が各々の領域にある時間は等間隔となり、従って各温度状態を等間隔で繰り返すことができる。   As described above, according to the present embodiment, the PCR reaction apparatus 20 can be rotated to repeat the PCR reaction thermal cycle. As shown in FIG. 3, in this embodiment, the regions (1) to (3) each occupy one-third of the entire circle, so the time that the PCR chip 10 is in each region is equal. Therefore, each temperature state can be repeated at equal intervals.

本実施形態によれば、PCR反応装置20が円筒状で、回転軸201部分にヒータが設けられているため、回転軸201の近傍から外側へ向かうにつれて低くなっていく温度勾配が形成されるので、温度分布が軸対称になるように制御しやすい。また、従来のように反応液の入ったチップを、複数のヒートブロック間で移動させたり、単一のヒートブロックの過熱冷却を繰り返して温度サイクルを実現する方式に比べ、温度制御が簡単で、消費電力も低減できる。また、ヒートブロック間でのチップの移動や、ヒートブロックの加熱冷却の必要がない分、短時間で反応を行うことができる。   According to this embodiment, since the PCR reaction apparatus 20 is cylindrical and the heater is provided in the rotating shaft 201, a temperature gradient that decreases from the vicinity of the rotating shaft 201 toward the outside is formed. Easy to control so that temperature distribution is axisymmetric. In addition, the temperature control is simple compared to the conventional method in which the chip containing the reaction liquid is moved between multiple heat blocks, or overheating cooling of a single heat block is repeated to realize a temperature cycle, Power consumption can also be reduced. Further, the reaction can be performed in a short time because there is no need to move the chips between the heat blocks or to heat and cool the heat blocks.

また、本実施形態によるPCR用チップ10は、ミネラルオイル中に反応液が非乳化状態の液滴として含まれるようにしたので、微量な反応液で効率よく反応を行うことができる。   In addition, since the PCR chip 10 according to the present embodiment is configured so that the reaction liquid is contained in the mineral oil as non-emulsified droplets, the reaction can be efficiently performed with a small amount of the reaction liquid.

なお、PCR用チップ10に充填するミネラルオイルの粘度が高いほど、ミネラルオイル中での反応液の移動速度が遅くなるため、反応液がウェル間を移動する際の温度変化を緩やかにすることができる。   In addition, since the moving speed of the reaction solution in the mineral oil becomes slower as the viscosity of the mineral oil filled in the PCR chip 10 becomes higher, the temperature change when the reaction solution moves between the wells can be moderated. it can.

また、本実施形態によるPCR用チップ10及びPCR反応装置20を用いてリアルタイムPCRを行う場合には、例えば、PCR反応装置20の最下点(6時に相当する位置)にCCDカメラ等を配置することにより、PCR用チップ10が6時の位置へきたときに、測定用ポート205を介して測定することができるので、サイクル毎の増幅産物量を測定することができる。   When performing real-time PCR using the PCR chip 10 and the PCR reaction device 20 according to the present embodiment, for example, a CCD camera or the like is arranged at the lowest point (position corresponding to 6 o'clock) of the PCR reaction device 20. As a result, when the PCR chip 10 comes to the 6 o'clock position, measurement can be performed via the measurement port 205, so that the amount of amplification product for each cycle can be measured.

また本発明は、PCR反応以外にも、温度サイクルを繰り返して行う様々な反応に利用することができる。   Moreover, this invention can be utilized for various reaction performed by repeating a temperature cycle besides PCR reaction.

(変形例)
図4〜図9は、本実施形態の変形例を示す図である。図4(A)〜図9(A)は、PCR用チップ10を収納したPCR反応装置20の、回転軸201に垂直な面の断面を示す模式図、図4(B)〜図9(B)は、PCR用チップ10の反応系の断面(図2(A)のB−B断面)を示す図である。
(Modification)
4-9 is a figure which shows the modification of this embodiment. FIGS. 4A to 9A are schematic views showing a cross section of a surface perpendicular to the rotation axis 201 of the PCR reaction apparatus 20 in which the PCR chip 10 is housed, and FIGS. 4B to 9B. ) Is a diagram showing a cross section of the reaction system of the PCR chip 10 (BB cross section in FIG. 2A).

それぞれの変形例は、第1のウェル103と第1の流路106の成す角度A、第2のウェル104と第1の流路106の成す角度B、及び第2の流路107と第1の流路106の成す角度Cの組み合わせがそれぞれ異なっている。これらの角度を変えることにより、反応液が第1のウェル103、第2のウェル104、及び第3のウェル105にある期間を変化させることができる。PCR反応においては、熱変性(95℃)→アニーリング(55℃)→伸長反応(72℃)の時間比率は1通りではなく、以下の変形例はこのような場合に利用することができる。   Each modification includes an angle A formed by the first well 103 and the first flow path 106, an angle B formed by the second well 104 and the first flow path 106, and a second flow path 107 and the first flow path 106. The combinations of the angles C formed by the channels 106 are different. By changing these angles, the period during which the reaction solution is in the first well 103, the second well 104, and the third well 105 can be changed. In the PCR reaction, the time ratio of thermal denaturation (95 ° C.) → annealing (55 ° C.) → extension reaction (72 ° C.) is not one, and the following modifications can be used in such cases.

図4に示す例では、A=60度、B=30度、C=150度となっている。この場合、上記の実施形態と同様の仕組みにより、PCR用チップ10が2時〜5時に相当する位置にある間、反応液は第1のウェル103にあり、5時〜8時の位置では第3のウェル105に、8時〜2時の位置では第2のウェル104にある。よって、図4に示す例では、熱変性(95℃)→アニーリング(55℃)→伸長反応(72℃)の各温度状態を1:1:2の比率で繰り返す。   In the example shown in FIG. 4, A = 60 degrees, B = 30 degrees, and C = 150 degrees. In this case, the reaction solution is in the first well 103 while the PCR chip 10 is in the position corresponding to 2 o'clock to 5 o'clock, and the first solution 103 is in the position of 5 o'clock to 8 o'clock by the same mechanism as in the above embodiment. The third well 105 is in the second well 104 at the 8 o'clock to 2 o'clock position. Therefore, in the example shown in FIG. 4, each temperature state of heat denaturation (95 ° C.) → annealing (55 ° C.) → extension reaction (72 ° C.) is repeated at a ratio of 1: 1: 2.

同様に、図5に示す例では、A=0度、B=30度、C=120度であり、PCR用チップ10が2時〜3時に相当する位置にある間、反応液は第1のウェル103にあり、3時〜7時の位置では第3のウェル105に、7時〜2時の位置では第2のウェル104にある。よって、図5に示す例では、熱変性(95℃)→アニーリング(55℃)→伸長反応(72℃)の各温度状態を1:4:7の比率で繰り返す。   Similarly, in the example shown in FIG. 5, A = 0 degrees, B = 30 degrees, and C = 120 degrees, and while the PCR chip 10 is in a position corresponding to 2 o'clock to 3 o'clock, the reaction solution is the first It is in the well 103 and is in the third well 105 at the position from 3 o'clock to 7 o'clock and in the second well 104 at the position from 7 o'clock to 2 o'clock. Therefore, in the example shown in FIG. 5, each temperature state of thermal denaturation (95 ° C.) → annealing (55 ° C.) → extension reaction (72 ° C.) is repeated at a ratio of 1: 4: 7.

図6に示す例では、A=30度、B=30度、C=120度であり、PCR用チップ10が2時〜4時に相当する位置にある間、反応液は第1のウェル103にあり、4時〜7時の位置では第3のウェル105に、7時〜2時の位置では第2のウェル104にある。よって、図6に示す例では、熱変性(95℃)→アニーリング(55℃)→伸長反応(72℃)の各温度状態を2:3:7の比率で繰り返す。   In the example shown in FIG. 6, A = 30 degrees, B = 30 degrees, and C = 120 degrees, and while the PCR chip 10 is in a position corresponding to 2 o'clock to 4 o'clock, the reaction solution is placed in the first well 103. Yes, it is in the third well 105 at the 4 o'clock to 7 o'clock position, and in the second well 104 at the 7 o'clock to 2 o'clock position. Therefore, in the example shown in FIG. 6, each temperature state of heat denaturation (95 ° C.) → annealing (55 ° C.) → extension reaction (72 ° C.) is repeated at a ratio of 2: 3: 7.

図7に示す例では、A=90度、B=30度、C=120度であり、PCR用チップ10が2時〜6時に相当する位置にある間、反応液は第1のウェル103にあり、6時〜7時の位置では第3のウェル105に、7時〜2時の位置では第2のウェル104にある。よって、図7に示す例では、熱変性(95℃)→アニーリング(55℃)→伸長反応(72℃)の各温度状態を4:1:7の比率で繰り返す。   In the example shown in FIG. 7, A = 90 degrees, B = 30 degrees, and C = 120 degrees, and while the PCR chip 10 is in a position corresponding to 2 o'clock to 6 o'clock, the reaction solution is placed in the first well 103. Yes, it is in the third well 105 at the 6 o'clock to 7 o'clock position, and in the second well 104 at the 7 o'clock to 2 o'clock position. Therefore, in the example shown in FIG. 7, each temperature state of thermal denaturation (95 ° C.) → annealing (55 ° C.) → extension reaction (72 ° C.) is repeated at a ratio of 4: 1: 7.

図8に示す例では、A=90度、B=180度、C=120度であり、PCR用チップ10が9時〜6時に相当する位置にある間、反応液は第1のウェル103にあり、6時〜7時の位置では第3のウェル105に、7時〜9時の位置では第2のウェル104にある。よって、図7に示す例では、熱変性(95℃)→アニーリング(55℃)→伸長反応(72℃)の各温度状態を9:1:2の比率で繰り返す。   In the example shown in FIG. 8, A = 90 degrees, B = 180 degrees, and C = 120 degrees, and the reaction solution is placed in the first well 103 while the PCR chip 10 is in a position corresponding to 9:00 to 6:00. Yes, it is in the third well 105 at the 6 o'clock to 7 o'clock position and in the second well 104 at the 7 o'clock to 9 o'clock position. Therefore, in the example shown in FIG. 7, each temperature state of heat denaturation (95 ° C.) → annealing (55 ° C.) → extension reaction (72 ° C.) is repeated at a ratio of 9: 1: 2.

図9に示す例では、A=120度、B=180度、C=150度であり、PCR用チップ10が9時〜7時に相当する位置にある間、反応液は第1のウェル103にあり、7時〜8時の位置では第3のウェル105に、8時〜9時の位置では第2のウェル104にある。よって、図7に示す例では、熱変性(95℃)→アニーリング(55℃)→伸長反応(72℃)の各温度状態を10:1:1の比率で繰り返す。   In the example shown in FIG. 9, A = 120 degrees, B = 180 degrees, and C = 150 degrees, and while the PCR chip 10 is in a position corresponding to 9 o'clock to 7 o'clock, the reaction solution is placed in the first well 103. Yes, it is in the third well 105 at the 7 o'clock to 8 o'clock position, and in the second well 104 at the 8 o'clock to 9 o'clock position. Therefore, in the example shown in FIG. 7, each temperature state of thermal denaturation (95 ° C.) → annealing (55 ° C.) → extension reaction (72 ° C.) is repeated at a ratio of 10: 1: 1.

なお、角度A,B,Cと各温度状態での反応時間の比率には、以下の関係がある。
熱変性(95℃):アニーリング(55℃):伸長反応(72℃)
=角度A+角度B:角度C−角度A:360度−(角度B+角度C)
The angles A, B, and C and the reaction time ratio in each temperature state have the following relationship.
Thermal denaturation (95 ° C): Annealing (55 ° C): Elongation reaction (72 ° C)
= Angle A + Angle B: Angle C-Angle A: 360 degrees-(Angle B + Angle C)

角度A=0度の場合には、3時の位置を過ぎると反応液は第1のウェル103から第3のウェル105へ移動する。角度A≠0度の場合には、3時の位置から角度Aだけ回転するまで、第1のウェル103に留まる。また、3時の位置から角度C以上回転すると、第2のウェル104が第3のウェル105より下方に位置するようになるので、反応液は第2のウェル104へ移動する。また、3時の位置から角度Bだけ手前の位置まで、反応液は第2のウェル104に留まることができる。   In the case of the angle A = 0 degree, the reaction solution moves from the first well 103 to the third well 105 after the 3 o'clock position. If the angle A is not 0 °, it remains in the first well 103 until it is rotated by the angle A from the 3 o'clock position. If the second well 104 is rotated from the 3 o'clock position by an angle C or more, the second well 104 is positioned below the third well 105, so that the reaction solution moves to the second well 104. Further, the reaction solution can remain in the second well 104 from the 3 o'clock position to a position just before the angle B.

よって、3時の位置を0度とすると、角度Aから角度Cに至る区間では反応液は第2のウェル104に位置し、角度Cから(360度−角度B)の区間では第2のウェル104に位置し、(360度−角度B)から角度Aの区間では第1のウェル103に位置することになる。   Therefore, if the 3 o'clock position is 0 degree, the reaction solution is located in the second well 104 in the section from the angle A to the angle C, and the second well in the section from the angle C to (360 degrees−angle B). 104, and in the section from (360 degrees-angle B) to angle A, it is located in the first well 103.

なお、角度A<角度Cである。これは、角度C≦角度Aであると、反応液が第1のウェル103から沈降した時点で第2のウェル104の方が第3のウェル105より下方になってしまうため、反応液が第3のウェル105に留まる時間がなくなるからである。   Note that angle A <angle C. This is because when the angle C ≦ angle A, the second well 104 becomes lower than the third well 105 when the reaction solution settles out of the first well 103, so This is because there is no time remaining in the third well 105.

また、0度<角度B<180度である。角度Bが小さいほど反応液が第2のウェル104に留まる時間が長くなり、180度を超えると第3のウェル105から第2のウェル104を通過して第1のウェル103まで沈降してしまう。   Further, 0 degree <angle B <180 degrees. The smaller the angle B, the longer the time for which the reaction solution stays in the second well 104. When the angle B exceeds 180 degrees, the reaction solution settles from the third well 105 through the second well 104 to the first well 103. .

また、角度C>90度である。Cが90度以下の場合、第2のウェル104と第3のウェル105の回転軸201からの距離の差が小さくなるか、あるいは第3のウェル105の方が回転軸201に近くなってしまい、十分な温度差を設けることが困難になる。   The angle C> 90 degrees. When C is 90 degrees or less, the difference in distance between the second well 104 and the third well 105 from the rotation axis 201 is small, or the third well 105 is closer to the rotation axis 201. It becomes difficult to provide a sufficient temperature difference.

なお、実施の形態1及び変形例によるPCR用チップ10は、3つの温度状態を繰り返すPCR反応に利用できるものであるが、例えば、第1の流路106で繋がれた第1のウェル103および第2のウェル104のみを備えるようにすれば、2つの温度状態を繰り返す反応にも応用することができる。   The PCR chip 10 according to the first embodiment and the modification can be used for a PCR reaction in which three temperature states are repeated. For example, the first well 103 connected by the first channel 106 and If only the second well 104 is provided, it can be applied to a reaction in which two temperature states are repeated.

実施の形態2.
本発明の実施の形態2によるPCR用チップ(生体試料反応用チップ)30と、PCR反応装置(生体試料反応装置)40の構成を示す斜視図である。
実施の形態2においても、PCR反応装置40は円筒形に形成されており、中心部に水平方向に伸びた回転軸401を有し、回転軸401がヒータ(温度調節手段)となっていて、回転軸401の近傍から外側へ向かうにつれて低くなっていく温度勾配が形成されている。また、PCR反応装置40は、円筒の外周面近傍に配置されたフィルムヒータ403と、回転軸401とフィルムヒータ403の間に同心円状に配置された断熱材404を備えている。
Embodiment 2. FIG.
It is a perspective view which shows the structure of the chip | tip for PCR (biological sample reaction chip) 30 and the PCR reaction apparatus (biological sample reaction apparatus) 40 by Embodiment 2 of this invention.
Also in the second embodiment, the PCR reaction apparatus 40 is formed in a cylindrical shape, and has a rotating shaft 401 extending in the horizontal direction at the center, and the rotating shaft 401 serves as a heater (temperature adjusting means). A temperature gradient that decreases from the vicinity of the rotating shaft 401 toward the outside is formed. The PCR reaction apparatus 40 also includes a film heater 403 disposed near the outer peripheral surface of the cylinder, and a heat insulating material 404 disposed concentrically between the rotating shaft 401 and the film heater 403.

実施の形態2では、PCR用チップ30を収納可能なスリット(収容部)402は、回転軸401を中心とする扇形に形成されている。また、PCR用チップ30も、同様の扇形に形成されており、1つのチップに、第1のウェル303、第2のウェル304、第3のウェル305、第1の流路306、および第2の流路307からなる反応系が3つ設けられている。   In the second embodiment, the slit (accommodating portion) 402 that can accommodate the PCR chip 30 is formed in a fan shape centered on the rotation shaft 401. The PCR chip 30 is also formed in the same fan shape, and the first well 303, the second well 304, the third well 305, the first flow path 306, and the second are formed on one chip. There are three reaction systems comprising the flow path 307.

実施の形態1と同様に、スリット402へPCR用チップ30を収納することにより、第1のウェル303、第2のウェル304、第3のウェル305の順に回転軸401から遠くに配置されるように収納される。PCR用チップ30を収納したPCR反応装置40の、回転軸401に垂直な面の断面は、実施の形態1と同様であり、PCR反応装置40を回転させることにより、PCR反応の熱サイクルを繰り返すことができる。   As in the first embodiment, by storing the PCR chip 30 in the slit 402, the first well 303, the second well 304, and the third well 305 are arranged away from the rotating shaft 401 in this order. It is stored in. The cross section of the surface perpendicular to the rotation axis 401 of the PCR reaction apparatus 40 containing the PCR chip 30 is the same as that of the first embodiment, and the PCR reaction apparatus 40 is rotated to repeat the thermal cycle of the PCR reaction. be able to.

本発明の実施の形態1によるPCR用チップ(生体試料反応用チップ)と、PCR反応装置(生体試料反応装置)の構成を示す斜視図である。It is a perspective view which shows the structure of the chip | tip for PCR (biological sample reaction chip | tip) by Embodiment 1 of this invention, and a PCR reaction apparatus (biological sample reaction apparatus). 図2(A)は、PCR用チップの平面図、図2(B)は、反応系の図2(A)のB−B断面を示す図である。FIG. 2A is a plan view of the PCR chip, and FIG. 2B is a diagram showing a BB cross section of FIG. 2A of the reaction system. 実施の形態1による、PCR用チップを収納したPCR反応装置の、回転軸に垂直な面の断面を示す模式図である。1 is a schematic diagram showing a cross section of a surface perpendicular to a rotation axis of a PCR reaction apparatus containing a PCR chip according to Embodiment 1. FIG. 実施の形態1の変形例を示す断面図である。6 is a cross-sectional view showing a modification of the first embodiment. FIG. 実施の形態1の変形例を示す断面図である。6 is a cross-sectional view showing a modification of the first embodiment. FIG. 実施の形態1の変形例を示す断面図である。6 is a cross-sectional view showing a modification of the first embodiment. FIG. 実施の形態1の変形例を示す断面図である。6 is a cross-sectional view showing a modification of the first embodiment. FIG. 実施の形態1の変形例を示す断面図である。6 is a cross-sectional view showing a modification of the first embodiment. FIG. 実施の形態1の変形例を示す断面図である。6 is a cross-sectional view showing a modification of the first embodiment. FIG. 本発明の実施の形態2によるPCR用チップ(生体試料反応用チップ)と、PCR反応装置(生体試料反応装置)の構成を示す斜視図である。It is a perspective view which shows the structure of the chip | tip for PCR (chip for biological sample reaction) and PCR reaction apparatus (biological sample reaction apparatus) by Embodiment 2 of this invention.

符号の説明Explanation of symbols

10,30 PCR用チップ、20,40 PCR反応装置、101,102 透明基板、103,303 第1のウェル、104,304 第2のウェル、105,305 第3のウェル、106,306 第1の流路、107,307 第2の流路、201,401 回転軸、202,402 スリット、203,403 フィルムヒータ、204,404 断熱材、205 測定用ポート   10, 30 PCR chip, 20, 40 PCR reaction apparatus, 101, 102 transparent substrate, 103, 303 first well, 104, 304 second well, 105, 305 third well, 106, 306 first Channel, 107, 307 Second channel, 201, 401 Rotating shaft, 202, 402 Slit, 203, 403 Film heater, 204, 404 Insulation, 205 Measurement port

Claims (9)

第1の反応部と、第2の反応部と、前記第1の反応部と前記第2の反応部とを接続する第1の流路とを含み、反応液と、前記反応液とは混和せず、かつ、前記反応液よりも比重の小さい液体とが充填された生体試料反応用チップを収容する収容部と、
水平方向の回転軸と、
前記収容部に前記生体試料反応用チッップを収容した場合に、前記回転軸から外側へ向かうにつれて温度が低くなる温度勾配が形成されるように前記生体試料反応用チップを加熱する温度調節手段と、を含み、
前記収容部に前記生体試料反応用チッップを収容した場合に、前記第1の反応部と前記回転軸との距離が、前記第2の反応部と前記回転軸との距離よりも小さい、
生体試料反応装置。
A first reaction part, a second reaction part, a first flow path connecting the first reaction part and the second reaction part, and the reaction liquid and the reaction liquid are mixed with each other And a storage unit for storing a biological sample reaction chip filled with a liquid having a specific gravity smaller than that of the reaction liquid,
A horizontal axis of rotation;
A temperature adjusting means for heating the biological sample reaction chip so as to form a temperature gradient in which the temperature decreases toward the outside from the rotating shaft when the biological sample reaction chip is stored in the storage unit; Including
When the biological sample reaction chip is accommodated in the accommodating portion, a distance between the first reaction portion and the rotation shaft is smaller than a distance between the second reaction portion and the rotation shaft.
Biological sample reaction device.
請求項1に記載の生体試料反応装置であって、
前記温度調節手段は、
前記回転軸に設けられた第1のヒータと、
前記生体試料反応装置の外周面近傍に設けられ、前記第1のヒータよりも温度が低い第2のヒータと、
を含む、
生体試料反応装置。
The biological sample reaction apparatus according to claim 1,
The temperature adjusting means includes
A first heater provided on the rotating shaft;
A second heater provided in the vicinity of the outer peripheral surface of the biological sample reaction device and having a temperature lower than that of the first heater;
including,
Biological sample reaction device.
請求項2に記載の生体試料反応装置であって、
前記第1のヒータと前記第2のヒータとの間に設けられた断熱材をさらに含む、
生体試料反応装置。
The biological sample reaction apparatus according to claim 2,
A heat insulating material provided between the first heater and the second heater;
Biological sample reaction device.
請求項1ないし請求項3のいずれか1項に記載の生体試料反応装置であって、
前記収容部を複数含む、
生体試料反応装置。
The biological sample reaction device according to any one of claims 1 to 3,
Including a plurality of the accommodating portions,
Biological sample reaction device.
請求項4に記載の生体試料反応装置であって、
複数の前記収容部は、前記回転軸に対して放射状に配置されている、
生体試料反応装置。
The biological sample reaction apparatus according to claim 4,
The plurality of accommodating portions are arranged radially with respect to the rotation axis.
Biological sample reaction device.
請求項1ないし5のいずれか1項に記載の生体試料反応装置であって、
前記生体試料反応用チッップを収容した場合に前記生体試料反応用チップの内部を測定する測定用ポートをさらに含む、
生体試料反応装置。
The biological sample reaction apparatus according to any one of claims 1 to 5,
A measurement port for measuring the inside of the biological sample reaction chip when the biological sample reaction chip is accommodated;
Biological sample reaction device.
請求項1に記載の生体試料反応装置であって、
前記生体試料反応用チップは、
第3の反応部と、前記第2の反応部と前記第3の反応部とを接続する第2の流路と、をさらに含み、
前記収容部に前記生体試料反応用チッップを収容した場合に、前記第2の反応部と前記回転軸との距離が、前記第3の反応部と前記回転軸との距離よりも小さい、
生体試料反応装置。
The biological sample reaction apparatus according to claim 1,
The biological sample reaction chip is:
A third reaction part, and a second flow path connecting the second reaction part and the third reaction part,
When the biological sample reaction chip is accommodated in the accommodating portion, the distance between the second reaction portion and the rotation shaft is smaller than the distance between the third reaction portion and the rotation shaft.
Biological sample reaction device.
請求項1ないし請求項7のいずれか1項に記載の生体試料反応装置であって、
前記収容部はスリットである、
生体試料反応装置。
The biological sample reaction device according to any one of claims 1 to 7,
The accommodating portion is a slit;
Biological sample reaction device.
生体試料反応用チップを収容する収容部と、水平方向の回転軸と、を含む生体試料反応装置を用いた生体試料反応方法であって、
第1の反応部と、第2の反応部と、前記第1の反応部と前記第2の反応部とを接続する第1の流路とを含み、反応液と、前記反応液とは混和せず、かつ、前記反応液よりも比重の小さい液体とが充填された前記生体試料反応用チップを、前記第1の反応部と前記回転軸との距離が、前記第2の反応部と前記回転軸との距離よりも小さくなるように、前記収容部に収容することと、
前記収容部に前記生体試料反応用チッップを収容した場合に、前記回転軸から外側へ向かうにつれて温度が低くなる温度勾配が形成されるように前記生体試料反応用チップを加熱することと、
前記生体試料反応装置を前記回転軸の回りに回転させることと、
を含む、
生体試料反応方法。
A biological sample reaction method using a biological sample reaction device including a housing part for housing a biological sample reaction chip and a horizontal rotation shaft ,
A first reaction part, a second reaction part, a first flow path connecting the first reaction part and the second reaction part, and the reaction liquid and the reaction liquid are mixed with each other without and the biological sample reaction chip and a light liquid filled than the reaction liquid, the distance between the rotary shaft and the first reaction section, the said second reaction unit Accommodating in the accommodating portion so as to be smaller than the distance to the rotation shaft ;
And heating when accommodating the Chipppu for biological samples responsive to said housing portion, said biological sample reaction chip as the temperature gradient temperature decreases toward the outside is formed from said rotary shaft,
And rotating said biological sample reactor around said rotary shaft,
including,
Biological sample reaction method.
JP2007318627A 2007-12-10 2007-12-10 Biological sample reaction apparatus and biological sample reaction method Active JP5196126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318627A JP5196126B2 (en) 2007-12-10 2007-12-10 Biological sample reaction apparatus and biological sample reaction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318627A JP5196126B2 (en) 2007-12-10 2007-12-10 Biological sample reaction apparatus and biological sample reaction method

Publications (3)

Publication Number Publication Date
JP2009136250A JP2009136250A (en) 2009-06-25
JP2009136250A5 JP2009136250A5 (en) 2011-01-13
JP5196126B2 true JP5196126B2 (en) 2013-05-15

Family

ID=40867574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318627A Active JP5196126B2 (en) 2007-12-10 2007-12-10 Biological sample reaction apparatus and biological sample reaction method

Country Status (1)

Country Link
JP (1) JP5196126B2 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5865261B2 (en) * 2010-01-12 2016-02-17 アーラム バイオシステムズ インコーポレイテッド Two-stage thermal convection device and method of use
JP2011147411A (en) * 2010-01-25 2011-08-04 Seiko Epson Corp Method and apparatus for amplifying nucleic acid, and chip for amplifying nucleic acid
JP2011155921A (en) * 2010-02-02 2011-08-18 Seiko Epson Corp Biochip, specimen reactor, and method for specimen reaction
JP5764870B2 (en) * 2010-04-14 2015-08-19 セイコーエプソン株式会社 Biochip, reaction apparatus and reaction method
JP5862006B2 (en) * 2010-11-17 2016-02-16 セイコーエプソン株式会社 Thermal cycling apparatus and thermal cycling method
JP5867668B2 (en) * 2010-12-01 2016-02-24 セイコーエプソン株式会社 Thermal cycling apparatus and thermal cycling method
JP5773119B2 (en) 2010-12-14 2015-09-02 セイコーエプソン株式会社 Biochip
JP5899624B2 (en) * 2011-02-18 2016-04-06 セイコーエプソン株式会社 Reaction vessel
JP5896100B2 (en) * 2011-03-01 2016-03-30 セイコーエプソン株式会社 Heat cycle equipment
JP2012239441A (en) 2011-05-23 2012-12-10 Seiko Epson Corp Reaction vessel
JP5849443B2 (en) * 2011-06-07 2016-01-27 セイコーエプソン株式会社 Heat cycle equipment
JP5842391B2 (en) * 2011-06-07 2016-01-13 セイコーエプソン株式会社 Heat cycle equipment
JP5853494B2 (en) * 2011-08-25 2016-02-09 セイコーエプソン株式会社 Thermal cycle apparatus and abnormality determination method
JP5896110B2 (en) * 2011-09-21 2016-03-30 セイコーエプソン株式会社 Thermal cycle device and control method for thermal cycle device
JP5935981B2 (en) * 2012-03-28 2016-06-15 セイコーエプソン株式会社 Heat cycle equipment
JP5935980B2 (en) * 2012-03-28 2016-06-15 セイコーエプソン株式会社 Heat cycle equipment
JP6216494B2 (en) * 2012-03-30 2017-10-18 セイコーエプソン株式会社 Thermal cycle device and control method for thermal cycle device
JP5935985B2 (en) * 2012-03-30 2016-06-15 セイコーエプソン株式会社 Heat cycle equipment
JP2013208066A (en) 2012-03-30 2013-10-10 Seiko Epson Corp Thermal cycler and control method of thermal cycler
JP5971463B2 (en) * 2012-03-30 2016-08-17 セイコーエプソン株式会社 Thermal cycle device and control method for thermal cycle device
JP5910304B2 (en) * 2012-05-22 2016-04-27 セイコーエプソン株式会社 Heat cycle equipment
JP6090554B2 (en) * 2012-05-30 2017-03-08 セイコーエプソン株式会社 Heat cycle equipment
JP6011036B2 (en) 2012-06-06 2016-10-19 セイコーエプソン株式会社 device
JP5967361B2 (en) 2012-06-06 2016-08-10 セイコーエプソン株式会社 Heat cycle equipment
JP2013252091A (en) * 2012-06-06 2013-12-19 Seiko Epson Corp Thermal cycler
RU2018103106A (en) * 2012-06-28 2019-02-22 Флюоресентрик, Инк. CHEMICAL INDICATOR DETECTION DEVICE
JP5939392B2 (en) * 2012-07-18 2016-06-22 セイコーエプソン株式会社 Container and thermal cycle equipment
WO2014035124A1 (en) * 2012-08-30 2014-03-06 (주) 메디센서 Rotary pcr device and pcr chip
JP2014135941A (en) * 2013-01-18 2014-07-28 Seiko Epson Corp Thermal cycler and thermal cycling method
JP2014176302A (en) 2013-03-13 2014-09-25 Seiko Epson Corp Nucleic acid amplification reaction device and nucleic acid amplification method
JP2015023844A (en) 2013-07-29 2015-02-05 セイコーエプソン株式会社 Nucleic acid amplification reaction apparatus, and nucleic acid amplification method
JP2015073485A (en) 2013-10-09 2015-04-20 セイコーエプソン株式会社 Nucleic acid amplification method, device for nucleic acid extraction, cartridge for nucleic acid amplification reaction, and kit for nucleic acid amplification reaction
JP2015104364A (en) 2013-11-29 2015-06-08 セイコーエプソン株式会社 Container for nucleic acid amplification reaction, cartridge for nucleic acid amplification reaction, and cartridge kit for nucleic acid amplification reaction
JP2015154722A (en) 2014-02-20 2015-08-27 セイコーエプソン株式会社 Nucleic acid amplification reaction vessel and nucleic acid amplification reaction device
JP2015181457A (en) 2014-03-26 2015-10-22 セイコーエプソン株式会社 Nucleic acid amplification reaction device and nucleic acid amplification method
JP2015181458A (en) 2014-03-26 2015-10-22 セイコーエプソン株式会社 Nucleic acid amplification reaction device and nucleic acid amplification method
JP2015188343A (en) 2014-03-27 2015-11-02 セイコーエプソン株式会社 Biochip
JP2015188377A (en) 2014-03-28 2015-11-02 セイコーエプソン株式会社 Cartridge for nucleic acid amplification reaction and nucleic acid amplification device
JP2015188378A (en) * 2014-03-28 2015-11-02 セイコーエプソン株式会社 Nucleic acid analysis apparatus and nucleic acid analysis method
JP2015223083A (en) * 2014-05-26 2015-12-14 セイコーエプソン株式会社 Control method of nucleic acid amplification reaction device
JP6020860B2 (en) * 2015-07-02 2016-11-02 セイコーエプソン株式会社 Biochip
JP6120030B2 (en) * 2016-01-08 2017-04-26 セイコーエプソン株式会社 Heat cycle equipment
JP6206688B2 (en) * 2016-05-11 2017-10-04 セイコーエプソン株式会社 Heat cycle equipment
CN108796038B (en) * 2018-06-26 2019-10-18 杭州优思达生物技术有限公司 A kind of nucleic acid integrated detection method and detection reagent pipe

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4095886B2 (en) * 2002-05-08 2008-06-04 株式会社日立ハイテクノロジーズ Chemical analysis device and genetic diagnosis device
US7632675B2 (en) * 2003-06-05 2009-12-15 Bioprocessors Corp. Apparatus and method for manipulating substrates
EP1754785A1 (en) * 2004-05-27 2007-02-21 Universal Bio Research Co., Ltd. Reaction vessel, reaction measuring device, and liquid rotating treatment device
AU2006259239A1 (en) * 2005-06-16 2006-12-28 Stratagene California Heat blocks and heating
CN101321867A (en) * 2006-03-24 2008-12-10 株式会社东芝 Nucleic acid detection cassette and nucleic acid detection system
JP3980045B2 (en) * 2006-05-01 2007-09-19 技術研究組合医療福祉機器研究所 DNA amplification equipment

Also Published As

Publication number Publication date
JP2009136250A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5196126B2 (en) Biological sample reaction apparatus and biological sample reaction method
US9126201B2 (en) Methods and apparatuses for convective polymerase chain reaction (PCR)
US8986982B2 (en) Apparatus and method for a continuous rapid thermal cycle system
US20220205018A1 (en) Microfluidic chip assembly for rapidly performing digital polymerase chain reaction (pcr), and use thereof
US5897842A (en) Method and apparatus for thermal cycling and for automated sample preparation with thermal cycling
ES2889348T3 (en) Extreme PCR Device
EP2082061B1 (en) Method foe a continuous rapid thermal cycle system
EP2348123B1 (en) Method for determining nucleic acids by real-time polymerase chain reaction and a device for the implementation thereof
US20110183378A1 (en) Nucleic acid amplification method, nucleic acid amplification apparatus, and chip used in nucleic acid amplification
JP2009136220A (en) Biological sample reaction chip, biological sample reactor, and method for biological sample reaction
US20190055506A1 (en) Reaction tube for nucleic acid amplification capable of controlling liquid circulation path
JP5967361B2 (en) Heat cycle equipment
JP2011174734A (en) Specimen reactor and biochip
You et al. Very quick reverse transcription polymerase chain reaction for detecting 2009 H1N1 influenza A using wire-guide droplet manipulations
JP2009517075A (en) Real-time PCR monitoring using intrinsic imaging without labeling
JP5939392B2 (en) Container and thermal cycle equipment
ES2532117T3 (en) Nucleic Acid Preparation
US20150246355A1 (en) Thermal cycler and control method of thermal cycler
CN210596085U (en) Microfluidic chip assembly for rapidly realizing digital PCR reaction and integrated equipment thereof
US20160184829A1 (en) Nucleic acid amplification apparatus and system
JP6090554B2 (en) Heat cycle equipment
JP2013208066A (en) Thermal cycler and control method of thermal cycler
JP2011152126A (en) Nucleic acid amplification method and nucleic acid amplification apparatus, and nucleic acid amplification chip
Lv et al. Continue flow PCR-CE chip for DNA analysis
Sayers et al. A Novel Contamination Free Two Temperature Continuous Flow Polymerase Chain Reactor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110613

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110613

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20110617

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5196126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250