JP5190914B2 - Two-terminal resistance switch element and semiconductor device - Google Patents

Two-terminal resistance switch element and semiconductor device Download PDF

Info

Publication number
JP5190914B2
JP5190914B2 JP2007035369A JP2007035369A JP5190914B2 JP 5190914 B2 JP5190914 B2 JP 5190914B2 JP 2007035369 A JP2007035369 A JP 2007035369A JP 2007035369 A JP2007035369 A JP 2007035369A JP 5190914 B2 JP5190914 B2 JP 5190914B2
Authority
JP
Japan
Prior art keywords
switch element
terminal resistance
resistance
semiconductor device
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007035369A
Other languages
Japanese (ja)
Other versions
JP2008198948A (en
Inventor
泰久 内藤
和宏 柳
洋志 菅
昌代 堀川
弘道 片浦
哲夫 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007035369A priority Critical patent/JP5190914B2/en
Publication of JP2008198948A publication Critical patent/JP2008198948A/en
Application granted granted Critical
Publication of JP5190914B2 publication Critical patent/JP5190914B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、2端子抵抗スイッチ素子特に分子内包型カーボンナノチューブを用いた2端子抵抗スイッチ素子及び半導体デバイスに関するものである。   The present invention relates to a two-terminal resistance switch element, and more particularly to a two-terminal resistance switch element and a semiconductor device using a molecularly encapsulated carbon nanotube.

現在電気素子の微細化が進み、それぞれの素子の微細化限界が近づきつつある。例えば、現在の主力メモリ素子であるCMOSの場合、その機能を発現するチャネル長の最小値は6nmであると予想されている。この限界を超える新技術開発のため、様々なアイデアを元に新たな素子の開発が世界中で進められている。
メモリ素子に関して例示すると、原子移動や分子の特性変化を介し、On/Off状態間で大きな抵抗変化を生じる2端子抵抗スイッチ素子が研究されている。以下に代表的な例を紹介する。
At present, miniaturization of electric elements is progressing, and the miniaturization limit of each element is approaching. For example, in the case of CMOS, which is the current main memory element, the minimum value of the channel length that exhibits its function is expected to be 6 nm. In order to develop new technologies that exceed this limit, new devices are being developed around the world based on various ideas.
As an example of a memory element, a two-terminal resistance switching element that causes a large resistance change between On / Off states through atomic transfer and molecular property change has been studied. Below are some typical examples.

非特許文献1で紹介された手法は、硫化銀電極と白金電極の間の電気化学反応を利用して銀粒子の伸縮及び収縮を行い、電極間を銀原子で架橋・切断をコントロールし原子スイッチを実現するものである。
非特許文献2で紹介されている手法は、カテナン系分子の酸化還元反応を利用し、電圧でこの分子の酸化還元反応を誘起させチャンネルを開き、スイッチ素子を実現している。
以上のように近年、少数の金属原子の伸縮若しくは分子の酸化還元反応を利用したスイッチ素子が報告されている。
The technique introduced in Non-Patent Document 1 uses an electrochemical reaction between a silver sulfide electrode and a platinum electrode to expand and contract silver particles, and control the cross-linking and cutting between the electrodes with silver atoms to switch the atoms. Is realized.
The technique introduced in Non-Patent Document 2 utilizes a redox reaction of a catenane-based molecule, induces the redox reaction of this molecule with voltage, opens a channel, and realizes a switch element.
As described above, in recent years, a switch element utilizing the expansion / contraction of a small number of metal atoms or the oxidation-reduction reaction of molecules has been reported.

また発明者らは、ナノスケール間隙幅を持った金属電極間に電圧を印加することによる2端子抵抗スイッチ素子を提案している(特許文献1・非特許文献3)。この文献で紹介している手法は、10nm程度のギャップ幅をもつ金電極間に電圧印加することによってギャップ幅をコントロールするものである。この手法によればギャップ部の抵抗値をコントロールでき、そのギャップ幅のコントロールを利用して不揮発性メモリとして応用できることを示した。
ところがこれらの技術は6nmを下回る微細な領域でのスイッチ現象を利用した技術であるが、現状のシリコンプロセスを用いているので素子全体としての大きさは非常に大きくなる欠点がある。
特願2006−189380号 Nature 433, (2005)47-50. SCIENCE 289, (2000)1172-1175. Nanotechnology 17,(2007) 5669-5674.
Further, the inventors have proposed a two-terminal resistance switching element by applying a voltage between metal electrodes having a nanoscale gap width (Patent Document 1 and Non-Patent Document 3). The technique introduced in this document controls the gap width by applying a voltage between gold electrodes having a gap width of about 10 nm. It was shown that the resistance value of the gap portion can be controlled by this method, and that it can be applied as a nonvolatile memory by utilizing the control of the gap width.
However, these techniques use a switching phenomenon in a minute region below 6 nm, but since the current silicon process is used, there is a drawback that the size of the entire device becomes very large.
Japanese Patent Application No. 2006-189380 Nature 433, (2005) 47-50. SCIENCE 289, (2000) 1172-1175. Nanotechnology 17, (2007) 5669-5674.

本発明の課題は、カーボンナノチューブ自体のサイズの小ささを利用し、素子全体として極めて小さな抵抗スイッチ素子を提供することにある。   An object of the present invention is to provide a very small resistance switching element as a whole element by utilizing the small size of the carbon nanotube itself.

上記課題は次のような手段により解決される。
(1)2個の分子内包型カーボンナノチューブをナノスケールの間隙幅をもって配置したことを特徴とする2端子抵抗スイッチ素子。
(2)上記間隙幅は、0.1nm〜20nmの範囲であることを特徴とする(1)に記載の2端子抵抗スイッチ素子。
(3)上記分子は、フラーレンであることを特徴とする(1)又は(2)に記載の2端子抵抗スイッチ素子。
(4)(1)乃至(3)のいずれかに記載の2端子抵抗スイッチ素子を組み込んだ半導体デバイス。
The above problem is solved by the following means.
(1) A two-terminal resistance switching element characterized in that two molecularly encapsulated carbon nanotubes are arranged with a nanoscale gap width.
(2) The two-terminal resistance switch element according to (1), wherein the gap width is in a range of 0.1 nm to 20 nm.
(3) The two-terminal resistance switch element according to (1) or (2), wherein the molecule is fullerene.
(4) A semiconductor device incorporating the two-terminal resistance switch element according to any one of (1) to (3).

本発明によれば、カーボンナノチューブ自体のサイズの小ささを利用し、素子全体として極めて小さな抵抗スイッチ素子及び半導体デバイスを提供することができる。   According to the present invention, it is possible to provide a resistance switch element and a semiconductor device that are extremely small as a whole using the small size of the carbon nanotube itself.

本発明の2端子抵抗スイッチ素子は、ナノスケールで向かい合った分子内包型カーボンナノチューブに電圧を印加することにより電気的スイッチを実現するものである。印加した電圧をゆっくりと0Vに近づけるとスイッチがOnになり、逆に瞬時に0Vに近づけるとスイッチがOffになる素子である。   The two-terminal resistance switch element of the present invention realizes an electrical switch by applying a voltage to molecularly encapsulated carbon nanotubes facing each other on a nanoscale. This is an element in which the switch is turned on when the applied voltage is slowly brought close to 0V, and the switch is turned off when it is brought close to 0V instantaneously.

図1に、分子内包型単層カーボンナノチューブを用いた本発明の抵抗スイッチ素子を示す。本発明の抵抗スイッチ素子は、図1のように間隙幅がナノスケールで向かい合った分子を内包したカーボンナノチューブに電位差を印加することによりOn/Offを制御するスイッチ素子である。本発明は、電圧により内包されているフラーレンの位置がスライドしてギャップ間隔が変化し、その結果素子抵抗が変化することに着目して、スイッチ素子としたものである。On/Off状態を繰り返し変化させたときの素子抵抗の変化を図2に示す。このように、電圧の印加方法により素子抵抗がOn/Offの二つの状態を取る。このようなスイッチ現象を示すナノスケール間隙電極は、ある一定以上のトンネル電流が流れる必要があり、ナノスケール特有の現象である。   FIG. 1 shows a resistance switch element of the present invention using a molecular inclusion type single-walled carbon nanotube. The resistance switch element of the present invention is a switch element that controls On / Off by applying a potential difference to carbon nanotubes containing molecules facing each other at a nanoscale gap width as shown in FIG. The present invention provides a switch element by paying attention to the fact that the position of the fullerene contained by the voltage slides and the gap interval changes, and as a result, the element resistance changes. FIG. 2 shows changes in element resistance when the On / Off state is changed repeatedly. In this way, the element resistance is in two states depending on the voltage application method. The nanoscale gap electrode exhibiting such a switching phenomenon is a phenomenon unique to nanoscale because a tunnel current of a certain level or more needs to flow.

試料の作製方法を図3に模式図として示す。図3aのように、ジメチルフロライド(DMF)溶液中で分散させたフラーレン分子を内包した単層カーボンナノチューブを、シリコン酸化層を有したシリコン基板上に吹き付ける。吹き付け後の基板表面の原子間力顕微鏡像を図4に示す。   A method for manufacturing the sample is shown in FIG. 3 as a schematic diagram. As shown in FIG. 3a, single-walled carbon nanotubes containing fullerene molecules dispersed in a dimethyl fluoride (DMF) solution are sprayed onto a silicon substrate having a silicon oxide layer. An atomic force microscope image of the substrate surface after spraying is shown in FIG.

その上に図3bに示すように、メタルマスクにて約650nmの間隙幅を持つ金もしくはパラジウムの金属電極を蒸着する。その後図3cに示すように電極間に数十μA以上の電流をナノチューブに流し、切断する。このとき切断されたナノチューブはわずか数nmの間隙幅を有して切断される。そして、図1の模式図のようなナノスケールでカーボンナノチューブが向かい合った構造が作製される。   As shown in FIG. 3b, a gold or palladium metal electrode having a gap width of about 650 nm is deposited using a metal mask. Thereafter, as shown in FIG. 3c, a current of several tens of μA or more flows between the electrodes to cut the nanotubes. At this time, the cut nanotubes are cut with a gap width of only a few nm. Then, a structure in which carbon nanotubes face each other at the nanoscale as shown in the schematic diagram of FIG. 1 is produced.

図2に、On、Offと繰り返し状態を変化させたときの素子抵抗の変化を示す。2端子抵抗スイッチ素子は、約20kΩのOn状態と約700kΩのOff状態との二つの抵抗状態をとっていることがわかる。この2種類の抵抗値は+12Vを素子に印加した状態からどのように印加電圧を下げ加減によって作ることができる。   FIG. 2 shows changes in element resistance when the on / off state is changed repeatedly. It can be seen that the two-terminal resistance switch element has two resistance states, an On state of about 20 kΩ and an Off state of about 700 kΩ. These two types of resistance values can be generated by adjusting the applied voltage from the state in which +12 V is applied to the element.

低いオン抵抗(約30kΩ)は、+12Vからゆっくりと0Vに電圧を落とすこと(例えば電圧の変化速度は約1V/s)で実現する。そして高いオフ抵抗(約700kΩ)は、+12Vから瞬時に0Vに電圧を下げた時(電圧の変化速度は約0.2V/1μs)に実現する。
なおカーボンナノチューブ間の間隙幅は、0.1nm〜20nmの範囲であればよい。
A low on-resistance (about 30 kΩ) is realized by slowly dropping the voltage from +12 V to 0 V (for example, the voltage change rate is about 1 V / s). A high off-resistance (about 700 kΩ) is realized when the voltage is instantaneously reduced from +12 V to 0 V (voltage change rate is about 0.2 V / 1 μs).
The gap width between the carbon nanotubes may be in the range of 0.1 nm to 20 nm.

電界の印加方法によりこのように2種類の抵抗を素子に持たせることができる。それぞれの抵抗状態は低電圧領域で抵抗を維持するため、この変化は不揮発性を有する。そして、このOn/Offの変化は可逆的な変化であり同じ素子に200回以上繰り返し測定を行っても同様のスイッチング特性を示す。   Thus, the element can have two types of resistances depending on the method of applying an electric field. Since each resistance state maintains resistance in the low voltage region, this change is non-volatile. This change in On / Off is a reversible change and shows the same switching characteristics even when the same element is repeatedly measured 200 times or more.

なお、上記の実施例は、あくまでも本発明の理解を容易にするためのものであり、本発明はこれに限定されるものではない。すなわち、本発明の技術思想に基づく変形、他の態様は、当然本発明に包含されるものである。
例えば実施例ではカーボンナノチューブに導入する分子としてフラーレンを例示しているが、フラーレンのほかに次のような有機分子をカーボンナノチューブ内に内包し、抵抗スイッチ素子とすることができる。
In addition, said Example is for making an understanding of this invention easy to the last, and this invention is not limited to this. That is, modifications and other aspects based on the technical idea of the present invention are naturally included in the present invention.
For example, in the examples, fullerene is exemplified as a molecule to be introduced into the carbon nanotube. However, in addition to fullerene, the following organic molecule can be included in the carbon nanotube to form a resistance switch element.

1.フラーレン・金属内包フラーレン・ポルフィリン系・フタロシアニン系分子
これらの分子は高温耐性があり、高温状態でも安定動作する抵抗スイッチ素子を作製できる。また、これらの分子は中心に金属原子を取り込むことができ、ここで中心金属にスピンを有したものを選択すると、磁場に対する依存性も付加することができる。
2.アミン基・アルデヒド基・ニトリル基・アンモニア基など極性を有する分子
これらの分子基はプラスもしくはマイナスに帯電しやすい性質を持つため、これらの分極を促す反応基を有することにより、極性に対する依存性を付加することができる。
3.フェロセン・メタロセン・ロウタキ酸系分子
これらの分子は、酸化還元反応により分子の帯電状態が段階的に変化する特徴を有しているため、この性質を利用して段階的の抵抗変化を示すスイッチング効果を付加することができる。
4.アゾ色素・TCNQ・TTF
これらの分子は光を照射することによって、構造変化もしくは結晶構造の変化を促す分子である。そのため、本抵抗スイッチ素子に応用すると光照射に対する依存性を付加できる。
5.DNA・色素分子・金属塩化物
なお本発明の2端子抵抗スイッチ素子をメモリやストレージ装置等に組み込んで半導体デバイスが得られることはいうまでもない。
1. Fullerenes, metal-encapsulated fullerenes, porphyrin-based, and phthalocyanine-based molecules These molecules are resistant to high temperatures, and can produce a resistive switching element that operates stably even at high temperatures. In addition, these molecules can incorporate a metal atom at the center, and if a molecule having a spin at the center metal is selected, dependency on a magnetic field can be added.
2. Molecules with polarity such as amine groups, aldehyde groups, nitrile groups, and ammonia groups These molecular groups are easily charged positively or negatively. Can be added.
3. Ferrocene / metallocene / routacic acid-based molecules These molecules have the characteristic that the charged state of the molecule changes stepwise due to the oxidation-reduction reaction. Can be added.
4). Azo dyes, TCNQ, TTF
These molecules are molecules that promote structural changes or crystal structure changes by irradiating light. Therefore, when applied to this resistance switch element, dependency on light irradiation can be added.
5. DNA, dye molecule, metal chloride It goes without saying that a semiconductor device can be obtained by incorporating the two-terminal resistance switch element of the present invention into a memory, storage device or the like.

分子内包型単層カーボンナノチューブを用いた抵抗スイッチ素子の模式図Schematic diagram of resistance switch element using molecularly encapsulated single-walled carbon nanotubes On/Off状態を繰り返し変化させたときの素子抵抗の変化図Changes in device resistance when On / Off state is changed repeatedly 試料の作成手順を示す図Diagram showing sample preparation procedure シリコン基板上に展開したフラーレンを内包したカーボンナノチューブの原子間力顕微鏡像Atomic force microscope image of carbon nanotubes containing fullerene developed on a silicon substrate 作製した試料の原子間力顕微鏡像Atomic force microscope image of the prepared sample

Claims (3)

2個の分子内包型カーボンナノチューブが0.1nm〜20nmの範囲の間隙幅をもって配置され該間隙で向かい合っている分子を内包する前記2個の分子内包型カーボンナノチューブに電圧を印加する2端子抵抗スイッチであって、
該電圧の印加方法により抵抗状態を変化させることを特徴とする2端子抵抗スイッチ素子。
Two molecules containing carbon nanotube is arranged with a gap width in the range of 0.1Nm~20nm, applying a voltage to the two molecules containing carbon nanotube enclosing the molecule they are facing in the gap 2-terminal resistance A switch,
A two-terminal resistance switching element, wherein a resistance state is changed by a method of applying the voltage.
上記分子は、フラーレンであることを特徴とする請求項1に記載の2端子抵抗スイッチ素子。 The two-terminal resistance switching element according to claim 1, wherein the molecule is fullerene. 請求項1又は2に記載の2端子抵抗スイッチ素子を組み込んだ半導体デバイス。 The semiconductor device incorporating the two-terminal resistance switching element according to claim 1 or 2.
JP2007035369A 2007-02-15 2007-02-15 Two-terminal resistance switch element and semiconductor device Expired - Fee Related JP5190914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007035369A JP5190914B2 (en) 2007-02-15 2007-02-15 Two-terminal resistance switch element and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007035369A JP5190914B2 (en) 2007-02-15 2007-02-15 Two-terminal resistance switch element and semiconductor device

Publications (2)

Publication Number Publication Date
JP2008198948A JP2008198948A (en) 2008-08-28
JP5190914B2 true JP5190914B2 (en) 2013-04-24

Family

ID=39757596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007035369A Expired - Fee Related JP5190914B2 (en) 2007-02-15 2007-02-15 Two-terminal resistance switch element and semiconductor device

Country Status (1)

Country Link
JP (1) JP5190914B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010062127A2 (en) 2008-11-27 2010-06-03 Ewha University-Industry Collaboration Foundation Nanoparticle assembly-based switching device
WO2011052292A1 (en) * 2009-10-26 2011-05-05 Jsr株式会社 Memory circuit, integrated circuit device and electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4036454B2 (en) * 2003-05-30 2008-01-23 独立行政法人理化学研究所 Thin film transistor.
JP2005191214A (en) * 2003-12-25 2005-07-14 Fuji Xerox Co Ltd Method of manufacturing ultra-fine electronic device
JP2007049084A (en) * 2005-08-12 2007-02-22 Toshiba Corp Switch element, memory device, and magnetoresistance effect element
JP2007103625A (en) * 2005-10-04 2007-04-19 Sony Corp Functional device and its manufacturing method

Also Published As

Publication number Publication date
JP2008198948A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
Ma et al. Sub-nanosecond memristor based on ferroelectric tunnel junction
Stathopoulos et al. Multibit memory operation of metal-oxide bi-layer memristors
Park et al. Multilevel nonvolatile small-molecule memory cell embedded with Ni nanocrystals surrounded by a NiO tunneling barrier
Tappertzhofen et al. Generic relevance of counter charges for cation-based nanoscale resistive switching memories
Tseng et al. Digital memory device based on tobacco mosaic virus conjugated with nanoparticles
Kozicki et al. Information storage using nanoscale electrodeposition of metal in solid electrolytes
Chen et al. Electronic transport of molecular systems
TWI701826B (en) Electronic component and operation method thereof
TWI528366B (en) Organic molecular memory
Ouyang Emerging Resistive Switching Memories
US8716688B2 (en) Electronic device incorporating memristor made from metallic nanowire
Mentovich et al. Gated-controlled rectification of a self-assembled monolayer-based transistor
Yao et al. Two-terminal nonvolatile memories based on single-walled carbon nanotubes
Zhitenev et al. Chemical modification of the electronic conducting states in polymer nanodevices
Jang et al. Effect of electrode material on resistive switching memory behavior of solution-processed resistive switches: Realization of robust multi-level cells
Zhang et al. Negative differential resistance, memory, and reconfigurable logic functions based on monolayer devices derived from gold nanoparticles functionalized with electropolymerizable TEDOT units
JP2008235816A (en) Nonvolatile memory element
Park et al. Multilevel nonvolatile memristive and memcapacitive switching in stacked graphene sheets
Ssenyange et al. Redox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions
Hasegawa et al. Nanoionics switching devices:“Atomic switches”
Srivastava et al. High-performance single-active-layer memristor based on an ultrananocrystalline oxygen-deficient TiO x film
Li et al. Diode rectification and negative differential resistance of dipyrimidinyl–diphenyl molecular junctions
JP2008311449A (en) Two-terminal resistance switch element by silicon, and semiconductor device
Das et al. Resistive switching in a MoSe2-based memory device investigated using conductance noise spectroscopy
Dananjaya et al. Unidirectional threshold switching induced by Cu migration with high selectivity and ultralow off current under gradual electroforming treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130124

R150 Certificate of patent or registration of utility model

Ref document number: 5190914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees