JP5189778B2 - Hydrogen storage material and manufacturing method thereof - Google Patents

Hydrogen storage material and manufacturing method thereof Download PDF

Info

Publication number
JP5189778B2
JP5189778B2 JP2007049596A JP2007049596A JP5189778B2 JP 5189778 B2 JP5189778 B2 JP 5189778B2 JP 2007049596 A JP2007049596 A JP 2007049596A JP 2007049596 A JP2007049596 A JP 2007049596A JP 5189778 B2 JP5189778 B2 JP 5189778B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
storage material
tin
magnesium
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007049596A
Other languages
Japanese (ja)
Other versions
JP2008095172A (en
Inventor
伸司 大島
速夫 今村
喜久 酒多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Eneos Corp
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY, JXTG Nippon Oil and Energy Corp filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2007049596A priority Critical patent/JP5189778B2/en
Priority to PCT/JP2007/067819 priority patent/WO2008032774A1/en
Publication of JP2008095172A publication Critical patent/JP2008095172A/en
Application granted granted Critical
Publication of JP5189778B2 publication Critical patent/JP5189778B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/04Hydrogen absorbing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

本発明は、水素吸蔵材料及びその製造方法に関し、より詳しくは、燃料電池自動車、水素内燃機関などに利用が期待されている水素ガスを貯蔵するための水素吸蔵材料及びその製造方法に関する。   The present invention relates to a hydrogen storage material and a method for manufacturing the same, and more particularly to a hydrogen storage material for storing hydrogen gas expected to be used in fuel cell vehicles, hydrogen internal combustion engines, and the like, and a method for manufacturing the same.

従来の代表的な水素吸蔵合金としては、例えば、LaNi及びCaNi等のAB型合金、MgCu、MgNi及びTiCr合金等のAB型ラーベス相構造合金、VTiNi0.56等のbcc構造合金が挙げられる。これらの水素吸蔵合金は、主に溶解法やメカニカルミリング法等により製造されている。 Examples of conventional representative hydrogen storage alloys include AB 5 type alloys such as LaNi 5 and CaNi 5 , AB 2 type Laves phase structure alloys such as MgCu 2 , MgNi 2 and TiCr alloys, V 3 TiNi 0.56 and the like. The bcc structure alloy is mentioned. These hydrogen storage alloys are mainly manufactured by a melting method, a mechanical milling method, or the like.

また、下記特許文献1には、マグネシウム系水素吸蔵材料として、MgNi結晶領域とMgNi組成の非結晶領域(準安定相)とがナノメートル・スケールで微細構造化した水素吸蔵材料が開示されている。 Patent Document 1 below discloses a hydrogen storage material in which a Mg 2 Ni crystal region and an amorphous region (metastable phase) of Mg 2 Ni composition are finely structured on a nanometer scale as a magnesium-based hydrogen storage material. It is disclosed.

更に、下記特許文献2には、マグネシウム、ニッケル及び元素M(M=B、Al、Si、Ca、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Sr、Y、Zr、Nb、Mo、Pd、Ag、Sn、Ba、Hf、Ta、La、Ce、Pr、Nd、Smのうちから選ばれる一種以上の元素)からなる混合物を予め溶製し、次いでこの溶製した合金をメカニカルアロイング処理して非晶質化させる非晶質マグネシウムニッケル系水素吸蔵合金の製造方法が開示されている。
特開平11−61313号公報 特開平11−269572号公報
Further, in Patent Document 2 below, magnesium, nickel, and element M (M = B, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Sr, Y, Zr, Nb, A mixture of Mo, Pd, Ag, Sn, Ba, Hf, Ta, La, Ce, Pr, Nd, and Sm) is melted in advance, and then the melted alloy is mechanically treated. A method for producing an amorphous magnesium nickel-based hydrogen storage alloy that is made amorphous by alloying is disclosed.
Japanese Patent Laid-Open No. 11-61313 JP-A-11-269572

上記特許文献1及び2に開示されているようなマグネシウムニッケル系合金は、単位質量当たりの水素吸蔵量が多く、軽量で大量の水素を貯蔵できる水素吸蔵材料として期待されている。しかしながら、これらのマグネシウムニッケル系合金や、上述した従来の水素吸蔵材料は、水素の放出温度が依然として高いという問題を有している。そのため、十分に高い水素吸蔵量を維持しつつ、水素の放出温度をより低くすることが可能な水素吸蔵材料の開発が望まれている。   Magnesium nickel alloys as disclosed in Patent Documents 1 and 2 are expected to be a hydrogen storage material that has a large amount of hydrogen storage per unit mass, is lightweight, and can store a large amount of hydrogen. However, these magnesium-nickel alloys and the conventional hydrogen storage materials described above have a problem that the hydrogen release temperature is still high. Therefore, development of a hydrogen storage material capable of lowering the hydrogen release temperature while maintaining a sufficiently high hydrogen storage amount is desired.

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、水素吸蔵量が十分に高く、且つ、水素の放出温度が十分に低い水素吸蔵材料及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a hydrogen storage material having a sufficiently high hydrogen storage amount and a sufficiently low hydrogen release temperature, and a method for producing the same. And

上記目的を達成するために、本発明は、金属元素として実質的にマグネシウム及びスズのみを含有し、上記マグネシウムを、金属元素として実質的に上記マグネシウムのみを含む粒子として含有し、且つ、上記スズを、金属元素として実質的に上記スズのみを含む粒子として含有することを特徴とする水素吸蔵材料を提供する。 In order to achieve the above object, the present invention contains substantially only magnesium and tin as metal elements, contains the magnesium as particles containing substantially only magnesium as the metal element, and tin Is contained as particles containing substantially only the tin as a metal element .

従来の水素吸蔵材料としては、上述したようにマグネシウムニッケル系合金の水素吸蔵材料が一般的であったが、本発明者らは鋭意研究の末に、ニッケルを用いることなく、マグネシウムに対してスズを単独で組み合わせることで、ニッケルを用いた場合と比較して非常に優れた水素放出温度の低温化効果が奏されることを見出した。すなわち、本発明の水素吸蔵材料によれば、金属元素として実質的にマグネシウム及びスズのみを含有することにより、マグネシウムによる高い水素吸蔵量を十分に維持しつつ、スズの存在により水素放出温度を十分に低くすることができる。更に、本発明の水素吸蔵材料においては、マグネシウムに対して少量のスズを加えるだけで水素放出温度の低温化効果を十分に得ることができる。そのため、水素吸蔵材料中のマグネシウムの比率を十分に高く維持することが可能であり、それによっても十分に高い水素吸蔵量を得ることが可能となる。   As described above, as a conventional hydrogen storage material, a hydrogen storage material of a magnesium-nickel alloy was generally used. It has been found that by combining these singly, a very excellent effect of lowering the hydrogen release temperature is achieved compared to the case of using nickel. That is, according to the hydrogen storage material of the present invention, by containing substantially only magnesium and tin as metal elements, the hydrogen storage temperature is sufficiently maintained by the presence of tin while sufficiently maintaining a high hydrogen storage amount by magnesium. Can be lowered. Furthermore, in the hydrogen storage material of the present invention, the effect of lowering the hydrogen release temperature can be sufficiently obtained by adding a small amount of tin to magnesium. Therefore, the ratio of magnesium in the hydrogen storage material can be kept sufficiently high, and thereby a sufficiently high hydrogen storage amount can be obtained.

また、本発明の水素吸蔵材料は、上記マグネシウムを、金属元素として実質的に上記マグネシウムのみを含む粒子として含有し、且つ、上記スズを、金属元素として実質的に上記スズのみを含む粒子として含有するので、マグネシウムとスズとが合金化することなく、それぞれが粒子状に存在していることにより、スズの触媒的な作用をより生かすことができる。 The hydrogen storage material of the present invention contains the magnesium as a particle containing substantially only the magnesium as a metal element, and contains the tin as a particle containing substantially only the tin as a metal element. Therefore, magnesium and tin are not alloyed, and each exists in the form of particles, so that the catalytic action of tin can be further utilized.

更に、本発明の水素吸蔵材料において、上記スズの含有量は、上記マグネシウム及び上記スズの合計の含有量を基準として1〜40モル%であることが好ましい。これにより、高い水素吸蔵量と低い水素放出温度とをより高水準で両立させることができる。   Furthermore, in the hydrogen storage material of the present invention, the content of the tin is preferably 1 to 40 mol% based on the total content of the magnesium and the tin. Thereby, a high hydrogen storage amount and a low hydrogen release temperature can be achieved at a higher level.

本発明はまた、マグネシウム単体及び/又はマグネシウム化合物とスズ単体及び/又はスズ化合物とを、真空中、不活性ガス雰囲気中又は水素ガス雰囲気中でボールミリングし、上記本発明の水素吸蔵材料を得ることを特徴とする水素吸蔵材料の製造方法を提供する。   In the present invention, magnesium simple substance and / or magnesium compound and tin simple substance and / or tin compound are ball-milled in vacuum, inert gas atmosphere or hydrogen gas atmosphere to obtain the hydrogen storage material of the present invention. A method for producing a hydrogen storage material is provided.

かかる水素吸蔵材料の製造方法によれば、水素吸蔵量が十分に高く、且つ、水素の放出温度が十分に低い上記本発明の水素吸蔵材料を効率的に且つ確実に製造することができる。また、マグネシウム単体及び/又はマグネシウム化合物とスズ単体及び/又はスズ化合物とを、溶製等によって合金化することなく、直接ボールミリング処理することにより、金属元素として実質的にマグネシウムのみを含む粒子と、金属元素として実質的にスズのみを含む粒子とを含有する水素吸蔵材料を効率的に且つ確実に製造することができる。   According to such a method for producing a hydrogen storage material, the hydrogen storage material of the present invention can be efficiently and reliably produced with a sufficiently high hydrogen storage amount and a sufficiently low hydrogen release temperature. In addition, by subjecting magnesium alone and / or magnesium compound and tin alone and / or tin compound to ball milling directly without alloying by melting or the like, particles containing substantially only magnesium as a metal element and In addition, it is possible to efficiently and reliably manufacture a hydrogen storage material containing particles containing substantially only tin as a metal element.

また、本発明の水素吸蔵材料の製造方法において、上記ボールミリングを有機溶媒の存在下で行うことが好ましい。これにより、マグネシウム単体及び/又はマグネシウム化合物とスズ単体及び/又はスズ化合物とのミリング効果を高めることができ、得られる水素吸蔵材料の水素吸蔵量及び水素放出温度の双方をより安定して良好なものとすることができる。   In the method for producing a hydrogen storage material of the present invention, the ball milling is preferably performed in the presence of an organic solvent. Thereby, the milling effect of magnesium simple substance and / or magnesium compound and tin simple substance and / or tin compound can be enhanced, and both the hydrogen storage amount and the hydrogen release temperature of the obtained hydrogen storage material are more stable and good. Can be.

本発明によれば、水素吸蔵量が十分に高く、且つ、水素の放出温度が十分に低い水素吸蔵材料及びその製造方法を提供することができる。   According to the present invention, it is possible to provide a hydrogen storage material having a sufficiently high hydrogen storage amount and a sufficiently low hydrogen release temperature, and a method for producing the same.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

本発明の水素吸蔵材料は、金属元素として実質的にマグネシウム及びスズのみを含有することを特徴とするものである。   The hydrogen storage material of the present invention is characterized by containing substantially only magnesium and tin as metal elements.

ここで、「金属元素として実質的にマグネシウム及びスズのみを含有する」とは、マグネシウム及びスズ以外の金属元素を水素吸蔵材料に意図的に加えていないことを意味する。すなわち、原料中に含まれる不純物としての金属元素や、ボールミリング処理等の水素吸蔵材料の製造工程において発生する金属元素等は、本発明の効果を阻害しない範囲であれば、水素吸蔵材料中に混入していてもよい。また、本発明の水素吸蔵材料には、金属元素以外の元素は特に制限なく含有され、例えば、水素、炭素、ハロゲン等の金属元素以外の元素が含有されていてもよい。なお、本発明の水素吸蔵材料におけるマグネシウム及びスズの合計の含有量は、含有する金属元素の総量を基準として70質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることが更に好ましい。また、本明細書において、「金属元素」とはケイ素を含む概念とする。   Here, “substantially containing only magnesium and tin as metal elements” means that metal elements other than magnesium and tin are not intentionally added to the hydrogen storage material. That is, the metal element as an impurity contained in the raw material, the metal element generated in the manufacturing process of the hydrogen storage material such as a ball milling process, etc. are within the hydrogen storage material as long as the effects of the present invention are not impaired. It may be mixed. In addition, the hydrogen storage material of the present invention contains elements other than metal elements without any particular limitation, and may contain elements other than metal elements such as hydrogen, carbon, and halogen, for example. The total content of magnesium and tin in the hydrogen storage material of the present invention is preferably 70% by mass or more, more preferably 85% by mass or more, based on the total amount of metal elements contained, More preferably, it is at least mass%. In this specification, the “metal element” is a concept including silicon.

本発明の水素吸蔵材料において、マグネシウムとスズとは合金化していても合金化していなくてもよく、また、一部が合金化していてもよいが、合金化していないことが好ましい。すなわち、本発明の水素吸蔵材料は、マグネシウムを、金属元素として実質的にマグネシウムのみを含む粒子として含有し、且つ、スズを、金属元素として実質的にスズのみを含む粒子として含有することが好ましい。なお、金属元素として実質的にマグネシウムのみを含む粒子と、金属元素として実質的にスズのみを含む粒子とは、互いに付着しながら混ざり合った状態で存在していることが好ましい。この場合、金属元素として実質的にマグネシウムのみを含む粒子と、金属元素として実質的にスズのみを含む粒子とは、合金化することなく互いに付着して複合粒子を形成した状態となる。   In the hydrogen storage material of the present invention, magnesium and tin may be alloyed or not alloyed, and a part thereof may be alloyed, but it is preferable that they are not alloyed. That is, the hydrogen storage material of the present invention preferably contains magnesium as particles containing substantially only magnesium as a metal element, and contains tin as particles containing substantially only tin as a metal element. . In addition, it is preferable that the particle | grains which contain only magnesium as a metal element, and the particle | grains which contain only tin as a metal element exist in the state mixed while adhering to each other. In this case, particles containing substantially only magnesium as the metal element and particles containing substantially only tin as the metal element are adhered to each other without being alloyed to form a composite particle.

ここで、「金属元素として実質的にマグネシウムのみを含む粒子」とは、マグネシウム以外の金属元素を意図的に加えていない粒子を意味し、「金属元素として実質的にスズのみを含む粒子」とは、スズ以外の金属元素を意図的に加えていない粒子を意味する。すなわち、原料中に含まれる不純物としての金属元素や、ボールミリング処理等の水素吸蔵材料の製造工程において発生する金属元素等は、本発明の効果を阻害しない範囲であれば、それぞれの粒子中に混入していてもよい。また、それぞれの粒子には、金属元素以外の元素は特に制限なく含有され、例えば、水素、ハロゲン等の金属元素以外の元素が含有されていてもよい。   Here, “a particle containing substantially only magnesium as a metal element” means a particle to which a metal element other than magnesium is not intentionally added, and “a particle containing substantially only tin as a metal element” Means a particle to which no metal element other than tin is intentionally added. That is, the metal element as an impurity contained in the raw material, the metal element generated in the manufacturing process of the hydrogen storage material such as ball milling, etc., in the respective particles, as long as the effect of the present invention is not impaired It may be mixed. Further, each particle contains an element other than a metal element without particular limitation, and may contain an element other than a metal element such as hydrogen or halogen, for example.

本発明の水素吸蔵材料において、スズの含有量は、マグネシウム及びスズの合計の含有量を基準として1〜40モル%であることが好ましく、10〜25モル%であることがより好ましい。スズの含有量が1モル%未満であると、水素放出温度の低温化効果が低下する傾向があり、40モル%を超えると、水素吸蔵量が低下する傾向がある。   In the hydrogen storage material of the present invention, the content of tin is preferably 1 to 40 mol%, more preferably 10 to 25 mol%, based on the total content of magnesium and tin. If the tin content is less than 1 mol%, the effect of lowering the hydrogen release temperature tends to decrease, and if it exceeds 40 mol%, the hydrogen storage amount tends to decrease.

また、本発明の水素吸蔵材料は、粉末状のものであることが好ましい。また、XRD分析により測定される水素吸蔵材料の結晶子のサイズは、本発明の効果をより十分に得る観点から、30nm以下であることが好ましく、10nm以下であることがより好ましい。   Moreover, it is preferable that the hydrogen storage material of this invention is a powdery thing. Further, the size of the crystallites of the hydrogen storage material measured by XRD analysis is preferably 30 nm or less, more preferably 10 nm or less, from the viewpoint of obtaining the effect of the present invention more sufficiently.

以上説明した本発明の水素吸蔵材料は、十分に高い水素吸蔵量と、十分に低い水素の放出温度とを有するものとなる。かかる水素吸蔵材料を用いることにより、燃料電池自動車、水素内燃機関などに利用が期待されている水素ガスを高密度に貯蔵することが可能となる。   The hydrogen storage material of the present invention described above has a sufficiently high hydrogen storage amount and a sufficiently low hydrogen release temperature. By using such a hydrogen storage material, it is possible to store hydrogen gas expected to be used in fuel cell vehicles, hydrogen internal combustion engines, and the like at high density.

次に、本発明の水素吸蔵材料を製造するための本発明の水素吸蔵材料の製造方法について説明する。   Next, the manufacturing method of the hydrogen storage material of this invention for manufacturing the hydrogen storage material of this invention is demonstrated.

本発明の水素吸蔵材料の製造方法は、マグネシウム単体及び/又はマグネシウム化合物とスズ単体及び/又はスズ化合物とを、真空中、不活性ガス雰囲気中又は水素ガス雰囲気中でボールミリングし、上記本発明の水素吸蔵材料を得ることを特徴とする方法である。   In the method for producing a hydrogen storage material of the present invention, magnesium simple substance and / or magnesium compound and tin simple substance and / or tin compound are ball-milled in a vacuum, in an inert gas atmosphere or in a hydrogen gas atmosphere. It is a method characterized by obtaining the hydrogen storage material.

ここで、マグネシウム単体及びマグネシウム化合物は、粉末状のものであることが好ましく、その平均粒子径は100μm以下であることが好ましく、10μm以下であることがより好ましい。   Here, the magnesium simple substance and the magnesium compound are preferably in a powder form, and the average particle diameter is preferably 100 μm or less, and more preferably 10 μm or less.

上記マグネシウム化合物としては、例えば、MgH等が挙げられる。 Examples of the magnesium compound, for example, MgH 2, and the like.

スズ単体及びスズ化合物は、粉末状のものである場合、平均粒子径が100μm以下であることが好ましく、10μm以下であることがより好ましい。   When the tin simple substance and the tin compound are in a powder form, the average particle diameter is preferably 100 μm or less, and more preferably 10 μm or less.

上記スズ化合物としては、例えば、SnCl、SnCl、SnO、SnO、SnO、SnS及び有機スズ化合物等が挙げられる。有機スズ化合物としては、例えば、BuSn、BuSn(OMe)、Sn(O−tBu)等が挙げられる。なお、Meはメチル基を、Buはブチル基をそれぞれ示す。また、有機スズ化合物は液体状のものであってもよい。本発明の水素吸蔵材料の製造方法においては、ミリング後に最終的に生成する活物質がスズ単体であることから、スズ単体及びスズ化合物の中でも、スズ単体を用いることが好ましい。 Examples of the tin compound, for example, SnCl 2, SnCl 4, SnO , SnO 2, SnO 3, SnS 2 and organotin compounds, and the like. Examples of the organic tin compound include Bu 4 Sn, Bu 3 Sn (OMe), Sn (O-tBu) 4 and the like. Me represents a methyl group and Bu represents a butyl group. The organotin compound may be in a liquid form. In the method for producing a hydrogen storage material of the present invention, since the active material finally produced after milling is tin alone, it is preferable to use tin alone among tin and tin compounds.

マグネシウム単体及び/又はマグネシウム化合物とスズ単体及び/又はスズ化合物とをボールミリングする際の雰囲気は、真空、不活性ガス雰囲気又は水素ガス雰囲気であることが必要であるが、不活性ガス雰囲気又は水素ガス雰囲気であることが好ましく、不活性ガス雰囲気であることがより好ましい。不活性ガスとしては、窒素ガス、アルゴンガス等が挙げられるが、中でも窒素ガスが好ましい。   The atmosphere when ball milling the magnesium and / or magnesium compound and the tin and / or tin compound must be a vacuum, an inert gas atmosphere or a hydrogen gas atmosphere, but the inert gas atmosphere or hydrogen A gas atmosphere is preferable, and an inert gas atmosphere is more preferable. Examples of the inert gas include nitrogen gas, argon gas, etc. Among them, nitrogen gas is preferable.

ボールミリングを不活性ガス雰囲気又は水素ガス雰囲気中で行う場合、雰囲気ガスの圧力は、0.05〜1MPaであることが好ましく、0.1〜0.5MPaであることがより好ましい。この圧力が0.05MPa未満であると、水素放出温度が高くなる傾向がある。一方、圧力が1MPaを超える場合、更に圧力を高めることによる効果が小さい傾向がある。   When ball milling is performed in an inert gas atmosphere or a hydrogen gas atmosphere, the pressure of the atmosphere gas is preferably 0.05 to 1 MPa, and more preferably 0.1 to 0.5 MPa. When this pressure is less than 0.05 MPa, the hydrogen release temperature tends to increase. On the other hand, when the pressure exceeds 1 MPa, the effect of further increasing the pressure tends to be small.

また、マグネシウム単体及び/又はマグネシウム化合物とスズ単体及び/又はスズ化合物とのボールミリングは、有機溶媒の存在下で行うことが好ましい。ボールミリングの際に有機溶媒を添加することで、ミリング効果を高めることができ、得られる水素吸蔵材料の水素吸蔵量及び水素放出温度の双方をより安定して良好なものとすることができる。   In addition, ball milling of magnesium alone and / or magnesium compound and tin alone and / or tin compound is preferably performed in the presence of an organic solvent. By adding an organic solvent during ball milling, the milling effect can be enhanced, and both the hydrogen storage amount and the hydrogen release temperature of the resulting hydrogen storage material can be made more stable and satisfactory.

上記有機溶媒としては特に制限されないが、例えば、ベンゼン、シクロヘキサン、テトラヒドロフラン(THF)及びトルエン等が挙げられる。これらの中でも、ミリング効果をより高める観点から、シクロヘキサンが好ましい。有機溶媒の添加量は、ミリング効果をより高める観点から、マグネシウム単体及び/又はマグネシウム化合物1gに対して0.1〜5mLとすることが好ましく、0.7〜1.5mLとすることがより好ましい。   Although it does not restrict | limit especially as said organic solvent, For example, benzene, cyclohexane, tetrahydrofuran (THF), toluene, etc. are mentioned. Among these, cyclohexane is preferable from the viewpoint of further improving the milling effect. The addition amount of the organic solvent is preferably 0.1 to 5 mL, more preferably 0.7 to 1.5 mL with respect to 1 g of magnesium alone and / or magnesium compound from the viewpoint of further improving the milling effect. .

ボールミリングは、遊星型ボールミルを用いて行うことが好ましい。ボールミルの容器及びボールの材質としては、ステンレス、クロム鋼、ジルコニア、メノー、タングステンカーバイド等が好ましく挙げられ、特にジルコニアが好ましい。   Ball milling is preferably performed using a planetary ball mill. Preferred examples of the ball mill container and ball material include stainless steel, chrome steel, zirconia, menor, tungsten carbide, and the like, with zirconia being particularly preferred.

また、ボールミリングは、上述した平均粒子径を有する粉末状の水素吸蔵材料が得られる条件で行うことが好ましく、例えば、容器の回転数200〜900rpmで1〜10時間の条件にて行うことが好ましい。   Further, the ball milling is preferably performed under the condition that the powdered hydrogen storage material having the above-described average particle diameter is obtained. preferable.

以上説明した本発明の水素吸蔵材料の製造方法によれば、水素吸蔵量が十分に高く、且つ、水素の放出温度が十分に低い上記本発明の水素吸蔵材料を効率的に且つ確実に製造することができる。   According to the method for producing the hydrogen storage material of the present invention described above, the hydrogen storage material of the present invention is produced efficiently and reliably with a sufficiently high hydrogen storage amount and a sufficiently low hydrogen release temperature. be able to.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
窒素ガス雰囲気中、MgH粉末(和光純薬工業社製、純度98%)1g、Sn粉末(レアメタリック社製、純度99.9%、325メッシュ)0.9g、シクロヘキサン1mLを混合した。得られた混合物を、遊星型ボールミル(栗本鐵工社製)のジルコニア製容器(容量170mL)中に、直径2mmのジルコニア製ボール55mLとともに入れ、更に不活性ガスとして窒素ガスを大気圧で充填し、蓋をして密閉状態とした。次いで、この容器を、遊星型ボールミル装置の架台に載せ、容器の回転数を863rpmとしてボールミリングを2時間行い、粉末状の水素吸蔵材料を得た。
Example 1
In a nitrogen gas atmosphere, 1 g of MgH 2 powder (manufactured by Wako Pure Chemical Industries, 98% purity), 0.9 g of Sn powder (manufactured by Rare Metallic, purity 99.9%, 325 mesh), and 1 mL of cyclohexane were mixed. The obtained mixture is put in a zirconia container (capacity 170 mL) of a planetary ball mill (manufactured by Kurimoto Seiko Co., Ltd.) together with 55 mL of zirconia balls 2 mm in diameter, and further filled with nitrogen gas as an inert gas at atmospheric pressure. The lid was put in a sealed state. Next, this container was placed on a frame of a planetary ball mill apparatus, and ball milling was performed for 2 hours at a rotation speed of the container of 863 rpm to obtain a powdered hydrogen storage material.

(実施例2)
窒素ガス雰囲気中、MgH粉末(和光純薬工業社製、純度98%)1g、SnCl粉末(和光純薬工業社製、純度97%)0.7g、シクロヘキサン1mLを混合した。得られた混合物を、遊星型ボールミル(栗本鐵工社製)のジルコニア製容器(容量170mL)中に、直径2mmのジルコニア製ボール55mLとともに入れ、更に不活性ガスとして窒素ガスを大気圧で充填し、蓋をして密閉状態とした。次いで、この容器を、遊星型ボールミル装置の架台に載せ、容器の回転数を863rpmとしてボールミリングを2時間行い、粉末状の水素吸蔵材料を得た。
(Example 2)
In a nitrogen gas atmosphere, 1 g of MgH 2 powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 98%), 0.7 g of SnCl 2 powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 97%), and 1 mL of cyclohexane were mixed. The obtained mixture is put in a zirconia container (capacity 170 mL) of a planetary ball mill (manufactured by Kurimoto Seiko Co., Ltd.) together with 55 mL of zirconia balls 2 mm in diameter, and further filled with nitrogen gas as an inert gas at atmospheric pressure. The lid was put in a sealed state. Next, this container was placed on a frame of a planetary ball mill apparatus, and ball milling was performed for 2 hours at a rotation speed of the container of 863 rpm to obtain a powdered hydrogen storage material.

(実施例3)
窒素ガス雰囲気中、MgH粉末(和光純薬工業社製、純度98%)1g、Sn粉末(レアメタリック社製、純度99.9%、325メッシュ)0.9gを混合した。得られた混合物を、遊星型ボールミル(栗本鐵工社製)のジルコニア製容器(容量170mL)中に、直径2mmのジルコニア製ボール55mLとともに入れ、更に不活性ガスとして窒素ガスを大気圧で充填し、蓋をして密閉状態とした。次いで、この容器を、遊星型ボールミル装置の架台に載せ、容器の回転数を863rpmとしてボールミリングを2時間行い、粉末状の水素吸蔵材料を得た。
(Example 3)
In a nitrogen gas atmosphere, 1 g of MgH 2 powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 98%) and 0.9 g of Sn powder (manufactured by Rare Metallic, purity 99.9%, 325 mesh) were mixed. The obtained mixture is put in a zirconia container (capacity 170 mL) of a planetary ball mill (manufactured by Kurimoto Seiko Co., Ltd.) together with 55 mL of zirconia balls 2 mm in diameter, and further filled with nitrogen gas as an inert gas at atmospheric pressure. The lid was put in a sealed state. Next, this container was placed on a frame of a planetary ball mill apparatus, and ball milling was performed for 2 hours at a rotation speed of the container of 863 rpm to obtain a powdered hydrogen storage material.

参考例4)
窒素ガス雰囲気中、MgH粉末(和光純薬工業社製、純度98%)1g、テトラブチルスズ(和光純薬工業製)0.55gを混合した。得られた混合物を、遊星型ボールミル(栗本鐵工社製)のジルコニア製容器(容量170mL)中に、直径2mmのジルコニア製ボール55mLとともに入れ、更に不活性ガスとして窒素ガスを大気圧で充填し、蓋をして密閉状態とした。次いで、この容器を、遊星型ボールミル装置の架台に載せ、容器の回転数を863rpmとしてボールミリングを6時間行い、粘性のある粉末状の水素吸蔵材料を得た。
( Reference Example 4)
In a nitrogen gas atmosphere, 1 g of MgH 2 powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 98%) and 0.55 g of tetrabutyltin (manufactured by Wako Pure Chemical Industries) were mixed. The obtained mixture is put in a zirconia container (capacity 170 mL) of a planetary ball mill (manufactured by Kurimoto Seiko Co., Ltd.) together with 55 mL of zirconia balls 2 mm in diameter, and further filled with nitrogen gas as an inert gas at atmospheric pressure. The lid was put in a sealed state. Next, this container was placed on a frame of a planetary ball mill apparatus, and ball milling was performed for 6 hours with the rotation speed of the container being 863 rpm to obtain a viscous powdery hydrogen storage material.

(比較例1)
MgH粉末(和光純薬工業社製、純度98%)1gを、遊星型ボールミル(栗本鐵工社製)のジルコニア製容器(容量170mL)中に、直径2mmのジルコニア製ボール55mLとともに入れ、更に不活性ガスとして窒素ガスを大気圧で充填し、蓋をして密閉状態とした。次いで、この容器を、遊星型ボールミル装置の架台に載せ、容器の回転数を863rpmとしてボールミリングを2時間行い、粉末状の水素吸蔵材料を得た。
(Comparative Example 1)
1 g of MgH 2 powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 98%) is put in a zirconia container (capacity 170 mL) of a planetary ball mill (manufactured by Kurimoto Seiko Co., Ltd.) together with 55 mL of zirconia balls 2 mm in diameter, Nitrogen gas was filled as an inert gas at atmospheric pressure, and the lid was capped to form a sealed state. Next, this container was placed on a frame of a planetary ball mill apparatus, and ball milling was performed for 2 hours at a rotation speed of the container of 863 rpm to obtain a powdered hydrogen storage material.

(比較例2)
窒素ガス雰囲気中、MgH粉末(和光純薬工業社製、純度98%)1g、Ni粉末(和光純薬工業社製、平均粒子径150μm)0.1g、シクロヘキサン1mLを混合した。得られた混合物を、遊星型ボールミル(栗本鐵工社製)のジルコニア製容器(容量170mL)中に、直径2mmのジルコニア製ボール55mLとともに入れ、更に不活性ガスとして窒素ガスを大気圧で充填し、蓋をして密閉状態とした。次いで、この容器を、遊星型ボールミル装置の架台に載せ、容器の回転数を863rpmとしてボールミリングを2時間行い、粉末状の水素吸蔵材料を得た。
(Comparative Example 2)
In a nitrogen gas atmosphere, 1 g of MgH 2 powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 98%), 0.1 g of Ni powder (manufactured by Wako Pure Chemical Industries, Ltd., average particle diameter 150 μm), and 1 mL of cyclohexane were mixed. The obtained mixture is put in a zirconia container (capacity 170 mL) of a planetary ball mill (manufactured by Kurimoto Seiko Co., Ltd.) together with 55 mL of zirconia balls 2 mm in diameter, and further filled with nitrogen gas as an inert gas at atmospheric pressure. The lid was put in a sealed state. Next, this container was placed on a frame of a planetary ball mill apparatus, and ball milling was performed for 2 hours at a rotation speed of the container of 863 rpm to obtain a powdered hydrogen storage material.

(比較例3)
窒素ガス雰囲気中、MgH粉末(和光純薬工業社製、純度98%)1g、Ni粉末(和光純薬工業社製、平均粒子径150μm)0.6g、シクロヘキサン1mLを混合した。得られた混合物を、遊星型ボールミル(栗本鐵工社製)のジルコニア製容器(容量170mL)中に、直径2mmのジルコニア製ボール55mLとともに入れ、更に不活性ガスとして窒素ガスを大気圧で充填し、蓋をして密閉状態とした。次いで、この容器を、遊星型ボールミル装置の架台に載せ、容器の回転数を863rpmとしてボールミリングを2時間行い、粉末状の水素吸蔵材料を得た。
(Comparative Example 3)
In a nitrogen gas atmosphere, 1 g of MgH 2 powder (manufactured by Wako Pure Chemical Industries, Ltd., purity 98%), 0.6 g of Ni powder (manufactured by Wako Pure Chemical Industries, Ltd., average particle diameter 150 μm), and 1 mL of cyclohexane were mixed. The obtained mixture is put in a zirconia container (capacity 170 mL) of a planetary ball mill (manufactured by Kurimoto Seiko Co., Ltd.) together with 55 mL of zirconia balls 2 mm in diameter, and further filled with nitrogen gas as an inert gas at atmospheric pressure. The lid was put in a sealed state. Next, this container was placed on a frame of a planetary ball mill apparatus, and ball milling was performed for 2 hours at a rotation speed of the container of 863 rpm to obtain a powdered hydrogen storage material.

[水素吸蔵量の評価]
実施例1〜3、参考例4及び比較例1〜3で得られた水素吸蔵材料の水素吸蔵量を、TG−MS測定装置(ブルカー・エイエックスエス社製)を用いて測定した。その結果を表1に示す。
[Evaluation of hydrogen storage capacity]
The hydrogen storage amounts of the hydrogen storage materials obtained in Examples 1 to 3, Reference Example 4 and Comparative Examples 1 to 3 were measured using a TG-MS measuring device (manufactured by Bruker AXS). The results are shown in Table 1.

[水素放出特性の評価1]
実施例1〜3、参考例4及び比較例1〜3で得られた水素吸蔵材料について、TPD装置を用い、真空中、2℃/分の昇温速度で水素放出のピーク温度を測定した。その結果を表1に示す。なお、実施例2の水素吸蔵材料では水素放出は2つのピークに分離し、両ピークでの水素放出量はほぼ1:1であった。
[Evaluation of hydrogen release characteristics 1]
For the hydrogen storage materials obtained in Examples 1 to 3, Reference Example 4 and Comparative Examples 1 to 3 , the peak temperature of hydrogen release was measured in a vacuum at a rate of temperature increase of 2 ° C./min using a TPD device. The results are shown in Table 1. In the hydrogen storage material of Example 2, hydrogen release was separated into two peaks, and the hydrogen release amount at both peaks was approximately 1: 1.

Figure 0005189778
Figure 0005189778

Claims (4)

金属元素として実質的にマグネシウム及びスズのみを含有し、
前記マグネシウムを、金属元素として実質的に前記マグネシウムのみを含む粒子として含有し、且つ、前記スズを、金属元素として実質的に前記スズのみを含む粒子として含有することを特徴とする水素吸蔵材料。
Contains substantially only magnesium and tin as metal elements ,
A hydrogen storage material comprising: the magnesium as a particle containing substantially only the magnesium as a metal element; and the tin as a particle containing substantially only the tin as a metal element .
前記スズの含有量が、前記マグネシウム及び前記スズの合計の含有量を基準として1〜40モル%であることを特徴とする請求項1記載の水素吸蔵材料。 Hydrogen storage material of claim 1 Symbol placement, wherein the amount of the tin is from 1 to 40 mol% based on the total content of the magnesium and the tin. マグネシウム単体及び/又はマグネシウム化合物とスズ単体及び/又はスズ化合物とを、真空中、不活性ガス雰囲気中又は水素ガス雰囲気中でボールミリングし、請求項1又は2記載の水素吸蔵材料を得ることを特徴とする水素吸蔵材料の製造方法。 3. Magnesium alone and / or magnesium compound and tin alone and / or tin compound are ball-milled in vacuum, in an inert gas atmosphere or in a hydrogen gas atmosphere to obtain the hydrogen storage material according to claim 1 or 2. A method for producing a hydrogen storage material. 前記ボールミリングを有機溶媒の存在下で行うことを特徴とする請求項記載の水素吸蔵材料の製造方法。 The method for producing a hydrogen storage material according to claim 3, wherein the ball milling is performed in the presence of an organic solvent.
JP2007049596A 2006-09-15 2007-02-28 Hydrogen storage material and manufacturing method thereof Active JP5189778B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007049596A JP5189778B2 (en) 2006-09-15 2007-02-28 Hydrogen storage material and manufacturing method thereof
PCT/JP2007/067819 WO2008032774A1 (en) 2006-09-15 2007-09-13 Hydrogen storage material and method for manufacturing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006251296 2006-09-15
JP2006251296 2006-09-15
JP2007049596A JP5189778B2 (en) 2006-09-15 2007-02-28 Hydrogen storage material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008095172A JP2008095172A (en) 2008-04-24
JP5189778B2 true JP5189778B2 (en) 2013-04-24

Family

ID=39183827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007049596A Active JP5189778B2 (en) 2006-09-15 2007-02-28 Hydrogen storage material and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5189778B2 (en)
WO (1) WO2008032774A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295170B2 (en) * 2014-09-05 2018-03-14 太平洋セメント株式会社 Method for producing magnesium hydride
WO2023055108A1 (en) 2021-09-29 2023-04-06 한양대학교 산학협력단 Platinum-supported catalyst with improved hydrogenation/dehydrogenation reversibility and hydrogen storage and release method based on liquid organic hydrogen carrier using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4080055B2 (en) * 1998-03-24 2008-04-23 日本重化学工業株式会社 Method for producing amorphous magnesium nickel-based hydrogen storage alloy
JP2000212676A (en) * 1999-01-26 2000-08-02 Japan Storage Battery Co Ltd Lithium storable intermetallic compound and lithium secondary battery
JP3677220B2 (en) * 2001-04-26 2005-07-27 日本重化学工業株式会社 Magnesium-based hydrogen storage alloy
JP2002363682A (en) * 2001-06-12 2002-12-18 Dowa Mining Co Ltd HYDROGEN-ABSORBING ALLOY CONTAINING Mg, Ni AND Mn, POWDER OF THE HYDROGEN-ABSORBING ALLOY, AND MANUFACTURING METHOD FOR THE POWDER

Also Published As

Publication number Publication date
JP2008095172A (en) 2008-04-24
WO2008032774A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
EP0815273B1 (en) NANOCRYSTALLINE Mg-BASED MATERIALS AND USE THEREOF FOR THE TRANSPORTATION AND STORAGE OF HYDROGEN
JP5409348B2 (en) Nanocrystalline compounds for hydrogen storage
JP2007119906A (en) Mg-Ni HYDROGEN STORAGE COMPOSITE HAVING HIGH STORAGE CAPACITY AND EXCELLENT ROOM TEMPERATURE KINETICS
Hou et al. Hydrogenation behavior of high-energy ball milled amorphous Mg2Ni catalyzed by multi-walled carbon nanotubes
EP1082469B1 (en) Magnesium mechanical alloys for thermal hydrogen storage
NO300646B1 (en) Electrochemical hydrogen storage alloy of V-Ti-Zr-Ni-Cr type
JP2008266781A (en) METHOD FOR MANUFACTURING Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER AND Mg-Al BASED HYDROGEN STORAGE ALLOY POWDER OBTAINED BY THE MANUFACTURING METHOD
JP5189778B2 (en) Hydrogen storage material and manufacturing method thereof
JP4602926B2 (en) Method for producing alloy powder
US5837030A (en) Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures
JP4280816B2 (en) Hydrogen storage material and manufacturing method thereof
EP0184427B1 (en) Composition for reversably absorbing and desorbing hydrogen
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
KR101217567B1 (en) Magnesium-titanium based hydrogen storage alloys and manufacturing method of the same
JP4189447B2 (en) Mg-Ti hydrogen storage alloy and method for producing the same
CA2209777C (en) Nanocrystalline mg-based materials and use thereof for the transportation and storage of hydrogen
EP1117500B8 (en) Preparation of nanocrystalline alloys by mechanical alloying carried out at elevated temperatures
JP2004292838A (en) Hydrogen storage alloy and manufacturing method
JP2001279361A (en) V-based solid solution type hydrogen storage alloy
JP2007289877A (en) Hydrogen storage material, manufacturing method thereof and hydride compound material
US20070169852A1 (en) Hydrogen storage alloy material and process for producing the same
JPH11264041A (en) Hydrogen absorption alloy
JPS6141975B2 (en)
CN1266296C (en) Nano composite amorphous magnesium-base hydrogen-storing material and its prepn
EP0908415A1 (en) Hydrogen storage alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350