JP5182844B2 - Method for producing single crystal sodium manganate (Na0.44MnO2) nanowire and high-rate Li-ion battery using the same - Google Patents

Method for producing single crystal sodium manganate (Na0.44MnO2) nanowire and high-rate Li-ion battery using the same Download PDF

Info

Publication number
JP5182844B2
JP5182844B2 JP2007067835A JP2007067835A JP5182844B2 JP 5182844 B2 JP5182844 B2 JP 5182844B2 JP 2007067835 A JP2007067835 A JP 2007067835A JP 2007067835 A JP2007067835 A JP 2007067835A JP 5182844 B2 JP5182844 B2 JP 5182844B2
Authority
JP
Japan
Prior art keywords
rate
mno
sodium manganate
nanowire
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007067835A
Other languages
Japanese (ja)
Other versions
JP2008226798A (en
Inventor
豪慎 周
英司 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007067835A priority Critical patent/JP5182844B2/en
Publication of JP2008226798A publication Critical patent/JP2008226798A/en
Application granted granted Critical
Publication of JP5182844B2 publication Critical patent/JP5182844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、充放電特性、電気伝導特性に優れた電池電極材として用いられる単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーの製造方法及びそれを用いたハイレート用Li電池に関する。 The present invention relates to a method for producing single-crystal sodium manganate (Na 0.44 MnO 2 ) nanowires used as battery electrode materials having excellent charge / discharge characteristics and electrical conduction characteristics, and a high-rate Li battery using the same.

近年、エネルギー、環境問題が盛んに取り上げられている。その問題の解決の手段としてクリーンなエネルギーデバイスの開発が必要とされている。交通、物流の手段として重要な自動車を電気エネルギーで稼動させることへの要求は、非常に高まっている。電気自動車用のエネルギー源として、Liイオン電池の有する可能性は高い。エネルギー密度が高いためである。
しかしながら、Liイオン電池には出力密度が低いという欠点がある。この問題を解決するために、多くの研究者によって電気自動車用のLi貯蔵デバイスの研究が行われている。
In recent years, energy and environmental problems have been actively taken up. Development of clean energy devices is required as a means of solving the problem. The demand for operating electric vehicles, which are important as a means of transportation and logistics, with electric energy is increasing. The possibility of having a Li-ion battery as an energy source for electric vehicles is high. This is because the energy density is high.
However, Li-ion batteries have the disadvantage of low power density. To solve this problem, many researchers are researching Li storage devices for electric vehicles.

Liイオン電池には、正極、負極が必要であるが、本研究では正極材料に注目した。現行のLiCoO2はCoのコストが高いことを考えると今後の自動車用用途(大量に必要)には難しいことが予想される。それに対してMnは安価な材料であることから、普及に関して問題がない。層状構造を持つLiMnO2などのMn化合物が正極材料として研究されているが、電気化学反応に対して不安定であるために、充放電を繰り返すことによる容量劣化が問題である。この問題を解決するために、トンネル構造を有するマンガン酸ナトリウム(Na0.44MnO2)が作製されている。 Li-ion batteries require a positive electrode and a negative electrode. In this study, we focused on positive electrode materials. Current LiCoO 2 is expected to be difficult for future automotive applications (necessary in large quantities) given the high cost of Co. On the other hand, since Mn is an inexpensive material, there is no problem regarding its spread. Mn compounds such as LiMnO 2 having a layered structure have been studied as positive electrode materials. However, since they are unstable with respect to electrochemical reactions, capacity degradation due to repeated charge and discharge is a problem. In order to solve this problem, sodium manganate (Na 0.44 MnO 2 ) having a tunnel structure has been produced.

また、ハイレート用Liイオン電池の開発のためには、以下の解決すべき、四つの問題がある。
1)活物質材料内でのLiの拡散長を減少させるための粒子径の減少。
2)急速な充放電過程における電流密度の減少。
3)急速な充放電過程におけるサイクル特性の向上。
4)電極材料の電子伝導性の向上。
つまり、ナノ構造制御を行わなければ、ハイレートデバイスは実現できないのである。これまで、マンガン酸ナトリウムのナノ構造制御の報告は無く、ハイレート用Liイオン電池としての報告も当然されていない。
In addition, there are four problems to be solved for the development of high-rate Li-ion batteries.
1) Reduction of particle size to reduce the diffusion length of Li in the active material.
2) A decrease in current density during a rapid charge / discharge process.
3) Improvement of cycle characteristics in a rapid charge / discharge process.
4) Improvement of the electron conductivity of the electrode material.
In other words, a high-rate device cannot be realized without nanostructure control. To date, there has been no report on the nanostructure control of sodium manganate, and no report as a high-rate Li-ion battery has been made.

本発明は、マンガン酸ナトリウム(Na0.44MnO2)のナノ構造制御を行い、単結晶マンガン酸ナトリウムのナノワイヤーの製造方法及びNa0.44MnO2の高い電気伝導性を利用して、これを用いた電極を用いることにより、充電放電の特性が良好なハイレート用Liイオン電池を提供する。 The present invention controls the nanostructure of sodium manganate (Na 0.44 MnO 2 ), and uses the method for producing single-crystal sodium manganate nanowires and the high electrical conductivity of Na 0.44 MnO 2 . By using an electrode, a high-rate Li-ion battery having good charge / discharge characteristics is provided.

上記目的を達成するために本発明は、鋭意研究し、マンガン酸ナトリウム(Na0.44MnO2)の単結晶のナノワイヤーを簡単に製造する方法を見出すに至った。
すなわち、本発明は、Mn3O4と1〜20Mの水酸化ナトリウム水溶液を、1〜500気圧で、180〜250℃、6時間〜240時間で反応させ、反応物を水洗後乾燥させる単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーの製造方法である。
また、本発明は、水洗をイオン交換水で行うことが望ましい。
さらに、本発明は、単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーと導電助剤と結着材とを混合し、成型したハイレート用電極である。
本発明においては、導電性単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤー:導電助剤:結着材の質量比が、それぞれ40〜85:10〜50:5〜10とすることが望ましい。
さらに、本発明は、このような電極を用いたハイレート用Liイオン電池である。
In order to achieve the above object, the present invention has been intensively studied and found a method for easily producing a single-crystal nanowire of sodium manganate (Na 0.44 MnO 2 ).
That is, the present invention is a single crystal in which Mn 3 O 4 and 1-20 M sodium hydroxide aqueous solution are reacted at 1-500 atm, 180-250 ° C., 6-240 hours, and the reaction product is washed with water and dried. This is a method for producing sodium manganate (Na 0.44 MnO 2 ) nanowires.
In the present invention, it is desirable to perform water washing with ion exchange water.
Furthermore, the present invention is a high-rate electrode formed by mixing single-crystal sodium manganate (Na 0.44 MnO 2 ) nanowires, a conductive additive and a binder.
In the present invention, the mass ratio of conductive single crystal sodium manganate (Na 0.44 MnO 2 ) nanowire: conductive auxiliary agent: binder is preferably 40 to 85:10 to 50: 5 to 10, respectively. .
Furthermore, the present invention is a high-rate Li-ion battery using such an electrode.

本発明は、単純な方法で、マンガン酸ナトリウム(Na0.44MnO2)のナノ構造制御を行い、単結晶マンガン酸ナトリウムのナノワイヤーを製造することができ、また、Na0.44MnO2の高い電気伝導性を利用して、これを用いた電極を用いることにより、充電放電の特性が良好なハイレート用Liイオン電池を提供することができる。 The present invention provides a simple method for controlling the nanostructure of sodium manganate (Na 0.44 MnO 2 ) to produce single-crystal sodium manganate nanowires, and also for high electrical conductivity of Na 0.44 MnO 2. By using an electrode using this property, it is possible to provide a high-rate Li-ion battery with good charge / discharge characteristics.

本発明で用いるMn3O4は、市販品を用いることが出来る。
本発明で用いる水酸化ナトリウム水溶液は、1〜20Mを用いる必要がある。
1M以下では反応が遅く、20M以上だと品質の良い単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーが得られない。
また、本発明において、反応圧力は、1〜400気圧が適当である。
1気圧以下では反応が遅く、500気圧以上だと品質の良い単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーが得られない。
また、本発明において、反応温度は、180〜250℃が適当である。
180℃以下では反応が遅く、250℃以上だと品質の良い単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーが得られない。
さらに、本発明において、反応時間は、6時間〜240時間が必要である。
A commercial item can be used for Mn 3 O 4 used in the present invention.
The sodium hydroxide aqueous solution used in the present invention needs to use 1 to 20M.
Below 1M, the reaction is slow, and when above 20M, good quality single crystal sodium manganate (Na 0.44 MnO 2 ) nanowires cannot be obtained.
In the present invention, the reaction pressure is suitably 1 to 400 atmospheres.
Below 1 atm, the reaction is slow, and when it is above 500 atm, good quality single crystal sodium manganate (Na 0.44 MnO 2 ) nanowires cannot be obtained.
In the present invention, the reaction temperature is suitably 180 to 250 ° C.
Below 180 ° C, the reaction is slow, and above 250 ° C, good quality single crystal sodium manganate (Na 0.44 MnO 2 ) nanowires cannot be obtained.
Furthermore, in the present invention, the reaction time needs 6 hours to 240 hours.

本発明において、水洗は純度がよいものなら何でも良いが、水洗をイオン交換水で行うことが望ましい。
さらに、本発明においては、導電助剤として周知のモノを用いることが出来るが、炭素材料が好ましく用いることが出来る。
結着材としては、業界周知の結着材を用いることが出来る。
単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーと導電助剤と結着材とを混合して、成型することにより、任意の形状のハイレート用電極とすることが出来る。
このような電極を用いて、ハイレート用Liイオン電池を作成することが出来る。
本発明について実施例を用いてさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。
In the present invention, the water washing may be anything with high purity, but it is desirable that the water washing be performed with ion-exchanged water.
Furthermore, in the present invention, well-known materials can be used as the conductive assistant, but a carbon material can be preferably used.
As the binder, a binder known in the industry can be used.
A single-crystal sodium manganate (Na 0.44 MnO 2 ) nanowire, a conductive additive, and a binder are mixed and molded to form a high-rate electrode having an arbitrary shape.
Using such an electrode, a high-rate Li-ion battery can be produced.
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

Mn3O4を5Mの水酸化ナトリウム水溶液に加え、ステンレス製の密閉容器のテフロン(登録商標)製の内筒に入れ、205℃で四日の水熱反応を行った。作製されたマンガン酸ナトリウムはイオン交換水で洗浄し、乾燥させた。
作製したマンガン酸ナトリウム(60wt%)を導電助剤であるカーボン(35wt%)と混合した後に、結着材(5wt%)と混合し、SUSメッシュ集電体にプレスし、これを電極とした。
対極・参照極には金属Liを、電解液には1MのLiClO4を含むEC/DECの混合溶媒を用いて電気化学的評価を行った。
得られたマンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーのXRDを図1に示す。
JCPDSパターンと一致するマンガン酸ナトリウムが作製されたことが分かる。
Mn 3 O 4 was added to a 5M aqueous sodium hydroxide solution, placed in a Teflon (registered trademark) inner cylinder in a stainless steel sealed container, and subjected to a hydrothermal reaction at 205 ° C. for 4 days. The produced sodium manganate was washed with ion-exchanged water and dried.
The prepared sodium manganate (60wt%) was mixed with carbon (35wt%) as a conductive additive, then mixed with a binder (5wt%), pressed into a SUS mesh current collector, and this was used as an electrode .
Electrochemical evaluation was performed using metallic Li for the counter electrode and reference electrode, and an EC / DEC mixed solvent containing 1M LiClO 4 for the electrolyte.
The XRD of the obtained sodium manganate (Na 0.44 MnO 2 ) nanowire is shown in FIG.
It can be seen that sodium manganate was produced that matched the JCPDS pattern.

得られたマンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーの電子顕微鏡(SEM)写真を図2に示す。
これから数十nmの直径を持つナノワイヤー構造であることが分かり、アスペクト比も10000以上と非常に大きい。
得られたマンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーの電子顕微鏡(TEM)写真と電子線回折を図3に示す。
電子顕微鏡(TEM)写真と電子線回折から、得られたナノワイヤーは単結晶であることが分かる。
An electron microscope (SEM) photograph of the obtained sodium manganate (Na 0.44 MnO 2 ) nanowire is shown in FIG.
It turns out that this is a nanowire structure with a diameter of several tens of nanometers, and the aspect ratio is very large at 10,000 or more.
An electron microscope (TEM) photograph and electron diffraction of the obtained sodium manganate (Na 0.44 MnO 2 ) nanowire are shown in FIG.
It can be seen from the electron microscope (TEM) photograph and electron diffraction that the obtained nanowire is a single crystal.

実施例1で作成した電極について、各電流密度における充放電を行った際の二回目の充放電曲線を図4に示す。
0.1A/gのレートでは200 mAh/g、1A/gという比較的高いレートにおいても165mAh/gの大きな容量示している。また、5A/g,10A/gというハイレート(大電流密度)においても容量が失われず、145mAh/g, 120mAh/gの容量を維持している。
FIG. 4 shows a second charging / discharging curve when charging / discharging at each current density was performed on the electrode prepared in Example 1.
A large capacity of 165 mAh / g is shown at a relatively high rate of 200 mAh / g at a rate of 0.1 A / g and 1 A / g. In addition, the capacity is not lost even at high rates (high current density) of 5 A / g and 10 A / g, and the capacity of 145 mAh / g and 120 mAh / g is maintained.

図5(a)においては、実施例1で作成した電極について、各電流密度における充放電サイクル特性を示す。いずれの電流密度においても20回目まで、良好なサイクル特性を示している。また、5A/g、10A/gというハイレートにおいて初期容量をほぼ維持していることは、ハイレートLi貯蔵デバイスとして非常に良い特性である。
また、図5(b)に示すように、5A/g、10A/gというハイレートにおいて、100サイクルでも容量を維持し続けるこの電極は、長期特性を有するハイレートLi貯蔵デバイスとして期待できる。
FIG. 5 (a) shows the charge / discharge cycle characteristics at each current density for the electrode prepared in Example 1. FIG. Good cycle characteristics are shown up to the 20th in any current density. Also, maintaining the initial capacity at high rates of 5 A / g and 10 A / g is a very good characteristic for a high-rate Li storage device.
Further, as shown in FIG. 5 (b), this electrode that maintains the capacity even at 100 cycles at high rates of 5 A / g and 10 A / g can be expected as a high-rate Li storage device having long-term characteristics.

図6に10A/gというハイレートにおいて、100サイクル充放電を行った後の電子顕微鏡写真を示す。単結晶ナノワイヤー構造が維持されており、大電流および繰り返し使用よる構造劣化が無いことが分かり、良好な電池特性を示した証拠といえる。   FIG. 6 shows an electron micrograph after 100 cycles of charge and discharge at a high rate of 10 A / g. It can be said that the single-crystal nanowire structure is maintained and there is no structural deterioration due to a large current and repeated use, and this is evidence that the battery characteristics are good.

本発明は、単純な方法で安価に、単結晶マンガン酸ナトリウムのナノワイヤーを製造することができるため、これを用いた電極を用いることにより、充電放電の特性が良好なハイレート用Liイオン電池のみならず、他のデバイスにも応用でき、産業上極めて利用価値が高い。   Since the present invention can produce nanowires of single-crystal sodium manganate at low cost by a simple method, only high-rate Li-ion batteries with good charge / discharge characteristics can be obtained by using an electrode using the same. In addition, it can be applied to other devices and is extremely useful in industry.

実施例1で得られたマンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーのXRD図。XRD pattern of the resulting sodium manganate (Na 0.44 MnO 2) nanowires in Example 1. 実施例1で得られたマンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーの電子顕微鏡(SEM)写真。The electron microscope (SEM) photograph of the sodium manganate (Na 0.44 MnO 2 ) nanowire obtained in Example 1. 実施例1で得られたマンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーの電子顕微鏡(TEM)写真と電子線回折図。The electron microscope (TEM) photograph and electron diffraction pattern of the sodium manganate (Na 0.44 MnO 2 ) nanowire obtained in Example 1. 実施例1で作成した電極について、充放電曲線。The charge / discharge curve about the electrode created in Example 1. FIG. 図5(a)は、実施例1で作成した電極の充放電サイクル特性。図5(b)は、5A/g、10A/gにおける充放電サイクル特性。FIG. 5 (a) shows the charge / discharge cycle characteristics of the electrode prepared in Example 1. Fig. 5 (b) shows the charge / discharge cycle characteristics at 5A / g and 10A / g. 10A/gにおいて、100サイクル充放電を行った後の電極の電子顕微鏡写真。An electron micrograph of the electrode after 100 cycles of charge and discharge at 10 A / g.

Claims (5)

Mn34Mの水酸化ナトリウム水溶液を、密閉状態で2054日間反応させ、反応物を水洗後乾燥させる、単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーの製造方法。 Production of single-crystal sodium manganate (Na 0.44 MnO 2 ) nanowires in which Mn 3 O 4 and 5 M aqueous sodium hydroxide solution are reacted in a sealed state at 205 ° C. for 4 days , and the reaction product is washed with water and dried. Method. 水洗をイオン交換水で行う請求項1に記載した単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーの製造方法。 The method for producing single-crystal sodium manganate (Na 0.44 MnO 2 ) nanowires according to claim 1, wherein the washing with ion-exchanged water is performed. 単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤーと導電助剤と結着材とを混合し、成型したハイレート用電極。 A high-rate electrode formed by mixing single-crystal sodium manganate (Na 0.44 MnO 2 ) nanowires, a conductive additive and a binder. 導電性単結晶マンガン酸ナトリウム(Na0.44MnO2)ナノワイヤー:導電助剤:結着材の質量比が、それぞれ40〜85:10〜50:5〜10である請求項3に記載したハイパワー(=ハイレート)用電極。 The high power according to claim 3, wherein the mass ratio of conductive single crystal sodium manganate (Na 0.44 MnO 2 ) nanowire: conductive aid: binder is 40 to 85:10 to 50: 5 to 10, respectively. (= High rate) electrode. 請求項3又は請求項4に記載した電極を用いたハイレート用Liイオン電池。   A high-rate Li-ion battery using the electrode according to claim 3 or 4.
JP2007067835A 2007-03-16 2007-03-16 Method for producing single crystal sodium manganate (Na0.44MnO2) nanowire and high-rate Li-ion battery using the same Expired - Fee Related JP5182844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067835A JP5182844B2 (en) 2007-03-16 2007-03-16 Method for producing single crystal sodium manganate (Na0.44MnO2) nanowire and high-rate Li-ion battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067835A JP5182844B2 (en) 2007-03-16 2007-03-16 Method for producing single crystal sodium manganate (Na0.44MnO2) nanowire and high-rate Li-ion battery using the same

Publications (2)

Publication Number Publication Date
JP2008226798A JP2008226798A (en) 2008-09-25
JP5182844B2 true JP5182844B2 (en) 2013-04-17

Family

ID=39845147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067835A Expired - Fee Related JP5182844B2 (en) 2007-03-16 2007-03-16 Method for producing single crystal sodium manganate (Na0.44MnO2) nanowire and high-rate Li-ion battery using the same

Country Status (1)

Country Link
JP (1) JP5182844B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159001A2 (en) * 2011-05-18 2012-11-22 Battelle Memorial Institute Nanomaterials for sodium-ion batteries
JP2014093189A (en) * 2012-11-02 2014-05-19 Kyocera Corp Secondary battery and using method thereof, and power storage device
CN103682320B (en) * 2013-12-26 2015-09-30 齐鲁工业大学 A kind of preparation method of sodium-ion battery positive material
CN108493501B (en) * 2018-03-30 2020-08-18 华南师范大学 Preparation method of sodium fluoride dual-ion battery and application of sodium fluoride dual-ion battery in electrochemical fluorine removal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3647758B2 (en) * 2001-02-19 2005-05-18 日本電信電話株式会社 Non-aqueous battery positive electrode material, method for producing the same, and battery using the same
JP3875053B2 (en) * 2001-09-10 2007-01-31 日本電信電話株式会社 ELECTRODE MATERIAL, ITS MANUFACTURING METHOD, AND BATTERY USING THE SAME
JP4431785B2 (en) * 2004-03-09 2010-03-17 独立行政法人産業技術総合研究所 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4431786B2 (en) * 2004-03-19 2010-03-17 独立行政法人産業技術総合研究所 Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP4257426B2 (en) * 2004-03-19 2009-04-22 独立行政法人産業技術総合研究所 Alkali transition metal oxide crystal material and method for producing the same
JP4739770B2 (en) * 2005-02-07 2011-08-03 三洋電機株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2008226798A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
Zhou et al. Recent developments on and prospects for electrode materials with hierarchical structures for lithium‐ion batteries
Chen et al. NiCo2S4 nanocores in-situ encapsulated in graphene sheets as anode materials for lithium-ion batteries
Eftekhari Lithium-ion batteries with high rate capabilities
Peng et al. Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability
Tian et al. High-rate and cycling-stable nickel-rich cathode materials with enhanced Li+ diffusion pathway
Manthiram Materials challenges and opportunities of lithium ion batteries
Ma et al. Tunable morphology synthesis of LiFePO4 nanoparticles as cathode materials for lithium ion batteries
Yan et al. Improved cycling performance of prussian blue cathode for sodium ion batteries by controlling operation voltage range
Liu et al. Ultrathin nanoribbons of in situ carbon-coated V3O7· H2O for high-energy and long-life Li-ion batteries: synthesis, electrochemical performance, and charge–discharge behavior
Zhang et al. Manganese dioxide/cabon nanotubes composite with optimized microstructure via room temperature solution approach for high performance lithium-ion battery anodes
Zheng et al. Synthesis and electrochemical properties of KMn8O16 nanorods for Lithium ion batteries
Chang et al. Effects of particle size and carbon coating on electrochemical properties of LiFePO 4/C prepared by hydrothermal method
Ma et al. Synthesis of amorphous ZnSnO3 double-shell hollow microcubes as advanced anode materials for lithium ion batteries
Tang et al. Three-dimensional hierarchical graphene and CNT-coated spinel ZnMn2O4 as a high-stability anode for lithium-ion batteries
JP4798507B2 (en) Method for producing single-crystal LiMn2O4 nanowire and high-rate Li-ion battery using single-crystal LiMn2O4 nanowire
Chen et al. Brannerite-type vanadium–molybdenum oxide LiVMoO6 as a promising anode material for lithium-ion batteries with high capacity and rate capability
Yan et al. Effect of precipitators on the morphologies and electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 via rapid nucleation and post-solvothermal method
Marzuki et al. Enhanced lithium storage in Co3O4/carbon anode for Li-ion batteries
Li et al. Low temperature synthesis of Fe2O3 and LiFeO2 as cathode materials for lithium-ion batteries
Cao et al. Synthesis and characterization of LiNi1/3Co1/3Mn1/3O2 as cathode materials for Li-ion batteries via an efficacious sol-gel method
Wang et al. Enhanced cyclic performance of Cu2V2O7/reduced Graphene Oxide mesoporous microspheres assembled by nanoparticles as anode for Li-ion battery
Zhao et al. Scalable synthesis of size-controlled Li2S nanocrystals for next-generation battery technologies
Lou et al. Hydrothermal synthesis of Fe 3 O 4 and α-Fe 2 O 3 nanocrystals as anode electrode materials for rechargeable Li-ion batteries
Wu et al. Uniform rotate hydrothermal synthesis of V6O13 nanosheets as cathode material for lithium-ion battery
Wang et al. Facile molten salt synthesis of Li 2 NiTiO 4 cathode material for Li-ion batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5182844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees