JP5182776B2 - Graphite intercalation compound and catalyst using modified graphite, and production method thereof - Google Patents

Graphite intercalation compound and catalyst using modified graphite, and production method thereof Download PDF

Info

Publication number
JP5182776B2
JP5182776B2 JP2006123646A JP2006123646A JP5182776B2 JP 5182776 B2 JP5182776 B2 JP 5182776B2 JP 2006123646 A JP2006123646 A JP 2006123646A JP 2006123646 A JP2006123646 A JP 2006123646A JP 5182776 B2 JP5182776 B2 JP 5182776B2
Authority
JP
Japan
Prior art keywords
graphite
intercalation compound
surface area
specific surface
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006123646A
Other languages
Japanese (ja)
Other versions
JP2007290936A (en
Inventor
良壽 空閑
稔 白髭
耕士 米田
敏行 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Hitachi Powdered Metals Co Ltd
Original Assignee
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY, Hitachi Powdered Metals Co Ltd filed Critical NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Priority to JP2006123646A priority Critical patent/JP5182776B2/en
Publication of JP2007290936A publication Critical patent/JP2007290936A/en
Application granted granted Critical
Publication of JP5182776B2 publication Critical patent/JP5182776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は黒鉛の結晶性を維持し、比表面積が大きい表面改質黒鉛およびその改質黒鉛を用いる黒鉛層間化合物に関する。より詳細には、燃料電池用触媒やキャパシタやリチウムイオン電池等の電池材料などに広く応用される表面構造を制御した改質黒鉛を用いる層間化合物および触媒に関する。 The present invention relates to surface-modified graphite that maintains the crystallinity of graphite and has a large specific surface area, and a graphite intercalation compound that uses the modified graphite. More specifically, the present invention relates to an intercalation compound and catalyst using a modified graphite having a controlled surface structure widely applied to fuel cell catalysts, battery materials such as capacitors and lithium ion batteries.

環境問題、省エネルギー対策などの推進により、燃料電池車や電気自動車、ハイブリッド自動車に搭載されるクリーンな電池技術の開発が加速されており、燃料電池においてはコスト低減策の中で、白金坦持量の少ない白金系触媒の開発が急務となっている。また、リチウムイオン電池においては高容量、高出力な材料が望まれ、キャパシターについてはさらなるエネルギー密度の向上が望まれている。   The development of clean battery technology installed in fuel cell vehicles, electric vehicles, and hybrid vehicles has been accelerated through the promotion of environmental issues and energy conservation measures. There is an urgent need to develop a platinum-based catalyst with a low content. In addition, high capacity and high output materials are desired for lithium ion batteries, and further improvement in energy density is desired for capacitors.

燃料電池用触媒としては、一般にVulcan(登録商標)XC−72などのカーボンブラックに白金やルテニウム等を担持した材料が使用されているが、白金量の削減、また発電時の触媒劣化などが問題になっている。発電時における白金粒子の凝集による反応効率の低下は、重要な課題であり、最近の研究においては黒鉛層間化合物(GIC)に白金を担持させるなどの試みが進められている。しかし、黒鉛層間化合物を形成する黒鉛は、粒径が大きく且つ比表面積が小さいために反応効率が劣る点で問題である。   As fuel cell catalysts, materials such as Vulcan (registered trademark) XC-72, which are supported by platinum or ruthenium on carbon black, are generally used. However, there are problems such as reduction of platinum amount and catalyst deterioration during power generation. It has become. Reduction of reaction efficiency due to aggregation of platinum particles during power generation is an important issue. In recent research, attempts such as supporting platinum on a graphite intercalation compound (GIC) have been advanced. However, graphite forming a graphite intercalation compound has a problem in that the reaction efficiency is inferior because the particle size is large and the specific surface area is small.

リチウムイオン電池については、高容量化、高出力化の改良が進められており、結晶性のよい黒鉛材料の使用においては、高容量化への対応は可能であるが、高出力の点で劣り課題が多い。また、黒鉛化度が低い難黒鉛化カーボンであるハードカーボンを使用した場合は、高出力が得られるが、高容量の電池には適応が難しい点で問題である。   Lithium-ion batteries are being improved for higher capacity and higher output, and the use of graphite materials with good crystallinity can cope with higher capacity, but they are inferior in terms of high output. There are many challenges. In addition, when hard carbon, which is non-graphitizable carbon having a low graphitization degree, is used, high output can be obtained, but it is problematic in that it is difficult to adapt to high capacity batteries.

また、キャパシタ材料としては炭素材表面に多くの電気二重層を形成できる比表面積の大きい活性炭が用いられているが、更なる高容量化のためには、炭素表面に多くの電気二重層を形成でき、さらにリチウムイオンがインターカレーションする炭素材料の開発が進められている。また、電池材料に用いられる導電助剤としてカーボンブラックが用いられているが、電池の内部抵抗を下げるために、更なる低抵抗化材料が望まれている。   In addition, as the capacitor material, activated carbon with a large specific surface area that can form many electric double layers on the carbon material surface is used, but in order to further increase the capacity, many electric double layers are formed on the carbon surface. Carbon materials that can intercalate lithium ions are being developed. In addition, carbon black is used as a conductive additive used for battery materials, but in order to lower the internal resistance of the battery, a further low resistance material is desired.

また、粉砕雰囲気と粉砕機を変えた天然黒鉛の粉砕に関する報告があり、例えば、アルゴン雰囲気中、窒素雰囲気中又は空気雰囲気中における、遊星ボールミルまたは振動ミルを使用した天然黒鉛の粉砕では、天然黒鉛の比表面積と結晶子の大きさLcとの間には一定の相関があるために、結晶子の大きさを維持しつつ、且つ比表面積を増大させることは困難であると報告されている(非特許文献1参照)。   In addition, there are reports on the pulverization of natural graphite with different pulverization atmosphere and pulverizer. For example, in the pulverization of natural graphite using a planetary ball mill or vibration mill in an argon atmosphere, a nitrogen atmosphere or an air atmosphere, It is reported that there is a certain correlation between the specific surface area and the crystallite size Lc, and it is difficult to increase the specific surface area while maintaining the crystallite size ( Non-patent document 1).

また、黒鉛層間化合物は、黒鉛の層間にゲスト剤(インターカラント)として原子や分子が挿入された化合物であり、その物理的性質や化学的性質はゲスト剤の種類や挿入量によって異なり、さまざまな機能性材料として注目されている。従来から白金やパラジウムなどは触媒材料として非常に有用であることが知られており、これらの物質をゲスト剤として合成された黒鉛層間化合物は更なる高機能化が期待できる(非特許文献2、3参照)。一般に黒鉛層間化合物の合成条件の1つにホストとなる黒鉛の結晶性が高いことが挙げられる。最近では天然黒鉛の結晶性が高いほど、つまり結晶子の大きさが大きいほど、生成された黒鉛層間化合物は構造の明確なものが得られることがK−GICの合成などの例で報告されている(非特許文献4参照)。一方、従来の黒鉛やカーボンを用いた担持触媒では担体の比表面積の大きい方が触媒機能が発現され易い傾向がある。ところが、従来の一般的な粉砕法で比表面積の大きな黒鉛粒子を生成しようとすると,比表面積の増加に伴い黒鉛結晶そのものが破壊されてアモルファス化するために、本発明の目的とするような比表面積の大きな結晶性の黒鉛は得られていない。   A graphite intercalation compound is a compound in which atoms and molecules are inserted as a guest agent (intercalant) between graphite layers, and its physical and chemical properties vary depending on the type and insertion amount of the guest agent, It is attracting attention as a functional material. Conventionally, platinum and palladium are known to be very useful as catalyst materials, and graphite intercalation compounds synthesized using these substances as guest agents can be expected to have higher functionality (Non-Patent Document 2, 3). In general, one of the synthesis conditions for a graphite intercalation compound is that the crystallinity of graphite as a host is high. Recently, it has been reported in examples such as the synthesis of K-GIC that the higher the crystallinity of natural graphite, that is, the larger the crystallite size, the clearer the structure of the generated graphite intercalation compound. (See Non-Patent Document 4). On the other hand, in the conventional supported catalyst using graphite or carbon, the larger the specific surface area of the carrier, the more easily the catalytic function tends to be expressed. However, when graphite particles having a large specific surface area are generated by a conventional general pulverization method, the graphite crystal itself is destroyed and becomes amorphous as the specific surface area increases. Crystalline graphite with a large surface area has not been obtained.

また、特許文献1には、電極活物質材料に加圧力とせん断力を加えて粒子を複合化してBET比表面積を低下せしめるリチウムイオン電池の電極材料の製造方法が開示されている。しかし、この発明に係る電極材料の場合は、容積密度・体積エネルギー密度が高まり、電極の吸水性を低下させてサイクル劣化を抑制する点では優れているが、BET比表面積が減少する結果、リチウムイオンの移動を容易にして出力特性を改善することは困難である。   Patent Document 1 discloses a method for producing an electrode material for a lithium ion battery, in which a pressure and shear force are applied to an electrode active material to form a composite of particles to reduce the BET specific surface area. However, in the case of the electrode material according to the present invention, the volume density / volume energy density is increased, and it is excellent in terms of suppressing cycle deterioration by lowering the water absorption of the electrode. It is difficult to improve the output characteristics by facilitating ion movement.

T.S.Ong, H.Yang著「Effect of atmosphere on the mechanical milling of natural graphite」Carbon 第38巻、2000年 p.2077−2085TS Ong, H. Yang "Effect of atmosphere on the mechanical milling of natural graphite" Carbon 38, 2000 p.2077-2085 渡辺信淳、外著、「グラファイト層間化合物」、近代編集社発行、1986年発刊Shingo Watanabe, Gaiden, "Graphite Intercalation Compound", published by Modern Editor, published in 1986 J.Y.Tilquin、外著「PREPARATION AND CHEMICAL REDUCTION OF Pt(IV) CHLORIDE-GICs:SUPPORTED Pt vs Pt INCLUSION GRAPHITED COMPOUNDS」Carbon 第33巻、1995年、p.1265−1278J.Y.Tilquin, "PREPARATION AND CHEMICAL REDUCTION OF Pt (IV) CHLORIDE-GICs: SUPPORTED Pt vs Pt INCLUSION GRAPHITED COMPOUNDS" Carbon, Vol. 33, 1995, p.1265-1278 O.Tanaike,M.Inagaki著「TERNARY INTERCALATION COMPOUNDS OF CARBON MATERIALS HAVING A LOW GRAPHITIZATION DEGREE WITH ALKALI METALS 」Carbon 第35巻、1997年、p.831−836O. Tanaike, M .; Inagaki "TERNARY INTERCALATION COMPOUNDS OF CARBON MATERIALS HAVING A LOW GRAPHITIZATION DEGREE WITH ALKALI METALS" Carbon 35, 1997, p.831-836 特開2000−123876号公報JP 2000-123876 A

黒鉛を燃料電池用触媒の担持体に使用する場合は、カーボンブラックを使用するより酸化、還元に対する安定性で優れているが、比表面積が小さく白金などの分散性が悪く、また、ガスの拡散も悪いため反応効率が低い点で問題があった。また、黒鉛材料をリチウムイオン電池用負極材料に用いる場合には、黒鉛の結晶性を重視する限り、層間距離は黒鉛固有の3.35Åから変化できず、すなわち、リチウムイオンの移動を容易にするように結晶構造を制御することが困難なために、出力特性を大幅に改善することは困難であった。   When graphite is used as a carrier for a fuel cell catalyst, it has better stability against oxidation and reduction than carbon black, but it has a small specific surface area and poor dispersibility such as platinum, and gas diffusion. However, there was a problem in that the reaction efficiency was low. In addition, when the graphite material is used for the negative electrode material for a lithium ion battery, as long as the crystallinity of graphite is emphasized, the interlayer distance cannot be changed from 3.35 mm inherent to graphite, that is, it facilitates the movement of lithium ions. Thus, since it is difficult to control the crystal structure, it has been difficult to significantly improve the output characteristics.

また、キャパシタを高容量化するために、材料表面に多くの電気二重層を形成して、さらにリチウムイオンがインターカレーションする炭素材料の開発が進められているが、前述のとおり、黒鉛材料を用いた場合、結晶構造を維持して比表面積を大きくすることができないと言う課題があった。電池用の導電助剤としては、電解液の保持性がよいことが重要であり、大きな比表面積が必要である。さらに、抵抗値の低い炭素材料の開発が望まれている。そこで、本発明は、前記の問題を解決するため、従来の黒鉛の結晶性のよい構造を維持した状態で、黒鉛表面のアモルファス化を進めた材料、即ち比表面積を増加させた材料を提供し、更に、前記材料を用いた層間化合物、触媒及びそれらの製造方法を提供することを目的とする。   In addition, in order to increase the capacity of capacitors, carbon materials in which many electric double layers are formed on the material surface and lithium ions are intercalated are being developed. When used, there is a problem that the specific surface area cannot be increased while maintaining the crystal structure. As a conductive additive for batteries, it is important that the electrolyte retainability is good, and a large specific surface area is required. Furthermore, development of a carbon material having a low resistance value is desired. In order to solve the above problems, the present invention provides a material in which the graphite surface has been amorphized, that is, a material having an increased specific surface area, while maintaining the crystallinity structure of conventional graphite. Furthermore, it aims at providing the intercalation compound using the said material, a catalyst, and those manufacturing methods.

本発明は、上記した課題を解決するために、本発明者等は、第一に、白金粒子が比表面積の高い黒鉛表面に均一に固着する黒鉛構造は如何にあるべきか、また黒鉛系白金触媒を反応に用いた後に白金粒子の凝集の少ない黒鉛構造は如何にあるべきか、第二に、高出力、エネルギー密度の高い黒鉛材料とは如何にあるべきかの点で鋭意研究を重ねた結果、結晶性のよい黒鉛粒子の表面を比表面積の高い黒鉛構造に改質することによって前述の問題が解決できるとの結論に達し、本発明に至った。   In order to solve the above-mentioned problems, the present inventors firstly clarified how a graphite structure in which platinum particles are uniformly fixed to a graphite surface having a high specific surface area should be present. We have earnestly studied how the graphite structure should have little aggregation of platinum particles after the catalyst is used in the reaction, and secondly, what should be the graphite material with high power and high energy density. As a result, it was concluded that the above-mentioned problems can be solved by modifying the surface of graphite particles having good crystallinity to a graphite structure having a high specific surface area, and the present invention has been achieved.

前記の課題を解決するために、本発明は、比表面積が200〜1000m/g 、ラマンスペクトルのDバンド(1350cm−1)とGバンド(1580cm−1)のピーク強度比であるR値(D/G)が0.3〜0.7、およびX線回折法の(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上である改質黒鉛(比表面積が220cm /g、R値(D/G)が0.50及びLc(002)が60nmである黒鉛を除く)に金属塩化物がインターカレートされてなることを特徴とする黒鉛層間化合物とする(請求項1)。 In order to solve the above-mentioned problems, the present invention has a specific surface area of 200 to 1000 m 2 / g, an R value which is a peak intensity ratio of a D band (1350 cm −1 ) and a G band (1580 cm −1 ) of a Raman spectrum ( D / G) of 0.3 to 0.7, and modified graphite having a crystallite size Lc (002) in the c-axis direction of the (002) plane of X-ray diffraction method of 30 nm or more (specific surface area is 220 cm) 2 / g, R value (D / G) is 0.50, and Lc (002) is excluding graphite having a thickness of 60 nm). Claim 1).

また、前記の課題を解決するために、本発明は、X線回折法による回折角度(2θ)が21〜23.5°にピークを発現することを特徴とする前記の黒鉛層間化合物とすることが好ましい(請求項2)。   In order to solve the above-mentioned problems, the present invention provides the above-mentioned graphite intercalation compound characterized in that the diffraction angle (2θ) by X-ray diffraction method exhibits a peak at 21 to 23.5 °. (Claim 2).

また、前記の課題を解決するために、本発明は、X線回折法による回折角度(2θ)が5〜7°にピークを発現することを特徴とする前記の黒鉛層間化合物とすることが好ましい(請求項3)。   In order to solve the above-mentioned problems, the present invention is preferably the graphite intercalation compound described above, wherein the diffraction angle (2θ) by X-ray diffraction method exhibits a peak at 5 to 7 °. (Claim 3).

また、前記の課題を解決するために、本発明は、ラマン分光スペクトルのピークが1600〜1610cm−1に発現することを特徴とする前記の黒鉛層間化合物とすることが好ましい(請求項4)。 In order to solve the above-mentioned problems, the present invention is preferably the graphite intercalation compound characterized in that the peak of the Raman spectrum is expressed at 1600 to 1610 cm −1 (Claim 4).

また、前記の課題を解決するために、本発明は、比表面積が200〜1000m/g 、ラマンスペクトルのDバンド(1350cm−1)とGバンド(1580cm−1)のピーク強度比であるR値(D/G)が0.3〜0.7、およびX線回折法の(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上である改質黒鉛(比表面積が220cm/g、R値(D/G)が0.50及びLc(002)が60nmである黒鉛を除く)の表面に触媒機能を備える金属が坦持されなることを特徴とする燃料電池用触媒とする(請求項5)。 In order to solve the above problems, the present invention has a specific surface area of 200 to 1000 m 2 / g, and a peak intensity ratio of a D band (1350 cm −1 ) and a G band (1580 cm −1 ) of a Raman spectrum. Modified graphite (specific surface area) having a value (D / G) of 0.3 to 0.7 and a crystallite size Lc (002) in the c-axis direction of the (002) plane of the X-ray diffraction method of 30 nm or more There 220 cm 2 / g, the fuel cell, wherein a metal having a catalytic function on the surface of the R value (D / G) excluding graphite 0.50 and Lc (002) is 60 nm) is being carrying and use the catalyst (claim 5).

また、前記の課題を解決するために、本発明は、少なくとも真空雰囲気中、低酸素雰囲気中、減圧雰囲気中、窒素雰囲気中又は希ガス元素雰囲気中において、5mmφ以下の小質量粉砕媒体を用いて、乾式粉砕法により高結晶性粒子を含む黒鉛を粉砕してなる改質黒鉛を用いることを特徴とする前記の黒鉛層間化合物の製造方法とすることが好ましい(請求項6)。 In order to solve the above-described problems, the present invention uses a small-size grinding medium of 5 mmφ or less in at least a vacuum atmosphere, a low oxygen atmosphere, a reduced pressure atmosphere, a nitrogen atmosphere, or a rare gas element atmosphere. Preferably, the method for producing a graphite intercalation compound is characterized by using modified graphite obtained by pulverizing graphite containing highly crystalline particles by a dry pulverization method (Claim 6).

また、前記の課題を解決するために、本発明は、前記改質黒鉛と金属塩化物を混合し、気相法または溶媒法により調整することを特徴とする前記何れかに記載の黒鉛層間化合物の製造方法とすることが好ましい(請求項7)。   In order to solve the above-mentioned problem, the present invention provides the graphite intercalation compound according to any one of the above, wherein the modified graphite and metal chloride are mixed and adjusted by a gas phase method or a solvent method. Preferably, the production method is as follows.

また、前記の課題を解決するために、本発明は、前記何れかに記載の黒鉛層間化合物であって、触媒機能を備える金属からなる金属塩化物がインターカレートされた黒鉛層間化合物を用い、焼成による還元または化学的な還元により前記金属を黒鉛層間に析出させるとともに該金属を黒鉛エッジ部分または黒鉛表面に固着した状態で坦持させることを特徴とする燃料電池用触媒の製造方法とすることが好ましい(請求項8)。 In order to solve the above-mentioned problem, the present invention uses any of the graphite intercalation compounds according to any one of the above, wherein the metal chloride comprising a metal having a catalytic function is intercalated. A method for producing a catalyst for a fuel cell , characterized in that the metal is deposited between graphite layers by reduction by calcination or chemical reduction, and the metal is supported while being fixed to a graphite edge portion or a graphite surface. (Claim 8).

本発明の改質黒鉛は、前記のように黒鉛の結晶性を維持しつつ、なお比表面積が大きいことを特徴とし、かかる改質黒鉛に金属塩化物がインターカレートして特有の物性を備えた黒鉛層間化合物が形成される。この黒鉛層間化合物を還元して得られる白金系黒鉛触媒を例えば燃料電池用触媒として用いる場合は、従来の白金系黒鉛触媒と違って、白金粒子が改質黒鉛表面へ均一に固着しているので、白金粒子の凝集による触媒劣化が極力抑制される結果、発電時の反応効率の低下を防ぎ、電池の寿命を延ばすばかりでなく、白金の使用量を削減する効果に優れる。また、リチウムイオン電池用負極材料に用いる場合は、高出力で且つ高容量の電池が得られる効果がある。キャパシタ材料として用いる場合は、比表面積が大きいのでより多くの電気二重層が形成され、より高容量のキャパシタが得られる効果がある。更に、本発明の改質黒鉛は、高比表面積で大きな結晶子を備えることから、電気抵抗値が低く電池の内部抵抗を下げる効果を奏し、低抵抗電気材料としての利用価値が高い。   The modified graphite of the present invention is characterized in that the specific surface area is still large while maintaining the crystallinity of the graphite as described above, and the modified graphite has specific physical properties by intercalating metal chloride. A graphite intercalation compound is formed. When using a platinum-based graphite catalyst obtained by reducing this graphite intercalation compound as a catalyst for a fuel cell, for example, unlike conventional platinum-based graphite catalysts, platinum particles are uniformly fixed on the surface of the modified graphite. As a result, catalyst deterioration due to the aggregation of platinum particles is suppressed as much as possible. As a result, the reaction efficiency during power generation is prevented from being lowered, and not only the battery life is extended, but also the effect of reducing the amount of platinum used is excellent. Moreover, when it uses for the negative electrode material for lithium ion batteries, there exists an effect of obtaining a high output and a high capacity | capacitance battery. When used as a capacitor material, since the specific surface area is large, more electric double layers are formed, and there is an effect that a capacitor having a higher capacity can be obtained. Furthermore, since the modified graphite of the present invention has a large specific surface area and large crystallites, it has an effect of reducing the internal resistance of the battery with a low electrical resistance value, and is highly useful as a low-resistance electrical material.

本発明を実施するための最良の形態について、以下に詳細に説明する。
本発明に係る改質黒鉛は、黒鉛粒子表面が高比表面積からなる黒鉛構造に改質された結果、比表面積が200〜1000m/g 、ラマンスペクトルのDバンド(1350cm−1)とGバンド(1580cm−1)のピーク強度比であるR値が0.3〜0.7、およびX線回折法の(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上であることを特徴とする。
The best mode for carrying out the present invention will be described in detail below.
The modified graphite according to the present invention has a specific surface area of 200 to 1000 m 2 / g, a Raman spectrum D band (1350 cm −1 ), and a G band, as a result of modification of the graphite particle surface to a graphite structure having a high specific surface area. The R value which is the peak intensity ratio of (1580 cm −1 ) is 0.3 to 0.7, and the crystallite size Lc (002) in the c-axis direction of the (002) plane of the X-ray diffraction method is 30 nm or more. It is characterized by being.

本発明に係る改質黒鉛について更に具体的に説明する。X線回折法の(002)面の結晶子の大きさが30nm以上の黒鉛は、黒鉛層間化合物を形成し易く、電池材料や触媒材料が調整しやすい特徴がある。また、黒鉛の構造表面因子としてラマン分光で測定した1350cm−1のDバンドと1580cm−1のGバンドのピーク強度比であるR値(黒鉛化度と黒鉛表面のエッジ比率を反映している)の高い材料は、黒鉛化度の低下と黒鉛ベーサル面に対するエッジ面の比率が増加することが報告されている(炭素材料学会編:「最新の炭素材料実験技術(分析・解析編)」、サイベック、(2001)89-99参照)。 The modified graphite according to the present invention will be described more specifically. Graphite whose crystallite size on the (002) plane of the X-ray diffraction method is 30 nm or more is easy to form a graphite intercalation compound, and has characteristics that battery materials and catalyst materials are easy to adjust. In addition, R value is the peak intensity ratio of G-band of the D band and 1580 cm -1 in 1350 cm -1 measured by Raman spectroscopy as a structural surface element of the graphite (reflecting the edge ratio of graphitization degree and graphite surface) Higher material has been reported to have a lower graphitization degree and an increased ratio of edge surface to graphite basal surface (Carbon Society of Japan: “Latest Carbon Materials Experiment Technology (Analysis and Analysis)”), CYBEC , (2001) 89-99).

本発明の黒鉛構造は、R値が0.3以上で、黒鉛表面の黒鉛エッジ面の比率が増加し、表面の結晶性が低下している。即ち、黒鉛のバルクの結晶構造と表面の結晶構造に違いがあることを示す。一方、ラマンスペクトルのR値が0.7以上では結晶子が小さくなり、黒鉛の結晶性がほぼ消失しアモルファス化することから、R値は0.3〜0.7が好ましい。従来の粉砕方法で得られる黒鉛の中で、X線回折法の(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上ある黒鉛材料においては、比表面積が50m/g以下となり、高比表面積な材料は得られなかった。 In the graphite structure of the present invention, the R value is 0.3 or more, the ratio of the graphite edge surface of the graphite surface is increased, and the crystallinity of the surface is decreased. That is, there is a difference between the bulk crystal structure of graphite and the crystal structure of the surface. On the other hand, when the R value of the Raman spectrum is 0.7 or more, the crystallite becomes small and the crystallinity of graphite is almost lost and becomes amorphous. Therefore, the R value is preferably 0.3 to 0.7. Among graphites obtained by a conventional pulverization method, a graphite material having a crystallite size Lc (002) in the c-axis direction of the (002) plane of the X-ray diffraction method of 30 nm or more has a specific surface area of 50 m 2 / g or less, and a material having a high specific surface area could not be obtained.

本発明に係る粉砕方法で得られる改質黒鉛においてはX線回折法の(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上で、結晶性のよい黒鉛状態を保ちながら、表面構造因子であるラマンスペクトルのR値が0.3以上に変化し、また高比表面積を有しており、表面を改質した黒鉛材料として従来の黒鉛にはない特有の材料である。さらに、高比表面積にもかかわらず、大きな結晶子を維持しているため、電気抵抗値が低いことも特徴の1つである。   In the modified graphite obtained by the pulverization method according to the present invention, the crystallite size Lc (002) in the c-axis direction of the (002) plane of the X-ray diffraction method is 30 nm or more, and the graphite state with good crystallinity is maintained. However, the R value of the Raman spectrum, which is a surface structure factor, is changed to 0.3 or more, and has a high specific surface area, which is a unique material that is not present in conventional graphite as a graphite material with a modified surface. . Furthermore, since the large crystallite is maintained despite the high specific surface area, one of the characteristics is that the electric resistance value is low.

次に、本発明に係る改質黒鉛を得る製造方法の一例について説明する。4mmφ以下、好ましくは2mmφ以下、特に好ましくは1mmφ以下のビーズ系粉砕媒体を用い、真空雰囲気中で乾式粉砕により黒鉛を粉砕することによって、良好な改質黒鉛が得られることを見出した。つまり、真空雰囲気中では、粉砕媒体と黒鉛粒子間の摩擦係数が大きくなり、1mmφ以下の小さな粉砕媒体での粉砕においては、黒鉛表面から粉砕が進行し、結晶性の発達した黒鉛表面だけが選択的に改質される。   Next, an example of a production method for obtaining the modified graphite according to the present invention will be described. It has been found that good modified graphite can be obtained by pulverizing graphite by dry pulverization in a vacuum atmosphere using a bead-based pulverization medium of 4 mmφ or less, preferably 2 mmφ or less, particularly preferably 1 mmφ or less. In other words, in a vacuum atmosphere, the friction coefficient between the grinding medium and the graphite particles increases, and in grinding with a small grinding medium of 1 mmφ or less, grinding proceeds from the graphite surface, and only the graphite surface with improved crystallinity is selected. Modified.

すなわち、ビーズ径が小さな質量の小さい粉砕媒体を用い、粉砕媒体と黒鉛粒子間の摩擦係数の大きな真空雰囲気中などで粉砕を行うと、黒鉛の微細化が進行し難いために、黒鉛の結晶性の低下が少なく、黒鉛表面においては剥離や衝撃による変形が優先的に進行する結果、黒鉛粒子の比表面積が高く且つ結晶性の高い黒鉛構造に改質されるものと推測される。真空雰囲気中以外に、減圧下又は低酸素雰囲気中において、或いは窒素ガス雰囲気中又はアルゴン、ヘリウム、ネオン、クリプトン、キセノン、ラドン等の希ガス元素雰囲気中でもよい。また、前記真空雰囲気中、窒素ガス雰囲気中又は希ガス元素雰囲気中等以外の条件において得られる本発明に係る改質黒鉛、その改質黒鉛を用いる触媒並びにその製造方法は本願発明に含まれる。   In other words, using a pulverizing medium with a small bead diameter and a small mass, and pulverizing in a vacuum atmosphere where the friction coefficient between the pulverizing medium and the graphite particles is large, it is difficult to refine the graphite. It is presumed that the graphite surface is reformed into a graphite structure having a high specific surface area and high crystallinity as a result of preferential progress of deformation due to peeling or impact on the graphite surface. In addition to the vacuum atmosphere, it may be in a reduced pressure or low oxygen atmosphere, or in a nitrogen gas atmosphere or in a rare gas element atmosphere such as argon, helium, neon, krypton, xenon, or radon. Further, the modified graphite according to the present invention obtained under conditions other than the vacuum atmosphere, the nitrogen gas atmosphere or the rare gas element atmosphere, the catalyst using the modified graphite, and the production method thereof are included in the present invention.

反応容器中で改質黒鉛粉末とPtCl(塩化白金 Platinum chloride )を混合し、塩素ガス雰囲気下(圧力0.3MPa)、約450℃で熱処理して、PtCl−GICが合成される(気相法)。また、アルゴン雰囲気中で塩化白金酸HPtCl・6HOと改質黒鉛を混合し、塩化チオニルSOClを溶媒として80℃で7時間還流することによっても調整される(溶媒法)。このようにして、改質黒鉛を用いた黒鉛層間化合物は、気相法、溶媒法の何れによっても調整できる。 In the reaction vessel, the modified graphite powder and PtCl 4 (platinum chloride) are mixed and heat-treated at about 450 ° C. in a chlorine gas atmosphere (pressure 0.3 MPa) to synthesize PtCl 4 -GIC (gas). Phase law). Further, by mixing chloroplatinic acid H 2 PtCl 6 · 6H 2 O and the reforming graphite in an argon atmosphere, is also adjusted by thionyl chloride SOCl 2 and refluxed for 7 hours at 80 ° C. as a solvent (solvent method). Thus, the graphite intercalation compound using the modified graphite can be adjusted by either the gas phase method or the solvent method.

また、水素雰囲気中での還元焼成や、ヒドラジンへの浸漬による化学的な還元により黒鉛層間から白金が容易に析出し触媒が調整できる。層間より析出した白金粒子は、黒鉛エッジ部分と強く固着して存在する部分と、黒鉛表面のナノ構造からなる構造内に析出して分散している部分に大きく分けられるが、白金粒子はともに黒鉛表面と強く固着しているので、従来の黒鉛に坦持した白金系触媒の欠点であった反応後における白金粒子が凝集する現象が抑制される。   Moreover, platinum can be easily deposited from the graphite layer by reduction firing in a hydrogen atmosphere or chemical reduction by immersion in hydrazine, and the catalyst can be adjusted. The platinum particles deposited from the interlayer are broadly divided into a portion that is firmly fixed to the graphite edge portion and a portion that is precipitated and dispersed in the nanostructure on the graphite surface. Since it is firmly fixed to the surface, the phenomenon of aggregation of platinum particles after the reaction, which was a drawback of the conventional platinum catalyst supported on graphite, is suppressed.

また、本発明を実施するための最良の形態には、白金又はその化合物をゲストとしてインターカレーションする例について説明したが、本発明は、これらに限定されるものではなく、例えばハロゲン化物、アルカリ金属、遷移金属、希土類金属やその化合物等を改質黒鉛にゲストとしてインターカレーションする黒鉛層間化合物とその触媒、更に、黒鉛層間化合物に代えて、改質黒鉛のそれぞれ異なった層間に複数の前記挿入物質(インターカラント)を周期的にインターカレーションする黒鉛複層層間化合物(GBC)とその触媒及びその製造方法も本発明に含まれる。   In the best mode for carrying out the present invention, an example in which platinum or a compound thereof is intercalated as a guest has been described. However, the present invention is not limited to these examples. A graphite intercalation compound that intercalates a metal, transition metal, rare earth metal or a compound thereof as a guest with a modified graphite and its catalyst, and, in place of the graphite intercalation compound, a plurality of the above-mentioned A graphite multilayer intercalation compound (GBC) that periodically intercalates an intercalating substance (intercalant), its catalyst, and its production method are also included in the present invention.

以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
〈改質黒鉛の調整方法1〉
粉砕原料粉として鱗片状天然黒鉛(粒径16μm)33gを容積450cmのスチール製ポットに仕込み、振動ボールミル(SUS製ボール4.5mmφまたは1mmφ、振動振幅5mm、振動数1200Hz)で粉砕した。粉砕の条件は、10−3Torrの真空雰囲気中で、粉砕時間0.5〜96時間の範囲とした。さらに、粉砕生成物の一部は、窒素雰囲気中で1500℃の温度で1時間、焼成処理を行った。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to these examples.
<Method 1 for preparing modified graphite>
As a pulverized raw material powder, 33 g of scaly natural graphite (particle size 16 μm) was charged into a steel pot having a volume of 450 cm 3 and pulverized with a vibration ball mill (SUS ball 4.5 mmφ or 1 mmφ, vibration amplitude 5 mm, vibration frequency 1200 Hz). The pulverization conditions were in the range of 0.5 to 96 hours in a vacuum atmosphere of 10 −3 Torr. Furthermore, a part of the pulverized product was baked at a temperature of 1500 ° C. for 1 hour in a nitrogen atmosphere.

〈改質黒鉛の調整方法2〉
粉砕原料粉として鱗片状天然黒鉛(粒径16μm)30gを容積450cmのスチール製ポットに仕込み、遊星ボールミル(ジルコニア製ボール4mmφから0.2mmφ、自転400rpm、公転400rpm)で粉砕した。粉砕の条件は、10−3Torrの真空雰囲気中で、粉砕時間0.5〜24時間の範囲とした。
<Method 2 for adjusting modified graphite>
As a pulverized raw material powder, 30 g of scaly natural graphite (particle size 16 μm) was charged into a steel pot having a volume of 450 cm 3 and pulverized with a planetary ball mill (zirconia balls 4 mmφ to 0.2 mmφ, rotation 400 rpm, revolution 400 rpm). The pulverization conditions were in the range of 0.5 to 24 hours in a vacuum atmosphere of 10 −3 Torr.

〈層間化合物の合成方法〉
1)溶媒法による合成方法
原料粉である黒鉛を約5g、真空容器内に入れた後、真空ラインを用いて2×10-2Torr、80℃で24時間焼き出しを行った。次に、アルゴン雰囲気中グローブボックス内で黒鉛2.05g、インターカラントとしてHPtCl・6HOを2.89g(C:Ptのモル比=30:1とした)、溶媒としてSOCl 25mlをナス形フラスコに入れた後、アルゴンガスを15ml/minで流しながら119時間撹拌を行った後オイルバスを設置し、アルゴンガス流量を30ml/minにし、80℃で7時間還流を行った。還流後トルエンで洗浄し、真空ラインで乾燥し試料とした。
<Synthesis method of intercalation compound>
1) Synthesis Method by Solvent Method After placing about 5 g of raw material graphite in a vacuum vessel, it was baked out at 2 × 10 −2 Torr and 80 ° C. for 24 hours using a vacuum line. Next, the graphite in a glove box in an argon atmosphere 2.05 g, 2.89 g of H 2 PtCl 6 · 6H 2 O as intercalant (C: Pt mole ratio of = 30: 1 as the), SOCl 2 25 ml as solvent Was placed in an eggplant-shaped flask and stirred for 119 hours while flowing argon gas at 15 ml / min. Then, an oil bath was installed, the argon gas flow rate was adjusted to 30 ml / min, and reflux was performed at 80 ° C. for 7 hours. After refluxing, the sample was washed with toluene and dried on a vacuum line to prepare a sample.

〈粒子物性のキャラクタリゼーション〉
黒鉛粒子の粒径は、レーザー回折式粒度分布計(日機装製MICROTRAC-3000EX)を用いて測定した。黒鉛微粒子の比表面積はQantachrom製Autosorb-1を用いて、BET多点法により算出した。また、黒鉛微粒子および合成した層間化合物の結晶構造はX線回折装置(Rigaku製Multiflex)を用いて測定した。さらに調整したサンプルの表面部分が黒鉛層間化合物を形成しているか確認するため、Renishow社製NRS-2100を用いラマン散乱分光分析を行った。
<Characteristics of particle properties>
The particle size of the graphite particles was measured using a laser diffraction particle size distribution analyzer (MICROTRAC-3000EX manufactured by Nikkiso). The specific surface area of the graphite fine particles was calculated by the BET multipoint method using Autosorb-1 manufactured by Qantachrom. The crystal structures of the graphite fine particles and the synthesized intercalation compound were measured using an X-ray diffractometer (Rigaku Multiflex). Further, in order to confirm whether the surface portion of the prepared sample formed a graphite intercalation compound, Raman scattering spectroscopic analysis was performed using NRS-2100 manufactured by Renishow.

〈比抵抗の測定〉
(粉体抵抗)
三菱化学製粉体抵抗計PD―51を用い、650kg/cm加圧時の粉体抵抗を測定した。
<Measurement of resistivity>
(Powder resistance)
Using a powder resistance meter PD-51 made by Mitsubishi Chemical, the powder resistance at the time of 650 kg / cm 2 pressurization was measured.

〈チオフェンの水素化脱硫反応〉
触媒の機能性の評価の一つとしてチオフェンの水素化脱硫反応を行った。装置は常圧固定床流通式反応装置を用いた。触媒を反応管に0.1g充填し、前処理として500℃で1時間ヘリウム(He)処理をした。その後、水素還元を450℃で1時間行い反応に用いた。反応はモル比で、チオフェン:水素=1:30の混合ガスを装置内に導入することによって行い、反応温度は350℃とした。分析にはガスクロマトグラフ(FID)を用いた。
以上の結果を表1及び表2に示す。表1は、〈改質黒鉛の調整方法1〉により調整された試料の結果を示し、表2の試料9から11は、〈改質黒鉛の調整方法2〉により調整された試料の結果を示す。
<Hydrodesulfurization reaction of thiophene>
As one of the evaluation of the functionality of the catalyst, the hydrodesulfurization reaction of thiophene was performed. The apparatus used was a normal pressure fixed bed flow type reaction apparatus. The reaction tube was filled with 0.1 g of catalyst, and pretreated with helium (He) at 500 ° C. for 1 hour. Thereafter, hydrogen reduction was performed at 450 ° C. for 1 hour and used for the reaction. The reaction was carried out by introducing a mixed gas of thiophene: hydrogen = 1: 30 into the apparatus at a molar ratio, and the reaction temperature was 350 ° C. A gas chromatograph (FID) was used for the analysis.
The above results are shown in Tables 1 and 2. Table 1 shows the results of the samples adjusted by <Modified Graphite Adjustment Method 1>, and Samples 9 to 11 in Table 2 show the results of the samples adjusted by <Modified Graphite Adjustment Method 2>. .

Figure 0005182776
Figure 0005182776

表1より、PtClと層間化合物を形成し易い黒鉛の結晶子の大きさは、試料5、6より(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上の黒鉛であることを示す。また、このような材料はリチウムイオンのインターカレートによる充電容量も確保できることが知られている。また、PtCl−GICを調整後、還元により黒鉛表面に白金を析出させる場合、比表面積が大きく、白金が分散し易いほど反応収率がよいと考えられる。 From Table 1, the size of graphite crystallites that easily form an intercalation compound with PtCl 4 is larger than that of samples 5 and 6, in which the crystallite size Lc (002) in the c-axis direction of the (002) plane is 30 nm or more. Indicates that Moreover, it is known that such a material can also ensure the charge capacity by lithium ion intercalation. Moreover, when platinum is deposited on the graphite surface by reduction after adjusting PtCl 4 -GIC, it is considered that the reaction yield is better as the specific surface area is larger and platinum is more easily dispersed.

表1には、チオフェンの水素化脱硫反応結果が示される。試料1から3は、原料黒鉛を0.5〜2時間粉砕した改質黒鉛の作成法と物性値、層間化合物の特性および反応試験結果を示す。何れも改質黒鉛の比表面積は200m/g以下の試料であり、PtClとの層間化合物を形成するが、還元後のチオフェンの水素化脱硫反応率は低く、また、300分後の反応率低下も大きい傾向がある。それに対し、試料4から6は粉砕時間を4〜24時間に増加させた試料であって、特に、試料5は、(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上であり層間化合物を形成でき、ラマン分光スペクトルのR値が0.37であり、比表面積が520m/gと高い値を示す。 Table 1 shows the hydrodesulfurization reaction results of thiophene. Samples 1 to 3 show the preparation method and physical properties of modified graphite obtained by pulverizing raw graphite for 0.5 to 2 hours, the properties of intercalation compounds, and reaction test results. In any case, the modified graphite has a specific surface area of 200 m 2 / g or less, and forms an intercalation compound with PtCl 4. However, the hydrodesulfurization reaction rate of thiophene after reduction is low, and the reaction after 300 minutes. The rate decline tends to be large. On the other hand, Samples 4 to 6 are samples in which the pulverization time was increased to 4 to 24 hours. In particular, Sample 5 has a crystallite size Lc (002) in the c-axis direction of (002) plane of 30 nm. As described above, an intercalation compound can be formed, the R value of the Raman spectrum is 0.37, and the specific surface area is as high as 520 m 2 / g.

その結果、チオフェンの水素化脱硫反応は反応率70%、反応低下率0.9であり、ともに良好であった。一方、粉砕時間が24時間の試料6は、(002)面のc軸方向の結晶子の大きさLc(002)が15nmまで低下し、PtClとの層間化合物を形成できなかった。この水素還元品は、初期の反応率は比表面積が高いため良好であるが、300分後の反応率の低下割合が0.85と大きくなった。また、比表面積が大きい試料6,7を比較した場合、層間化合物を還元した試料5は、層間化合物を形成しない試料6より、10分後の反応収率が高く、300分反応後の収率の低下が少なく、すなわち反応時の白金の凝集も抑制され、反応収率が維持されることが確認できた。 As a result, the hydrodesulfurization reaction of thiophene was good with a reaction rate of 70% and a reaction decrease rate of 0.9. On the other hand, in Sample 6 with a pulverization time of 24 hours, the crystallite size Lc (002) in the c-axis direction on the (002) plane was reduced to 15 nm, and an intercalation compound with PtCl 4 could not be formed. This hydrogen-reduced product is good because the initial reaction rate is high due to its high specific surface area, but the rate of decrease in the reaction rate after 300 minutes was as large as 0.85. When samples 6 and 7 having a large specific surface area are compared, sample 5 obtained by reducing the intercalation compound has a higher reaction yield after 10 minutes than sample 6 that does not form the intercalation compound, and yield after 300 minutes reaction. That is, it was confirmed that the reaction yield was maintained by suppressing the aggregation of platinum during the reaction.

更に、表面改質効果を確認するため、粉砕時間は24時間であるが、粉砕媒体の質量を変えて(粉砕媒体をSUS製ボール4.5mmφから同1mmφに変更)、黒鉛表面の改質効果を確認した結果を示す(試料7)。粉砕媒体と黒鉛表面の摩擦力が大きい真空雰囲気中での粉砕であるため、比表面積は630m/g、ラマン分光スペクトルのR値は0.41に増加している。しかし、粉砕媒体の質量を下げたことで、(002)面のc軸方向の結晶子の大きさLc(002)は40nmで減少が少ない。その結果、PtClと層間化合物を形成でき、水素還元後のチオフェンの水素化脱硫反応では高い反応率と触媒劣化の低減が確認できた。 Furthermore, in order to confirm the surface modification effect, the grinding time is 24 hours, but the mass of the grinding media is changed (the grinding media is changed from SUS balls 4.5 mmφ to 1 mmφ) to improve the graphite surface The result of having confirmed (sample 7) is shown. Since the grinding is performed in a vacuum atmosphere where the frictional force between the grinding medium and the graphite surface is large, the specific surface area is 630 m 2 / g, and the R value of the Raman spectrum is increased to 0.41. However, by reducing the mass of the grinding medium, the crystallite size Lc (002) in the c-axis direction of the (002) plane is 40 nm and decreases little. As a result, it was possible to form an intercalation compound with PtCl 4, and in the hydrodesulfurization reaction of thiophene after hydrogen reduction, a high reaction rate and a reduction in catalyst deterioration were confirmed.

以上より、黒鉛層間化合物を形成でき、反応効率が高く、反応劣化の少ないPt系触媒を得るための改質黒鉛の物性は、(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上、比表面積が200m/g以上、ラマン分光スペクトルのR値が0.3以上の範囲が良好であることが確認できた。また、PtClと層間化合物を形成させ、還元することで、黒鉛エッジ面などへの白金粒子の固着が容易になり、白金粒子の凝集などによる反応劣化抑制に有効である。PtCl−GICのXRDの2θピーク値は、21〜23.5°の位置、または/および5〜7°の位置にピークを有することが確認できる。さらに、層間化合物が形成された場合ラマン分光スペクトルのピークが、1600〜1610cm−1に確認できる。 From the above, the physical properties of the modified graphite for obtaining a Pt-based catalyst capable of forming a graphite intercalation compound, having high reaction efficiency and little reaction deterioration are the crystallite size Lc (002) in the c-axis direction of the (002) plane. ) Is 30 nm or more, the specific surface area is 200 m 2 / g or more, and the R spectrum R value is 0.3 or more. Further, by forming and reducing an intercalation compound with PtCl 4 , the platinum particles can be easily fixed to the graphite edge surface and the like, which is effective in suppressing reaction deterioration due to aggregation of the platinum particles. It can be confirmed that the XRD 2θ peak value of PtCl 4 -GIC has a peak at a position of 21 to 23.5 ° and / or a position of 5 to 7 °. Further, when an intercalation compound is formed, the peak of the Raman spectrum can be confirmed at 1600 to 1610 cm −1 .

Figure 0005182776
Figure 0005182776

次に、表2において、試料9から11は、〈改質黒鉛の調整方法2〉によって、真空雰囲気中で4時間粉砕した結果を示す。粉砕媒体として1mmφのジルコニア製ボールを用いた場合(試料9)は、改質黒鉛の比表面積は452m/gと大きく、(002)面のc軸方向の結晶子の大きさLc(002)も90nmと大きく、黒鉛表面の改質が優先的に行われたことがわかる。この表面改質効果は粉砕媒体の直径が大きくなるほど低下し、3mmφのジルコニア製ボールを用いた場合(試料11)は比表面積が281m/gに対し、(002)面のc軸方向の結晶子の大きさLc(002)は、40nmになっている。これらの実施例(試料9〜11)と試料13の専用触媒(比較例)と比較すると、水素還元後のチオフェンの水素化脱硫反応は、実施例の方が初期の反応率、触媒劣化ともに良好であるが確認された。 Next, in Table 2, Samples 9 to 11 show the results of pulverization for 4 hours in a vacuum atmosphere by <Modified graphite adjustment method 2>. When a 1 mmφ zirconia ball is used as the grinding medium (sample 9), the specific surface area of the modified graphite is as large as 452 m 2 / g, and the crystallite size Lc (002) in the c-axis direction of the (002) plane. Is as large as 90 nm, indicating that the graphite surface was preferentially modified. This surface modification effect decreases as the diameter of the grinding medium increases, and when a 3 mmφ zirconia ball is used (sample 11), the specific surface area is 281 m 2 / g, while the (002) plane c-axis direction crystal is The child size Lc (002) is 40 nm. Compared to these examples (samples 9 to 11) and the dedicated catalyst (comparative example) of sample 13, the examples show better initial reaction rate and catalyst degradation in the hydrodesulfurization reaction of thiophene after hydrogen reduction. It was confirmed.

また、表1及び表2には示されていないが、比表面積が500m/g前後で黒鉛層間化合物作製前の表面改質黒鉛について、試料5と試料9の比抵抗を比較すると、試料5の改質黒鉛の比抵抗は0.0106Ωcm(1.65g/cm)であったのに対し、試料9の改質黒鉛は、比表面積が大きい(452m/g)割りに大きな結晶子(90nm)を保っており、比抵抗は0.00685Ωcm(1.89g/cm)と低い。すなわち、抵抗値が低く且つ比表面積が大きな改質黒鉛を得るには、質量の小さな粉砕媒体(1mmφのジルコニア製ボールなど)を使用して粉砕することが効果的である。 Although not shown in Tables 1 and 2, when the specific surface area of the surface-modified graphite before the preparation of the graphite intercalation compound with a specific surface area of around 500 m 2 / g is compared, the resistivity of Sample 5 and Sample 9 is compared. The specific resistance of the modified graphite was 0.0106 Ωcm (1.65 g / cm 3 ), whereas the modified graphite of Sample 9 had a large specific crystallite (452 m 2 / g). 90 nm) and the specific resistance is as low as 0.00685 Ωcm (1.89 g / cm 3 ). That is, in order to obtain modified graphite having a low resistance value and a large specific surface area, it is effective to grind using a grinding medium having a small mass (such as a 1 mmφ zirconia ball).

本発明に係る改質黒鉛、その改質黒鉛を用いる黒鉛層間化合物及び触媒は、燃料電池用触媒、リチウムイオン電池用負極材、キャパシタ材料、低抵抗電気材料などのさまざまな用途に適用でき、極めて有用である。   The modified graphite, graphite intercalation compound and catalyst using the modified graphite according to the present invention can be applied to various uses such as a catalyst for fuel cells, a negative electrode material for lithium ion batteries, a capacitor material, and a low resistance electric material. Useful.

Claims (8)

比表面積が200〜1000m/g 、ラマンスペクトルのDバンド(1350cm−1)とGバンド(1580cm−1)のピーク強度比であるR値(D/G)が0.3〜0.7、およびX線回折法の(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上である改質黒鉛(比表面積が220cm/g、R値(D/G)が0.50及びLc(002)が60nmである黒鉛を除く)に金属塩化物がインターカレートされてなることを特徴とする黒鉛層間化合物。 The specific surface area is 200 to 1000 m 2 / g, the R value (D / G) which is the peak intensity ratio of the D band (1350 cm −1 ) and the G band (1580 cm −1 ) of the Raman spectrum is 0.3 to 0.7, And modified graphite having a crystallite size Lc (002) in the c-axis direction of the (002) plane of the (002) plane of 30 nm or more (specific surface area is 220 cm 2 / g, R value (D / G) is 0) A graphite intercalation compound obtained by intercalating a metal chloride with .50 and Lc (002) excluding graphite having 60 nm). X線回折法による回折角度(2θ)が21〜23.5°にピークを発現することを特徴とする請求項1記載の黒鉛層間化合物。 The graphite intercalation compound according to claim 1, wherein a peak appears at a diffraction angle (2θ) by X-ray diffraction method of 21 to 23.5 °. X線回折法による回折角度(2θ)が5〜7°にピークを発現することを特徴とする請求項1記載の黒鉛層間化合物。 The graphite intercalation compound according to claim 1, wherein a peak appears at a diffraction angle (2θ) by X-ray diffraction method of 5 to 7 °. ラマン分光スペクトルのピークが1600〜1610cm−1に発現することを特徴とする請求項1記載の黒鉛層間化合物。 The graphite intercalation compound according to claim 1 , wherein a peak of a Raman spectroscopic spectrum appears at 1600 to 1610 cm- 1 . 比表面積が200〜1000m/g 、ラマンスペクトルのDバンド(1350cm−1)とGバンド(1580cm−1)のピーク強度比であるR値(D/G)が0.3〜0.7、およびX線回折法の(002)面のc軸方向の結晶子の大きさLc(002)が30nm以上である改質黒鉛(比表面積が220cm/g、R値(D/G)が0.50及びLc(002)が60nmである黒鉛を除く)の表面に触媒機能を備える金属が坦持されてなることを特徴とする燃料電池用触媒The specific surface area is 200 to 1000 m 2 / g, the R value (D / G) which is the peak intensity ratio of the D band (1350 cm −1 ) and the G band (1580 cm −1 ) of the Raman spectrum is 0.3 to 0.7, And modified graphite having a crystallite size Lc (002) in the c-axis direction of the (002) plane of the (002) plane of 30 nm or more (specific surface area is 220 cm 2 / g, R value (D / G) is 0) .50 and Lc (002) is a catalyst for a fuel cell, wherein a metal having a catalytic function is formed by carrying on the surface of the excluded) graphite is 60 nm. 少なくとも真空雰囲気中、低酸素雰囲気中、減圧雰囲気中、窒素雰囲気中又は希ガス元素雰囲気中において、5mmφ以下の小質量粉砕媒体を用いて、乾式粉砕法により高結晶性粒子を含む黒鉛を粉砕してなる改質黒鉛を用いることを特徴とする請求項1記載の黒鉛層間化合物の製造方法。 At least in a vacuum atmosphere, a low oxygen atmosphere, a reduced pressure atmosphere, a nitrogen atmosphere or a rare gas element atmosphere, a graphite containing high crystalline particles is pulverized by a dry pulverization method using a small mass grinding medium of 5 mmφ or less. The method for producing a graphite intercalation compound according to claim 1, wherein the modified graphite is used. 前記改質黒鉛と金属塩化物を混合し、気相法または溶媒法により調整することを特徴とする請求項1〜4の何れかに記載の黒鉛層間化合物の製造方法。 The method for producing a graphite intercalation compound according to any one of claims 1 to 4, wherein the modified graphite and metal chloride are mixed and adjusted by a gas phase method or a solvent method. 請求項1〜4の何れかに記載の黒鉛層間化合物であって、触媒機能を備える金属からなる金属塩化物がインターカレートされた黒鉛層間化合物を用い、焼成による還元または化学的な還元により前記金属を黒鉛層間に析出させるとともに該金属を黒鉛エッジ部分または黒鉛表面に固着した状態で坦持させることを特徴とする燃料電池用触媒の製造方法。 The graphite intercalation compound according to any one of claims 1 to 4, wherein the graphite intercalation compound intercalated with a metal chloride comprising a metal having a catalytic function is used for the reduction by calcination or chemical reduction. A method for producing a fuel cell catalyst , comprising depositing a metal between graphite layers and supporting the metal in a state of being fixed to a graphite edge portion or a graphite surface.
JP2006123646A 2006-04-27 2006-04-27 Graphite intercalation compound and catalyst using modified graphite, and production method thereof Active JP5182776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123646A JP5182776B2 (en) 2006-04-27 2006-04-27 Graphite intercalation compound and catalyst using modified graphite, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123646A JP5182776B2 (en) 2006-04-27 2006-04-27 Graphite intercalation compound and catalyst using modified graphite, and production method thereof

Publications (2)

Publication Number Publication Date
JP2007290936A JP2007290936A (en) 2007-11-08
JP5182776B2 true JP5182776B2 (en) 2013-04-17

Family

ID=38761943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123646A Active JP5182776B2 (en) 2006-04-27 2006-04-27 Graphite intercalation compound and catalyst using modified graphite, and production method thereof

Country Status (1)

Country Link
JP (1) JP5182776B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205846A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
US20130309495A1 (en) * 2012-05-18 2013-11-21 InHwan Do Process of dry milling particulate materials
MX360762B (en) 2012-05-21 2018-11-15 Imerys Graphite & Carbon Switzerland Ltd Surface-modified carbon hybrid particles, methods of making, and applications of the same.
CN106575772A (en) * 2014-10-20 2017-04-19 松下电器产业株式会社 Electrode, fuel cell and water treatment device
US10333166B2 (en) * 2014-10-29 2019-06-25 Nissan Motor Co., Ltd. Electrode catalyst for fuel cell, method for producing the same, electrode catalyst layer for fuel cell comprising the catalyst, and membrane electrode assembly for fuel cell and fuel cell using the catalyst or the catalyst layer
WO2016067879A1 (en) * 2014-10-29 2016-05-06 日産自動車株式会社 Electrode catalyst layer for fuel cell, and fuel cell membrane electrode assembly and fuel cell using said catalyst layer
WO2017154359A1 (en) * 2016-03-11 2017-09-14 日産自動車株式会社 Carbon powder for fuel cells, catalyst using said carbon powder for fuel cells, electrode catalyst layer, membrane electrode assembly and fuel cell
JP7414233B2 (en) 2019-10-02 2024-01-16 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device
CN117019154B (en) * 2023-09-07 2024-04-09 深圳市贝特瑞新能源技术研究院有限公司 Photocatalyst based on microcrystalline graphite and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624966B2 (en) * 1988-11-29 1994-04-06 株式会社富士カーボン製造所 Method for producing graphite intercalation compound by solvent method
JP2002373657A (en) * 2001-06-18 2002-12-26 Matsushita Electric Ind Co Ltd Method for producing negative electrode for nonaqueous electrolyte secondary battery and the nonaqueous electrolyte secondary battery
JP2005046702A (en) * 2003-07-31 2005-02-24 Hitachi Powdered Metals Co Ltd Graphite hydrogen occluding material and its producing method
JP2006008472A (en) * 2004-06-29 2006-01-12 Hitachi Powdered Metals Co Ltd Nano-structured graphite, its composite material, conductive material and catalyst material using them

Also Published As

Publication number Publication date
JP2007290936A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5182776B2 (en) Graphite intercalation compound and catalyst using modified graphite, and production method thereof
Rezaee et al. Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol
Song et al. TiC supported amorphous MnOx as highly efficient bifunctional electrocatalyst for corrosion resistant oxygen electrode of Zn-air batteries
Yan et al. Nitrogen-doped hollow carbon polyhedron derived from salt-encapsulated ZIF-8 for efficient oxygen reduction reaction
Wang et al. Facile synthesis of ternary spinel Co–Mn–Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries
Liu et al. Designed synthesis of LaCoO3/N-doped reduced graphene oxide nanohybrid as an efficient bifunctional electrocatalyst for ORR and OER in alkaline medium
Zhu et al. Co-vacancy-rich Co 1–x S nanosheets anchored on rGO for high-efficiency oxygen evolution
Li et al. A green method to prepare Pd–Ag nanoparticles supported on reduced graphene oxide and their electrochemical catalysis of methanol and ethanol oxidation
Barakat et al. CoxNiy-decorated graphene as novel, stable and super effective non-precious electro-catalyst for methanol oxidation
Naik et al. Two-dimensional oxygen-deficient TiO2 nanosheets-supported Pt nanoparticles as durable catalyst for oxygen reduction reaction in proton exchange membrane fuel cells
Ishizaki et al. Electrocatalytic activity for the oxygen reduction reaction of oxygen-containing nanocarbon synthesized by solution plasma
Meng et al. One-pot solvothermal synthesis of reduced graphene oxide-supported uniform PtCo nanocrystals for efficient and robust electrocatalysis
Adegbemiga et al. Ni3Fe nanoparticles enclosed by B-doped carbon for efficient bifunctional performances of oxygen and hydrogen evolution reactions
Lee et al. Improved supercapacitor performance of MnO 2–graphene composites constructed using a supercritical fluid and wrapped with an ionic liquid
Wang et al. Multi-functional NiS2/FeS2/N-doped carbon nanorods derived from metal-organic frameworks with fast reaction kinetics for high performance overall water splitting and lithium-ion batteries
Li et al. Graphitic carbon nitride nanosheet coated carbon black as a high-performance PtRu catalyst support material for methanol electrooxidation
Yan et al. Mn doping of cobalt oxynitride coupled with N-rGO nanosheets hybrid as a highly efficient electrocatalyst for oxygen reduction and oxygen evolution reaction
Tang et al. Fabrication of carbon/silicon composite as lithium-ion anode with enhanced cycling stability
Xiao et al. Nanocomposites of Ni (OH) 2/reduced graphene oxides with controllable composition, size, and morphology: performance variations as pseudocapacitor electrodes
Nguyen et al. Rational construction of Au@ Co2N0. 67 nanodots-interspersed 3D interconnected N-graphene hollow sphere network for efficient water splitting and Zn-air battery
Mohanty et al. Enhanced electrochemical performance of flexible asymmetric supercapacitor based on novel nanostructured activated fullerene anchored zinc cobaltite
Zhao et al. Core-shell structural nanodiamond@ TiN supported Pt nanoparticles as a highly efficient and stable electrocatalyst for direct methanol fuel cells
Hui et al. Confined growth of ultrafine Mo2C nanoparticles embedded in N-doped carbon nanosheet for water splitting
Li et al. Porous biomass-derived carbon modified by Cu, N co-doping and Cu nanoparticles as high-efficient electrocatalyst for oxygen reduction reaction and zinc-air battery
Yoon et al. Novel GaPtMnP alloy based anodic electrocatalyst with excellent catalytic features for direct ethanol fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5182776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350