JP5182428B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP5182428B2
JP5182428B2 JP2011531282A JP2011531282A JP5182428B2 JP 5182428 B2 JP5182428 B2 JP 5182428B2 JP 2011531282 A JP2011531282 A JP 2011531282A JP 2011531282 A JP2011531282 A JP 2011531282A JP 5182428 B2 JP5182428 B2 JP 5182428B2
Authority
JP
Japan
Prior art keywords
hydrocarbon
engine
purification catalyst
exhaust
exhaust purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011531282A
Other languages
Japanese (ja)
Other versions
JPWO2012086093A1 (en
Inventor
三樹男 井上
耕平 吉田
悠樹 美才治
寿丈 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Application granted granted Critical
Publication of JP5182428B2 publication Critical patent/JP5182428B2/en
Publication of JPWO2012086093A1 publication Critical patent/JPWO2012086093A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1808Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/18Parameters used for exhaust control or diagnosing said parameters being related to the system for adding a substance into the exhaust
    • F01N2900/1806Properties of reducing agent or dosing system
    • F01N2900/1812Flow rate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

機関排気通路内に、流入する排気ガスの空燃比がリーンのときには排気ガス中に含まれるNOを吸蔵し流入する排気ガスの空燃比がリッチになると吸蔵したNOを放出するNO吸蔵触媒を配置し、NO吸蔵触媒上流の機関排気通路内に吸着機能を有する酸化触媒を配置し、NO吸蔵触媒からNOを放出すべきときには酸化触媒上流の機関排気通路内に炭化水素を供給してNO吸蔵触媒に流入する排気ガスの空燃比をリッチにするようにした内燃機関が公知である(例えば特許文献1を参照)。
この内燃機関ではNO吸蔵触媒からNOを放出すべきときに供給された炭化水素が酸化触媒においてガス状の炭化水素とされ、ガス状の炭化水素がNO吸蔵触媒に送り込まれる。その結果、NO吸蔵触媒から放出されたNOが良好に還元せしめられることになる。
The engine exhaust passage, NO X storage catalyst air-fuel ratio of the inflowing exhaust gas when the lean that releases NO X air-fuel ratio of the exhaust gas which is occluded becomes rich for occluding NO X contained in the exhaust gas inflow was placed, NO X occluding catalyst upstream of the engine oxidation catalyst having an adsorbing function in the exhaust passage disposed, NO X from occluding catalyst when releasing the NO X is feeding hydrocarbons into the engine exhaust passage an oxidation catalyst upstream An internal combustion engine in which the air-fuel ratio of the exhaust gas flowing into the NO X storage catalyst is made rich is known (see, for example, Patent Document 1).
In this internal combustion engine, hydrocarbons supplied when NO X is to be released from the NO X storage catalyst are converted into gaseous hydrocarbons in the oxidation catalyst, and the gaseous hydrocarbons are sent to the NO X storage catalyst. As a result, the NO X released from the NO X storing catalyst is made to satisfactorily reduced.

特許第3969450号Patent No. 3969450

しかしながらNO吸蔵触媒は高温になるとNO浄化率が低下するという問題がある。
本発明の目的は、排気浄化触媒の温度が高温になっても高いNO浄化率を得ることのできる内燃機関の排気浄化装置を提供することにある。
However, the NO X storage catalyst has a problem that the NO X purification rate decreases when the temperature becomes high.
An object of the present invention is to provide an exhaust purification device for an internal combustion engine that can obtain a high NO x purification rate even when the temperature of the exhaust purification catalyst becomes high.

本発明によれば、炭化水素を供給するための炭化水素供給弁を機関排気通路内に配置し、炭化水素供給弁下流の機関排気通路内に排気ガス中に含まれるNOと改質された炭化水素とを反応させるための排気浄化触媒を配置し、排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素濃度の振動周期を予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、機関運転時に排気浄化触媒に流入する炭化水素の濃度変化の振幅が上述の予め定められた範囲内の振幅となるように炭化水素供給弁からの炭化水素の噴射時間および噴射圧の少なくとも一方が制御されると共に、排気浄化触媒に流入する炭化水素の濃度が上述の予め定められた範囲内の周期でもって振動するように炭化水素供給弁からの炭化水素の噴射周期が制御され、炭化水素の噴射時間のみが制御される場合には同一の機関運転状態における炭化水素の噴射時間は排気浄化触媒の温度が高くなるほど長くされ、炭化水素の噴射圧が制御される場合には同一の機関運転状態における炭化水素の噴射圧は排気浄化触媒の温度が高くなるほど高くされる内燃機関の排気浄化装置が提供される。According to the present invention, the hydrocarbon supply valve for supplying hydrocarbons is disposed in the engine exhaust passage, and reformed with NO X contained in the exhaust gas in the engine exhaust passage downstream of the hydrocarbon supply valve. An exhaust purification catalyst for reacting with hydrocarbons is disposed, and a noble metal catalyst is supported on the exhaust gas flow surface of the exhaust purification catalyst, and a basic exhaust gas flow surface portion is formed around the noble metal catalyst. When the concentration of hydrocarbons flowing into the exhaust purification catalyst is vibrated with a predetermined range of amplitude and a predetermined range, NO X contained in the exhaust gas is which has a property for reducing, has the property of absorbing the amount of the NO X contained a longer than a predetermined range vibration period of the hydrocarbon concentration in the exhaust gas increases, the exhaust purification during engine operation At least one of the injection time and injection pressure of hydrocarbons from the hydrocarbon supply valve is controlled so that the amplitude of the concentration change of hydrocarbons flowing into the medium becomes an amplitude within the above-mentioned predetermined range, and the exhaust gas The hydrocarbon injection cycle from the hydrocarbon feed valve is controlled so that the concentration of hydrocarbon flowing into the purification catalyst oscillates with a cycle within the above-mentioned predetermined range, and only the hydrocarbon injection time is controlled. In the same engine operating state, the hydrocarbon injection time becomes longer as the temperature of the exhaust purification catalyst becomes higher, and when the hydrocarbon injection pressure is controlled, the hydrocarbon injection pressure in the same engine operating state An exhaust purification device for an internal combustion engine is provided which is increased as the temperature of the exhaust purification catalyst increases.

排気浄化触媒の温度が高温になっても高いNO浄化率を得ることができる。Even if the temperature of the exhaust purification catalyst becomes high, a high NO x purification rate can be obtained.

図1は圧縮着火式内燃機関の全体図である。
図2は触媒担体の表面部分を図解的に示す図である。
図3は排気浄化触媒における酸化反応を説明するための図である。
図4は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。
図5はNO浄化率を示す図である。
図6Aおよび6Bは排気浄化触媒における酸化還元反応を説明するための図である。
図7Aおよび7Bは排気浄化触媒における酸化還元反応を説明するための図である。
図8は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。
図9はNO浄化率を示す図である。
図10は排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。
図11は排気浄化触媒への流入排気ガスの空燃比の変化を示すタイムチャートである。
図12は排気浄化触媒の酸化力と要求最小空燃比Xとの関係を示す図である。
図13は同一のNO浄化率の得られる、排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示す図である。
図14は炭化水素濃度の振幅ΔHとNO浄化率との関係を示す図である。
図15は炭化水素濃度の振動周期ΔTとNO浄化率との関係を示す図である。
図16は排気浄化触媒への流入排気ガスの空燃比の変化等を示す図である。
図17は排出NO量NOXAのマップを示す図である。
図18は燃料噴射時期を示す図である。
図19は炭化水素供給量WRのマップを示す図である。
図20は炭化水素供給弁からの炭化水素の噴射パターンと排気浄化触媒への流入排気ガス中の炭化水素濃度変化等を示す図である。
図21は排気浄化触媒の温度を示す図である。
図22は炭化水素供給弁からの炭化水素の噴射パターンと排気浄化触媒への流入排気ガス中の炭化水素濃度変化とを示す図である。
図23は炭化水素供給弁からの炭化水素の噴射パターンと排気浄化触媒への流入排気ガス中の炭化水素濃度変化とを示す図である。
図24は炭化水素供給弁からの炭化水素の噴射パターンと排気浄化触媒への流入排気ガス中の炭化水素濃度変化とを示す図である。
図25Aおよび図25Bは炭化水素の噴射時間を示す図である。
図26は炭化水素供給弁からの炭化水素の噴射パターンと排気浄化触媒への流入排気ガス中の炭化水素濃度変化とを示す図である。
図27は炭化水素供給弁からの炭化水素の噴射パターンと排気浄化触媒への流入排気ガス中の炭化水素濃度変化とを示す図である。
図28は補正値Kを示す図である。
図29はNO浄化制御を行うためのフローチャートである。
図30は炭化水素供給弁からの炭化水素の噴射パターンと排気浄化触媒への流入排気ガス中の炭化水素濃度変化とを示す図である。
図31は炭化水素供給弁からの炭化水素の噴射パターンと排気浄化触媒への流入排気ガス中の炭化水素濃度変化とを示す図である。
図32Aおよび32Bは炭化水素の噴射圧を示す図である。
図33Aおよび33Bは炭化水素の噴射時間を示す図である。
図34は炭化水素供給弁からの炭化水素の噴射パターンと排気浄化触媒への流入排気ガス中の炭化水素濃度変化とを示す図である。
図35Aおよび図35Bは夫々補正値KP,KTを示す図である。
図36はNO浄化制御を行うためのフローチャートである。
FIG. 1 is an overall view of a compression ignition type internal combustion engine.
FIG. 2 is a view schematically showing the surface portion of the catalyst carrier.
FIG. 3 is a view for explaining an oxidation reaction in the exhaust purification catalyst.
FIG. 4 is a diagram showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
Figure 5 is a diagram illustrating a NO X purification rate.
6A and 6B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
7A and 7B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
FIG. 8 is a diagram showing a change in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
Figure 9 is a diagram illustrating a NO X purification rate.
FIG. 10 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
FIG. 11 is a time chart showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
FIG. 12 is a diagram showing the relationship between the oxidizing power of the exhaust purification catalyst and the required minimum air-fuel ratio X.
FIG. 13 is a graph showing the relationship between the oxygen concentration in the exhaust gas and the amplitude ΔH of the hydrocarbon concentration, with which the same NO x purification rate can be obtained.
Figure 14 is a diagram showing the relationship between the amplitude ΔH and NO X purification rate of hydrocarbon concentration.
Figure 15 is a diagram showing the relationship between the vibration period ΔT and NO X purification rate of hydrocarbon concentration.
FIG. 16 is a diagram showing changes in the air-fuel ratio of exhaust gas flowing into the exhaust purification catalyst.
Figure 17 is a diagram illustrating a map of exhaust amount of NO X NOXA.
FIG. 18 is a diagram showing the fuel injection timing.
FIG. 19 is a diagram showing a map of the hydrocarbon supply amount WR.
FIG. 20 is a diagram showing a hydrocarbon injection pattern from a hydrocarbon feed valve, a change in hydrocarbon concentration in exhaust gas flowing into the exhaust purification catalyst, and the like.
FIG. 21 is a view showing the temperature of the exhaust purification catalyst.
FIG. 22 is a diagram showing a hydrocarbon injection pattern from a hydrocarbon feed valve and a change in hydrocarbon concentration in exhaust gas flowing into the exhaust purification catalyst.
FIG. 23 is a diagram showing a hydrocarbon injection pattern from a hydrocarbon feed valve and a change in hydrocarbon concentration in exhaust gas flowing into the exhaust purification catalyst.
FIG. 24 is a diagram showing a hydrocarbon injection pattern from a hydrocarbon feed valve and a change in hydrocarbon concentration in exhaust gas flowing into the exhaust purification catalyst.
FIG. 25A and FIG. 25B are diagrams showing the hydrocarbon injection time.
FIG. 26 is a diagram showing a hydrocarbon injection pattern from a hydrocarbon feed valve and a change in hydrocarbon concentration in exhaust gas flowing into the exhaust purification catalyst.
FIG. 27 is a diagram showing a hydrocarbon injection pattern from a hydrocarbon feed valve and a change in hydrocarbon concentration in exhaust gas flowing into the exhaust purification catalyst.
FIG. 28 is a diagram showing the correction value K.
FIG. 29 is a flowchart for performing NO X purification control.
FIG. 30 is a diagram showing a hydrocarbon injection pattern from a hydrocarbon feed valve and a change in hydrocarbon concentration in exhaust gas flowing into the exhaust purification catalyst.
FIG. 31 is a diagram showing a hydrocarbon injection pattern from a hydrocarbon supply valve and a change in hydrocarbon concentration in exhaust gas flowing into the exhaust purification catalyst.
32A and 32B are views showing the injection pressure of hydrocarbons.
33A and 33B are views showing the injection time of hydrocarbons.
FIG. 34 is a diagram showing a hydrocarbon injection pattern from a hydrocarbon feed valve and a change in hydrocarbon concentration in exhaust gas flowing into the exhaust purification catalyst.
35A and 35B are diagrams showing correction values KP and KT, respectively.
FIG. 36 is a flowchart for performing NO X purification control.

図1に圧縮着火式内燃機関の全体図を示す。
図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁10が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結される。排気タービン7bの出口は排気管12を介して排気浄化触媒13の入口に連結され、排気浄化触媒13の出口は排気ガス中に含まれるパティキュレートを捕集するためのパティキュレートフィルタ14に連結される。排気浄化触媒13上流の排気管12内には圧縮着火式内燃機関の燃料として用いられる軽油その他の燃料からなる炭化水素を供給するための炭化水素供給弁15が配置される。図1に示される実施例では炭化水素供給弁15から供給される炭化水素として軽油が用いられている。なお、本発明はリーン空燃比のもとで燃焼の行われる火花点火式内燃機関にも適用することができる。この場合、炭化水素供給弁15からは火花点火式内燃機関の燃料として用いられるガソリンその他の燃料からなる炭化水素が供給される。
図1に示されるように炭化水素供給弁15は高圧燃料で満たされた高圧燃料室16に連結されており、この高圧燃料室16へは燃料タンク18内の燃料が加圧ポンプ17を介して供給される。高圧燃料室16内の燃料圧は燃料圧センサ19によって検出されており、加圧ポンプ17は燃料圧センサ19の出力信号に基づいて高圧燃料室16内の燃料圧、即ち噴射圧が目標噴射圧となるように制御される。この目標噴射圧は機関の運転状態にかかわらずに一定に維持される場合もあるし、また機関の運転状態に応じて変化せしめられる場合もある。
一方、排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路20を介して互いに連結され、EGR通路20内には電子制御式EGR制御弁21が配置される。また、EGR通路20周りにはEGR通路20内を流れるEGRガスを冷却するための冷却装置22が配置される。図1に示される実施例では機関冷却水が冷却装置22内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管23を介してコモンレール24に連結され、このコモンレール24は電子制御式の吐出量可変な燃料ポンプ25を介して燃料タンク18に連結される。燃料タンク18内に貯蔵されている燃料は燃料ポンプ25によってコモンレール24内に供給され、コモンレール24内に供給された燃料は各燃料供給管23を介して燃料噴射弁3に供給される。
電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。排気浄化触媒13の下流には排気浄化触媒13の温度を検出するための温度センサ26が取付けられている。この温度センサ26、燃料圧センサ19および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用ステップモータ、炭化水素供給弁15、EGR制御弁21および燃料ポンプ25に接続される。
図2は排気浄化触媒13の基体上に担持された触媒担体の表面部分を図解的に示している。この排気浄化触媒13では図2に示されるように例えばアルミナからなる触媒担体50上には貴金属触媒51,52が担持されており、更にこの触媒担体50上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOに電子を供与しうる金属から選ばれた少くとも一つを含む塩基性層53が形成されている。排気ガスは触媒担体50上に沿って流れるので貴金属触媒51,52は排気浄化触媒13の排気ガス流通表面上に担持されていると言える。また、塩基性層53の表面は塩基性を呈するので塩基性層53の表面は塩基性の排気ガス流通表面部分54と称される。
一方、図2において貴金属触媒51は白金Ptからなり、貴金属触媒52はロジウムRhからなる。即ち、触媒担体50に担持されている貴金属触媒51,52は白金PtおよびロジウムRhから構成されている。なお、排気浄化触媒13の触媒担体50上には白金PtおよびロジウムRhに加えて更にパラジウムPdを担持させることができるし、或いはロジウムRhに代えてパラジウムPdを担持させることができる。即ち、触媒担体50に担持されている貴金属触媒51,52は白金Ptと、ロジウムRhおよびパラジウムPdの少なくとも一方とにより構成される。
炭化水素供給弁15から排気ガス中に炭化水素が噴射されるとこの炭化水素は排気浄化触媒13において改質される。本発明ではこのとき改質された炭化水素を用いて排気浄化触媒13においてNOを浄化するようにしている。図3はこのとき排気浄化触媒13において行われる改質作用を図解的に示している。図3に示されるように炭化水素供給弁15から噴射された炭化水素HCは触媒51によって炭素数の少ないラジカル状の炭化水素HCとなる。
図4は炭化水素供給弁15からの炭化水素の供給タイミングと排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化とを示している。なお、この空燃比(A/F)inの変化は排気浄化触媒13に流入する排気ガス中の炭化水素の濃度変化に依存しているので図4に示される空燃比(A/F)inの変化は炭化水素の濃度変化を表しているとも言える。ただし、炭化水素濃度が高くなると空燃比(A/F)inは小さくなるので図4においては空燃比(A/F)inがリッチ側となるほど炭化水素濃度が高くなっている。
図5は、排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させることによって図4に示されるように排気浄化触媒13への流入排気ガスの空燃比(A/F)inを変化させたときの排気浄化触媒13によるNO浄化率を排気浄化触媒13の各触媒温度TCに対して示している。本発明者は長い期間に亘ってNO浄化に関する研究を重ねており、その研究課程において、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると、図5に示されるように400℃以上の高温領域においても極めて高いNO浄化率が得られることが判明したのである。
更にこのときには窒素および炭化水素を含む多量の還元性中間体が塩基性層53の表面上に、即ち排気浄化触媒13の塩基性排気ガス流通表面部分54上に保持又は吸着され続けており、この還元性中間体が高NO浄化率を得る上で中心的役割を果していることが判明したのである。次にこのことについて図6Aおよび6Bを参照しつつ説明する。なお、これら図6Aおよび6Bは排気浄化触媒13の触媒担体50の表面部分を図解的に示しており、これら図6Aおよび6Bには排気浄化触媒13に流入する炭化水素の濃度が予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動せしめたときに生ずると推測される反応が示されている。
図6Aは排気浄化触媒13に流入する炭化水素の濃度が低いときを示しており、図6Bは炭化水素供給弁15から炭化水素が供給されて排気浄化触媒13に流入する炭化水素の濃度が高くなっているときを示している。
さて、図4からわかるように排気浄化触媒13に流入する排気ガスの空燃比は一瞬を除いてリーンに維持されているので排気浄化触媒13に流入する排気ガスは通常酸素過剰の状態にある。従って排気ガス中に含まれるNOは図6Aに示されるように白金51上において酸化されてNOとなり、次いでこのNOは更に酸化されてNOとなる。また、NOの一部はNO となる。この場合、NOの生成量の方がNO の生成量よりもはるかに多い。従って白金Pt51上には多量のNOと少量のNO が生成されることになる。これらNOおよびNO は活性が強く、以下これらNOおよびNO を活性NO と称する。
一方、炭化水素供給弁15から炭化水素が供給されると図3に示されるようにこの炭化水素は排気浄化触媒13内において改質され、ラジカルとなる。その結果、図6Bに示されるように活性NO 周りの炭化水素濃度が高くなる。ところで活性NO が生成された後、活性NO 周りの酸素濃度が高い状態が一定時間以上継続すると活性NO は酸化され、硝酸イオンNO の形で塩基性層53内に吸収される。しかしながらこの一定時間が経過する前に活性NO 周りの炭化水素濃度が高くされると図6Bに示されるように活性NO は白金51上においてラジカル状の炭化水素HCと反応し、それにより還元性中間体が生成される。この還元性中間体は塩基性層53の表面上に付着又は吸着される。
なお、このとき最初に生成される還元性中間体はニトロ化合物R−NOであると考えられる。このニトロ化合物R−NOは生成されるとニトリル化合物R−CNとなるがこのニトリル化合物R−CNはその状態では瞬時しか存続し得ないのでただちにイソシアネート化合物R−NCOとなる。このイソシアネート化合物R−NCOは加水分解するとアミン化合物R−NHとなる。ただしこの場合、加水分解されるのはイソシアネート化合物R−NCOの一部であると考えられる。従って図6Bに示されるように塩基性層53の表面上に保持又は吸着されている還元性中間体の大部分はイソシアネート化合物R−NCOおよびアミン化合物R−NHであると考えられる。
一方、図6Bに示されるように生成された還元性中間体の周りを炭化水素HCが取り囲んでいると還元性中間体は炭化水素HCに阻まれてそれ以上反応が進まない。この場合、排気浄化触媒13に流入する炭化水素の濃度が低下せしめられ、それによって酸素濃度が高くなると還元性中間体周りの炭化水素は酸化せしめられる。その結果、図6Aに示されるように還元性中間体と活性NO とが反応するようになる。このとき活性NO は還元性中間体R−NCOやR−NHと反応してN,CO,HOとなり、斯くしてNOが浄化されることになる。
このように排気浄化触媒13では、排気浄化触媒13に流入する炭化水素の濃度を高くすることにより還元性中間体が生成され、排気浄化触媒13に流入する炭化水素の濃度を低くして酸素濃度を高くすることにより活性NO が還元性中間体と反応し、NOが浄化される。即ち、排気浄化触媒13によりNOを浄化するには排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させる必要がある。
無論、この場合、還元性中間体を生成するのに十分高い濃度まで炭化水素の濃度を高める必要があり、生成された還元性中間体を活性NO と反応させるのに十分低い濃度まで炭化水素の濃度を低下させる必要がある。即ち、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅で振動させる必要がある。なお、この場合、生成された還元性中間体が活性NO と反応するまで、十分な量の還元性中間体R−NCOやR−NHを塩基性層53上に、即ち塩基性排気ガス流通表面部分24上保持しておかなければならず、そのために塩基性の排気ガス流通表面部分24が設けられている。
一方、炭化水素の供給周期を長くすると炭化水素が供給された後、次に炭化水素が供給されるまでの間において酸素濃度が高くなる期間が長くなり、従って活性NO は還元性中間体を生成することなく硝酸塩の形で塩基性層53内に吸収されることになる。これを回避するためには排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の周期でもって振動させることが必要となる。
そこで本発明による実施例では、排気ガス中に含まれるNOと改質された炭化水素とを反応させて窒素および炭化水素を含む還元性中間体R−NCOやR−NHを生成するために排気浄化触媒13の排気ガス流通表面上には貴金属触媒51,52が担持されており、生成された還元性中間体R−NCOやR−NHを排気浄化触媒13内に保持しておくために貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、塩基性の排気ガス流通表面部分54上に保持された還元性中間体R−NCOやR−NHの還元作用によりNOが還元され、炭化水素濃度の振動周期は還元性中間体R−NCOやR−NHを生成し続けるのに必要な振動周期とされる。因みに図4に示される例では噴射間隔が3秒とされている。
炭化水素濃度の振動周期、即ち炭化水素HCの供給周期を上述の予め定められた範囲内の周期よりも長くすると塩基性層53の表面上から還元性中間体R−NCOやR−NHが消滅し、このとき白金Pt53上において生成された活性NO は図7Aに示されるように硝酸イオンNO の形で塩基性層53内に拡散し、硝酸塩となる。即ち、このときには排気ガス中のNOは硝酸塩の形で塩基性層53内に吸収されることになる。
一方、図7BはこのようにNOが硝酸塩の形で塩基性層53内に吸収されているときに排気浄化触媒13内に流入する排気ガスの空燃比が理論空燃比又はリッチにされた場合を示している。この場合には排気ガス中の酸素濃度が低下するために反応が逆方向(NO →NO)に進み、斯くして塩基性層53内に吸収されている硝酸塩は順次硝酸イオンNO となって図7Bに示されるようにNOの形で塩基性層53から放出される。次いで放出されたNOは排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
図8は塩基性層53のNO吸収能力が飽和する少し前に排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを一時的にリッチにするようにした場合を示している。なお、図8に示す例ではこのリッチ制御の時間間隔は1分以上である。この場合には排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸収されたNOは、排気ガスの空燃比(A/F)inが一時的にリッチにされたときに塩基性層53から一気に放出されて還元される。従ってこの場合には塩基性層53はNOを一時的に吸収するための吸収剤の役目を果している。
なお、このとき塩基性層53がNOを一時的に吸着する場合もあり、従って吸収および吸着の双方を含む用語として吸蔵という用語を用いるとこのとき塩基性層53はNOを一時的に吸蔵するためのNO吸蔵剤の役目を果していることになる。即ち、この場合には、機関吸気通路、燃焼室2および排気浄化触媒13上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、排気浄化触媒13は、排気ガスの空燃比がリーンのときにはNOを吸蔵し、排気ガス中の酸素濃度が低下すると吸蔵したNOを放出するNO吸蔵触媒として機能している。
図9は、排気浄化触媒13をこのようにNO吸蔵触媒として機能させたときのNO浄化率を示している。なお、図9の横軸は排気浄化触媒13の触媒温度TCを示している。排気浄化触媒13をNO吸蔵触媒として機能させた場合には図9に示されるように触媒温度TCが300℃から400℃のときには極めて高いNO浄化率が得られるが触媒温度TCが400℃以上の高温になるとNO浄化率が低下する。
このように触媒温度TCが400℃以上になるとNO浄化率が低下するのは、触媒温度TCが400℃以上になると硝酸塩が熱分解してNOの形で排気浄化触媒13から放出されるからである。即ち、NOを硝酸塩の形で吸蔵している限り、触媒温度TCが高いときに高いNO浄化率を得るのは困難である。しかしながら図4から図6A,6Bに示される新たなNO浄化方法では図6A,6Bからわかるように硝酸塩は生成されず或いは生成されても極く微量であり、斯くして図5に示されるように触媒温度TCが高いときでも高いNO浄化率が得られることになる。
そこで本発明では、炭化水素を供給するための炭化水素供給弁15を機関排気通路内に配置し、炭化水素供給弁15下流の機関排気通路内に排気ガス中に含まれるNOと改質された炭化水素とを反応させるための排気浄化触媒13を配置し、排気浄化触媒13の排気ガス流通表面上には貴金属触媒51,52が担持されていると共に貴金属触媒51,52周りには塩基性の排気ガス流通表面部分54が形成されており、排気浄化触媒13は、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、炭化水素濃度の振動周期をこの予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、機関運転時に排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させ、それにより排気ガス中に含まれるNOを排気浄化触媒13において還元するようにしている。
即ち、図4から図6A,6Bに示されるNO浄化方法は、貴金属触媒を担持しかつNOを吸収しうる塩基性層を形成した排気浄化触媒を用いた場合において、ほとんど硝酸塩を形成することなくNOを浄化するようにした新たなNO浄化方法であると言うことができる。実際、この新たなNO浄化方法を用いた場合には排気浄化触媒13をNO吸蔵触媒として機能させた場合に比べて、塩基性層53から検出される硝酸塩は極く微量である。なお、この新たなNO浄化方法を以下、第1のNO浄化方法と称する。
次に図10から図15を参照しつつこの第1のNO浄化方法についてもう少し詳細に説明する。
図10は図4に示される空燃比(A/F)inの変化を拡大して示している。なお、前述したようにこの排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化は同時に排気浄化触媒13に流入する炭化水素の濃度変化を示している。なお、図10においてΔHは排気浄化触媒13に流入する炭化水素HCの濃度変化の振幅を示しており、ΔTは排気浄化触媒13に流入する炭化水素濃度の振動周期を示している。
更に図10において(A/F)bは機関出力を発生するための燃焼ガスの空燃比を示すベース空燃比を表している。言い換えるとこのベース空燃比(A/F)bは炭化水素の供給を停止したときに排気浄化触媒13に流入する排気ガスの空燃比を表している。一方、図10においてXは、生成された活性NO が硝酸塩の形で塩基性層53内に吸蔵されることなく還元性中間体の生成のために使用される空燃比(A/F)inの上限を表しており、活性NO と改質された炭化水素とを反応させて還元性中間体を生成させるには空燃比(A/F)inをこの空燃比の上限Xよりも低くすることが必要となる。
別の言い方をすると図10のXは活性NO と改質された炭化水素とを反応させて還元性中間体を生成させるのに必要な炭化水素の濃度の下限を表しており、還元性中間体を生成するためには炭化水素の濃度をこの下限Xよりも高くする必要がある。この場合、還元性中間体が生成されるか否かは活性NO 周りの酸素濃度と炭化水素濃度との比率、即ち空燃比(A/F)inで決まり、還元性中間体を生成するのに必要な上述の空燃比の上限Xを以下、要求最小空燃比と称する。
図10に示される例では要求最小空燃比Xがリッチとなっており、従ってこの場合には還元性中間体を生成するために空燃比(A/F)inが瞬時的に要求最小空燃比X以下に、即ちリッチにされる。これに対し、図11に示される例では要求最小空燃比Xがリーンとなっている。この場合には空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させることによって還元性中間体が生成される。
この場合、要求最小空燃比Xがリッチになるかリーンになるかは排気浄化触媒13の酸化力による。この場合、排気浄化触媒13は例えば貴金属51の担持量を増大させれば酸化力が強まり、酸性を強めれば酸化力が強まる。従って排気浄化触媒13の酸化力は貴金属51の担持量や酸性の強さによって変化することになる。
さて、酸化力が強い排気浄化触媒13を用いた場合に図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、空燃比(A/F)inが低下せしめられたときに炭化水素が完全に酸化されてしまい、その結果還元性中間体を生成することができなくなる。これに対し、酸化力が強い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると空燃比(A/F)inがリッチにされたときに炭化水素は完全に酸化されることなく部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成されることになる。従って酸化力が強い排気浄化触媒13を用いた場合には要求最小空燃比Xはリッチにする必要がある。
一方、酸化力が弱い排気浄化触媒13を用いた場合には図11に示されるように空燃比(A/F)inをリーンに維持しつつ空燃比(A/F)inを周期的に低下させると、炭化水素は完全に酸化されずに部分酸化され、即ち炭化水素が改質され、斯くして還元性中間体が生成される。これに対し、酸化力が弱い排気浄化触媒13を用いた場合に図10に示されるように空燃比(A/F)inを周期的にリッチにさせると多量の炭化水素は酸化されることなく単に排気浄化触媒13から排出されることになり、斯くして無駄に消費される炭化水素量が増大することになる。従って酸化力が弱い排気浄化触媒13を用いた場合には要求最小空燃比Xはリーンにする必要がある。
即ち、要求最小空燃比Xは図12に示されるように排気浄化触媒13の酸化力が強くなるほど低下させる必要があることがわかる。このように要求最小空燃比Xは排気浄化触媒13の酸化力によってリーンになったり、或いはリッチになったりするが、以下要求最小空燃比Xがリッチである場合を例にとって、排気浄化触媒13に流入する炭化水素の濃度変化の振幅や排気浄化触媒13に流入する炭化水素濃度の振動周期について説明する。
さて、ベース空燃比(A/F)bが大きくなると、即ち炭化水素が供給される前の排気ガス中の酸素濃度が高くなると空燃比(A/F)inを要求最小空燃比X以下とするのに必要な炭化水素の供給量が増大し、それに伴なって還元性中間体の生成に寄与しなかった余剰の炭化水素量も増大する。この場合、NOを良好に浄化するためには前述したようにこの余剰の炭化水素を酸化させる必要があり、従ってNOを良好に浄化するためには余剰の炭化水素量が多いほど多量の酸素が必要となる。
この場合、排気ガス中の酸素濃度を高めれば酸素量を増大することができる。従ってNOを良好に浄化するためには、炭化水素が供給される前の排気ガス中の酸素濃度が高いときには炭化水素供給後の排気ガス中の酸素濃度を高める必要がある。即ち、炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅を大きくする必要がある。
図13は同一のNO浄化率が得られるときの、炭化水素が供給される前の排気ガス中の酸素濃度と炭化水素濃度の振幅ΔHとの関係を示している。図13から同一のNO浄化率を得るためには炭化水素が供給される前の排気ガス中の酸素濃度が高いほど炭化水素濃度の振幅ΔHを増大させる必要があることがわかる。即ち、同一のNO浄化率を得るにはベース空燃比(A/F)bが高くなるほど炭化水素濃度の振幅ΔTを増大させることが必要となる。別の言い方をすると、NOを良好に浄化するためにはベース空燃比(A/F)bが低くなるほど炭化水素濃度の振幅ΔTを減少させることができる。
ところでベース空燃比(A/F)bが最も低くなるのは加速運転時であり、このとき炭化水素濃度の振幅ΔHが200ppm程度あればNOを良好に浄化することができる。ベース空燃比(A/F)bは通常、加速運転時よりも大きく、従って図14に示されるように炭化水素濃度の振幅ΔHが200ppm以上であれば良好なNO浄化率を得ることができることになる。
一方、ベース空燃比(A/F)bが最も高いときには炭化水素濃度の振幅ΔHを10000ppm程度にすれば良好なNO浄化率が得られることがわかっている。従って本発明では炭化水素濃度の振幅の予め定められた範囲が200ppmから10000ppmとされている。
また、炭化水素濃度の振動周期ΔTが長くなると炭化水素が供給された後、次に炭化水素が供給される間、活性NO 周りの酸素濃度が高くなる。この場合、炭化水素濃度の振動周期ΔTが5秒程度よりも長くなると活性NO が硝酸塩の形で塩基性層53内に吸収され始め、従って図15に示されるように炭化水素濃度の振動周期ΔTが5秒程度よりも長くなるとNO浄化率が低下することになる。従って炭化水素濃度の振動周期ΔTは5秒以下とする必要がある。
一方、炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になると供給された炭化水素が排気浄化触媒13の排気ガス流通表面上に堆積し始め、従って図15に示されるように炭化水素濃度の振動周期ΔTがほぼ0.3秒以下になるとNO浄化率が低下する。そこで本発明では炭化水素濃度の振動周期が0.3秒から5秒の間とされている。
次に図16から図19を参照しつつ排気浄化触媒13をNO吸蔵触媒として機能させた場合のNO浄化方法について具体的に説明する。このように排気浄化触媒13をNO吸蔵触媒として機能させた場合のNO浄化方法を以下、第2のNO浄化方法と称する。
この第2のNO浄化方法では図16に示されるように塩基性層53に吸蔵された吸蔵NO量ΣNOXが予め定められた許容量MAXを越えたときに排気浄化触媒13に流入する排気ガスの空燃比(A/F)inが一時的にリッチにされる。排気ガスの空燃比(A/F)inがリッチにされると排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸蔵されたNOが塩基性層53から一気に放出されて還元される。それによってNOが浄化される。
吸蔵NO量ΣNOXは例えば機関から排出されるNO量から算出される。本発明による実施例では機関から単位時間当り排出される排出NO量NOXAが噴射量Qおよび機関回転数Nの関数として図17に示すようなマップの形で予めROM32内に記憶されており、この排出NO量NOXAから吸蔵NO量ΣNOXが算出される。この場合、前述したように排気ガスの空燃比(A/F)inがリッチにされる周期は通常1分以上である。
この第2のNO浄化方法では図18に示されるように燃焼室2内に燃料噴射弁3から燃焼用燃料Qに加え、追加の燃料WRを噴射することによって排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリッチにされる。なお、図18の横軸はクランク角を示している。この追加の燃料WRは燃焼はするが機関出力となって現われない時期に、即ち圧縮上死点後ATDC90°の少し手前で噴射される。この燃料量WRは噴射量Qおよび機関回転数Nの関数として図19に示すようなマップの形で予めROM32内に記憶されている。無論、この場合炭化水素供給弁15からの炭化水素の供給量を増大させることによって排気ガスの空燃比(A/F)inをリッチにすることもできる。
さて、再び第1のNO浄化方法についての説明に戻ると、第1のNO浄化方法を用いてNOを良好に浄化するためには前述したように炭化水素濃度の振幅ΔHおよび振動周期ΔTを適切に制御する必要がある。即ち、第1のNO浄化方法を用いてNOを良好に浄化するためには、排気浄化触媒13への流入排気ガスの空燃比(A/F)inが要求最小空燃比X以下となるように炭化水素濃度の振幅ΔHを制御し、炭化水素濃度の振動周期ΔTを0.3秒から5秒の間に制御する必要がある。
この場合、本発明では炭化水素濃度の振動周期ΔTは炭化水素供給弁15からの炭化水素の噴射時間又は噴射圧の少なくとも一方を制御することに制御され、炭化水素濃度の振動周期ΔTは炭化水素供給弁15からの炭化水素の噴射周期を制御することによって制御される。
ところでこの場合、最も要求されることはどのような運転状態でも高いNO浄化率を得ることができ、供給された炭化水素が排気浄化触媒13をすり抜けないようにすることである。この点について検討を重ねた結果、排気浄化触媒13において完全に酸化される炭化水素の量と部分酸化される炭化水素の量がNO浄化率と炭化水素のすり抜け量を支配していることが判明したのである。次にこのことについて図20を参照しつつ説明する。
図20には、炭化水素供給弁15から同一の噴射圧のもとで異なる噴射時間でもって噴射された炭化水素の三つの噴射パターンA,B,Cが示されている。この場合、噴射時間は噴射パターンAが最も短かく、噴射パターンCが最も長くなっている。また、図20には各噴射パターンA,B,Cにより噴射が行われた後、排気浄化触媒13に流入する排気ガス中の炭化水素濃度の時間的な変化が示されている。更に図20には各噴射パターンA,B,Cによる噴射が行われたときのNO浄化率と排気浄化触媒13の炭化水素のすり抜け量とが示されている。
さて、排気浄化触媒13に流入する排気ガス中の炭化水素濃度、即ち単位排気ガス量当りの炭化水素量が少ないときにはこの炭化水素は排気浄化触媒13において完全に酸化されてしまう。一方、排気ガス中の炭化水素濃度、即ち単位排気ガス量当りの炭化水素量が増大すると排気浄化触媒13において全ての炭化水素を完全に酸化しえなくなる。このとき一部の炭化水素は部分酸化されることになる。このように排気ガス中の炭化水素濃度には排気浄化触媒13において全ての炭化水素が完全に酸化される限界が存在し、この限界が図20においてXAで示されている。
即ち、図20において炭化水素濃度が限界XAよりも低いときには全ての炭化水素が完全に酸化されるので図20において限界XAよりも下方のハッチング領域RAでは全ての炭化水素が完全に酸化されることになる。この場合、ハッチング領域RAの面積は炭化水素量を表しており、従ってハッチング領域RAに相当する量の炭化水素が完全に酸化されることになる。なお、以下この限界RAを完全酸化限界と称する。
一方、図20において完全酸化限界RAよりも上方の領域RBでは排気浄化触媒13において炭化水素の部分酸化作用が行われる。この場合、図20においてハッチング領域RBは部分酸化される炭化水素量を表わしている。この部分酸化された炭化水素から還元性中間体が生成されるのでこの部分酸化された炭化水素により第1のNO浄化方法によるNOの浄化作用が行われることになる。なお、実際にはこの部分酸化された炭化水素の一部は還元性中間体の生成に使用されずに酸化されてしまい、部分酸化された残りの炭化水素によって還元性中間体が生成される。
一方、排気浄化触媒13に流入する排気ガス中の炭化水素濃度、即ち単位排気ガス量当りの炭化水素量が更に増大せしめられると一部の炭化水素は排気浄化触媒13において完全に酸化されないどころか部分酸化もされなくなり、この場合酸化もされない一部の炭化水素は排気浄化触媒13をすり抜けることになる。この炭化水素のすり抜けを生ずる炭化水素の限界が図20においてXBで示されており、以下この限界XBをすり抜け限界と称する。図20においてこのすり抜け限界XBよりも上方のハッチング領域RCは炭化水素のすり抜け量を表している。
排気ガス中に含まれるNOを第1のNO浄化方法を用いて浄化するためには排気ガス中に含まれるNO量に対して十分な量の炭化水素が部分酸化されることが必要であり、部分酸化される炭化水素量RBが不十分である場合にはNO浄化率が低下することになる。図20における噴射パターンAはこのように部分酸化される炭化水素量RBが不足している場合を示しており、この場合には図20に示されるようにNO浄化率が低下することになる。
一方、図20において噴射パターンBは部分酸化される炭化水素量RBを増大するために噴射パターンAに比べて噴射時間が長くされた場合を示している。噴射時間が長くされると部分酸化される炭化水素量RBが増大するために図20に示されるようにNO浄化率が高くなる。なお、図20は噴射パターンBであっても部分酸化される炭化水素量RBが若干不足している場合を示している。
図20において噴射パターンCは部分酸化される炭化水素量RBを更に増大するために噴射パターンBに比べて噴射時間が更に長くされた場合を示している。この場合、図20に示されるようにNO浄化率は向上する。しかしながらこの場合、炭化水素濃度がすり抜け限界XBを越えるので炭化水素のすり抜けが発生することになる。
第1のNO浄化方法によるNO浄化作用を行う際には炭化水素のすり抜けが生じないようにする必要があり、従って本発明では図20に示される例においては炭化水素濃度のピークがすり抜け限界XBとなる噴射パターンBが用いられる。無論、噴射パターンAに示されるように炭化水素濃度のピークがすり抜け限界XBに達していなくても十分高いNO浄化率が得られる場合には噴射パターンAが用いられる。即ち、本発明では噴射パターンAか噴射パターンBのいずれかが用いられることになる。
さて、排気浄化触媒13の温度が上昇すると排気浄化触媒13において単位時間当り酸化される炭化水素量が増大し、即ち炭化水素に対する酸化速度が増大し、その結果排気浄化触媒13の温度が上昇すると完全酸化限界XAが上昇する。一方、排気浄化触媒13の温度が上昇すると、温度が上昇する前にはすり抜けていた炭化水素が部分酸化されるようになるのですり抜け限界XBも上昇することになる。即ち、排気浄化触媒13の温度が上昇すると完全酸化限界XAとすり抜け限界XBが共に上昇することになる。従って第1のNO浄化方法によりNOの浄化を行う際にはこのことを考慮して炭化水素の噴射制御を行う必要がある。
図21から図28はこのことを考慮して炭化水素の噴射制御を行うようにした第1実施例を示している。なお、この第1実施例では噴射圧が一定に維持されており、噴射圧が一定のもとで噴射時間を制御することによって炭化水素の噴射量が制御される。
まず初めに図21について説明すると、図21は定常運転時における排気浄化触媒13の温度TC,TC,TC(TC>TC>TC)の代表的な一例を示している。なお、図21において縦軸Qは燃焼室2内への燃料噴射量を示しており、横軸は機関回転数を示している。図21からわかるように機関回転数Nが同一であるときには燃料噴射量Qが増大するほど、即ち機関負荷が高くなるほど排気浄化触媒13の温度は高くなり、燃料噴射量Qが同一であるときには、即ち機関負荷が同一であるときには機関回転数Nが増大するほど、即ち吸入空気量が増大するほど排気浄化触媒13の温度は若干低下する。
このように排気浄化触媒13の温度は機関の運転状態に応じて変化する。一方、機関から単位時間当り排出されるNO量は機関負荷が高くなるほど増大し、機関回転数が高くなるほど増大する。従ってこれらのことを考慮に入れて炭化水素の噴射時間が決定される。
図22は図21のE,F,Fにおける、即ち同一回転数で異なる負荷における定常運転時の噴射パターンを示している。即ち、同一回転数のもとでは負荷が高くなるほど排気浄化触媒13の温度が高くなり、従って完全酸化限界XAおよびすり抜け限界XBも高くなる。一方、同一回転数のもとでは負荷が高くなるほど機関からの排出NO量が増大し、従ってこのときには負荷が高くなるほど部分酸化される炭化水素量RBを増大する必要がある。従ってこのとき第1実施例では図22に示されるように炭化水素濃度のピークがすり抜け限界XBとなるように負荷が高くなるにつれて噴射時間が増大される。
図23は図21のE,G,Gにおける、即ち同一負荷で異なる回転数における定常運転時の噴射パターンを示している。即ち、同一負荷のもとでは回転数が高くなるほど排気浄化触媒13の温度が若干低くなり、従って完全酸化限界XAおよびすり抜け限界XBも若干低くなる。一方、同一負荷のもとでも回転数が高くなるほど機関からの単位時間当りの排出NO量が増大し、従ってこのときにも回転数が高くなるほど部分酸化される炭化水素量RBを増大する必要がある。
一方、回転数が高くなるほど排気ガスの流速が速くなり、噴射された炭化水素が多量の排気ガス中に分散するようになる。従って図23に示されるようにNOの浄化に必要な量の部分酸化炭化水素が生成されたときの炭化水素濃度のピークは回転数が高くなるほど低下する。この第1実施例ではNOの浄化に必要な量の部分酸化炭化水素を生成しうるように回転数が高くなるにつれて噴射時間が長くされる。
図24は図21のE,H,Hにおける定常運転時の噴射パターンを示している。即ち、回転数および負荷が高くなるほど排気浄化触媒13の温度が高くなり、従って完全酸化限界XAおよびすり抜け限界XBも高くなる。一方、回転数および負荷が高くなるほど機関からの単位時間当りの排出NO量が増大し、従ってこのときには回転数および負荷が高くなるほど部分酸化される炭化水素量RBを増大する必要がある。従って第1実施例では図24に示される如く、NOの浄化に必要な量の部分酸化炭化水素を生成しうるように回転数および負荷が高くなるにつれて噴射時間が長くされる。
図25Aは定常運転時においてNOの浄化に必要な量の部分酸化炭化水素を生成しうる等噴射時間線を示している。図25Aからわかるように炭化水素の噴射時間は燃料噴射量Qが増大するほど、即ち機関負荷が増大するほど長くなり、機関回転数Nが高くなるほど長くなる。この噴射時間WTは燃料噴射量Qおよび機関回転数Nの関数として図25Bに示すようなマップの形で予めROM32内に記憶されている。また、最適な炭化水素濃度の振動振幅ΔT、即ち炭化水素の噴射周期ΔTも同様に噴射量Qおよび機関回転数Nの関数としてマップの形で予めROM32内に記憶されている。
機関定常運転時に炭化水素供給弁15から図25Aおよび25Bに示される噴射時間WTijでもって炭化水素が噴射されるとNOが良好に浄化される。即ち、図25Aおよび25Bに示される噴射時間Wijは第1のNO浄化方法により良好にNOを浄化するための基準となる噴射時間を示しており、従って以下図25Aおよび25Bに示される噴射時間WTijを基準噴射時間と称する。
このように機関定常運転時には噴射時間を図25Aおよび25Bに示される基準噴射時間WTijとすることによって第1のNO浄化方法による良好なNO浄化作用を行うことができる。しかしながら過渡運転時に噴射時間を機関の運転状態から定まる基準噴射時間WijにするとNO浄化率が低下するか、或いは炭化水素のすり抜けが生じてしまう。次にこのことについて図26を参照しつつ説明する。
図26のIの部分は図24と同一であり、従って図26のIの部分には、図21の各点E,H,Hにおいて定常運転が行われているときに良好なNO浄化率の得られる噴射パターンE,H,Hが示されている。一方、図26のIIの部分には、図21の点Eから点Hに機関の運転状態が変化して噴射パターンが図26のIの部分に示される噴射パターンEから噴射パターンHに切換えられたときと、図21の点Hから点Hに機関の運転状態が変化して噴射パターンが図26のIの部分に示される噴射パターンHから噴射パターンHに切換えられたときとが示されている。
図21においてE点において定常運転が行われているときには排気浄化触媒13の温度は低く、図21においてH点において定常運転が行われているときには排気浄化触媒13の温度は高くなる。しかしながら機関の運転状態が図21のE点からH点に変化しても排気浄化触媒13の温度はただちに上昇せず、従ってこのとき完全酸化限界XAとすり抜け限界XBはほぼE点のときの高さとなっている。従って機関の運転状態がH点になったときに噴射パターンHでもって噴射が行われると図26のIIの部分の(E→H)で示されるように部分酸化される炭化水素量RBはNOの浄化に対して十分な量となるがすり抜け量RCがかなり多くなる。即ち、このときには炭化水素がすり抜けることになる。
一方、図21のH点において定常運転が行われているときには排気浄化触媒13の温度は更に高くなる。しかしながらこの場合機関の運転状態が図21のH点からH点に変化しても排気浄化触媒13の温度はただちに低下せず、従ってこのとき完全酸化限界XAとすり抜け限界XBはほぼH点のときの高さとなっている。従って機関の運転状態がH点になったときに噴射パターンHでもって噴射が行われると図26のIIの部分の(H→H)で示されるように炭化水素濃度のピークが完全酸化限界XA以下となる。従ってこのときには全ての炭化水素は完全に酸化され、NOの浄化作用は全く行われないことになる。
そこで本発明ではこのような過渡状態であっても良好にNOを浄化しうるように排気浄化触媒13の温度に応じて炭化水素の噴射時間を補正するようにしている。次にこのことについて図27を参照しつつ説明する。
図27は機関の運転状態が図21の点Hにあるときを示しており、図27のHは点Hで定常運転が行われているときの噴射パターンを示している。定常運転が行われていて噴射パターンHでもって炭化水素が噴射されているときにはNOを浄化するのに十分な量RBの部分酸化炭化水素が生成されており、従ってこのときにはNOが良好に浄化される。
これに対し、機関の運転状態が例えば図21のE点からH点に変化せしめられたときには前述したように排気浄化触媒13の温度は低く、従って図27のF2で示されるように完全酸化限界XAおよびすり抜け限界XBは低くなっている。しかしながらこの場合でもF1で示される定常運転時と同じ量のNOが機関から排出されているのでF2で示される場合でもF1で示される定常運転時と同じ量RBの部分酸化炭化水素を生成させる必要がある。従ってF2で示される場合にはF1で示される定常運転時と同じ量RBの部分酸化炭化水素を生成しうるように噴射時間が短かくされる。
一方、機関の運転状態が例えば図21のH点からH点に変化せしめられたときには前述したように排気浄化触媒13の温度は高く、従って図27のF3で示されるように完全酸化限界XAおよびすり抜け限界XBは高くなっている。しかしながらこの場合でもF1で示される定常運転時と同じ量のNOが機関から排出されているのでF3で示される場合でもF1で示される定常運転時と同じ量RBの部分酸化炭化水素を生成させる必要がある。従ってF3で示される場合にはF1で示される定常運転時と同じ量RBの部分酸化炭化水素を生成しうるように噴射時間が長くされる。
本発明による第1実施例では定常運転時における噴射時間、即ち基準噴射時間WTに補正値Kを乗算することによって定常運転時と同じ量RBの部分酸化炭化水素を生成しうるように噴射時間が補正される。この補正値Kは図28に示されるように排気浄化触媒13の実際の温度TCと定常運転時における排気浄化触媒13の温度、即ち基準温度TCiとの差(TC−TCi)の関数として予め記憶されている。
図28からわかるように排気浄化触媒13の実際の温度TCが定常運転時における排気浄化触媒13の温度、即ち基準温度TCiであるときには補正値K=1.0となるのでこのときの噴射時間は定常運転時における基準噴射時間WTとされる。これに対し、排気浄化触媒13の温度TCが基準温度TCiよりも高いと補正値Kは1.0よりも大きくなるので噴射時間は長くされ、排気浄化触媒13の温度TCが基準温度TCiよりも低いと補正値Kは1.0よりも小さくなるので噴射時間が短かくされる。なお、補正値Kと温度差(TC−TCi)との関係はあらゆる運転状態に対して共通の図28に示す関係を用いることもできるし、各運転状態に対し夫々補正値Kと温度差(TC−TCi)との関係を求めておいて運転状態に応じた補正値Kと温度差(TC−TCi)との関係を用いることもできる。
定常運転時における排気浄化触媒13の代表的な基準温度が図21においてTC,TC,TCにより示されており、各運転状態における基準温度TCiは予めROM32内に記憶されている。また、排気浄化触媒13の実際の温度TCは温度センサ26によって検出される。
図29にNO浄化制御ルーチンを示す。このルーチンは一定時間毎の割込みによって実行される。
図29を参照するとまず初めにステップ60において温度センサ23の出力信号から排気浄化触媒13の温度TCが活性化温度TCを越えているか否かが判別される。TC≧TCのとき、即ち排気浄化触媒13が活性化しているときにはステップ61に進んで第1のNO浄化方法によるNO浄化作用が実行される。
即ち、まず初めにステップ61では図25Bに示されるマップから基準噴射時間WTijが算出される。次いでステップ62では図28に示される関係から補正値Kが算出される。次いでステップ63では最終的な噴射時間WT(=K・WTij)が算出される。次いでステップ64ではこの最終的な噴射時間WTに基づいて炭化水素供給弁15からの炭化水素の供給制御が行われる。
一方、ステップ60においてTC<TCであると判断されたときには第2のNO浄化方法を用いるべきであると判断され、ステップ65に進む。ステップ65では図17に示すマップから単位時間当りの排出NO量NOXAが算出される。次いでステップ66ではΣNOXに排出NO量NOXAを加算することによって吸蔵NO量ΣNOXが算出される。次いでステップ67では吸蔵NO量ΣNOXが許容値MAXを越えたか否かが判別される。ΣNOX>MAXになるとステップ68に進んで図19に示すマップから追加の燃料量WRが算出され、追加の燃料の噴射作用が行われる。次いでステップ69ではΣNOXがクリアされる。
次に図30から図36を参照しつつ本発明による第2実施例について説明する。この第2実施例では炭化水素供給弁15からの炭化水素の噴射制御を行う際に噴射時間に加えて噴射圧が制御される。具体的に言うと機関の運転状態に応じて要求されている部分酸化炭化水素量RBを確保しつつ炭化水素濃度のピークがすり抜け限界XBに一致するように炭化水素の噴射時間および噴射圧が制御される。
さて、図21のE,F,Fでは図22に示されるように噴射時間だけを変化させることによって炭化水素濃度のピークがすり抜け限界XBに一致せしめられる。従ってこの場合には特に噴射圧が変化せしめられることはない。
これに対し、図21のE,G,Gでは図23に示されるように噴射時間だけを変化させても炭化水素濃度のピークはすり抜け限界XBまで到達しない。そこでこの第2実施例では、図21のE,G,Gでは図30に示されるように炭化水素濃度のピークがすり抜け限界XBに一致するように機関回転数が高くなるほど噴射圧が高められる。一方、噴射圧が高められると要求されている部分酸化量RBを確保するのに必要な噴射時間は短かくなる。このことは例えば図23のGと図30のGとを比較するとよくわかる。
図31は図21のE,H,Hにおける通常運転時の噴射パターンを示している。図31からこの第2実施例では機関回転数および負荷が高くなるほど噴射圧が高められることがわかる。また、図24と比較するとわかるようにこの場合にもH,H点では噴射時間が短かくなる。噴射時間が短かくなると完全酸化される炭化水素量が減少するため、燃料消費量を向上することができるという利点がある。
定常運転時においてNOの浄化に必要な量の部分酸化炭化水素を生成しうる等噴射圧線WPおよび等噴射時間線WTが夫々図32Aおよび33Aに示されている。図32Aおよび図33Aからわかるように炭化水素の噴射圧WPおよび噴射時間WTは燃料噴射量Qが増大するほど、即ち機関負荷が増大するほど大きくなり、機関回転数Nが高くなるほど大きくなる。これら噴射圧WPおよび噴射時間WTは燃料噴射量Qおよび機関回転数Nの関数として夫々図32Bおよび図33Bに示すようなマップの形で予めROM32内に記憶されている。また、最適な炭化水素濃度の振動振幅ΔT、即ち炭化水素の噴射周期ΔTも同様に噴射量Qおよび機関回転数Nの関数としてマップの形で予めROM32内に記憶されている。
機関定常運転時に炭化水素供給弁15から図32Bに示される噴射圧WPijおよび33Bに示される噴射時間WTijでもって炭化水素が噴射されるとNOが良好に浄化される。即ち、図32Bおよび33Bに示される噴射圧WPijおよび噴射時間Wijは夫々第1のNO浄化方法により良好にNOを浄化するための基準となる噴射圧および噴射時間を示している。従って以下図32Bに示される噴射圧WPijを基準噴射圧と称し、図33Bに示される噴射時間WTijを基準噴射時間と称する。
このように機関定常運転時には噴射圧を図32Bに示される基準噴射圧Wijとし、噴射時間を図33Bに示される基準噴射時間WTijとすることによって第1のNO浄化方法による良好なNO浄化作用を行うことができる。しかしながら過渡運転時に噴射圧および噴射時間を夫々機関の定まる基準噴射圧WPijおよび基準噴射時間WijにするとNO浄化率が低下するか、或いは炭化水素のすり抜けが生じてしまう。
そこで本発明ではこのような過渡状態であっても良好にNOを浄化しうるように排気浄化触媒13の温度に応じて炭化水素の噴射圧および噴射時間を補正するようにしている。次にこのことについて図34を参照しつつ説明する。
図34は機関の運転状態が図21の点Hにあるときを示しており、図34のHは点Hで定常運転が行われているときの噴射パターンを示している。定常運転が行われていて噴射パターンHでもって炭化水素が噴射されているときにはNOを浄化するのに十分な量RBの部分酸化炭化水素が生成されており、従ってこのときにはNOが良好に浄化される。
これに対し、機関の運転状態が例えば図21のE点からH点に変化せしめられたときには排気浄化触媒13の温度は低く、従って図34のF2で示されるように完全酸化限界XAおよびすり抜け限界XBは低くなっている。しかしながらこの場合でもF1で示される定常運転時と同じ量のNOが機関から排出されているのでF2で示される場合でもF1で示される定常運転時と同じ量RBの部分酸化炭化水素を生成させる必要がある。従ってF2で示される場合にはF1で示される定常運転時と同じ量RBの部分酸化炭化水素を生成しうるように噴射圧が低下せしめられ、噴射時間が若干長くされる。
一方、機関の運転状態が例えば図21のH点からH点に変化せしめられたときには排気浄化触媒13の温度は高く、従って図34のF3で示されるように完全酸化限界XAおよびすり抜け限界XBは高くなっている。しかしながらこの場合でもF1で示される定常運転時と同じ量のNOが機関から排出されているのでF3で示される場合でもF1で示される定常運転時と同じ量RBの部分酸化炭化水素を生成させる必要がある。従ってF3で示される場合にはF1で示される定常運転時と同じ量RBの部分酸化炭化水素を生成しうるように噴射圧は高くされ、噴射時間は若干短かくされる。
この第2実施例では定常運転時における噴射圧、即ち基準噴射圧WPに補正値KPを乗算すると共に、定常運転時における噴射時間、即ち基準噴射時間WTに補正値KTを乗算することによって定常運転時と同じ量RBの部分酸化炭化水素を生成しうるように噴射圧および噴射時間が補正される。
この場合、補正値KPは図35Aに示されるように排気浄化触媒13の実際の温度TCと定常運転時における排気浄化触媒13の温度、即ち基準温度TCiとの差(TC−TCi)の関数として予め記憶されており、補正値KTも図35Bに示されるように排気浄化触媒13の実際の温度TCと定常運転時における排気浄化触媒13の温度、即ち基準温度TCiとの差(TC−TCi)の関数として予め記憶されている。
図35Aからわかるように排気浄化触媒13の実際の温度TCが基準温度TCiよりも高いと補正値KPは1.0よりも大きくなるので噴射圧は高くされ、排気浄化触媒13の実際の温度TCが基準温度TCiよりも低いと補正値KPは1.0よりも小さくなるので噴射圧が低くされる。また、図35Bからわかるように排気浄化触媒13の実際温度TCが基準温度TCiよりも高いと補正値KTは1.0よりも小さくなるので噴射時間は短かくされ、排気浄化触媒13の実際の温度TCが基準温度TCiよりも低いと補正値KTは1.0よりも大きくなるので噴射時間が長くされる。図35Aおよび図35Bに示される関係は予めROM32内に記憶されている。
図36に第2実施例を実行するためのNO浄化制御ルーチンを示す。このルーチンは一定時間毎の割込みによって実行される。
図36を参照するとまず初めにステップ80において温度センサ23の出力信号から排気浄化触媒13の温度TCが活性化温度TCを越えているか否かが判別される。TC≧TCのとき、即ち排気浄化触媒13が活性化しているときにはステップ81に進んで第1のNO浄化方法によるNO浄化作用が実行される。
即ち、まず初めにステップ81では図32Bに示されるマップから基準噴射圧WPijが算出される。次いでステップ82では図35Aに示される関係から補正値KPが算出される。次いでステップ83では最終的な目標噴射圧WP(=KP・WPij)が算出され、高圧燃料室16内の燃料圧、即ち噴射圧がこの目標噴射圧WPとなるように加圧ポンプ17が制御される。
次いでステップ84では図33Bに示されるマップから基準噴射時間WTijが算出される。次いでステップ85では図35Bに示される関係から補正値KTが算出される。次いでステップ86では最終的な噴射時間WT(=KT・WTij)が算出される。次いでステップ87ではこの最終的な噴射時間WTに基づいて炭化水素供給弁15からの炭化水素の供給制御が行われる。
一方、ステップ80においてTC<TCであると判断されたときには第2のNO浄化方法を用いるべきであると判断され、ステップ88に進む。ステップ88では図17に示すマップから単位時間当りの排出NO量NOXAが算出される。次いでステップ89ではΣNOXに排出NO量NOXAを加算することによって吸蔵NO量ΣNOXが算出される。次いでステップ90では吸蔵NO量ΣNOXが許容値MAXを越えたか否かが判別される。ΣNOX>MAXになるとステップ91に進んで図19に示すマップから追加の燃料量WRが算出され、追加の燃料の噴射作用が行われる。次いでステップ92ではΣNOXがクリアされる。
これまでの説明からわかるように本発明によれば、機関運転時に排気浄化触媒13に流入する炭化水素の濃度変化の振幅が予め定められた範囲内の振幅となるように炭化水素供給弁15からの炭化水素の噴射時間および噴射圧の少なくとも一方が制御されると共に、排気浄化触媒13に流入する炭化水素の濃度が予め定められた範囲内の周期でもって振動するように炭化水素供給弁15からの炭化水素の噴射周期が制御され、炭化水素の噴射時間のみが制御される場合には同一の機関運転状態における炭化水素の噴射時間は排気浄化触媒13の温度TCが高くなるほど長くされ、炭化水素の噴射圧が制御される場合には同一の機関運転状態における炭化水素の噴射圧は排気浄化触媒13の温度TCが高くなるほど高くされる。
なお、本発明による実施例では、炭化水素の噴射圧が制御される場合には同一の機関運転状態における炭化水素の噴射時間は排気浄化触媒13の温度が高くなるほど短かくされる。
また、本発明についてもう少し具体的に表現すると、機関の定常運転時において排気浄化触媒13に流入する炭化水素の濃度変化の振幅を予め定められた範囲内の振幅としうる炭化水素の噴射時間および噴射圧の少なくとも一方が基準噴射時間WTij又は基準噴射圧WPijとして機関の各運転状態について予め記憶されていると共に、機関の定常運転時における排気浄化触媒13の温度が基準温度TCiとして機関の各運転状態について予め記憶されており、機関運転時に炭化水素の噴射時間のみが制御される場合において排気浄化触媒13の温度が機関の運転状態に応じた基準温度TCiよりも高くなったとときには炭化水素の噴射時間が機関の運転状態に応じた基準噴射時間WTijよりも長くされ、機関運転時に炭化水素の噴射圧が制御される場合において排気浄化触媒13の温度が機関の運転状態に応じた基準温度TCiよりも高くなったときには炭化水素の噴射圧が機関の運転状態に応じた基準噴射圧WPijよりも高くされる。
なお、この場合において、炭化水素の噴射圧が制御される場合には排気浄化触媒13の温度が機関の運転状態に応じた基準温度TCiよりも高くなったときには炭化水素の噴射時間が機関の運転状態に応じた基準噴射時間WTijよりも短かくされる。
なお、機関運転時に炭化水素の噴射時期のみが制御される場合には図25Aに示されるように機関高負荷高回転時における炭化水素の噴射時期が機関低負荷低回転時に比べて長くされる。これに対し、機関運転時に炭化水素の噴射圧が制御される場合には図32Aに示されるように機関高負荷高回転時における炭化水素の噴射圧が機関低負荷低回転時に比べて高くされる。
なお、別の実施例として排気浄化触媒13上流の機関排気通路内に炭化水素を改質させるための酸化触媒を配置することもできる。
  FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
  Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8. A throttle valve 10 driven by a step motor is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.
  On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7. The outlet of the exhaust turbine 7b is connected to the inlet of the exhaust purification catalyst 13 via the exhaust pipe 12, and the outlet of the exhaust purification catalyst 13 is connected to the particulate filter 14 for collecting particulates contained in the exhaust gas. The In the exhaust pipe 12 upstream of the exhaust purification catalyst 13, a hydrocarbon supply valve 15 for supplying hydrocarbons composed of light oil and other fuels used as fuel for the compression ignition internal combustion engine is disposed. In the embodiment shown in FIG. 1, light oil is used as the hydrocarbon supplied from the hydrocarbon supply valve 15. The present invention can also be applied to a spark ignition type internal combustion engine in which combustion is performed under a lean air-fuel ratio. In this case, the hydrocarbon supply valve 15 supplies hydrocarbons made of gasoline or other fuel used as fuel for the spark ignition internal combustion engine.
  As shown in FIG. 1, the hydrocarbon supply valve 15 is connected to a high-pressure fuel chamber 16 filled with high-pressure fuel, and fuel in the fuel tank 18 is connected to the high-pressure fuel chamber 16 via a pressure pump 17. Supplied. The fuel pressure in the high pressure fuel chamber 16 is detected by a fuel pressure sensor 19, and the pressurizing pump 17 determines the fuel pressure in the high pressure fuel chamber 16 based on the output signal of the fuel pressure sensor 19, that is, the injection pressure is the target injection pressure. It is controlled to become. This target injection pressure may be maintained constant regardless of the operating state of the engine, or may be changed according to the operating state of the engine.
  On the other hand, the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 20, and an electronically controlled EGR control valve 21 is disposed in the EGR passage 20. A cooling device 22 for cooling the EGR gas flowing in the EGR passage 20 is disposed around the EGR passage 20. In the embodiment shown in FIG. 1, the engine cooling water is guided into the cooling device 22, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a common rail 24 through a fuel supply pipe 23, and this common rail 24 is connected to a fuel tank 18 through an electronically controlled variable discharge pump 25. The fuel stored in the fuel tank 18 is supplied into the common rail 24 by the fuel pump 25, and the fuel supplied into the common rail 24 is supplied to the fuel injection valve 3 through each fuel supply pipe 23.
  The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. It comprises. A temperature sensor 26 for detecting the temperature of the exhaust purification catalyst 13 is attached downstream of the exhaust purification catalyst 13. Output signals of the temperature sensor 26, the fuel pressure sensor 19 and the intake air amount detector 8 are input to the input port 35 via corresponding AD converters 37, respectively. A load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °. On the other hand, the output port 36 is connected to the fuel injection valve 3, the step motor for driving the throttle valve 10, the hydrocarbon supply valve 15, the EGR control valve 21, and the fuel pump 25 via a corresponding drive circuit 38.
  FIG. 2 schematically shows the surface portion of the catalyst carrier carried on the substrate of the exhaust purification catalyst 13. In this exhaust purification catalyst 13, as shown in FIG. 2, noble metal catalysts 51 and 52 are supported on a catalyst support 50 made of alumina, for example, and further on this catalyst support 50 potassium K, sodium Na, cesium Cs. Alkaline metals such as barium Ba, alkaline earth metals such as calcium Ca, rare earths such as lanthanoids and silver Ag, copper Cu, iron Fe, NO such as iridium IrXA basic layer 53 containing at least one selected from metals capable of donating electrons is formed. Since the exhaust gas flows along the catalyst carrier 50, it can be said that the noble metal catalysts 51 and 52 are supported on the exhaust gas flow surface of the exhaust purification catalyst 13. Further, since the surface of the basic layer 53 is basic, the surface of the basic layer 53 is referred to as a basic exhaust gas flow surface portion 54.
  On the other hand, in FIG. 2, the noble metal catalyst 51 is made of platinum Pt, and the noble metal catalyst 52 is made of rhodium Rh. That is, the noble metal catalysts 51 and 52 carried on the catalyst carrier 50 are composed of platinum Pt and rhodium Rh. In addition to platinum Pt and rhodium Rh, palladium Pd can be further supported on the catalyst carrier 50 of the exhaust purification catalyst 13, or palladium Pd can be supported instead of rhodium Rh. That is, the noble metal catalysts 51 and 52 supported on the catalyst carrier 50 are composed of platinum Pt and at least one of rhodium Rh and palladium Pd.
  When hydrocarbons are injected into the exhaust gas from the hydrocarbon supply valve 15, the hydrocarbons are reformed in the exhaust purification catalyst 13. In the present invention, NO is used in the exhaust purification catalyst 13 by using the reformed hydrocarbon at this time.XTo purify. FIG. 3 schematically shows the reforming action performed in the exhaust purification catalyst 13 at this time. As shown in FIG. 3, the hydrocarbon HC injected from the hydrocarbon feed valve 15 is converted into a radical hydrocarbon HC having a small number of carbons by the catalyst 51.
  FIG. 4 shows the supply timing of hydrocarbons from the hydrocarbon supply valve 15 and changes in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13. Since the change in the air-fuel ratio (A / F) in depends on the change in the concentration of hydrocarbons in the exhaust gas flowing into the exhaust purification catalyst 13, the air-fuel ratio (A / F) in shown in FIG. It can be said that the change represents a change in hydrocarbon concentration. However, since the air-fuel ratio (A / F) in decreases as the hydrocarbon concentration increases, the hydrocarbon concentration increases as the air-fuel ratio (A / F) in becomes richer in FIG.
  FIG. 5 shows a change in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 as shown in FIG. 4 by periodically changing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13. NO by the exhaust purification catalyst 13 whenXThe purification rate is shown for each catalyst temperature TC of the exhaust purification catalyst 13. The inventor has NO over a long period of time.XIn the research course, when the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is vibrated with an amplitude within a predetermined range and a period within a predetermined range, FIG. As shown in Fig. 4, extremely high NO even in a high temperature region of 400 ° C or higher.XIt has been found that a purification rate can be obtained.
  Further, at this time, a large amount of the reducing intermediate containing nitrogen and hydrocarbon continues to be held or adsorbed on the surface of the basic layer 53, that is, on the basic exhaust gas flow surface portion 54 of the exhaust purification catalyst 13. Reducing intermediate is high NOXIt turns out that it plays a central role in obtaining the purification rate. Next, this will be described with reference to FIGS. 6A and 6B. 6A and 6B schematically show the surface portion of the catalyst carrier 50 of the exhaust purification catalyst 13, and in these FIGS. 6A and 6B, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is predetermined. The reaction is shown to be presumed to occur when oscillated with an amplitude within a range and a period within a predetermined range.
  FIG. 6A shows a case where the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is low, and FIG. 6B shows that the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 when hydrocarbons are supplied from the hydrocarbon supply valve 15 is high. It shows when
  As can be seen from FIG. 4, since the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is maintained lean except for a moment, the exhaust gas flowing into the exhaust purification catalyst 13 is usually in an oxygen excess state. Therefore, NO contained in the exhaust gas is oxidized on the platinum 51 as shown in FIG.2And then this NO2Is further oxidized to NO3It becomes. NO2Part of is NO2 It becomes. In this case, NO3The amount of production is NO2 Much more than the amount of product. Therefore, a large amount of NO is present on platinum Pt51.3And a small amount of NO2 Will be generated. These NO3And NO2 Is highly active, and these NO3And NO2 Active NOX *Called.
  On the other hand, when hydrocarbons are supplied from the hydrocarbon supply valve 15, as shown in FIG. 3, the hydrocarbons are reformed in the exhaust purification catalyst 13 and become radicals. As a result, as shown in FIG.X *The surrounding hydrocarbon concentration increases. By the way, active NOX *After NO is generated, active NOX *If the surrounding oxygen concentration is high for more than a certain period of time, active NOX *Is oxidized and nitrate ion NO3 In the basic layer 53. However, the active NOX *When the surrounding hydrocarbon concentration is increased, as shown in FIG.X *Reacts with radical hydrocarbons HC on platinum 51, thereby producing a reducing intermediate. This reducing intermediate is attached or adsorbed on the surface of the basic layer 53.
  Note that the first reducing intermediate produced at this time is the nitro compound R-NO.2It is thought that. This nitro compound R-NO2Is produced, it becomes a nitrile compound R-CN, but this nitrile compound R-CN can only survive for a moment in that state, so it immediately becomes an isocyanate compound R-NCO. When this isocyanate compound R-NCO is hydrolyzed, the amine compound R-NH2It becomes. However, in this case, it is considered that a part of the isocyanate compound R-NCO is hydrolyzed. Therefore, as shown in FIG. 6B, most of the reducing intermediates retained or adsorbed on the surface of the basic layer 53 are the isocyanate compound R-NCO and the amine compound R-NH.2It is thought that.
  On the other hand, as shown in FIG. 6B, when hydrocarbon HC surrounds the generated reducing intermediate, the reducing intermediate is blocked by hydrocarbon HC and the reaction does not proceed further. In this case, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is lowered, and as a result, when the oxygen concentration is increased, the hydrocarbons around the reducing intermediate are oxidized. As a result, as shown in FIG. 6A, the reducing intermediate and the active NOX *Will react. Active NO at this timeX *Is a reducing intermediate R-NCO or R-NH2Reacts with N2, CO2, H2O, so NOXWill be purified.
  In this way, in the exhaust purification catalyst 13, a reducing intermediate is generated by increasing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13, and the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is decreased to reduce the oxygen concentration. By increasing the active NOX *Reacts with reducing intermediates and NOXIs purified. That is, the exhaust purification catalyst 13 makes NO.XIn order to purify, it is necessary to periodically change the concentration of hydrocarbons flowing into the exhaust purification catalyst 13.
  Of course, in this case, it is necessary to increase the concentration of the hydrocarbon to a concentration sufficiently high to produce a reducing intermediate,X *It is necessary to reduce the hydrocarbon concentration to a concentration low enough to react with. That is, it is necessary to vibrate the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 with an amplitude within a predetermined range. In this case, the generated reducing intermediate is active NO.X *Sufficient amounts of reducing intermediates R-NCO and R-NH until2Must be retained on the basic layer 53, that is, on the basic exhaust gas flow surface portion 24. For this purpose, a basic exhaust gas flow surface portion 24 is provided.
  On the other hand, if the supply cycle of the hydrocarbon is lengthened, the period during which the oxygen concentration becomes high after the hydrocarbon is supplied and before the next hydrocarbon is supplied becomes longer, so that the active NO.X *Is absorbed in the basic layer 53 in the form of nitrate without producing a reducing intermediate. In order to avoid this, it is necessary to oscillate the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 with a period within a predetermined range.
  Therefore, in the embodiment according to the present invention, NO contained in the exhaust gas.XReductive intermediates R-NCO and R-NH containing nitrogen and hydrocarbons by reacting with modified hydrocarbons2In order to generate NO, noble metal catalysts 51 and 52 are supported on the exhaust gas flow surface of the exhaust purification catalyst 13, and the generated reducing intermediates R-NCO and R-NH2Is maintained around the noble metal catalyst 51, 52, a basic exhaust gas flow surface portion 54 is formed around the noble metal catalyst 51, 52, and is held on the basic exhaust gas flow surface portion 54. Reducing intermediates R-NCO and R-NH2NOXIs reduced, and the vibration period of the hydrocarbon concentration is reduced by reducing intermediates R-NCO and R-NH.2Is the oscillation period necessary to continue to generate Incidentally, in the example shown in FIG. 4, the injection interval is 3 seconds.
  When the oscillation period of the hydrocarbon concentration, that is, the supply period of the hydrocarbon HC is longer than the period within the above-mentioned predetermined range, the reducing intermediates R-NCO and R-NH are formed from the surface of the basic layer 53.2Disappears, and at this time, the active NO produced on platinum Pt53X *Is nitrate ion NO as shown in FIG. 7A.3 In the form of nitrate in the form of nitrate. That is, at this time, NO in the exhaust gasXWill be absorbed in the basic layer 53 in the form of nitrate.
  On the other hand, FIG.XThis shows a case where the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made the stoichiometric air-fuel ratio or rich when NO is absorbed in the basic layer 53 in the form of nitrate. In this case, the reaction proceeds in the reverse direction (NO3 → NO2), And thus the nitrates absorbed in the basic layer 53 are successively converted to nitrate ions NO.3 And NO as shown in FIG. 7B2From the basic layer 53. Then released NO2Is reduced by hydrocarbons HC and CO contained in the exhaust gas.
  FIG. 8 shows the NO of the basic layer 53XThis shows a case where the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 is temporarily made rich slightly before the absorption capacity is saturated. In the example shown in FIG. 8, the time interval of this rich control is 1 minute or more. In this case, NO absorbed in the basic layer 53 when the air-fuel ratio (A / F) in of the exhaust gas is lean.XIs released from the basic layer 53 and reduced when the air-fuel ratio (A / F) in of the exhaust gas is temporarily made rich. Therefore, in this case, the basic layer 53 is NO.XIt plays the role of an absorbent for temporarily absorbing.
  At this time, the basic layer 53 is NO.XTherefore, if the term occlusion is used as a term including both absorption and adsorption, the basic layer 53 is not NO at this time.XNO for temporary storageXIt plays the role of a storage agent. That is, in this case, if the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the exhaust purification catalyst 13 is referred to as the air-fuel ratio of the exhaust gas, the exhaust purification catalyst. 13 is NO when the air-fuel ratio of the exhaust gas is leanXNO is stored when the oxygen concentration in the exhaust gas decreases.XNO releaseXIt functions as a storage catalyst.
  FIG. 9 shows that the exhaust purification catalyst 13 is thus NO.XNO when functioning as a storage catalystXThe purification rate is shown. The horizontal axis in FIG. 9 indicates the catalyst temperature TC of the exhaust purification catalyst 13. Set the exhaust purification catalyst 13 to NOXWhen functioning as an occlusion catalyst, as shown in FIG. 9, when the catalyst temperature TC is 300 ° C. to 400 ° C., extremely high NOXA purification rate can be obtained, but NO when the catalyst temperature TC reaches 400 ° C or higher.XThe purification rate decreases.
  Thus, when the catalyst temperature TC reaches 400 ° C. or higher, NOXThe purification rate decreases because when the catalyst temperature TC reaches 400 ° C. or higher, the nitrate is thermally decomposed and NO.2This is because it is discharged from the exhaust purification catalyst 13 in the form of. That is, NOXAs long as the catalyst temperature TC is high.XIt is difficult to obtain a purification rate. However, the new NO shown in FIGS. 4 to 6A and 6BXIn the purification method, as can be seen from FIGS. 6A and 6B, nitrate is not generated or is very small even if it is generated. Therefore, even when the catalyst temperature TC is high as shown in FIG.XA purification rate will be obtained.
  Therefore, in the present invention, the hydrocarbon supply valve 15 for supplying hydrocarbons is arranged in the engine exhaust passage, and NO contained in the exhaust gas in the engine exhaust passage downstream of the hydrocarbon supply valve 15.XAn exhaust purification catalyst 13 for reacting the catalyst with the reformed hydrocarbon is disposed. Noble metal catalysts 51 and 52 are supported on the exhaust gas flow surface of the exhaust purification catalyst 13 and around the noble metal catalysts 51 and 52. Is formed with a basic exhaust gas flow surface portion 54, and the exhaust purification catalyst 13 sets the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 within a predetermined range and an amplitude within a predetermined range. When it is vibrated with a period ofXNO and contained in the exhaust gas when the oscillation period of the hydrocarbon concentration is longer than this predetermined range.XAnd the hydrocarbon concentration flowing into the exhaust purification catalyst 13 during engine operation is vibrated with an amplitude within a predetermined range and a period within a predetermined range, As a result, NO contained in the exhaust gasXIs reduced in the exhaust purification catalyst 13.
  That is, the NO shown in FIGS. 4 to 6A and 6B.XThe purification method carries a noble metal catalyst and NO.XIn the case of using an exhaust purification catalyst having a basic layer capable of absorbing NO, NO hardly forms nitrates.XNew NO to purifyXIt can be said that it is a purification method. In fact, this new NOXWhen the purification method is used, the exhaust purification catalyst 13 is set to NO.XCompared with the case where it functions as an occlusion catalyst, the amount of nitrate detected from the basic layer 53 is extremely small. This new NOXThe purification method is hereinafter referred to as the first NO.XThis is called a purification method.
  Next, referring to FIGS. 10 to 15, the first NO.XThe purification method will be described in a little more detail.
  FIG. 10 shows an enlarged view of the change in the air-fuel ratio (A / F) in shown in FIG. As described above, the change in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 indicates the change in the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 at the same time. In FIG. 10, ΔH indicates the amplitude of the change in the concentration of hydrocarbon HC flowing into the exhaust purification catalyst 13, and ΔT indicates the oscillation period of the concentration of hydrocarbon flowing into the exhaust purification catalyst 13.
  Further, in FIG. 10, (A / F) b represents the base air-fuel ratio indicating the air-fuel ratio of the combustion gas for generating the engine output. In other words, the base air-fuel ratio (A / F) b represents the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 when the supply of hydrocarbons is stopped. On the other hand, in FIG. 10, X represents the generated active NO.X *Represents the upper limit of the air-fuel ratio (A / F) in used for the production of the reducing intermediate without being occluded in the basic layer 53 in the form of nitrate,X *It is necessary to make the air-fuel ratio (A / F) in lower than the upper limit X of this air-fuel ratio in order to cause the reduced hydrocarbon to react with the reformed hydrocarbon.
  In other words, X in FIG.X *Represents the lower limit of the hydrocarbon concentration required to produce a reducing intermediate by reacting the modified hydrocarbon with the modified hydrocarbon. It is necessary to make it higher than the lower limit X. In this case, whether or not a reducing intermediate is generated depends on the active NO.X *The ratio between the surrounding oxygen concentration and the hydrocarbon concentration, that is, the air-fuel ratio (A / F) in, is determined by the above-mentioned upper limit X of the air-fuel ratio necessary for generating the reducing intermediate, Called.
  In the example shown in FIG. 10, the required minimum air-fuel ratio X is rich. Therefore, in this case, the air-fuel ratio (A / F) in is instantaneously required to generate the reducing intermediate. The following is made rich: On the other hand, in the example shown in FIG. 11, the required minimum air-fuel ratio X is lean. In this case, the reducing intermediate is generated by periodically reducing the air-fuel ratio (A / F) in while maintaining the air-fuel ratio (A / F) in lean.
  In this case, whether the required minimum air-fuel ratio X becomes rich or lean depends on the oxidizing power of the exhaust purification catalyst 13. In this case, for example, if the amount of the precious metal 51 supported is increased, the exhaust purification catalyst 13 becomes stronger in oxidizing power, and if it becomes more acidic, the oxidizing power becomes stronger. Accordingly, the oxidizing power of the exhaust purification catalyst 13 varies depending on the amount of the precious metal 51 supported and the acidity.
  When the exhaust purification catalyst 13 having a strong oxidizing power is used, the air-fuel ratio (A / F) in is periodically decreased while maintaining the air-fuel ratio (A / F) in lean as shown in FIG. When the air-fuel ratio (A / F) in is lowered, the hydrocarbon is completely oxidized, and as a result, a reducing intermediate cannot be generated. On the other hand, when the exhaust purification catalyst 13 having a strong oxidizing power is used, if the air-fuel ratio (A / F) in is periodically made rich as shown in FIG. 10, the air-fuel ratio (A / F) in is rich. The hydrocarbons are partially oxidized without being completely oxidized, i.e., the hydrocarbons are reformed, thus producing a reducing intermediate. Therefore, when the exhaust purification catalyst 13 having a strong oxidizing power is used, the required minimum air-fuel ratio X needs to be made rich.
  On the other hand, when the exhaust purification catalyst 13 having a weak oxidizing power is used, the air-fuel ratio (A / F) in is periodically decreased while maintaining the air-fuel ratio (A / F) in lean as shown in FIG. In this case, the hydrocarbon is not completely oxidized but partially oxidized, that is, the hydrocarbon is reformed, and thus a reducing intermediate is produced. On the other hand, when the exhaust purification catalyst 13 having a weak oxidizing power is used, if the air-fuel ratio (A / F) in is periodically made rich as shown in FIG. 10, a large amount of hydrocarbons are not oxidized. The exhaust gas is simply exhausted from the exhaust purification catalyst 13, and the amount of hydrocarbons that are wasted is increased. Therefore, when the exhaust purification catalyst 13 having a weak oxidizing power is used, the required minimum air-fuel ratio X needs to be made lean.
  That is, it can be seen that the required minimum air-fuel ratio X needs to be lowered as the oxidizing power of the exhaust purification catalyst 13 becomes stronger, as shown in FIG. As described above, the required minimum air-fuel ratio X becomes lean or rich due to the oxidizing power of the exhaust purification catalyst 13, but the case where the required minimum air-fuel ratio X is rich will be described as an example. The amplitude of the change in the concentration of the inflowing hydrocarbon and the oscillation period of the concentration of the hydrocarbon flowing into the exhaust purification catalyst 13 will be described.
  When the base air-fuel ratio (A / F) b increases, that is, when the oxygen concentration in the exhaust gas before the hydrocarbons are supplied increases, the air-fuel ratio (A / F) in is made equal to or less than the required minimum air-fuel ratio X. As a result, the amount of hydrocarbons necessary for the increase increases, and the amount of excess hydrocarbons that did not contribute to the production of the reducing intermediate also increases. In this case, NOXAs described above, it is necessary to oxidize the surplus hydrocarbons in order to purify the water well.XIn order to purify the water well, a larger amount of excess hydrocarbon requires more oxygen.
  In this case, the amount of oxygen can be increased by increasing the oxygen concentration in the exhaust gas. Therefore NOXIn order to purify the gas well, it is necessary to increase the oxygen concentration in the exhaust gas after the hydrocarbon is supplied when the oxygen concentration in the exhaust gas before the hydrocarbon is supplied is high. That is, it is necessary to increase the amplitude of the hydrocarbon concentration as the oxygen concentration in the exhaust gas before the hydrocarbon is supplied is higher.
  Figure 13 shows the same NOXIt shows the relationship between the oxygen concentration in the exhaust gas before the hydrocarbon is supplied and the amplitude ΔH of the hydrocarbon concentration when the purification rate is obtained. The same NO from FIG.XIt can be seen that in order to obtain the purification rate, it is necessary to increase the amplitude ΔH of the hydrocarbon concentration as the oxygen concentration in the exhaust gas before the hydrocarbon is supplied is higher. That is, the same NOXIn order to obtain the purification rate, it is necessary to increase the amplitude ΔT of the hydrocarbon concentration as the base air-fuel ratio (A / F) b increases. In other words, NOXIn order to purify the gas well, the amplitude ΔT of the hydrocarbon concentration can be reduced as the base air-fuel ratio (A / F) b becomes lower.
  By the way, the base air-fuel ratio (A / F) b becomes the lowest during the acceleration operation. At this time, if the amplitude ΔH of the hydrocarbon concentration is about 200 ppm, NOXCan be purified well. The base air-fuel ratio (A / F) b is usually larger than that during acceleration operation. Therefore, as shown in FIG. 14, when the hydrocarbon concentration amplitude ΔH is 200 ppm or more, good NO is obtained.XA purification rate can be obtained.
  On the other hand, when the base air-fuel ratio (A / F) b is the highest, if the amplitude ΔH of the hydrocarbon concentration is about 10000 ppm, good NOXIt is known that a purification rate can be obtained. Therefore, in the present invention, the predetermined range of the amplitude of the hydrocarbon concentration is set to 200 ppm to 10,000 ppm.
  In addition, when the vibration period ΔT of the hydrocarbon concentration becomes longer, after the hydrocarbon is supplied, the active NO is maintained while the hydrocarbon is supplied next.X *The surrounding oxygen concentration becomes high. In this case, when the vibration period ΔT of the hydrocarbon concentration is longer than about 5 seconds, the active NOX *Will begin to be absorbed in the basic layer 53 in the form of nitrate, and therefore, as shown in FIG. 15, when the vibration period ΔT of the hydrocarbon concentration becomes longer than about 5 seconds, NOXThe purification rate will decrease. Therefore, the vibration period ΔT of the hydrocarbon concentration needs to be 5 seconds or less.
  On the other hand, when the vibration period ΔT of the hydrocarbon concentration becomes approximately 0.3 seconds or less, the supplied hydrocarbon starts to accumulate on the exhaust gas flow surface of the exhaust purification catalyst 13, and therefore, as shown in FIG. When the vibration period ΔT of the motor becomes approximately 0.3 seconds or less, NOXThe purification rate decreases. Therefore, in the present invention, the vibration period of the hydrocarbon concentration is set to be between 0.3 seconds and 5 seconds.
  Next, referring to FIG. 16 to FIG.XNO when functioning as a storage catalystXThe purification method will be specifically described. In this way, the exhaust purification catalyst 13 is changed to NO.XNO when functioning as a storage catalystXThe purification method is hereinafter referred to as the second NO.XThis is called a purification method.
  This second NOXIn the purification method, the occluded NO occluded in the basic layer 53 as shown in FIG.XWhen the amount ΣNOX exceeds a predetermined allowable amount MAX, the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 is temporarily made rich. When the air-fuel ratio (A / F) in of the exhaust gas is made rich, the NO stored in the basic layer 53 when the air-fuel ratio (A / F) in of the exhaust gas is leanXAre released from the basic layer 53 at once and reduced. NOXIs purified.
  Occlusion NOXThe amount ΣNOX is, for example, NO discharged from the engineXCalculated from the quantity. In the embodiment according to the present invention, the emission NO discharged from the engine per unit timeXThe amount NOXA is stored in advance in the ROM 32 as a function of the injection amount Q and the engine speed N in the form of a map as shown in FIG.XFrom NOXA to NOXAn amount ΣNOX is calculated. In this case, as described above, the period during which the air-fuel ratio (A / F) in of the exhaust gas is made rich is usually 1 minute or more.
  This second NOXIn the purification method, as shown in FIG. 18, the air-fuel ratio (A) of the exhaust gas flowing into the exhaust purification catalyst 13 by injecting the additional fuel WR in addition to the combustion fuel Q from the fuel injection valve 3 into the combustion chamber 2. / F) in is made rich. The horizontal axis in FIG. 18 indicates the crank angle. This additional fuel WR is injected when it burns but does not appear as engine output, that is, slightly before ATDC 90 ° after compression top dead center. This fuel amount WR is stored in advance in the ROM 32 as a function of the injection amount Q and the engine speed N in the form of a map as shown in FIG. Of course, the air-fuel ratio (A / F) in of the exhaust gas can be made rich by increasing the amount of hydrocarbons supplied from the hydrocarbon supply valve 15 in this case.
  Now again, the first NOXReturning to the explanation of the purification method, the first NOXNO using the purification methodXAs described above, it is necessary to appropriately control the amplitude ΔH and the vibration period ΔT of the hydrocarbon concentration. That is, the first NOXNO using the purification methodXIn order to purify the gas well, the amplitude ΔH of the hydrocarbon concentration is controlled so that the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 is equal to or less than the required minimum air-fuel ratio X, It is necessary to control the oscillation period ΔT of the concentration between 0.3 seconds and 5 seconds.
  In this case, in the present invention, the vibration period ΔT of the hydrocarbon concentration is controlled to control at least one of the injection time or injection pressure of the hydrocarbon from the hydrocarbon feed valve 15, and the vibration period ΔT of the hydrocarbon concentration is the hydrocarbon. It is controlled by controlling the injection period of hydrocarbons from the supply valve 15.
  By the way, in this case, what is most demanded is a high NO in any operating state.XA purification rate can be obtained, and the supplied hydrocarbon is prevented from passing through the exhaust purification catalyst 13. As a result of repeated studies on this point, the amount of hydrocarbons that are completely oxidized and the amount of hydrocarbons that are partially oxidized in the exhaust purification catalyst 13 are NO.XIt has been found that it controls the purification rate and the amount of hydrocarbon slip-through. Next, this will be described with reference to FIG.
  FIG. 20 shows three injection patterns A, B, and C of hydrocarbons injected from the hydrocarbon supply valve 15 under the same injection pressure and with different injection times. In this case, the injection pattern A has the shortest injection pattern A and the injection pattern C has the longest injection time. Further, FIG. 20 shows a temporal change in the hydrocarbon concentration in the exhaust gas flowing into the exhaust purification catalyst 13 after the injection is performed by the respective injection patterns A, B, and C. Further, FIG. 20 shows the NO when the injection patterns A, B, and C are performed.XThe purification rate and the amount of hydrocarbons that pass through the exhaust purification catalyst 13 are shown.
  Now, when the concentration of hydrocarbons in the exhaust gas flowing into the exhaust purification catalyst 13, that is, the amount of hydrocarbons per unit exhaust gas amount is small, the hydrocarbons are completely oxidized in the exhaust purification catalyst 13. On the other hand, when the concentration of hydrocarbons in the exhaust gas, that is, the amount of hydrocarbons per unit exhaust gas amount increases, all the hydrocarbons cannot be completely oxidized in the exhaust purification catalyst 13. At this time, some hydrocarbons are partially oxidized. Thus, the hydrocarbon concentration in the exhaust gas has a limit at which all the hydrocarbons are completely oxidized in the exhaust purification catalyst 13, and this limit is indicated by XA in FIG.
  That is, in FIG. 20, when the hydrocarbon concentration is lower than the limit XA, all the hydrocarbons are completely oxidized. Therefore, in FIG. 20, all hydrocarbons are completely oxidized in the hatching region RA below the limit XA. become. In this case, the area of the hatching region RA represents the amount of hydrocarbons, and therefore, the amount of hydrocarbons corresponding to the hatching region RA is completely oxidized. Hereinafter, this limit RA is referred to as a complete oxidation limit.
  On the other hand, in FIG. 20, in the region RB above the complete oxidation limit RA, the exhaust purification catalyst 13 performs a partial oxidation action of hydrocarbons. In this case, in FIG. 20, the hatched region RB represents the amount of hydrocarbons that are partially oxidized. Since the reducing intermediate is produced from the partially oxidized hydrocarbon, the first NO is generated by the partially oxidized hydrocarbon.XNO by purification methodXThe purifying action is performed. Actually, a part of the partially oxidized hydrocarbon is oxidized without being used for the production of the reducing intermediate, and the reducing intermediate is produced by the remaining partially oxidized hydrocarbon.
  On the other hand, if the concentration of hydrocarbons in the exhaust gas flowing into the exhaust purification catalyst 13, that is, the amount of hydrocarbons per unit exhaust gas amount is further increased, some of the hydrocarbons are not completely oxidized in the exhaust purification catalyst 13. In this case, some hydrocarbons that are not oxidized pass through the exhaust purification catalyst 13. The limit of hydrocarbons that cause this hydrocarbon slip-through is indicated by XB in FIG. 20, and this limit XB is hereinafter referred to as a slip-through limit. In FIG. 20, the hatching region RC above the slip-through limit XB represents the amount of passing through hydrocarbons.
  NO contained in exhaust gasXThe first NOXIn order to purify using the purification method, NO contained in the exhaust gasXIf a sufficient amount of hydrocarbon is required to be partially oxidized with respect to the amount, and if the amount of partially oxidized hydrocarbon RB is insufficient, NOXThe purification rate will decrease. The injection pattern A in FIG. 20 shows a case where the amount of hydrocarbon RB to be partially oxidized is insufficient as described above. In this case, as shown in FIG.XThe purification rate will decrease.
  On the other hand, the injection pattern B in FIG. 20 shows a case where the injection time is made longer than that of the injection pattern A in order to increase the amount of partially oxidized hydrocarbon RB. As shown in FIG. 20, NO is increased as the amount of hydrocarbons RB partially oxidized increases as the injection time is increased.XThe purification rate increases. Note that FIG. 20 shows a case where the hydrocarbon amount RB partially oxidized is slightly insufficient even in the injection pattern B.
  In FIG. 20, an injection pattern C shows a case where the injection time is further increased as compared with the injection pattern B in order to further increase the amount of hydrocarbons RB that are partially oxidized. In this case, as shown in FIG.XThe purification rate is improved. In this case, however, the hydrocarbon concentration exceeds the slip-through limit XB, so that hydrocarbon slip-through occurs.
  1st NOXNO by purification methodXWhen performing the purification action, it is necessary to prevent the hydrocarbons from slipping through. Therefore, in the present invention, the injection pattern B in which the peak of the hydrocarbon concentration is the slip-through limit XB is used in the example shown in FIG. . Of course, as shown in the injection pattern A, NO is sufficiently high even if the peak of the hydrocarbon concentration does not reach the slip-through limit XB.XWhen the purification rate is obtained, the injection pattern A is used. That is, in the present invention, either the injection pattern A or the injection pattern B is used.
  When the temperature of the exhaust purification catalyst 13 increases, the amount of hydrocarbons oxidized per unit time in the exhaust purification catalyst 13 increases, that is, the oxidation rate for hydrocarbons increases, and as a result, the temperature of the exhaust purification catalyst 13 increases. The complete oxidation limit XA increases. On the other hand, when the temperature of the exhaust purification catalyst 13 rises, hydrocarbons that have passed through before the temperature rises are partially oxidized, and the slip-through limit XB also rises. That is, when the temperature of the exhaust purification catalyst 13 rises, both the complete oxidation limit XA and the slip-through limit XB rise. Therefore, the first NOXNO by purification methodXTherefore, it is necessary to control the injection of hydrocarbons in consideration of this.
  21 to 28 show a first embodiment in which hydrocarbon injection control is performed in consideration of this fact. In this first embodiment, the injection pressure is kept constant, and the injection amount of hydrocarbons is controlled by controlling the injection time under the constant injection pressure.
  First, FIG. 21 will be described. FIG. 21 shows the temperature TC of the exhaust purification catalyst 13 during steady operation.1, TC2, TC3(TC3> TC2> TC1) Shows a typical example. In FIG. 21, the vertical axis Q indicates the amount of fuel injected into the combustion chamber 2, and the horizontal axis indicates the engine speed. As can be seen from FIG. 21, when the engine speed N is the same, the temperature of the exhaust purification catalyst 13 increases as the fuel injection amount Q increases, that is, as the engine load increases, and when the fuel injection amount Q is the same. That is, when the engine load is the same, the temperature of the exhaust purification catalyst 13 slightly decreases as the engine speed N increases, that is, as the intake air amount increases.
  Thus, the temperature of the exhaust purification catalyst 13 changes according to the operating state of the engine. On the other hand, NO discharged from the engine per unit timeXThe amount increases as the engine load increases and increases as the engine speed increases. Accordingly, the hydrocarbon injection time is determined taking these into consideration.
  FIG. 22 shows E in FIG.0, F1, F2In other words, the injection pattern at the time of steady operation with different loads at the same rotational speed is shown. That is, under the same rotational speed, the temperature of the exhaust purification catalyst 13 increases as the load increases, and thus the complete oxidation limit XA and the slip-through limit XB also increase. On the other hand, the higher the load at the same engine speed, the more NOx emitted from the engine.XTherefore, the amount of partially oxidized hydrocarbon RB needs to be increased as the load increases. Therefore, at this time, in the first embodiment, as shown in FIG. 22, the injection time is increased as the load increases so that the peak of the hydrocarbon concentration becomes the slip-through limit XB.
  FIG. 23 shows an E of FIG.0, G1, G2In other words, the injection pattern during steady operation at the same load and at different rotational speeds is shown. That is, under the same load, the temperature of the exhaust purification catalyst 13 becomes slightly lower as the rotational speed becomes higher, and therefore the complete oxidation limit XA and the slip-through limit XB become slightly lower. On the other hand, the higher the number of revolutions under the same load, the more NOx emitted from the engine per unit time.XAccordingly, the amount of partially oxidized hydrocarbon RB needs to be increased as the rotational speed increases.
  On the other hand, the higher the rotation speed, the higher the flow rate of the exhaust gas, and the injected hydrocarbons are dispersed in a large amount of exhaust gas. Therefore, as shown in FIG.XThe peak of the hydrocarbon concentration when the amount of partially oxidized hydrocarbon necessary for purification is reduced decreases as the rotational speed increases. In this first embodiment, NOXAs the rotational speed increases, the injection time is lengthened so that the amount of partially oxidized hydrocarbons necessary for the purification can be generated.
  FIG. 24 shows E in FIG.0, H1, H2The injection pattern at the time of steady operation in is shown. That is, the higher the rotational speed and the load, the higher the temperature of the exhaust purification catalyst 13, and thus the higher the complete oxidation limit XA and the slip-through limit XB. On the other hand, the higher the engine speed and load, the more exhaust NO from the engine per unit time.XTherefore, it is necessary to increase the amount RB of partially oxidized hydrocarbons as the rotational speed and load increase. Therefore, in the first embodiment, as shown in FIG.XAs the rotational speed and load are increased, the injection time is lengthened so that the amount of partially oxidized hydrocarbons necessary for purification can be generated.
  FIG. 25A shows NO during steady operation.XThe equal injection time line which can produce | generate the amount of partial oxidation hydrocarbons required for purification | cleaning is shown. As can be seen from FIG. 25A, the hydrocarbon injection time increases as the fuel injection amount Q increases, that is, as the engine load increases, and increases as the engine speed N increases. The injection time WT is stored in advance in the ROM 32 in the form of a map as shown in FIG. 25B as a function of the fuel injection amount Q and the engine speed N. Similarly, the vibration amplitude ΔT of the optimum hydrocarbon concentration, that is, the hydrocarbon injection period ΔT, is also stored in the ROM 32 in advance in the form of a map as a function of the injection amount Q and the engine speed N.
  When hydrocarbons are injected from the hydrocarbon supply valve 15 during the engine steady operation with the injection time WTij shown in FIGS. 25A and 25B, NO.XIs well purified. That is, the injection time Wij shown in FIGS. 25A and 25B is equal to the first NO.XGood NO by purification methodXTherefore, the injection time WTij shown in FIGS. 25A and 25B is hereinafter referred to as a reference injection time.
  Thus, during engine steady operation, the first NO is obtained by setting the injection time to the reference injection time WTij shown in FIGS. 25A and 25B.XGood NO by purification methodXPurifying action can be performed. However, if the injection time is set to the reference injection time Wij determined from the engine operating state during transient operation, NO.XThe purification rate is reduced, or hydrocarbon slip-through occurs. Next, this will be described with reference to FIG.
  The portion I in FIG. 26 is the same as that in FIG. 24. Therefore, the portion E in FIG.0, H1, H2NO is good when steady operation is performed inXInjection pattern E with high purification rate0, H1, H2It is shown. On the other hand, the portion II in FIG. 26 has a point E in FIG.0To point H1When the engine operating state changes, the injection pattern E is shown in the portion I of FIG.0To injection pattern H1And the point H in FIG.2To point H1When the engine operating state changes, the injection pattern H is shown in the part I of FIG.2To injection pattern H1Is shown.
  In FIG.0When the steady operation is performed at the point, the temperature of the exhaust purification catalyst 13 is low, and in FIG.1When the steady operation is performed at the point, the temperature of the exhaust purification catalyst 13 becomes high. However, the engine operating condition is E in FIG.0From point H1Even if the temperature changes to the point, the temperature of the exhaust purification catalyst 13 does not immediately increase. Therefore, at this time, the complete oxidation limit XA and the slip-through limit XB are substantially the height at the point E. Therefore, the engine operating state is H1Injection pattern H when point1Thus, when the injection is performed, (E0→ H1), The amount of partially oxidized hydrocarbon RB is NO.XThis is a sufficient amount for the purification of water, but the slip-through amount RC is considerably increased. That is, at this time, hydrocarbons pass through.
  On the other hand, H in FIG.2When the steady operation is performed at this point, the temperature of the exhaust purification catalyst 13 is further increased. However, in this case, the engine operating state is H in FIG.2From point H1Even if the temperature changes to the point, the temperature of the exhaust purification catalyst 13 does not immediately decrease. Therefore, at this time, the complete oxidation limit XA and the slip-through limit XB are almost H.2It is the height of the point. Therefore, the engine operating state is H1Injection pattern H when point1Thus, when the injection is performed, (H2→ H1), The hydrocarbon concentration peak is below the complete oxidation limit XA. At this time, therefore, all hydrocarbons are completely oxidized and NO.XNo purifying action will be performed.
  Therefore, in the present invention, even in such a transient state, NO is satisfactorily obtained.XThe hydrocarbon injection time is corrected in accordance with the temperature of the exhaust purification catalyst 13 so that the gas can be purified. Next, this will be described with reference to FIG.
  FIG. 27 shows that the operating state of the engine is point H in FIG.1In FIG. 27.1Is point H1The injection pattern when steady operation is performed is shown. Steady operation is performed and injection pattern H1So when hydrocarbons are being injected, NOXA sufficient amount of RB partially oxidized hydrocarbons is produced to purify the gas, and therefore NOXIs well purified.
  On the other hand, the operating state of the engine is, for example, E in FIG.0From point H1When the point is changed to the point, as described above, the temperature of the exhaust purification catalyst 13 is low, so that the complete oxidation limit XA and the slip-through limit XB are low as indicated by F2 in FIG. However, even in this case, the same amount of NO as in steady operation indicated by F1 is used.XIs emitted from the engine, it is necessary to generate the partially oxidized hydrocarbon of the same amount RB as in the steady operation indicated by F1 even when indicated by F2. Therefore, in the case indicated by F2, the injection time is shortened so that the same amount RB of partially oxidized hydrocarbons as in the steady operation indicated by F1 can be generated.
  On the other hand, the operating state of the engine is, for example, H in FIG.2From point H1When the point is changed to the point, as described above, the temperature of the exhaust purification catalyst 13 is high, so that the complete oxidation limit XA and the slip-through limit XB are high as indicated by F3 in FIG. However, even in this case, the same amount of NO as in steady operation indicated by F1 is used.XIs emitted from the engine, it is necessary to generate the partially oxidized hydrocarbon of the same amount RB as in the steady operation indicated by F1 even when indicated by F3. Therefore, in the case indicated by F3, the injection time is extended so that the same amount RB of partially oxidized hydrocarbons as in the steady operation indicated by F1 can be generated.
  In the first embodiment according to the present invention, the injection time in the steady operation, that is, the injection time so that the reference injection time WT is multiplied by the correction value K to generate the partially oxidized hydrocarbon of the same amount RB as in the steady operation. It is corrected. As shown in FIG. 28, this correction value K is stored in advance as a function of the difference (TC-TCi) between the actual temperature TC of the exhaust purification catalyst 13 and the temperature of the exhaust purification catalyst 13 during steady operation, that is, the reference temperature TCi. Has been.
  As can be seen from FIG. 28, when the actual temperature TC of the exhaust purification catalyst 13 is the temperature of the exhaust purification catalyst 13 during steady operation, that is, the reference temperature TCi, the correction value K = 1.0, so the injection time at this time is The reference injection time WT during steady operation is used. On the other hand, when the temperature TC of the exhaust purification catalyst 13 is higher than the reference temperature TCi, the correction value K becomes larger than 1.0, so the injection time is lengthened, and the temperature TC of the exhaust purification catalyst 13 is higher than the reference temperature TCi. If it is low, the correction value K is smaller than 1.0, so the injection time is shortened. Note that the relationship between the correction value K and the temperature difference (TC−TCi) can be the same as that shown in FIG. 28 for all operating states, or the correction value K and the temperature difference ( It is also possible to obtain the relationship with TC-TCi) and use the relationship between the correction value K corresponding to the operating state and the temperature difference (TC-TCi).
  A typical reference temperature of the exhaust purification catalyst 13 during steady operation is TC in FIG.1, TC2, TC3The reference temperature TCi in each operating state is stored in the ROM 32 in advance. The actual temperature TC of the exhaust purification catalyst 13 is detected by the temperature sensor 26.
  NO in FIG.XThe purification control routine is shown. This routine is executed by interruption every predetermined time.
  Referring to FIG. 29, first, at step 60, the temperature TC of the exhaust purification catalyst 13 is determined from the output signal of the temperature sensor 23 to the activation temperature TC.0It is discriminated whether or not it exceeds. TC ≧ TC0In other words, when the exhaust purification catalyst 13 is activated, the routine proceeds to step 61 where the first NOXNO by purification methodXA purification action is performed.
  That is, first, at step 61, the reference injection time WTij is calculated from the map shown in FIG. 25B. Next, at step 62, the correction value K is calculated from the relationship shown in FIG. Next, at step 63, the final injection time WT (= K · WTij) is calculated. Next, at step 64, hydrocarbon supply control from the hydrocarbon supply valve 15 is performed based on this final injection time WT.
  On the other hand, in step 60, TC <TC0When it is determined that the second NOXIt is determined that the purification method should be used, and the process proceeds to step 65. In step 65, the discharge NO per unit time is determined from the map shown in FIG.XThe quantity NOXA is calculated. Next, at step 66, NO is discharged to ΣNOX.XOcclusion NO by adding the amount NOXAXAn amount ΣNOX is calculated. Next, in step 67, NO is stored.XIt is determined whether or not the amount ΣNOX exceeds the allowable value MAX. When ΣNOX> MAX, the routine proceeds to step 68 where the additional fuel amount WR is calculated from the map shown in FIG. 19 and the additional fuel injection action is performed. Next, at step 69, ΣNOX is cleared.
  Next, a second embodiment according to the present invention will be described with reference to FIGS. In the second embodiment, the injection pressure is controlled in addition to the injection time when the hydrocarbon injection control from the hydrocarbon supply valve 15 is performed. More specifically, the hydrocarbon injection time and injection pressure are controlled so that the peak of the hydrocarbon concentration coincides with the slip-through limit XB while ensuring the partially oxidized hydrocarbon amount RB required according to the operating state of the engine. Is done.
  Now, E in FIG.0, F1, F2Then, as shown in FIG. 22, the peak of the hydrocarbon concentration is made to coincide with the slip-through limit XB by changing only the injection time. Therefore, in this case, the injection pressure is not particularly changed.
  In contrast, E in FIG.0, G1, G2Then, as shown in FIG. 23, even if only the injection time is changed, the peak of the hydrocarbon concentration does not reach the slip-through limit XB. Therefore, in the second embodiment, E in FIG.0, G1, G2Then, as shown in FIG. 30, the injection pressure increases as the engine speed increases so that the peak of the hydrocarbon concentration matches the slip-through limit XB. On the other hand, when the injection pressure is increased, the injection time required to secure the required partial oxidation amount RB becomes short. For example, this is shown in FIG.2And G in FIG.2It can be understood by comparing with.
  FIG. 31 shows E in FIG.0, H1, H2The injection pattern at the time of normal operation in is shown. It can be seen from FIG. 31 that in the second embodiment, the injection pressure increases as the engine speed and load increase. Also, as can be seen from comparison with FIG.1, H2In that respect, the injection time is shorter. When the injection time is shortened, the amount of hydrocarbons that are completely oxidized is reduced, so that there is an advantage that fuel consumption can be improved.
  NO during steady operationXFIGS. 32A and 33A show an equal injection pressure line WP and an equal injection time line WT, respectively, that can generate a partially oxidized hydrocarbon in an amount necessary for the purification. As can be seen from FIGS. 32A and 33A, the injection pressure WP and the injection time WT of hydrocarbon increase as the fuel injection amount Q increases, that is, as the engine load increases, and increases as the engine speed N increases. The injection pressure WP and the injection time WT are stored in advance in the ROM 32 in the form of maps as shown in FIGS. 32B and 33B as functions of the fuel injection amount Q and the engine speed N, respectively. Similarly, the vibration amplitude ΔT of the optimum hydrocarbon concentration, that is, the hydrocarbon injection period ΔT, is also stored in the ROM 32 in advance in the form of a map as a function of the injection amount Q and the engine speed N.
  When hydrocarbons are injected from the hydrocarbon supply valve 15 during the steady operation of the engine with the injection pressure WPij shown in FIG. 32B and the injection time WTij shown in 33B, NO.XIs well purified. That is, the injection pressure WPij and the injection time Wij shown in FIGS. 32B and 33B are respectively the first NO.XGood NO by purification methodXThe injection pressure and the injection time, which are the reference for purifying the gas, are shown. Therefore, hereinafter, the injection pressure WPij shown in FIG. 32B is referred to as a reference injection pressure, and the injection time WTij shown in FIG. 33B is referred to as a reference injection time.
  Thus, at the time of engine steady operation, the first NO is obtained by setting the injection pressure to the reference injection pressure Wij shown in FIG. 32B and the injection time to the reference injection time WTij shown in FIG. 33B.XGood NO by purification methodXPurifying action can be performed. However, if the injection pressure and the injection time are set to the reference injection pressure WPij and the reference injection time Wij determined by the engine during transient operation, respectively, NOXThe purification rate is reduced, or hydrocarbon slip-through occurs.
  Therefore, in the present invention, even in such a transient state, NO is satisfactorily obtained.XThe hydrocarbon injection pressure and the injection time are corrected in accordance with the temperature of the exhaust purification catalyst 13 so that the gas can be purified. Next, this will be described with reference to FIG.
  FIG. 34 shows that the operating state of the engine is point H in FIG.1Is shown in FIG.1Is point H1The injection pattern when steady operation is performed is shown. Steady operation is performed and injection pattern H1So when hydrocarbons are being injected, NOXA sufficient amount of RB partially oxidized hydrocarbons is produced to purify the gas, and therefore NOXIs well purified.
  On the other hand, the operating state of the engine is, for example, E in FIG.0From point H1When the point is changed to a point, the temperature of the exhaust purification catalyst 13 is low, so that the complete oxidation limit XA and the slip-through limit XB are low as indicated by F2 in FIG. However, even in this case, the same amount of NO as in steady operation indicated by F1 is used.XIs emitted from the engine, it is necessary to generate the partially oxidized hydrocarbon of the same amount RB as in the steady operation indicated by F1 even when indicated by F2. Therefore, in the case indicated by F2, the injection pressure is lowered so that the same amount RB of partially oxidized hydrocarbons as in the steady operation indicated by F1 can be generated, and the injection time is slightly increased.
  On the other hand, the operating state of the engine is, for example, H in FIG.2From point H1When the point is changed to a point, the temperature of the exhaust purification catalyst 13 is high, so that the complete oxidation limit XA and the slip-through limit XB are high as indicated by F3 in FIG. However, even in this case, the same amount of NO as in steady operation indicated by F1 is used.XIs emitted from the engine, it is necessary to generate the partially oxidized hydrocarbon of the same amount RB as in the steady operation indicated by F1 even when indicated by F3. Therefore, in the case indicated by F3, the injection pressure is increased and the injection time is slightly shortened so that the same amount RB of partially oxidized hydrocarbons as in the steady operation indicated by F1 can be generated.
  In the second embodiment, the injection pressure during steady operation, that is, the reference injection pressure WP is multiplied by the correction value KP, and the injection time during steady operation, that is, the reference injection time WT is multiplied by the correction value KT. The injection pressure and the injection time are corrected so as to produce the same amount of partially oxidized hydrocarbon RB as the time.
  In this case, as shown in FIG. 35A, the correction value KP is a function of the difference (TC-TCi) between the actual temperature TC of the exhaust purification catalyst 13 and the temperature of the exhaust purification catalyst 13 during steady operation, that is, the reference temperature TCi. As shown in FIG. 35B, the correction value KT is also stored in advance, and the difference between the actual temperature TC of the exhaust purification catalyst 13 and the temperature of the exhaust purification catalyst 13 during steady operation, that is, the reference temperature TCi (TC-TCi). As a function of
  As can be seen from FIG. 35A, when the actual temperature TC of the exhaust purification catalyst 13 is higher than the reference temperature TCi, the correction value KP becomes larger than 1.0, so that the injection pressure is increased and the actual temperature TC of the exhaust purification catalyst 13 is increased. Is lower than the reference temperature TCi, the correction value KP is smaller than 1.0, so the injection pressure is lowered. Further, as can be seen from FIG. 35B, when the actual temperature TC of the exhaust purification catalyst 13 is higher than the reference temperature TCi, the correction value KT becomes smaller than 1.0, so the injection time is shortened, and the actual exhaust purification catalyst 13 is actually reduced. When the temperature TC is lower than the reference temperature TCi, the correction value KT becomes larger than 1.0, so that the injection time is lengthened. The relationship shown in FIGS. 35A and 35B is stored in the ROM 32 in advance.
  FIG. 36 shows NO for executing the second embodiment.XThe purification control routine is shown. This routine is executed by interruption every predetermined time.
  36, first, at step 80, the temperature TC of the exhaust purification catalyst 13 is determined from the output signal of the temperature sensor 23 to the activation temperature TC.0It is discriminated whether or not it exceeds. TC ≧ TC0In other words, when the exhaust purification catalyst 13 is activated, the routine proceeds to step 81 where the first NOXNO by purification methodXA purification action is performed.
  That is, first, at step 81, the reference injection pressure WPij is calculated from the map shown in FIG. 32B. Next, at step 82, a correction value KP is calculated from the relationship shown in FIG. 35A. Next, at step 83, the final target injection pressure WP (= KP · WPij) is calculated, and the pressure pump 17 is controlled so that the fuel pressure in the high-pressure fuel chamber 16, that is, the injection pressure becomes the target injection pressure WP. The
  Next, at step 84, the reference injection time WTij is calculated from the map shown in FIG. 33B. Next, at step 85, the correction value KT is calculated from the relationship shown in FIG. 35B. Next, at step 86, the final injection time WT (= KT · WTij) is calculated. Next, at step 87, hydrocarbon supply control from the hydrocarbon supply valve 15 is performed based on this final injection time WT.
  On the other hand, in step 80, TC <TC0When it is determined that the second NOXIt is determined that the purification method should be used, and the process proceeds to step 88. In step 88, the discharge NO per unit time is determined from the map shown in FIG.XThe quantity NOXA is calculated. Next, at step 89, NO is discharged to ΣNOX.XOcclusion NO by adding the amount NOXAXAn amount ΣNOX is calculated. Next, at step 90, NO is stored.XIt is determined whether or not the amount ΣNOX exceeds the allowable value MAX. When ΣNOX> MAX, the routine proceeds to step 91 where the additional fuel amount WR is calculated from the map shown in FIG. 19 and the additional fuel injection action is performed. Next, at step 92, ΣNOX is cleared.
  As can be seen from the above description, according to the present invention, from the hydrocarbon feed valve 15, the amplitude of the change in the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 during engine operation becomes an amplitude within a predetermined range. From the hydrocarbon feed valve 15, at least one of the hydrocarbon injection time and the injection pressure is controlled and the concentration of the hydrocarbon flowing into the exhaust purification catalyst 13 oscillates with a period within a predetermined range. When the hydrocarbon injection cycle is controlled and only the hydrocarbon injection time is controlled, the hydrocarbon injection time in the same engine operating state is increased as the temperature TC of the exhaust purification catalyst 13 becomes higher. When the injection pressure of the exhaust gas is controlled, the injection pressure of hydrocarbons in the same engine operating state is increased as the temperature TC of the exhaust purification catalyst 13 increases.
  In the embodiment according to the present invention, when the injection pressure of hydrocarbon is controlled, the injection time of hydrocarbon in the same engine operating state is shortened as the temperature of the exhaust purification catalyst 13 becomes higher.
  More specifically, the present invention can be expressed in more detail with respect to the hydrocarbon injection time and the injection in which the amplitude of the change in the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 during steady operation of the engine can be set to an amplitude within a predetermined range. At least one of the pressures is stored in advance for each operating state of the engine as a reference injection time WTij or a reference injection pressure WPij, and the temperature of the exhaust purification catalyst 13 during steady operation of the engine is set as a reference temperature TCi for each operating state of the engine. Is stored in advance, and when only the hydrocarbon injection time is controlled during engine operation, when the temperature of the exhaust purification catalyst 13 becomes higher than the reference temperature TCi corresponding to the operation state of the engine, the hydrocarbon injection time Is longer than the reference injection time WTij according to the operating state of the engine, and the hydrocarbon injection pressure during engine operation Temperature of the exhaust purification catalyst 13 is higher than the reference injection pressure WPij the injection pressure of hydrocarbons in accordance with the operating state of the engine when it is higher than the reference temperature TCi in accordance with the operating state of the engine when being controlled.
  In this case, when the injection pressure of hydrocarbons is controlled, when the temperature of the exhaust purification catalyst 13 becomes higher than the reference temperature TCi corresponding to the operation state of the engine, the injection time of hydrocarbons is the operation of the engine. It is made shorter than the reference injection time WTij according to the state.
  When only the hydrocarbon injection timing is controlled during engine operation, as shown in FIG. 25A, the hydrocarbon injection timing at the time of engine high load high rotation is made longer than that at the time of engine low load low rotation. On the other hand, when the hydrocarbon injection pressure is controlled during engine operation, as shown in FIG. 32A, the hydrocarbon injection pressure during engine high load high rotation is made higher than during engine low load low rotation.
  As another embodiment, an oxidation catalyst for reforming hydrocarbons may be disposed in the engine exhaust passage upstream of the exhaust purification catalyst 13.

4…吸気マニホルド
5…排気マニホルド
7…排気ターボチャージャ
12…排気管
13…排気浄化触媒
14…パティキュレートフィルタ
15…炭化水素供給弁
4 ... Intake manifold 5 ... Exhaust manifold 7 ... Exhaust turbocharger 12 ... Exhaust pipe 13 ... Exhaust purification catalyst 14 ... Particulate filter 15 ... Hydrocarbon supply valve

Claims (9)

炭化水素を供給するための炭化水素供給弁を機関排気通路内に配置し、炭化水素供給弁下流の機関排気通路内に排気ガス中に含まれるNOと改質された炭化水素とを反応させるための排気浄化触媒を配置し、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、該排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOを還元する性質を有すると共に、該炭化水素濃度の振動周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOの吸蔵量が増大する性質を有しており、機関運転時に排気浄化触媒に流入する炭化水素の濃度変化の振幅が該予め定められた範囲内の振幅となるように炭化水素供給弁からの炭化水素の噴射時間および噴射圧の少なくとも一方が制御されると共に、排気浄化触媒に流入する炭化水素の濃度が予め定められた範囲内の周期でもって振動するように炭化水素供給弁からの炭化水素の噴射周期が制御され、該炭化水素の噴射時間のみが制御される場合には同一の機関運転状態における該炭化水素の噴射時間は排気浄化触媒の温度が高くなるほど長くされ、該炭化水素の噴射圧が制御される場合には同一の機関運転状態における該炭化水素の噴射圧は排気浄化触媒の温度が高くなるほど高くされる内燃機関の排気浄化装置。A hydrocarbon supply valve for supplying hydrocarbons is arranged in the engine exhaust passage, and NO X contained in the exhaust gas reacts with the reformed hydrocarbon in the engine exhaust passage downstream of the hydrocarbon supply valve. An exhaust purification catalyst is disposed, and a noble metal catalyst is supported on the exhaust gas flow surface of the exhaust purification catalyst, and a basic exhaust gas flow surface portion is formed around the noble metal catalyst, exhaust purifying catalyst property for reducing the NO X contained as to oscillate with a period in the amplitude and a predetermined range within a determined range the concentration of hydrocarbons flowing into the exhaust purification catalyst in advance in the exhaust gas together with a, a vibration period of the hydrocarbon concentration has a property of absorbing the amount of NO X contained in the exhaust gas to be longer than the range defined the advance is increased, the exhaust purification catalyst at the time of engine operation At least one of the injection time and injection pressure of the hydrocarbon from the hydrocarbon feed valve is controlled so that the amplitude of the concentration change of the incoming hydrocarbon becomes an amplitude within the predetermined range, and the exhaust purification catalyst When the hydrocarbon injection cycle from the hydrocarbon feed valve is controlled so that the concentration of the inflowing hydrocarbon vibrates with a cycle within a predetermined range, and only the hydrocarbon injection time is controlled. The hydrocarbon injection time in the same engine operating state is increased as the temperature of the exhaust purification catalyst becomes higher, and when the hydrocarbon injection pressure is controlled, the hydrocarbon injection pressure in the same engine operating state is An exhaust purification device for an internal combustion engine, which is increased as the temperature of the exhaust purification catalyst increases. 該炭化水素の噴射圧が制御される場合には同一の機関運転状態における該炭化水素の噴射時間は排気浄化触媒の温度が高くなるほど短かくされる請求項1に記載の内燃機関の排気浄化装置。  2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein when the injection pressure of the hydrocarbon is controlled, the injection time of the hydrocarbon in the same engine operating state is shortened as the temperature of the exhaust gas purification catalyst becomes higher. 機関の定常運転時において排気浄化触媒に流入する炭化水素の濃度変化の振幅を上記予め定められた範囲内の振幅としうる上記炭化水素の噴射時間および噴射圧の少なくとも一方が基準噴射時間又は基準噴射圧として機関の各運転状態について予め記憶されていると共に、機関の定常運転時における排気浄化触媒の温度が基準温度として機関の各運転状態について予め記憶されており、機関運転時に該炭化水素の噴射時間のみが制御される場合において排気浄化触媒の温度が機関の運転状態に応じた基準温度よりも高くなったときには該炭化水素の噴射時間が機関の運転状態に応じた基準噴射時間よりも長くされ、機関運転時に該炭化水素の噴射圧が制御される場合において排気浄化触媒の温度が機関の運転状態に応じた基準温度よりも高くなったときには該炭化水素の噴射圧が機関の運転状態に応じた基準噴射圧よりも高くされる請求項1に記載の内燃機関の排気浄化装置。  At least one of the hydrocarbon injection time and the injection pressure, which can set the amplitude of the change in the concentration of the hydrocarbon flowing into the exhaust purification catalyst during the steady operation of the engine within the predetermined range, is the reference injection time or the reference injection. The pressure is stored in advance for each operating state of the engine, and the temperature of the exhaust purification catalyst during the steady operation of the engine is stored in advance as the reference temperature for each operating state of the engine. When only the time is controlled, when the temperature of the exhaust purification catalyst becomes higher than the reference temperature corresponding to the operating state of the engine, the injection time of the hydrocarbon is made longer than the reference injection time corresponding to the operating state of the engine. When the injection pressure of the hydrocarbon is controlled during engine operation, the temperature of the exhaust purification catalyst is higher than the reference temperature according to the operation state of the engine An exhaust purification system of an internal combustion engine according to claim 1 in which the injection pressure of the hydrocarbon is higher than the reference injection pressure in accordance with the operating state of the engine when the Tsu. 該炭化水素の噴射圧が制御される場合に排気浄化触媒の温度が機関の運転状態に応じた基準温度よりも高くなったときには該炭化水素の噴射時間が機関の運転状態に応じた基準噴射時間よりも短かくされる請求項3に記載の内燃機関の排気浄化装置。  When the injection pressure of the hydrocarbon is controlled, when the temperature of the exhaust purification catalyst becomes higher than the reference temperature corresponding to the operating state of the engine, the injection time of the hydrocarbon is the reference injection time corresponding to the operating state of the engine The exhaust emission control device for an internal combustion engine according to claim 3, wherein the exhaust gas purification device is made shorter. 機関運転時に該炭化水素の噴射時間のみが制御される場合には機関高負荷高回転時における炭化水素の噴射時間が機関低負荷低回転時に比べて長くされ、機関運転時に該炭化水素の噴射圧が制御される場合には機関高負荷高回転時における炭化水素の噴射圧が機関低負荷低回転時に比べて高くされる請求項1に記載の内燃機関の排気浄化装置。  When only the hydrocarbon injection time is controlled during engine operation, the hydrocarbon injection time during engine high load and high rotation is longer than during engine low load and low rotation, and the hydrocarbon injection pressure during engine operation. 2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein when the engine is controlled, the hydrocarbon injection pressure at the time of high engine load and high rotation is made higher than that at the time of engine low load and low rotation. 上記排気浄化触媒内において排気ガス中に含まれるNOと改質された炭化水素とが反応して窒素および炭化水素を含む還元性中間体が生成され、上記炭化水素濃度の振動周期は還元性中間体を生成し続けるのに必要な振動周期である請求項1に記載の内燃機関の排気浄化装置。In the exhaust purification catalyst, NO X contained in the exhaust gas reacts with the reformed hydrocarbon to produce a reducing intermediate containing nitrogen and hydrocarbons, and the oscillation cycle of the hydrocarbon concentration is reducible. 2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the vibration period is required to continue producing the intermediate. 上記炭化水素濃度の振動周期が0.3秒から5秒の間である請求項6に記載の内燃機関の排気浄化装置。  The exhaust gas purification apparatus for an internal combustion engine according to claim 6, wherein the vibration period of the hydrocarbon concentration is between 0.3 seconds and 5 seconds. 上記貴金属触媒は白金Ptと、ロジウムRhおよびパラジウムPdの少くとも一方とにより構成される請求項1に記載の内燃機関の排気浄化装置。  The exhaust purification device for an internal combustion engine according to claim 1, wherein the noble metal catalyst is composed of platinum Pt and at least one of rhodium Rh and palladium Pd. 上記排気浄化触媒の排気ガス流通表面上にアルカリ金属又はアルカリ土類金属又は希土類又はNOに電子を供与しうる金属を含む塩基性層が形成されており、該塩基性層の表面が上記塩基性の排気ガス流通表面部分を形成している請求項1に記載の内燃機関の排気浄化装置。The basic layer comprising a metal which can donate electrons to the alkali metal or alkaline earth metal or rare earth or NO X in the exhaust gas flow on the surface of the exhaust purification catalyst is formed, the surface of the base layer is the base The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas circulation surface portion is formed.
JP2011531282A 2010-12-20 2010-12-20 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP5182428B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073645 WO2012086093A1 (en) 2010-12-20 2010-12-20 Exhaust purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP5182428B2 true JP5182428B2 (en) 2013-04-17
JPWO2012086093A1 JPWO2012086093A1 (en) 2014-05-22

Family

ID=46313389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011531282A Expired - Fee Related JP5182428B2 (en) 2010-12-20 2010-12-20 Exhaust gas purification device for internal combustion engine

Country Status (7)

Country Link
US (1) US9108154B2 (en)
EP (1) EP2495410B1 (en)
JP (1) JP5182428B2 (en)
CN (1) CN103492684B (en)
BR (1) BRPI1010835B8 (en)
ES (1) ES2776981T3 (en)
WO (1) WO2012086093A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218672B2 (en) * 2011-04-15 2013-06-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US20130283772A1 (en) * 2012-04-09 2013-10-31 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US9517436B2 (en) 2012-09-10 2016-12-13 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
WO2014122728A1 (en) * 2013-02-05 2014-08-14 トヨタ自動車株式会社 Exhaust gas cleaner for internal combustion engine
WO2014167652A1 (en) * 2013-04-09 2014-10-16 トヨタ自動車株式会社 Exhaust purification device of internal combustion engine
JP5962631B2 (en) * 2013-11-14 2016-08-03 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
CN105829690B (en) * 2013-12-20 2018-11-06 丰田自动车株式会社 The emission-control equipment of internal combustion engine
WO2015194022A1 (en) * 2014-06-19 2015-12-23 日産自動車株式会社 Exhaust purification device
DE102017006738B4 (en) * 2017-07-11 2021-02-18 Torsten Goldbach Device and method for exhaust gas cleaning systems of diesel vehicles, in particular for retrofitting existing diesel vehicles with a diesel particle filter, in particular for inner-city driving

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061340A (en) * 2003-08-15 2005-03-10 Mitsubishi Fuso Truck & Bus Corp Exhaust-emission control system of internal combustion engine
JP2007514090A (en) * 2003-05-06 2007-05-31 カタリティカ エナジー システムズ, インコーポレイテッド System and method for improving emissions control of an internal combustion engine using a pulsed fuel flow
JP2008267217A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008286186A (en) * 2007-03-19 2008-11-27 Toyota Motor Corp Exhaust cleaner for internal combustion engine
WO2011114499A1 (en) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 Device for cleaning exhaust gas from internal combustion engine

Family Cites Families (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008371A1 (en) 1989-03-15 1990-09-20 Riken Kk EXHAUST GASOLINE AND METHOD FOR CLEANING EXHAUST GASES
US5052178A (en) 1989-08-08 1991-10-01 Cummins Engine Company, Inc. Unitary hybrid exhaust system and method for reducing particulate emmissions from internal combustion engines
US5057483A (en) 1990-02-22 1991-10-15 Engelhard Corporation Catalyst composition containing segregated platinum and rhodium components
JP2887933B2 (en) * 1991-03-13 1999-05-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2605586B2 (en) 1992-07-24 1997-04-30 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US6667018B2 (en) 1994-07-05 2003-12-23 Ngk Insulators, Ltd. Catalyst-adsorbent for purification of exhaust gases and method for purification of exhaust gases
EP0710499A3 (en) 1994-11-04 1997-05-21 Agency Ind Science Techn Exhaust gas cleaner and method for cleaning exhaust gas
US6477834B1 (en) 1997-05-12 2002-11-12 Toyota Jidosha Kabushiki Kaisha Exhaust emission controlling apparatus of internal combustion engine
JP3456408B2 (en) 1997-05-12 2003-10-14 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
GB9713428D0 (en) 1997-06-26 1997-08-27 Johnson Matthey Plc Improvements in emissions control
FR2778205B1 (en) 1998-04-29 2000-06-23 Inst Francais Du Petrole CONTROLLED HYDROCARBON INJECTION PROCESS INTO AN EXHAUST LINE OF AN INTERNAL COMBUSTION ENGINE
US7707821B1 (en) 1998-08-24 2010-05-04 Legare Joseph E Control methods for improved catalytic converter efficiency and diagnosis
US6718756B1 (en) 1999-01-21 2004-04-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifier for use in internal combustion engine
JP2000257419A (en) 1999-03-03 2000-09-19 Toyota Motor Corp Exhaust purification method and device thereof
US6685897B1 (en) 2000-01-06 2004-02-03 The Regents Of The University Of California Highly-basic large-pore zeolite catalysts for NOx reduction at low temperatures
US6311484B1 (en) 2000-02-22 2001-11-06 Engelhard Corporation System for reducing NOx transient emission
DE10023439A1 (en) 2000-05-12 2001-11-22 Dmc2 Degussa Metals Catalysts Process for removing nitrogen oxides and soot particles from the lean exhaust gas of an internal combustion engine and exhaust gas purification system therefor
JP4889873B2 (en) 2000-09-08 2012-03-07 日産自動車株式会社 Exhaust gas purification system, exhaust gas purification catalyst used therefor, and exhaust purification method
EP1371416B1 (en) 2001-02-19 2006-12-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas clarification catalyst
JP2002364415A (en) 2001-06-07 2002-12-18 Mazda Motor Corp Exhaust emission control device for engine
LU90795B1 (en) 2001-06-27 2002-12-30 Delphi Tech Inc Nox release index
US6677272B2 (en) 2001-08-15 2004-01-13 Corning Incorporated Material for NOx trap support
RU2004120435A (en) 2001-12-03 2005-05-27 Каталитика Энерджи Системз, Инк. (Us) SYSTEM AND METHODS FOR MANAGING THE CONTENT OF HARMFUL COMPONENTS IN EXHAUST GASES OF INTERNAL COMBUSTION ENGINES AND FUEL TREATMENT UNIT
US6813882B2 (en) 2001-12-18 2004-11-09 Ford Global Technologies, Llc System and method for removing NOx from an emission control device
WO2003071106A1 (en) 2002-02-19 2003-08-28 Kabushiki Kaisha Chemical Auto Diesel exhaust gas purifying filter
JP3963130B2 (en) 2002-06-27 2007-08-22 トヨタ自動車株式会社 Catalyst deterioration judgment device
ATE421375T1 (en) 2002-07-31 2009-02-15 Umicore Ag & Co Kg METHOD FOR REGENERATING A NITROGEN OXIDE STORAGE CATALYST
JP2004068700A (en) 2002-08-06 2004-03-04 Toyota Motor Corp Exhaust gas purification method
CA2498568C (en) * 2002-09-10 2008-11-18 Toyota Jidosha Kabushiki Kaisha Exhaust purification device of internal combustion engine
US7332135B2 (en) 2002-10-22 2008-02-19 Ford Global Technologies, Llc Catalyst system for the reduction of NOx and NH3 emissions
JP2006506581A (en) 2002-11-15 2006-02-23 カタリティカ エナジー システムズ, インコーポレイテッド Apparatus and method for reducing NOx emissions from lean burn engines
JP4385593B2 (en) 2002-12-10 2009-12-16 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE10300298A1 (en) 2003-01-02 2004-07-15 Daimlerchrysler Ag Exhaust gas aftertreatment device and method
DE10308287B4 (en) 2003-02-26 2006-11-30 Umicore Ag & Co. Kg Process for exhaust gas purification
US7043902B2 (en) 2003-03-07 2006-05-16 Honda Motor Co., Ltd. Exhaust gas purification system
US6854264B2 (en) 2003-03-27 2005-02-15 Ford Global Technologies, Llc Computer controlled engine adjustment based on an exhaust flow
JP4288985B2 (en) 2003-03-31 2009-07-01 株式会社デンソー Exhaust gas purification device for internal combustion engine
DE10315593B4 (en) 2003-04-05 2005-12-22 Daimlerchrysler Ag Exhaust gas aftertreatment device and method
US6983589B2 (en) 2003-05-07 2006-01-10 Ford Global Technologies, Llc Diesel aftertreatment systems
JP4158697B2 (en) 2003-06-17 2008-10-01 トヨタ自動車株式会社 Exhaust gas purification device and exhaust gas purification method for internal combustion engine
WO2004113691A2 (en) 2003-06-18 2004-12-29 Johnson Matthey Public Limited Company System and method of controlling reductant addition
GB0318776D0 (en) 2003-08-09 2003-09-10 Johnson Matthey Plc Lean NOx catalyst
JP4020054B2 (en) 2003-09-24 2007-12-12 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP3876874B2 (en) 2003-10-28 2007-02-07 トヨタ自動車株式会社 Catalyst regeneration method
CN100420829C (en) 2003-12-01 2008-09-24 丰田自动车株式会社 Exhaust emission purification apparatus of compression ignition type internal combustion engine
GB0329095D0 (en) 2003-12-16 2004-01-14 Johnson Matthey Plc Exhaust system for lean burn IC engine including particulate filter
US20050135977A1 (en) 2003-12-19 2005-06-23 Caterpillar Inc. Multi-part catalyst system for exhaust treatment elements
JP4321332B2 (en) 2004-04-01 2009-08-26 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4232690B2 (en) 2004-05-24 2009-03-04 トヨタ自動車株式会社 Fuel addition control method and exhaust purification device applied to exhaust purification device of internal combustion engine
JP4338586B2 (en) 2004-05-26 2009-10-07 株式会社日立製作所 Engine exhaust system diagnostic device
US7137379B2 (en) 2004-08-20 2006-11-21 Southwest Research Institute Method for rich pulse control of diesel engines
JP3852461B2 (en) 2004-09-03 2006-11-29 いすゞ自動車株式会社 Exhaust gas purification method and exhaust gas purification system
SE0402499L (en) * 2004-10-13 2006-02-21 Volvo Lastvagnar Ab Motor-driven vehicle and method with fragmented hydrocarbon injection for optimized oxidation of nitrogen monoxide in exhaust after-treatment systems
EP1662102B1 (en) 2004-11-23 2007-06-27 Ford Global Technologies, LLC Method and apparatus for conversion of NOx
WO2006128712A1 (en) 2005-06-03 2006-12-07 Emitec Gesellschaft Für Emissionstechnologie Mbh Method and device for treating exhaust gases of internal combusting engines
US7685813B2 (en) 2005-06-09 2010-03-30 Eaton Corporation LNT regeneration strategy over normal truck driving cycle
US7803338B2 (en) 2005-06-21 2010-09-28 Exonmobil Research And Engineering Company Method and apparatus for combination catalyst for reduction of NOx in combustion products
US7743602B2 (en) 2005-06-21 2010-06-29 Exxonmobil Research And Engineering Co. Reformer assisted lean NOx catalyst aftertreatment system and method
JP4464876B2 (en) 2005-07-01 2010-05-19 日立オートモティブシステムズ株式会社 Engine control device
JP2007064167A (en) 2005-09-02 2007-03-15 Toyota Motor Corp Exhaust emission control device and exhaust emission control method for internal combustion engine
FR2890577B1 (en) 2005-09-12 2009-02-27 Rhodia Recherches & Tech PROCESS FOR TREATING A GAS CONTAINING NITROGEN OXIDES (NOX), USING AS A NOX TRAP A COMPOSITION BASED ON ZIRCONIUM OXIDE AND PRASEODYME OXIDE
US7063642B1 (en) 2005-10-07 2006-06-20 Eaton Corporation Narrow speed range diesel-powered engine system w/ aftertreatment devices
JP4548309B2 (en) 2005-11-02 2010-09-22 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US7412823B2 (en) 2005-12-02 2008-08-19 Eaton Corporation LNT desulfation strategy
JP4270201B2 (en) 2005-12-05 2009-05-27 トヨタ自動車株式会社 Internal combustion engine
JP5087836B2 (en) 2005-12-14 2012-12-05 いすゞ自動車株式会社 Exhaust gas purification system control method and exhaust gas purification system
JP2007260618A (en) 2006-03-29 2007-10-11 Toyota Motor Corp Exhaust gas purification catalyst and exhaust gas purifier
JP2007297918A (en) 2006-04-27 2007-11-15 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP4613962B2 (en) 2006-05-24 2011-01-19 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5373255B2 (en) 2006-05-29 2013-12-18 株式会社キャタラー NOx reduction catalyst, NOx reduction catalyst system, and NOx reduction method
US7562522B2 (en) 2006-06-06 2009-07-21 Eaton Corporation Enhanced hybrid de-NOx system
JP4404073B2 (en) 2006-06-30 2010-01-27 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4487982B2 (en) 2006-07-12 2010-06-23 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
US7614214B2 (en) 2006-07-26 2009-11-10 Eaton Corporation Gasification of soot trapped in a particulate filter under reducing conditions
US7624570B2 (en) 2006-07-27 2009-12-01 Eaton Corporation Optimal fuel profiles
JP4155320B2 (en) 2006-09-06 2008-09-24 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4329799B2 (en) 2006-09-20 2009-09-09 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
EP1911506B1 (en) 2006-10-06 2009-08-19 Umicore AG & Co. KG Nitrogen oxide storage catalyst with reduced desulphurisation temperature
JP4733002B2 (en) 2006-11-24 2011-07-27 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
DE602006015210D1 (en) * 2006-12-22 2010-08-12 Ford Global Tech Llc An internal combustion engine system and method for determining the condition of an exhaust treatment device in such a system
JP4221025B2 (en) 2006-12-25 2009-02-12 三菱電機株式会社 Air-fuel ratio control device for internal combustion engine
JP4221026B2 (en) 2006-12-25 2009-02-12 三菱電機株式会社 Air-fuel ratio control device for internal combustion engine
US20080196398A1 (en) 2007-02-20 2008-08-21 Eaton Corporation HC mitigation to reduce NOx spike
JP4738364B2 (en) * 2007-02-27 2011-08-03 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP4665923B2 (en) 2007-03-13 2011-04-06 トヨタ自動車株式会社 Catalyst deterioration judgment device
JP4420048B2 (en) 2007-03-20 2010-02-24 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP2008255858A (en) 2007-04-03 2008-10-23 Yanmar Co Ltd Black smoke eliminating device for diesel engine
JP4702318B2 (en) 2007-04-10 2011-06-15 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
US7788910B2 (en) 2007-05-09 2010-09-07 Ford Global Technologies, Llc Particulate filter regeneration and NOx catalyst re-activation
JP4304539B2 (en) 2007-05-17 2009-07-29 いすゞ自動車株式会社 NOx purification system control method and NOx purification system
JP5590640B2 (en) 2007-08-01 2014-09-17 日産自動車株式会社 Exhaust gas purification system
JP4910932B2 (en) * 2007-08-01 2012-04-04 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP5067614B2 (en) * 2007-08-21 2012-11-07 株式会社デンソー Exhaust gas purification device for internal combustion engine
JP5037283B2 (en) 2007-09-26 2012-09-26 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2009114879A (en) 2007-11-02 2009-05-28 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US8074443B2 (en) 2007-11-13 2011-12-13 Eaton Corporation Pre-combustor and large channel combustor system for operation of a fuel reformer at low exhaust temperatures
JP4428443B2 (en) 2007-12-18 2010-03-10 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
WO2009082035A1 (en) 2007-12-26 2009-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
WO2009087818A1 (en) 2008-01-08 2009-07-16 Honda Motor Co., Ltd. Exhaust emission control device for internal combustion engine
JP2009209839A (en) 2008-03-05 2009-09-17 Denso Corp Exhaust emission control device of internal-combustion engine
JP2009221939A (en) 2008-03-14 2009-10-01 Denso Corp Exhaust purification system and exhaust purification control device
JP4527792B2 (en) 2008-06-20 2010-08-18 本田技研工業株式会社 Deterioration judgment device for exhaust gas purification device
JP5386121B2 (en) 2008-07-25 2014-01-15 エヌ・イーケムキャット株式会社 Exhaust gas purification catalyst device and exhaust gas purification method
JP5157739B2 (en) 2008-08-11 2013-03-06 日産自動車株式会社 Exhaust gas purification system and exhaust gas purification method using the same
KR101020819B1 (en) 2008-11-28 2011-03-09 기아자동차주식회사 Device for variable injectioin in post injection with nox strage catalyst and the mothod for the same
WO2010064497A1 (en) 2008-12-03 2010-06-10 第一稀元素化学工業株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and exhaust gas purifying method
US20100154387A1 (en) 2008-12-19 2010-06-24 Toyota Jidosha Kabushiki Kaisha Abnormality detection device for reductant addition valve
US9453443B2 (en) 2009-03-20 2016-09-27 Basf Corporation Emissions treatment system with lean NOx trap
US9662611B2 (en) 2009-04-03 2017-05-30 Basf Corporation Emissions treatment system with ammonia-generating and SCR catalysts
KR101091627B1 (en) 2009-08-31 2011-12-08 기아자동차주식회사 Exhaust system
US8353155B2 (en) 2009-08-31 2013-01-15 General Electric Company Catalyst and method of manufacture
US20110120100A1 (en) 2009-11-24 2011-05-26 General Electric Company Catalyst and method of manufacture
KR101922734B1 (en) 2010-02-01 2019-02-20 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Filter comprising combined soot oxidation and nh3-scr catalyst
US8459010B2 (en) 2010-02-26 2013-06-11 General Electric Company System and method for controlling nitrous oxide emissions of an internal combustion engine and regeneration of an exhaust treatment device
KR101321678B1 (en) 2010-03-15 2013-10-22 도요타지도샤가부시키가이샤 Exhaust purification system for internal combustion engine
US8683784B2 (en) 2010-03-15 2014-04-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
KR101324328B1 (en) 2010-03-15 2013-10-31 도요타지도샤가부시키가이샤 Exhaust purification system of internal combustion engine
CN102782274B (en) 2010-03-18 2015-05-13 丰田自动车株式会社 Exhaust purification device for internal combustion engine
US8763370B2 (en) 2010-03-23 2014-07-01 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
WO2011125198A1 (en) 2010-04-01 2011-10-13 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
BRPI1012614A2 (en) 2010-08-30 2020-06-02 Toyota Jidosha Kabushiki Kaisha INTERNAL COMBUSTION ENGINE DISCHARGE PURIFICATION SYSTEM
WO2012029189A1 (en) 2010-09-02 2012-03-08 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US8701390B2 (en) 2010-11-23 2014-04-22 International Engine Intellectual Property Company, Llc Adaptive control strategy

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514090A (en) * 2003-05-06 2007-05-31 カタリティカ エナジー システムズ, インコーポレイテッド System and method for improving emissions control of an internal combustion engine using a pulsed fuel flow
JP2005061340A (en) * 2003-08-15 2005-03-10 Mitsubishi Fuso Truck & Bus Corp Exhaust-emission control system of internal combustion engine
JP2008286186A (en) * 2007-03-19 2008-11-27 Toyota Motor Corp Exhaust cleaner for internal combustion engine
JP2008267217A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Exhaust emission control device of internal combustion engine
WO2011114499A1 (en) * 2010-03-15 2011-09-22 トヨタ自動車株式会社 Device for cleaning exhaust gas from internal combustion engine

Also Published As

Publication number Publication date
EP2495410A1 (en) 2012-09-05
JPWO2012086093A1 (en) 2014-05-22
ES2776981T3 (en) 2020-08-03
CN103492684B (en) 2016-02-03
EP2495410A4 (en) 2014-06-18
CN103492684A (en) 2014-01-01
BRPI1010835B8 (en) 2021-01-12
US9108154B2 (en) 2015-08-18
US20130259753A1 (en) 2013-10-03
BRPI1010835A2 (en) 2016-04-05
BRPI1010835B1 (en) 2020-09-15
EP2495410B1 (en) 2020-02-12
WO2012086093A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP4868097B1 (en) Exhaust gas purification device for internal combustion engine
JP5182428B2 (en) Exhaust gas purification device for internal combustion engine
JP5182429B2 (en) Exhaust gas purification device for internal combustion engine
JP5218672B2 (en) Exhaust gas purification device for internal combustion engine
JP5278594B2 (en) Exhaust gas purification device for internal combustion engine
WO2012029189A1 (en) Exhaust gas purification device for internal combustion engine
WO2011125198A1 (en) Exhaust gas purification device for internal combustion engine
JP5131392B2 (en) Exhaust gas purification device for internal combustion engine
JP5067511B2 (en) Exhaust gas purification device for internal combustion engine
JPWO2011114540A1 (en) Exhaust gas purification device for internal combustion engine
WO2011145228A1 (en) Internal combustion engine exhaust gas purification device
JP5152415B2 (en) Exhaust gas purification device for internal combustion engine
JP5131393B2 (en) Exhaust gas purification device for internal combustion engine
WO2011145227A1 (en) Exhaust gas purification device for internal combustion engine
JP5991285B2 (en) Exhaust gas purification device for internal combustion engine
JP5177302B2 (en) Exhaust gas purification device for internal combustion engine
JP5152417B2 (en) Exhaust gas purification device for internal combustion engine
JP5561059B2 (en) Exhaust gas purification device for internal combustion engine
WO2012086094A1 (en) Exhaust gas purification device for internal combustion engine
JP2013015117A (en) Exhaust emission control device of internal-combustion engine
JP5131394B2 (en) Exhaust gas purification device for internal combustion engine
JP2015209803A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R151 Written notification of patent or utility model registration

Ref document number: 5182428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees