JP5180531B2 - Thermal fuse with resistance - Google Patents

Thermal fuse with resistance Download PDF

Info

Publication number
JP5180531B2
JP5180531B2 JP2007202417A JP2007202417A JP5180531B2 JP 5180531 B2 JP5180531 B2 JP 5180531B2 JP 2007202417 A JP2007202417 A JP 2007202417A JP 2007202417 A JP2007202417 A JP 2007202417A JP 5180531 B2 JP5180531 B2 JP 5180531B2
Authority
JP
Japan
Prior art keywords
resistance
alloy element
membrane electrode
protective film
fusible alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007202417A
Other languages
Japanese (ja)
Other versions
JP2009037935A (en
Inventor
教祐 服部
博義 能勢
祐治 六ケ所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2007202417A priority Critical patent/JP5180531B2/en
Publication of JP2009037935A publication Critical patent/JP2009037935A/en
Application granted granted Critical
Publication of JP5180531B2 publication Critical patent/JP5180531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuses (AREA)

Description

本発明は基板型の抵抗付き温度ヒューズに関するものである。   The present invention relates to a substrate-type resistance thermal fuse.

抵抗付き温度ヒューズは、温度ヒューズと抵抗体とを相互に絶縁し、かつ相互の良好な熱伝達性を保証して一体化したものであり、その使用形態としては、被保護機器の異常時に、抵抗体に電流を流し、抵抗体を通電発熱させ、その発生熱で温度ヒューズエレメントを溶断作動させて被保護機器への給電を遮断すること、抵抗付き温度ヒューズを被保護機器に接触して取付け、被保護機器の異常発熱により温度ヒューズエレメントを溶断作動させて被保護機器への給電を遮断することを挙げることができる。
この抵抗付き温度ヒューズとして、基板型の抵抗付き温度ヒューズが知られている。図3は従来の基板型抵抗付き温度ヒューズの一例の一部欠切上面図を示している(特許文献1)。
図3において、1’は絶縁基板である。2’,2’は基板1’の片面に設けた一対の可溶合金エレメント接続用膜電極、3’はこれらの膜電極2’,2’間に接続した可溶合金エレメント、7’は可溶合金エレメント3’及び可溶合金エレメント端近傍の膜電極部分に塗布したフラックスである。4’,4’は基板1’の片面に設けた抵抗接続用膜電極、5’はこれらの膜電極4’,4’間に設けた膜抵抗、6’は膜抵抗5’と膜抵抗に重なる抵抗接続用膜電極部分上に設けたガラス保護膜である。8’は基板1’の片面上に被覆した絶縁保護層である。
A thermal fuse with a resistor is an integrated type that insulates the thermal fuse and resistor from each other and guarantees good heat transfer between each other. A current is passed through the resistor, the resistor is energized to generate heat, the thermal fuse element is blown off with the generated heat to cut off the power supply to the protected device, and a thermal fuse with resistance is installed in contact with the protected device For example, the power supply to the protected device can be cut off by fusing the thermal fuse element due to abnormal heat generation of the protected device.
As this thermal fuse with resistance, a substrate type thermal fuse with resistance is known. FIG. 3 shows a partially cutaway top view of an example of a conventional substrate-type resistor-equipped thermal fuse (Patent Document 1).
In FIG. 3, 1 ′ is an insulating substrate. 2 'and 2' are a pair of fusible alloy element connecting membrane electrodes provided on one side of the substrate 1 ', 3' is a fusible alloy element connected between these membrane electrodes 2 'and 2', and 7 'is acceptable It is the flux applied to the molten alloy element 3 ′ and the membrane electrode portion in the vicinity of the end of the soluble alloy element. Reference numerals 4 'and 4' denote resistance-connecting film electrodes provided on one side of the substrate 1 ', 5' denotes a film resistance provided between these film electrodes 4 'and 4', and 6 'denotes a film resistance 5' and film resistance. It is a glass protective film provided on the overlapping membrane electrode for resistance connection. Reference numeral 8 'denotes an insulating protective layer coated on one surface of the substrate 1'.

前記の可溶合金エレメント接続用膜電極2’及び抵抗接続用膜電極4’は、通常導体ペースト、例えば銀ペーストの印刷・焼付けにより設けられ、前記膜抵抗は抵抗ペースト、例えば酸化ルテニウムペーストの印刷・焼付けにより設けられている。
実用新案登録第2507073号公報
The fusible alloy element connecting membrane electrode 2 ′ and the resistor connecting membrane electrode 4 ′ are usually provided by printing / baking of a conductive paste, for example, a silver paste, and the membrane resistance is printed by a resistive paste, for example, a ruthenium oxide paste.・ It is provided by baking.
Utility Model Registration No. 2507073

前記膜抵抗5’上のガラス保護膜6’は、膜抵抗5’を形成したのち絶縁保護層8’を被覆するまでの間、膜抵抗5’を機械的に保護すること、フラックス7’が膜抵抗5’に直接に接触するのを防止してフラックス7’の還元作用等による膜抵抗5’の抵抗値変化を防止すること等の役目を営む。
而して、従来においては、フラックス7’がガラス保護膜6’に接触することを許容し、実際、ガラス保護膜6’にまたがってフラックス7’を塗布している(滴下した瞬時には、未固化であり、拡がりが生じる)。
The glass protective film 6 ′ on the film resistance 5 ′ mechanically protects the film resistance 5 ′ after the film resistance 5 ′ is formed and then covers the insulating protective layer 8 ′, and the flux 7 ′ It serves to prevent direct contact with the membrane resistor 5 'and prevent a change in the resistance value of the membrane resistor 5' due to the reducing action of the flux 7 '.
Thus, conventionally, the flux 7 ′ is allowed to come into contact with the glass protective film 6 ′, and in fact, the flux 7 ′ is applied across the glass protective film 6 ′ (at the moment of dropping, It is not solidified and spreads).

しかしながら、本発明者等は、鋭意検討の結果、制御回路に前記基板型抵抗付き温度ヒューズを組み込んで使用する場合、前記のようにガラス保護膜に跨ってフラックスを塗布すると、多湿環境のもとでは、可溶合金エレメント接続用膜電極と抵抗接続用膜電極との間にマイグレーションが発生することを知見した。   However, as a result of intensive studies, the present inventors have found that when the thermal resistor with a substrate type resistor is incorporated in the control circuit and the flux is applied across the glass protective film as described above, the environment is in a humid environment. Then, it discovered that migration generate | occur | produced between the membrane electrode for soluble alloy element connection, and the membrane electrode for resistance connection.

その発生機構を図4により説明すると次の通りである。図4は図3におけるa−a断面を示し、1’は前記基板型抵抗付き温度ヒューズの基板を、2’は可溶合金エレメント接続用銀膜電極を、4’は抵抗接続用銀膜電極を、5’は膜抵抗を、6’はガラス保護膜を、7’はフラックスを、8’は絶縁保護層をそれぞれ示している。
この抵抗付き温度ヒューズが組み込まれる前記制御回路は、トランジスタやサイリスタを有し、これらの整流作用のために、両銀膜電極間に直流電圧(ほぼ100v)が加電されている。多湿環境下では、絶縁保護層例えばエポキシ樹脂層を透過する湿分のためにフラックス7’が溶液化され、この溶液フラックス中の有機酸や活性剤のためにCOOH、Cl、Br、F、I等の陰イオンが発生してフラックスが電解質溶液になる。
而るに、ガラス保護膜6’はガラスペーストの印刷・焼成により設けられ、ガラス粒子間が融着した組織であり、すなわち焼結組織であり、通常の焼成条件のもとでは、前記電解質溶液に対しては、完全な遮水作用は期待できない。かかるもとでは、前記の両銀膜電極2’−4’間が電解質溶液で繋がれ、前記の直流電圧加電下、陽極となる一方の膜電極側では、Ag→Ag+eの反応によりAgが溶け出し、この溶出Agが他方の陰極となる膜電極に向かって移動し、この陰極でAg+e→Agの反応によりAgが析出し、両膜電極間に陰極側から陽極側に向かうAgの樹枝状痕跡が形成されていく。
The generation mechanism will be described with reference to FIG. FIG. 4 is a cross-sectional view taken along the line aa in FIG. 3. Reference numeral 1 ′ denotes a substrate of the substrate-type resistance thermal fuse; 5 ′ represents a film resistance, 6 ′ represents a glass protective film, 7 ′ represents a flux, and 8 ′ represents an insulating protective layer.
The control circuit in which the thermal fuse with resistance is incorporated includes a transistor and a thyristor, and a DC voltage (approximately 100 V) is applied between the silver film electrodes for rectifying these transistors. In a humid environment, the flux 7 'is made into a solution because of moisture that permeates the insulating protective layer such as an epoxy resin layer, and COOH , Cl , Br , Anions such as F and I are generated, and the flux becomes an electrolyte solution.
Thus, the glass protective film 6 ′ is provided by printing and baking glass paste, and is a structure in which glass particles are fused, that is, a sintered structure. Under normal baking conditions, the electrolyte solution For this, a complete water shielding effect cannot be expected. Than such Moto, wherein between both the silver film electrodes 2'-4 'are connected by an electrolyte solution, the direct current voltage pressurized collector under the, at one of the membrane electrode side serving as the anode, the reaction of Ag → Ag + + e Ag dissolves and this elution Ag + moves toward the membrane electrode which becomes the other cathode, and Ag is precipitated by the reaction of Ag + + e → Ag at this cathode, and from the cathode side to the anode side between both membrane electrodes. The dendritic traces of Ag heading are formed.

本発明者等は、ガラス保護膜の組織を緻密化し、両膜電極間の前記電解質溶液による導通を排除するために、ガラス保護膜の焼成条件を通常の550℃×10分の条件から650℃×10分の条件にグレードアップしてみたが、これでは膜抵抗の抵抗値の相当の変化が避けられず、有効な解決策にはならないことを知った。更に、別に850℃×10分の焼成条件においても解決策には至らなかった。   In order to densify the structure of the glass protective film and eliminate conduction by the electrolyte solution between the two membrane electrodes, the inventors changed the firing condition of the glass protective film from the normal condition of 550 ° C. × 10 minutes to 650 ° C. I tried upgrading to a condition of × 10 minutes, but I knew that this would not avoid a significant change in the resistance value of the membrane resistance, and would not be an effective solution. Furthermore, no solution was achieved even under the firing conditions of 850 ° C. × 10 minutes.

本発明の目的は、上記の知見に基づき、多湿環境下で使用しても、膜電極間のマイグレーション発生をよく防止できる基板型の抵抗接続用膜電極を提供することにある。   An object of the present invention is to provide a substrate-type membrane electrode for resistance connection that can well prevent migration between membrane electrodes even when used in a humid environment based on the above findings.

請求項1に係る抵抗付き温度ヒューズは、基板の片面上に可溶合金エレメント接続用膜電極と抵抗接続用膜電極とを設け、可溶合金エレメント接続用膜電極間に可溶合金エレメントを接続し、抵抗接続用膜電極間に膜抵抗を接続し、抵抗接続用膜電極及び膜抵抗を覆ってガラス保護膜を設け、可溶合金エレメント及び該エレメントの各端近傍の可溶合金エレメント接合用膜電極部分を覆ってフラックスを塗布し、基板の片面上に樹脂保護層を塗装した抵抗付きの温度ヒューズであり、前記ガラス保護膜と前記フラックスの塗布域との間にフラックスを堰き止める堤が、前記ガラス保護膜の端縁を当該堤の外側に位置させるように、しかも基板縁端から離隔して設けられており、前記樹脂保護層が基板片面の全面に設けられて当該樹脂保護層と前記ガラス保護膜とが接していることを特徴とする。
請求項2に係る抵抗付き温度ヒューズは、請求項1の抵抗付き温度ヒューズにおいて、ガラス保護膜が焼成ピーク温度500℃〜900℃、5分〜40分の条件で焼き付けられていることを特徴とする。
請求項3に係る抵抗付き温度ヒューズは、請求項1〜2何れかの抵抗付き温度ヒューズにおいて、可溶合金エレメント接続用膜電極及び抵抗接続用膜電極がAg系導体ペースト、Cu系導体ペーストまたはAu系導体ペーストの印刷・焼き付けにより設けられていることを特徴とする。
請求項4に係る抵抗付き温度ヒューズは、請求項1〜3何れかの抵抗付き温度ヒューズにおいて、可溶合金エレメント接続用膜電極と可溶合金エレメントとフラックスとからなる温度ヒューズ部を挾む両側に、抵抗接続用膜電極と膜抵抗とガラス保護膜とからなる膜抵抗部が設けられていることを特徴とする。
The thermal fuse with resistance according to claim 1 is provided with a soluble alloy element connecting membrane electrode and a resistive connecting membrane electrode on one surface of the substrate, and connecting the soluble alloy element between the soluble alloy element connecting membrane electrodes. And connecting a membrane resistance between the membrane electrodes for resistance connection, providing a glass protective film covering the membrane electrode for resistance connection and the membrane resistance, and for joining a fusible alloy element and a fusible alloy element near each end of the element It is a thermal fuse with resistance in which a flux is applied covering the membrane electrode part and a resin protective layer is coated on one side of the substrate, and there is a bank that dams the flux between the glass protective film and the flux application area The glass protective film is provided so that the edge of the glass protective film is located outside the bank, and is spaced from the edge of the substrate, and the resin protective layer is provided on the entire surface of one side of the substrate. Wherein the serial glass protective film is in contact.
The thermal fuse with resistance according to claim 2 is the thermal fuse with resistance according to claim 1, wherein the glass protective film is baked under conditions of a firing peak temperature of 500 ° C to 900 ° C for 5 minutes to 40 minutes. To do.
The resistance thermal fuse according to claim 3 is the thermal fuse with resistance according to any one of claims 1 to 2, wherein the fusible alloy element connection film electrode and the resistance connection film electrode are formed of an Ag-based conductor paste, a Cu-based conductor paste, It is provided by printing and baking of Au-based conductor paste.
A resistance temperature fuse according to claim 4 is the resistance temperature fuse according to any one of claims 1 to 3, wherein both sides sandwich a temperature fuse portion made of a fusible alloy element connecting film electrode, a fusible alloy element, and a flux. In addition, a film resistance portion including a resistance connecting film electrode, a film resistance, and a glass protective film is provided.

(1)フラックスを可溶合金エレメント及び該エレメントの各端近傍の可溶合金エレメント接続用膜電極部分を覆うように塗布しているが、このフラックスを膜抵抗及び抵抗接続用膜電極上のガラス保護膜に接触させていないから、ガラス保護膜がガラス粒子焼結間隙に基づく通水性を有していても、フラックスが吸湿して電解質溶液となったときの可溶合金エレメント接続用膜電極と抵抗接続用膜電極との間のマイグレーションを排除できる。
(2)ガラス保護膜に膜抵抗に対する機械的保護機能を付与させ得れば、緻密性は要求されず、ガラス保護膜の焼成条件を緩くできる。
(1) The flux is applied so as to cover the fusible alloy element and the fusible alloy element connecting membrane electrode portion in the vicinity of each end of the element. Since it is not in contact with the protective film, even if the glass protective film has water permeability based on the glass particle sintering gap, the fusible alloy element connecting membrane electrode when the flux is absorbed into an electrolyte solution Migration between the membrane electrode for resistance connection can be eliminated.
(2) If the glass protective film can be provided with a mechanical protection function against film resistance, denseness is not required, and the firing conditions of the glass protective film can be relaxed.

以下、図面を参照しつつ本発明の実施の形態を説明する。
図1の(イ)は本発明に係る基板型抵抗付き温度ヒューズを示す一部欠切平面図、図1の(ロ)は図1の(イ)におけるロ−ロ断面図、図1の(ハ)は図1の(イ)におけるハ−ハ断面図ある。
図1において、1は耐熱性・熱良伝導性の絶縁基板であり、セラミックス基板を使用できる。
2,2は一対の可溶合金エレメント接続用膜電極であり、導体ペースト(導電粒子とバインダーと溶媒との混合液)、例えば、Agペースト、Ag−Pdペースト、Cuペースト、Auペーストの印刷・焼付けにより設けることができる。3は可溶合金エレメント接続用膜電極2,2間に溶接により接続した可溶合金エレメントであり、鉛フリー合金、例えばIn−Bi−Sn系合金、In−Bi−Sn−Cu系合金、In−Bi−Sn−Ag系合金等を使用することが好ましい。
4,4、4,4は可溶合金エレメント3を挾む両側のそれぞれに設けた一対の抵抗接続用膜電極であり、前記の可溶合金エレメント接続用膜電極2と同様に導体ペースト(導電粒子とバインダーと溶媒との混合液)、例えば、Agペースト、Ag−Pdペースト、Cuペースト、Auペーストの印刷・焼付けにより設けることができる。5は抵抗接続用膜電極間4,4に設けた膜抵抗であり、抵抗ペースト(抵抗粒子、例えば酸化金属粒子とバインダーと溶媒との混合液)、例えば酸化ルテニウム粒子を抵抗粒子とするものの印刷・焼付けにより形成できる。
6は膜抵抗5上に設けたガラス保護膜であり、ガラス粒子をアルコール等の溶媒に分散させたティスパージョンの印刷・焼付けにより形成できる。
Aは可溶合金エレメント及び該エレメントの各端近傍の可溶合金エレメント接続用膜電極部分を覆ってガラス保護膜に接触させることなくフラックスを塗布するための手段、図示の例では前記基板1の片面に各ガラス保護膜6の可溶合金エレメント側縁端と可溶合金エレメント3との間に設けた堤部であり、堤部底面で各ガラス保護膜の前記縁端を覆うように、または各ガラス保護膜の縁端を堤部の外側に位置させるように、しかも堤部の長手方向両端のそれぞれを抵抗接続用膜電極4を越えさせるようにして設けてある。この堤部の高さは、フラックスに対する濡れ性に左右され(濡れ性の低いものほど薄くできる)、ペースト厚みで5μm〜1000μmとされる。この堤部Aは、基板1と同一材質のロッド、例えばセラミックスロッドの接着固定、基板に一体成形、基板よりもフラックスに対する濡れ性の低い膜の形成例えばガラスペーストの印刷焼付け、硬化性樹脂例えばエポキシ樹脂の盛り付け等により設けることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1A is a partially cutaway plan view showing a substrate-type resistor-equipped thermal fuse according to the present invention, FIG. 1B is a cross-sectional view of FIG. (C) is a cross-sectional view of (c) in FIG.
In FIG. 1, reference numeral 1 denotes an insulating substrate having heat resistance and good thermal conductivity, and a ceramic substrate can be used.
Reference numerals 2 and 2 are a pair of soluble alloy element connecting membrane electrodes, which are printed with conductive paste (mixed liquid of conductive particles, binder and solvent), for example, Ag paste, Ag-Pd paste, Cu paste, Au paste. It can be provided by baking. 3 is a fusible alloy element connected by welding between the fusible alloy element connecting membrane electrodes 2 and 2, and is a lead-free alloy such as an In—Bi—Sn alloy, an In—Bi—Sn—Cu alloy, In It is preferable to use a -Bi-Sn-Ag alloy or the like.
4, 4, 4, 4 are a pair of resistance connecting membrane electrodes provided on both sides of the fusible alloy element 3. Like the fusible alloy element connecting membrane electrode 2, a conductor paste (conductive For example, an Ag paste, an Ag—Pd paste, a Cu paste, or an Au paste. Reference numeral 5 denotes a film resistance provided between the resistance connection film electrodes 4, 4, and printing of a resistance paste (resistance particles, for example, a mixed solution of metal oxide particles, a binder, and a solvent), for example, ruthenium oxide particles as resistance particles.・ It can be formed by baking.
Reference numeral 6 denotes a glass protective film provided on the film resistor 5 and can be formed by printing / baking of a tisperge in which glass particles are dispersed in a solvent such as alcohol.
A is a means for applying a flux without covering the fusible alloy element and the fusible alloy element connecting membrane electrode portion in the vicinity of each end of the element without contacting the glass protective film. It is a bank part provided between the soluble alloy element side edge of each glass protective film 6 and the soluble alloy element 3 on one side, and covers the edge of each glass protective film on the bottom of the bank part, or Each glass protective film is provided so that the edge of the glass protective film is positioned outside the bank portion, and both ends in the longitudinal direction of the bank portion are passed over the resistance connecting film electrode 4. The height of the bank portion depends on the wettability with respect to the flux (thinners with lower wettability can be made thinner), and the paste thickness is 5 μm to 1000 μm. The bank A is formed by bonding and fixing a rod made of the same material as the substrate 1, for example, a ceramic rod, integrally forming the substrate, forming a film having a lower wettability with respect to the flux than the substrate, for example, printing and baking glass paste, a curable resin, for example, epoxy It can be provided by placing resin or the like.

7は可溶合金エレメント及び可溶合金エレメント各端近傍の可溶合金エレメント接続用膜電極部分に塗布したフラックスであり、堤部A,A間の間に塗布してあり、ガラス保護膜6とは接触していない。フラックスには、ロジン、またはロジンに活性剤として有機酸、例えばアジエピン酸等のカルボン酸、有機塩化物、有機臭化物を添加したものを使用できる。フラックスの塗布には、常温では固体のフラックスを加熱により溶融させ、これを滴下塗布して冷却固化させる方法を用いることができる。
8は絶縁基板1の片面に設けた絶縁保護層であり、例えばエポキシ樹脂溶液の滴下塗布・硬化により設けることができる。この硬化温度は、フラックスの融点未満である。
9,…は各膜電極に接続したリード導体である。
7 is a flux applied to the fusible alloy element and the fusible alloy element connecting membrane electrode portion in the vicinity of each end of the fusible alloy element, and is applied between the bank portions A and A. Are not touching. As the flux, rosin or rosin added with an organic acid such as carboxylic acid such as adipic acid, organic chloride, or organic bromide as an activator can be used. The flux can be applied by a method in which a solid flux is melted by heating at room temperature, and this is dropped and solidified by cooling.
Reference numeral 8 denotes an insulating protective layer provided on one side of the insulating substrate 1 and can be provided by, for example, dropping application and curing of an epoxy resin solution. This curing temperature is below the melting point of the flux.
9, are lead conductors connected to the respective membrane electrodes.

本発明に係る基板型抵抗付き温度ヒューズは次のような工程で製造できる。すなわち、基板状への可溶合金エレメント接続用膜電極及び抵抗接続用膜電極の形成→抵抗接続用膜電極間への膜抵抗の形成・接続→トリミングによる膜抵抗値の調整→ガラス保護膜の形成→可溶合金エレメント接続用膜電極間への可溶合金エレメントの溶接による接続→フラックスの塗布→絶縁保護層の形成。リード導体の各電極への接続は、スポット溶接、レーザ溶接等により行うことができる。これらの溶接は瞬時的であり、可溶合金エレメントやフラックスに影響を及ぼすようなことはなく、何れの段階で行ってもよい。   The substrate-type resistance-equipped thermal fuse according to the present invention can be manufactured by the following process. That is, formation of fusible alloy element connection membrane electrode and resistance connection membrane electrode on the substrate shape → formation and connection of film resistance between resistance connection membrane electrodes → adjustment of film resistance value by trimming → glass protective film Formation → Connection of fusible alloy element between membrane electrodes for connection of fusible alloy element → Application of flux → Formation of insulating protective layer. The lead conductor can be connected to each electrode by spot welding, laser welding, or the like. These weldings are instantaneous and do not affect the fusible alloy element or flux, and may be performed at any stage.

ガラス保護膜は、ガラス粒子60〜80重量%,エチルセルロース0.5〜3.0重量%,エステルアルコール30〜20重量%,パインオイル残部のガラスペーストを印刷し、焼成ピーク温度500℃〜600℃、10分の条件で焼成することにより形成でき、ガラス保護膜の形成後は、膜抵抗を機械的に保護でき、膜抵抗値を所定値に充分安定に維持できる。   The glass protective film is printed with glass paste 60 to 80% by weight, ethyl cellulose 0.5 to 3.0% by weight, ester alcohol 30 to 20% by weight, pine oil remainder glass paste, and firing peak temperature 500 ° C. to 600 ° C. The film resistance can be formed by firing under conditions of 10 minutes. After the glass protective film is formed, the film resistance can be mechanically protected, and the film resistance value can be kept sufficiently stable at a predetermined value.

本発明に係る基板型抵抗付き温度ヒューズは、制御回路に組み込んで使用され、被保護機器の異常時に、抵抗体に電流を流し、抵抗体を通電発熱させ、その発生熱で温度ヒューズエレメントを溶断作動させて被保護機器への給電を遮断させる。この場合、制御回路の回路素子であるダイオードやサイリスタの整流作用のために、可溶合金エレメント接続用膜電極と抵抗接続用膜電極との間に、ほぼ100vの直流電圧が加電される。
而るに、本発明に係る基板型抵抗付き温度ヒューズが多湿環境のもとで使用されて絶縁保護層を透過する湿分によりフラックスが電解質溶液化されても、ガラス保護膜の透水性にもかかわらず、可溶合金エレメント接続用膜電極と抵抗接続用膜電極との間の電解質溶液による繋がりがないから、可溶合金エレメント接続用膜電極と抵抗接続用膜電極との間への前記直流電圧の加電にもかかわらず、両電極間のマイグレーションを回避できる。このことは、後述の実施例と比較例との対比からも確認できる。
The board-type resistance thermal fuse according to the present invention is used by being incorporated in a control circuit, and when a protected device is abnormal, a current is passed through the resistor to cause the resistor to generate heat, and the generated heat blows the temperature fuse element. Activate to shut off the power supply to the protected equipment. In this case, a DC voltage of approximately 100 V is applied between the soluble alloy element connecting membrane electrode and the resistance connecting membrane electrode for the rectifying action of the diodes and thyristors that are circuit elements of the control circuit.
Therefore, even if the substrate type resistance temperature fuse according to the present invention is used in a humid environment and the flux is made into an electrolyte solution by moisture that permeates the insulating protective layer, the glass protective film can be made to be permeable to water. Regardless, since there is no connection by the electrolyte solution between the soluble alloy element connecting membrane electrode and the resistive connecting membrane electrode, the direct current between the soluble alloy element connecting membrane electrode and the resistive connecting membrane electrode Despite voltage application, migration between both electrodes can be avoided. This can also be confirmed from a comparison between examples and comparative examples described later.

本発明に係る基板型抵抗付き温度ヒューズを被保護機器に取付けて使用する場合は、上記の使用形態の外、被保護機器の異常発熱により温度ヒューズエレメントを溶断作動させて被保護機器への給電を遮断する形態で使用することもできる。   When using the thermal resistor with a substrate type resistor according to the present invention attached to a protected device, the thermal fuse element is blown by an abnormal heat generation of the protected device outside the above usage form, and the power is supplied to the protected device. It can also be used in the form of blocking.

上記の実施例では、堤部を設けてフラックスのガラス保護膜への非接触を保証しているが、堤部の配設に代え、境界ラインマークを付し、フラックスをこの境界ラインを越えないように塗布することもできる。
また、上記の堤部または境界ラインを図2に示すように、可溶合金エレメント端近傍の可溶合金エレメント接続用膜電極部分を内側に納める枠形とすることもできる。
前記の実施例では、温度ヒューズ部の両側に膜抵抗を設けているが、片側の膜抵抗部は省略することもできる。
In the above embodiment, a bank portion is provided to guarantee non-contact of the flux with the glass protective film. However, instead of the bank portion being provided, a boundary line mark is attached so that the flux does not exceed the boundary line. It can also be applied.
Further, as shown in FIG. 2, the bank portion or the boundary line may be formed into a frame shape in which the membrane electrode portion for connecting the soluble alloy element near the end of the soluble alloy element is accommodated.
In the above embodiment, the film resistors are provided on both sides of the temperature fuse portion, but the film resistor portion on one side can be omitted.

〔実施例〕
使用した基板型抵抗付き温度ヒューズの構成は、図2に示すものであり、各部の寸法等は次の通りとした。
基板には、横8.5mm×縦12.7mm(可溶合金エレメントの軸方向を横方向とする)のセラミックス板を用いた。可溶合金エレメントには、長さ4mm、外径0.5mmφ、融点104℃のBi−In−Sn系合金を用い、その配設は基板の中央位置とした。可溶合金エレメント接続用膜電極の寸法は横0.6mm×縦2mmとし、抵抗接続用膜電極の寸法は横1mm×縦2.2mmとし、両膜電極ともAg導体ペーストの印刷・焼付けにより形成した。膜抵抗は酸化ルテニウムペーストの印刷・焼付けにより形成し、抵抗膜の内側縦方向縁と抵抗接続用膜電極の内側縦方向縁及び抵抗膜の横方向縁と抵抗接続用膜電極の横方向縁とを一致させた。抵抗値はトリミングにより設定した。ガラス保護膜の寸法は膜抵抗の外郭をややはみ出る寸法とし、組成がガラス粒子70重量%,エチルセルロース2重量%,エステルアルコール25重量%,パインオイル3重量%のガラスペーストを印刷し、焼成ピーク温度550℃、10分の条件で焼成した。
枠形堤部を枠の各辺をガラスペーストの塗布幅0.2mm、塗布高さ30μmで印刷形成した。この枠の外郭の横片下端にガラス保護膜の内側横縁が接触するものがあった。この枠形堤部内に溶融フラックス(ロジンを主成分とする)を滴下し、自然冷却により固化させた。而るのち、エポキシ樹脂の滴下塗装により厚み2mmの絶縁保護層を形成した。
〔Example〕
The configuration of the substrate-type resistance-equipped thermal fuse used is as shown in FIG. 2, and the dimensions and the like of each part are as follows.
As the substrate, a ceramic plate having a width of 8.5 mm × length of 12.7 mm (the axial direction of the fusible alloy element is defined as the horizontal direction) was used. As the fusible alloy element, a Bi—In—Sn alloy having a length of 4 mm, an outer diameter of 0.5 mmφ, and a melting point of 104 ° C. was used, and its arrangement was set at the center position of the substrate. The dimensions of the membrane electrode for fusible alloy element connection are 0.6 mm wide x 2 mm long, and the dimension of the membrane electrode for resistance connection is 1 mm wide x 2.2 mm long. Both film electrodes are formed by printing and baking of Ag conductor paste. did. The film resistance is formed by printing and baking ruthenium oxide paste. The inner vertical edge of the resistance film, the inner vertical edge of the resistance connection film electrode, the lateral edge of the resistance film, and the lateral edge of the resistance connection film electrode Were matched. The resistance value was set by trimming. The size of the glass protective film is a dimension that slightly protrudes from the outline of the film resistance, and a glass paste having a composition of 70% by weight of glass particles, 2% by weight of ethyl cellulose, 25% by weight of ester alcohol, and 3% by weight of pine oil is printed, and the firing peak temperature Firing was performed at 550 ° C. for 10 minutes.
The frame-shaped bank portion was printed on each side of the frame with a glass paste coating width of 0.2 mm and a coating height of 30 μm. In some cases, the inner lateral edge of the glass protective film was in contact with the lower end of the lateral piece of the frame. A molten flux (mainly rosin) was dropped into the frame-shaped bank portion and solidified by natural cooling. Thereafter, an insulating protective layer having a thickness of 2 mm was formed by dripping the epoxy resin.

〔比較例1〕
実施例に対し、堤枠の使用を省略した。フラックスがガラス保護膜上に拡がり、抵抗接続用膜電極上にガラス膜を隔ててフラックスが存在している。
〔比較例2〕
比較例1に対し、ガラス保護膜の焼成条件を550℃×1分から650℃×1分にグレードアップした。この比較例2でも、比較例1と同様にフラックスがガラス保護膜上に拡がり、抵抗接続用膜電極上にガラス膜を隔ててフラックスが存在している。
[Comparative Example 1]
For the examples, the use of the bank was omitted. The flux spreads on the glass protective film, and the flux exists on the resistance connecting film electrode across the glass film.
[Comparative Example 2]
Compared to Comparative Example 1, the firing condition of the glass protective film was upgraded from 550 ° C. × 1 minute to 650 ° C. × 1 minute. In Comparative Example 2, as in Comparative Example 1, the flux spreads on the glass protective film, and the flux exists on the resistance connecting film electrode across the glass film.

これらの実施例品、比較例品について、60℃×90%の加湿条件で、両電極間に可溶合金エレメント接続用膜電極を+側としてDC100vを印加する試験を行った。その結果は、実施例品では500時間経過後でも何ら異常は認められなかったが、比較例品1では、71時間経過時にマイグレーションが発生し、比較例2では、118時間経過時にマイグレーションが発生した。
比較例2が比較例1より軽度のマイグレーションである理由は、ガラス保護膜の緻密化がアップし、両膜電極間が電解質溶液で繋がり難くなった結果であると推測できるが、ガラス保護膜の焼成条件の過酷さのために膜抵抗値の相当の変動が確認された。
With respect to these example products and comparative example products, a test was performed in which DC 100v was applied between the two electrodes with the membrane electrode for connecting a soluble alloy element between the two electrodes under a humidified condition of 60 ° C. × 90%. As a result, no abnormality was observed in the example product even after 500 hours had elapsed, but in the comparative example product 1, migration occurred when 71 hours passed, and in comparative example 2, migration occurred after 118 hours passed. .
The reason why Comparative Example 2 is milder migration than Comparative Example 1 can be presumed to be the result of the densification of the glass protective film and the difficulty in connecting the two membrane electrodes with the electrolyte solution. Due to the severeness of the firing conditions, considerable fluctuations in the film resistance value were confirmed.

本発明に係る基板型抵抗付き温度ヒューズの一実施例を示す図面である。1 is a view showing an embodiment of a thermal fuse with substrate type resistance according to the present invention. 本発明に係る基板型抵抗付き温度ヒューズの別実施例を示す図面である。It is drawing which shows another Example of the thermal fuse with a board | substrate type resistor which concerns on this invention. 従来の基板型抵抗付き温度ヒューズを示す図面である。2 is a diagram illustrating a conventional substrate type resistor-equipped temperature fuse. 従来の基板型抵抗付き温度ヒューズにおけるマイグレーションの発生機構を示す図面である。6 is a view showing a mechanism of occurrence of migration in a conventional substrate-type resistance-equipped thermal fuse.

符号の説明Explanation of symbols

1 絶縁基板
2 可溶合金エレメント接続用膜電極
3 可溶合金エレメント
4 抵抗接続用膜電極
5 膜抵抗
6 ガラス保護膜
7 フラックス
A 堤部
DESCRIPTION OF SYMBOLS 1 Insulation board | substrate 2 Membrane electrode for fusible alloy element connection 3 Fusible alloy element 4 Membrane electrode for resistance connection 5 Membrane resistance 6 Glass protective film 7 Flux A Bank

Claims (4)

基板の片面上に可溶合金エレメント接続用膜電極と抵抗接続用膜電極とを設け、可溶合金エレメント接続用膜電極間に可溶合金エレメントを接続し、抵抗接続用膜電極間に膜抵抗を接続し、抵抗接続用膜電極及び膜抵抗を覆ってガラス保護膜を設け、可溶合金エレメント及び該エレメントの各端近傍の可溶合金エレメント接合用膜電極部分を覆ってフラックスを塗布し、基板の片面上に樹脂保護層を塗装した抵抗付きの温度ヒューズであり、前記ガラス保護膜と前記フラックスの塗布域との間にフラックスを堰き止める堤が、前記ガラス保護膜の端縁を当該堤の外側に位置させるように、しかも基板縁端から離隔して設けられており、前記樹脂保護層が基板片面の全面に設けられて当該樹脂保護層と前記ガラス保護膜とが接していることを特徴とする抵抗付き温度ヒューズ。 A fusible alloy element connecting membrane electrode and a resistance connecting membrane electrode are provided on one side of the substrate, the fusible alloy element is connected between the fusible alloy element connecting membrane electrodes, and the membrane resistance is between the resistive connecting membrane electrodes. And a glass protective film covering the resistance connecting membrane electrode and the membrane resistance, applying a flux covering the fusible alloy element and the fusible alloy element joining membrane electrode portion near each end of the element, A thermal fuse with a resistance in which a resin protective layer is coated on one surface of a substrate, and a bank that dams the flux between the glass protective film and the flux application area, and an edge of the glass protective film is connected to the bank The resin protective layer is provided on the entire surface of one side of the substrate so that the resin protective layer and the glass protective film are in contact with each other . Special Resistance with temperature fuse to be. ガラス保護膜が焼成ピーク温度500℃〜900℃、5分〜40分の条件で焼き付けられていることを特徴とする請求項1記載の抵抗付き温度ヒューズ。 2. The resistance temperature fuse according to claim 1, wherein the glass protective film is baked under a firing peak temperature of 500 ° C. to 900 ° C. for 5 minutes to 40 minutes. 可溶合金エレメント接続用膜電極及び抵抗接続用膜電極がAg系導体ペースト、Cu系導体ペーストまたはAu系導体ペーストの印刷・焼き付けにより設けられていることを特徴とする請求項1〜2何れか記載の抵抗付き温度ヒューズ。 Fusible alloy element connected membrane electrode and a resistor connected membrane electrode Ag-based conductor paste, in any one of claims 1-2, characterized in that provided by printing and baking a Cu-based conductor paste or Au system conductor paste Thermal fuse with resistance as described. 可溶合金エレメント接続用膜電極と可溶合金エレメントとフラックスとからなる温度ヒューズ部を挾む両側に、抵抗接続用膜電極と膜抵抗とガラス保護膜とからなる膜抵抗部が設けられていることを特徴とする請求項1〜3何れか記載の抵抗付き温度ヒューズ。 On both sides of the temperature fuse part consisting of the fusible alloy element connecting membrane electrode, the fusible alloy element and the flux, the membrane resistance part consisting of the resistance connecting membrane electrode, the membrane resistance and the glass protective film is provided. The thermal fuse with a resistance according to any one of claims 1 to 3 .
JP2007202417A 2007-08-03 2007-08-03 Thermal fuse with resistance Active JP5180531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007202417A JP5180531B2 (en) 2007-08-03 2007-08-03 Thermal fuse with resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007202417A JP5180531B2 (en) 2007-08-03 2007-08-03 Thermal fuse with resistance

Publications (2)

Publication Number Publication Date
JP2009037935A JP2009037935A (en) 2009-02-19
JP5180531B2 true JP5180531B2 (en) 2013-04-10

Family

ID=40439651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007202417A Active JP5180531B2 (en) 2007-08-03 2007-08-03 Thermal fuse with resistance

Country Status (1)

Country Link
JP (1) JP5180531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946661B2 (en) 2021-01-29 2024-04-02 Robert M. Rohde Variable airflow energy efficient HVAC systems and methods

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101401141B1 (en) * 2012-11-26 2014-05-30 스마트전자 주식회사 The complex protection device of blocking the abnormal state of current and voltage
KR101434118B1 (en) * 2013-12-20 2014-08-26 스마트전자 주식회사 Fuse resistor
JP6406881B2 (en) * 2014-06-03 2018-10-17 デクセリアルズ株式会社 Fuse element
JP6708387B2 (en) 2015-10-07 2020-06-10 デクセリアルズ株式会社 Switch element, electronic parts, battery system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0622093B2 (en) * 1989-03-17 1994-03-23 三菱マテリアル株式会社 Substrate type thermal fuse and resistor and method of manufacturing the same
JPH097482A (en) * 1995-06-23 1997-01-10 Matsushita Electric Ind Co Ltd Temperature fuse
JP2000164092A (en) * 1998-11-25 2000-06-16 Nec Kansai Ltd Thermal fuse with resistor
JP2002075151A (en) * 2000-08-30 2002-03-15 Kyocera Corp Protective element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11946661B2 (en) 2021-01-29 2024-04-02 Robert M. Rohde Variable airflow energy efficient HVAC systems and methods

Also Published As

Publication number Publication date
JP2009037935A (en) 2009-02-19

Similar Documents

Publication Publication Date Title
TWI390568B (en) Protection element
US6462318B2 (en) Protective element
CN104303255B (en) For protecting the fuse element of device and including the circuit brake of this element
US6344633B1 (en) Stacked protective device lacking an insulating layer between the heating element and the low-melting element
JP5180531B2 (en) Thermal fuse with resistance
CN107004538B (en) The manufacturing method of fixing body, the installation method of temperature fuse device and temperature fuse device
US20110211284A1 (en) Protective element and method for producing the same
KR20050099523A (en) Protection element
CN101989519B (en) Protecting component
TWI586472B (en) A flux for the protection element, a fuse element for the protection element, and a circuit protection element
JP2007059295A (en) Circuit protective element and protection method of circuit
JP6017603B2 (en) Composite protective element
JP7050019B2 (en) Protective element
WO2021210536A1 (en) Protective element
JP2007294117A (en) Protection element and operation method of protection element
CN110741457B (en) Protective element
WO2016072253A1 (en) Circuit element and method for manufacturing circuit element
JP6711704B2 (en) Protective device with bypass electrode
JP2009070804A (en) Temperature fuse
JP7040886B2 (en) Protective element
JP2000260280A (en) Protecting element and its manufacture
JP4219502B2 (en) Resistive fuse
JP4267332B2 (en) Protective element
JP2016021299A (en) Short circuit element, and led circuit, battery protection circuit and short circuit using the same
JP2004296422A (en) Protection element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5180531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250