JP5180086B2 - 波長変換装置および画像表示装置 - Google Patents

波長変換装置および画像表示装置 Download PDF

Info

Publication number
JP5180086B2
JP5180086B2 JP2008538724A JP2008538724A JP5180086B2 JP 5180086 B2 JP5180086 B2 JP 5180086B2 JP 2008538724 A JP2008538724 A JP 2008538724A JP 2008538724 A JP2008538724 A JP 2008538724A JP 5180086 B2 JP5180086 B2 JP 5180086B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
temperature
output
value
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008538724A
Other languages
English (en)
Other versions
JPWO2008044673A1 (ja
Inventor
博之 古屋
哲郎 水島
和久 山本
愼一 門脇
弘一 楠亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008538724A priority Critical patent/JP5180086B2/ja
Publication of JPWO2008044673A1 publication Critical patent/JPWO2008044673A1/ja
Application granted granted Critical
Publication of JP5180086B2 publication Critical patent/JP5180086B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3501Constructional details or arrangements of non-linear optical devices, e.g. shape of non-linear crystals
    • G02F1/3507Arrangements comprising two or more nonlinear optical devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3532Arrangements of plural nonlinear devices for generating multi-colour light beams, e.g. arrangements of SHG, SFG, OPO devices for generating RGB light beams
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3546Active phase matching, e.g. by electro- or thermo-optic tuning
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/307Reflective grating, i.e. Bragg grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/58Arrangements comprising a monitoring photodetector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/60Temperature independent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1028Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1306Stabilisation of the amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Description

本発明は、ファイバレーザと波長変換素子とを組み合わせて安定な可視光高出力レーザを得る波長変換装置、および、この波長変換装置を光源として用いた画像表示装置に関する。
単色性が強くW級の高出力が出力できる可視光光源は、大型ディスプレイや高輝度ディスプレイ等を実現する上で必要とされている。赤、緑、青の3原色のうち赤色の光源については、DVDレコーダー等で使用されている赤色高出力半導体レーザが、生産性の高い小型の光源として利用可能である。しかし、緑色または青色の光源については、半導体レーザ等での実現が難しく、生産性の高い小型の光源が求められている。とりわけ、緑色の出力光を得ることは、半導体レーザとして構成できる適当な材料がないこともあり、緑色の光源を実現する上での難易度は高い。
このような光源として、ファイバレーザと波長変換素子とを組み合わせた波長変換装置が低出力の可視光光源として実現されている。ファイバレーザを励起する励起光の光源として半導体レーザを用い、波長変換素子として非線形光学結晶を用いた緑色や青色の小型の光源はよく知られている。
しかしながら、このような波長変換装置からW級の高出力の緑色や青色の出力光を得るためには、いくつかの課題を解決することが必要である。図31に従来の波長変換装置の概略構成を示す。この構成で、例えば、緑色の出力光を得る場合について説明する。図31に示す波長変換装置は、基本波を出力するファイバレーザ20と、基本波を緑色のレーザ光に変換する波長変換素子27とから構成されている。
さらに、ファイバレーザ20の基本のレーザ動作について説明する。まず、図31で励起用レーザ光源21からの励起光がファイバの一端から入射する。入射した励起光はYbファイバ14に含まれるレーザ活性物質で吸収された後、ファイバ14の内部で基本波の種光が発生する。この基本波の種光は、ファイバグレーティング22と、ファイバグレーティング25を一対の反射ミラーとするレーザ共振器の中を何度も反射して往復する。それと同時に、種光はファイバ14に含まれるレーザ活性物質によるゲインで増幅されて、光強度が増大し波長選択もされてレーザ発振に到る。なお、レーザ光源21は励起用レーザ電流源31により電流駆動される。
次に、図31の波長変換装置の基本動作について説明する。上記のようにして基本波はファイバレーザ20により出力され、基本波はレンズ26を介して波長変換素子27に入射する。ファイバレーザ20からの基本波は波長変換素子27の非線形光学効果により高調波に変換される。この変換された高調波は、ビームスプリッタ28で一部反射されるが、透過した高調波は波長変換装置の出力光である緑色のレーザ光となる。
ビームスプリッタ28で一部反射された高調波は、波長変換装置の出力光をモニターするための受光素子29で受光された後、電気信号に変換されて利用される。この変換された信号の強度が波長変換装置で所望の出力が得られる強度になるように、出力コントローラー30は励起用レーザ電流源31でレーザ光源21の駆動電流を調整する。そうするとレーザ光源21からの励起光の強度が調整され、ファイバレーザ20の基本波の出力強度が調整され、その結果として波長変換装置の出力の強度が調整される。このことにより波長変換装置の出力の強度は一定に保たれる、いわゆるオートパワーコントロール(以下、「APC」と略する)が安定に動作することとなる。
このように、レーザからの光出力を一定にするためにレーザ光源からの出力をモニターし、レーザを駆動する電流値へフィードバックする方法や、レーザを保持する部分の温度を一定に保つ方法などは、光記録分野で重要な技術であったため、従来から様々な方法が提案されており、例えば特許文献1にはレーザダイオードに印加される電流値から半導体チップ部分の温度上昇を予測し、温度調節をする方法が提案されている。この他にも、様々な方法が提案されており、特許文献2にはフィードバック制御で光量を制御する際に印加する電流値に上限を設け、レーザダイオードを保護する方法が提案されている。
また、特許文献3にはレーザダイオードを空冷で使用する際にフォトダイオードを用いて電流フィードバックを行う代わりにレーザダイオードの温度をモニターすることにより印加する電流量を決定する方法が提案されている。特許文献4にはレーザダイオードの動作開始と共に温調を開始する場合、検出したレーザダイオードの温度に合わせて初期駆動電流を小さくすることによりレーザダイオードの破壊を防止する方法が提案されている。特許文献5にはレーザの温度調節を行う際に用いる温度検出器を用いてレーザダイオードの温度をモニターすることにより印加する電流量を決定する方法が提案されている。さらに、レーザダイオードと波長変換素子とを組合せた場合の出力安定化方法について特許文献6〜特許文献8に記述されているような構成が提案されている。ここに挙げた特許文献以外にもレーザダイオードの温調に関しては様々な方法が提案されている。
特開平1−98282号公報 特開平2−253969号公報 特開2004−103954号公報 特開2004−356579号公報 特開2005−311133号公報 特許第3329446号公報 特許第3334787号公報 特許第3526282号公報
しかしながら、上記従来の波長変換装置では、環境温度の変動に対し、緑色光を安定して得ることが困難であり、特に、上記従来の波長変換装置をプロジェクションディスプレイや液晶ディスプレイのバックライト等の民生機器の内部に配置した場合、筐体内の温度が徐々に上昇して緑出力が低下するという課題があった。一方、このような課題に対して、波長変換素子の温度を一定値に制御する方法、出力値をLD電流へフィードバックする方法などが従来から提案されているが、波長変換素子の温度を制御する方法では波長変換素子の温度は0.01℃単位で制御される必要があり、民生機器ではコスト面などの問題で使用が難しく、LD電流へフィードバックする方法も温度変化にして0.3℃程度しか補償できず、効果的な改善方法ではなかった。特に、ファイバグレーティングで波長選択されたファイバレーザ光源を使用する際、波長変換素子の波長特性が温度によって変化する上、さらに、ファイバグレーティングの波長特性も温度によって変化するため、従来の温度一定値制御を行ったとしても出力を安定化することができなかった。
また、波長変換前の基本波のレーザ光源から第2高調波である緑色光の出力への変換効率を向上させるために、波長変換機構を2つ設け、1つ目の波長変換機構(1段目)で変換されなかった基本波を2つ目の波長変換機構(2段目)で再度波長変換させる波長変換装置(このような構成を便宜的に「2段構成」と呼ぶ)が提案されている。この2段構成は、1段目の第2高調波出力に依存して2段目の第2高調波出力も変動するという特性を持っており、従来の出力安定化方法で1段目および2段目の出力の合算値を制御することは困難であった。特に、2段構成におけるほとんどの場合、1段目の高調波出力と2段目の高調波出力の出力変動が反対の動きをするため、レーザダイオードへの電流値フィードバックや通常の素子温調を用いて制御することが極めて困難であった。
本発明の目的は、W級の高出力の緑色や青色のレーザ出力光を安定して得られる波長変換装置を提供することにある。
本発明の一局面に従う波長変換装置は、レーザ光源から出射される励起光を発振させて、基本波を出射するレーザ共振器と、前記レーザ共振器から出射される基本波を高調波に変換する第1の波長変換素子と、前記第1の波長変換素子の温度を制御する第1の温度制御素子と、前記第1の波長変換素子に入射される基本波のうちで前記第1の波長変換素子により高調波に変換されないで前記第1の波長変換素子から出射される基本波を高調波に変換する第2の波長変換素子と、前記第2の波長変換素子の温度を制御する第2の温度制御素子と、前記第1の波長変換素子から出射される高調波の出力を検出する第1の検出部と、前記第2の波長変換素子から出射される高調波の出力を検出する第2の検出部と、前記第1の温度制御素子による前記第1の波長変換素子の温度制御、前記第2の温度制御素子による前記第2の波長変換素子の温度制御、および、前記レーザ光源へ印加される駆動電流の電流値制御を管理するコントローラとを備え、前記コントローラは、前記第1の検出部による第1の検出値と前記第2の検出部による第2の検出値とを合算し、当該合算値を基にして前記第1および第2の波長変換素子の温度制御を行う。
上記の波長変換装置では、第1の検出部による第1の検出値と第2の検出部による第2の検出値との合算値を基にして第1および第2の波長変換素子の温度制御が行われるので、第1の波長変換素子からの高調波の出力変動に依存して第2の波長変換素子からの高調波の出力変動が生じる場合であっても、2つの高調波の合算値の出力変動を効果的に抑制することができる。
本発明によれば、W級の高出力の緑色や青色のレーザ出力光を安定して得られる波長変換装置を提供することができる。
以下、本発明の実施の形態にかかる波長変換装置および画像表示装置について、図面を参照しながら説明する。なお、図面で同じ符号が付いたものは、説明を省略する場合もある。
(実施の形態1)
図1は、本発明の実施の形態1にかかる波長変換装置を用いた2次元画像表示装置の構成を示す模式図である。図1に示すように、本実施の形態にかかる2次元画像表示装置10は、液晶3板式プロジェクターの光学エンジンに適用された例である。本実施の形態にかかる2次元画像表示装置10は、画像処理部102と、レーザ出力コントローラ(コントローラ)103と、LD電源104と、赤色レーザ光源105Rと、緑色レーザ光源105Gと、青色レーザ光源105Bと、ビーム形成ロッドレンズ106R、106Gおよび106Bと、リレーレンズ107R、107Gおよび107Bと、折り返しミラー108Gおよび108Bと、2次元変調素子109R、109Gおよび109Bと、偏光子110R、110Gおよび110Bと、合波プリズム111と、投影レンズ112と、を備えている。
本実施の形態にかかる波長変換装置は、図1において、2次元画像表示装置10の緑色レーザ光源105Gに適用されている。図2に緑色レーザ光源105Gの構成を示す。
緑色レーザ光源105Gは、図2において、ファイバレーザ201と、ファイバレーザ201から発せられた基本波レーザ光の波長を1/2にする波長変換素子205aおよび205bと、波長変換素子205aおよび205bの温度を制御するペルチェ素子207aおよび207bと、波長変換素子205aおよび205bで発生した緑色光と残存する基本波とを分離するビームスプリッタ208aおよび208bと、波長変換素子205aおよび205bで発生した緑色光をモニターするためのビームサンプラー209aおよび209bと、フォトダイオード210aおよび210bと、を有している。ファイバレーザ201は、励起用LD202と、ファイバグレーティング204aおよび204bと、Ybファイバ203と、ファイバグレーティング204bを保持する保持部206と、から構成されており、さらに、励起用LD202は、LD電源104に接続される一方、ペルチェ素子207aおよび207b、ならびに、フォトダイオード210aおよび210bは、緑色光源105Gの出力をコントロールするコントローラ103に接続されている。
ファイバレーザ201は、励起用LD202から発せられた励起光(波長915nm)によりYbファイバ203を励起する。Ybファイバ203の両端にはファイバグレーティング204aおよび204bが配置されており、ファイバグレーティング204aおよび204bとの間でレーザ共振器を構成している。ファイバグレーティング204aは、反射中心波長1070nm、反射帯域1nm、反射率98%以上であり、ファイバグレーティング204bは、反射中心波長1069.9nm、反射帯域0.1nm、反射率10%となっている。なお、Yb添加ファイバを使用したファイバレーザは、Ndファイバ等と比較して動作範囲が広いため1030〜1150nmの範囲のレーザ光を発生させることができる。このため、2次元画像表示装置として使用した場合、大きな色再現範囲を確保することにより高画質化が可能となる。
ファイバレーザ201のレーザ共振器の一方の反射面として狭帯域のファイバグレーティング204bを適用することで、任意の反射中心波長を選択することが可能となり発振中心波長を任意に選択できる上、波長変換素子205aおよび205bが要求する波長帯域0.05〜0.2nmの基本波を発生することができる。
本実施の形態において、ファイバグレーティング204aおよび204bとして偏波保持ファイバに形成したファイバグレーティングを使用し、Ybファイバ203も偏波保持ダブルクラッドファイバを使用するのが好ましい。この場合、発振した基本波の偏波方向を制御することが可能となる。
また、本実施の形態において、ファイバレーザ201のレーザ共振器をファイバ内に閉じた系とすることにより、外部からの塵あるいは反射面のミスアライメント等で共振器の損失が増加することを防止し、それにより、レーザ共振器の出力の経時低下および出力変動を抑制することができる。
次に、本実施の形態の緑色レーザ光源105Gの基本のレーザ動作について説明する。図2でピッグテイル型の励起用LD202からの励起光は付属したファイバ中を伝搬した後、レーザ共振器を構成するファイバに入射する。入射した励起光はYbファイバ203に含まれるレーザ活性物質(Yb:イッテルビウム)で吸収されつつ、Ybファイバ203中を伝搬する。励起光の90%以上は、ファイバグレーティング204bに到達するまでにレーザ活性物質に吸収されて消失する。このように本実施の形態では、励起光がYbファイバ203の中で吸収され、Ybファイバ203内で基本波を増幅するゲインが高くなった状態で、基本波の種光がYbファイバ203の内部で発生する。この基本波の種光は、ファイバグレーティング204aとファイバグレーティング204bとをレーザ共振器の一組の反射面として、このレーザ共振器の中を増幅されて強度を増しつつ何度も反射して往復しレーザ発振に至る。
本実施の形態のYbファイバ203は、例えば、高出力の励起光を伝搬させることが可能なダブルクラッドの偏波保持ファイバを使用した。したがって、励起光はYbファイバ203のコアと内側のクラッドの比較的広い領域を伝搬して、Ybファイバ203に含まれるレーザ活性物質(イッテルビウム)により吸収される。また、励起光は広い領域を伝搬することができるので、高出力の励起光を用いることもできる。
このようにしてファイバレーザ201から出力される基本波は、波長変換素子205aに導かれる。
次に、波長変換素子205aおよび205bの基本動作について説明する。上記のようにして、ファイバレーザ201により基本波のレーザ光が出力され、集光レンズ等で集光されて波長変換素子205aに入射する。ファイバレーザ201からの基本波が入射波となり波長変換素子205aの非線形光学効果により変換され、波長が基本波の1/2の高調波出力となる。波長変換素子205aから出射したビームは、未変換の基本波と変換された高調波出力とが混ざった状態で出力されている。
波長変換素子205aから出射されたビームは、一度、再コリメートレンズを通過し、再び平行ビームに戻った後、ビームスプリッタ208aに入射する。波長変換素子205aで変換された高調波出力は、ビームスプリッタ208aで分離されてビームサンプラー209aに向う一方、波長変換されなかった基本波は、そのままビームスプリッタ208aを透過し、集光レンズを用いて集光させた後、波長変換素子205bに入射される。
波長変換素子205aで変換されなかった基本波が入射波となり波長変換素子205bの非線形光学効果により変換されると、波長が基本波の1/2の高調波出力となる。波長変換素子205bから出射したビームは、未変換の基本波と変換された高調波出力とが混ざった状態で出力されている。
波長変換素子205bから出射されたビームは、一度、再コリメートレンズを通過し、再び平行ビームに戻った後、ビームスプリッタ208bに入射する。波長変換素子205bで変換された高調波出力は、ビームスプリッタ208bで分離されてビームサンプラー209bに向う一方、波長変換されなかった基本波は、そのままビームスプリッタ208bを透過する。透過した基本波は、吸収体で吸収させ、熱として放出する。出力光検出に用いる以外の高調波出力のほとんど全てが緑色レーザ光源105Gの出力光となって出射される。本実施の形態では、波長変換素子205aおよび205bとして、分極反転構造を有するMg添加LiNbO結晶を使用している。素子の長さは20mmで、それぞれペルチェ素子207aおよび207bで温度制御されている。
図3Aに、ファイバレーザ201の環境温度に対する発振波長の関係を示す。ファイバレーザ201の環境温度により共振器を構成しているファイバグレーティングの反射波長がシフトすることによりファイバレーザ201の発振波長が変化することがわかる。図3Aでは、変化量は0.007nm/Kである。つまり、環境温度が変化するごとに波長変換素子205aおよび205bの動作波長(位相整合波長)を変化させなければ高調波出力(緑色光出力)を安定化することはできない。このことは、環境温度にかかわらず、レーザ結晶により発振波長が決定される固体レーザ光源と大きく異なるところである。本実施の形態においては、ファイバレーザ201の発振波長の変化量が0.002nm/K以下であることが好ましい。上述したように、環境温度が変化するごとに波長変換素子205aおよび205bの位相整合波長を変化させなければならないが、ファイバレーザ201の発振波長の変化量が0.002nm/K以下であれば、後述する波長変換素子205aおよび205bの位相整合波長の制御を効率よく行うことができる。
図3Bに、ファイバレーザの基本波波長と波長変換素子の位相整合波長との関係を示す。図中の実線はファイバレーザから発せられる基本波の帯域幅を示しており、図中の破線は波長変換素子の入射波長に対する波長変換特性を示している。図3Bから明らかなように、ファイバレーザおよび波長変換素子の双方が同じ波長特性を持つように双方の環境温度を変化させることが、波長変換素子からの出力の安定化に必要であることが分かる。例えば、図2の保持部206をアルミニウムを用いて構成することにより、ファイバレーザ201の温度に対する発振波長変化量は0.03nm/Kとなり、波長変換素子205aおよび205bの位相整合波長変化量0.05nm/Kに近づけることができる。また、保持部206を5×10−6/℃の熱膨張係数を持つ物質を用いて構成することにより、波長変換素子205aおよび205bの温度特性とファイバレーザ201の温度特性とをほぼ一致させることができ、出力安定化制御をより簡便にすることができる。本実施の形態において、ファイバグレーティング204bは、アルミニウムからなる保持部206上に固定した場合を示しているが、従来のように空気中に配置する場合においても同様の効果が得られるものである。
図4に、図2のコントローラ103の具体的な構成を示す。図4のコントローラ103は、A/Dコンバータ401と、判定回路402と、D/Aコンバータ403と、PWM信号発生器404と、電流‐出力値テーブル405と、第1のレジスタ406と、第2のレジスタ407と、を有している。コントローラ103は、ペルチェ素子207aおよび207bを用いて、波長変換素子205aおよび205bの温度を制御する。なお、この他、必ずしも必要でないがファイバレーザ201筐体内の温度を測定するサーミスタ409を設けてもよい。ここでは、サーミスタ409は、ファイバグレーティング204bの保持部206に設けられている。
電流‐出力値テーブル405には、励起用LD202に供給される電流値と緑色光の出力値との関係をテーブル形式で設定しておくことができ、これらの値が制御を行う際の基準値となる。第1のレジスタ406は、制御時に使用される電流値及び出力値を一時的に記憶するために用いられる。
緑色レーザ光源105Gが出力すべき緑色光の出力値は、外部信号である光量制御信号に応じて決定される。第2のレジスタ407には、緑色レーザ光源105Gの各部品ごとに、各部品の出荷時設定値が記憶されている。各部品ごとの出荷時設定値は、各部品の製造上のばらつきを補償するために用いられる値であり、第2のレジスタ407は、光量制御信号を受け、光量制御信号および出荷時設定値によって設定される緑色光の出力値を判定回路402へ通知する。判定回路402は、マイクロコンピュータ等から構成され、電流‐出力値テーブル405を参照して、第2のレジスタから通知された出力値に対応する電流値をD/A変換器403を介してLD電源104へ通知する。
フォトダイオード210aおよび210bは、ビームサンプラー209aおよび209bにより一部反射された緑色光を受光し、受光した緑色光の大きさに応じた電圧信号である出力検出信号をA/D変換器401へ出力する。A/D変換器401は、アナログ形式の出力検出信号をデジタル形式の出力検出信号へ変換して判定回路402へ出力する。判定回路402は、出力検出信号に応じてペルチェ素子207aおよび207bを用いて、波長変換素子205aおよび205bの温度を制御する。
次に、緑色光源105Gの動作について説明する。図5は、緑色レーザ光源105Gの波長変換素子205aの立ち上げ動作の処理手順を示すフローチャートである。なお、波長変換素子205bの立ち上げ動作は波長変換素子205aと同様であるので、ここでは、波長変換素子205bの立ち上げ動作についての説明は省略する。
まず、図5のステップS101おいて、緑色レーザ光源105Gの動作を開始すると、LD電源104からのLD電流を励起用LD202に印加し、緑色光出力が可能な状態にする。ここで、LD電流の値は、基本波出力にして500mW程度とし、位相整合条件が合致した際に、緑色光にして20mW出力できる程度の電流値とした。本実施の形態の場合、1A程度とした。その理由として、緑色光として微小な出力とすることにより、2次元画像表示装置とした場合に、立ち上げ用の緑色光を出力していることが目立たないためである。この際、波長変換素子205aの位相整合温度を40〜60℃と室温よりも高く設計しておくことが重要である。
次に、ステップS102において、緑色光の出力値が設定値となるまで、ペルチェ素子207aはPWM波形の電流で駆動されているため、判定回路402は、ペルチェ素子207aへ電流を供給する時間を増やして素子温度を上げながら緑色光の出力値をモニターする。具体的には、ステップS103において、緑色光の出力値が設定値よりも低い間では、ペルチェ素子207aへ電流を供給する時間を増加させる。
緑色光の出力値が設定値に達し、設定値を超えた場合には、ステップS104において、ペルチェ素子207aへ電流を供給する時間を減少させて素子温度を下げながら緑色光の出力値をモニターする。具体的には、ステップS105において、緑色光の出力値が設定値よりも高い間では、ペルチェ素子207aへ電流を供給する時間を減少させる。一方、緑色光の出力値が設定値に達し、設定値を下回った場合には、ステップS102へ戻る。
このようにして、緑色光出力のピークサーチを行う。また、ペルチェ素子207aへ供給される電流波形(PWM波形)は,緑色光の出力値が設定値に近づくにつれ、OFF時間が長くなるように比例制御されている。また、電流波形の周波数は、出力安定化を勘案した結果、5〜100MHz程度が望ましく、このような周波数であれば電流波形を平滑化することなく温度を安定化することが可能であった。また、電流波形を平滑化した場合、ON時間が短くなるにつれ、応答速度が低速化するという問題点があったが、PWM波形で直接駆動することにより応答速度を落とさずに温度制御できる。
このように、緑色光をモニターすることにより、波長変換素子205aの温度を位相整合温度に適合させることが可能となっている。緑色光出力が安定したところで、緑色光出力が安定したときのPWM波形を維持したまま、励起用LD202の電流を遮断し、待機状態とする。
本実施の形態においては、波長変換素子205aおよび205bの温度制御素子としてペルチェ素子207aおよび207bを使用しているが、素子温度を35〜80℃とすることが望ましい。室温(実使用温度)近辺とした場合、ペルチェ素子207aおよび207bに対して印加する電流の極性を反転させることが必要となるが、室温より高めの35〜80℃とすることで極性反転が不要となり、制御速度がより高速になる。また、室温と素子温度との差が大きいほど素子冷却時の制御速度をより高速にすることができるが、消費電力もそれに伴い大きくなるため、素子を保持する温度としては40〜60℃の範囲であることがより望ましい。
一方、素子の保持温度を80〜200℃とすることで、より安価なヒーターを使用することも可能である。ペルチェ素子を使用した場合より保持温度が高くなるのは、温度上昇時の制御速度はペルチェ素子とほぼ同一であるが、温度下降時の制御速度がペルチェ素子よりも低速であるためで、気温と素子温度との温度勾配を大きくする必要があるためである。
本実施の形態においては、上述したように、環境温度モニターとしてサーミスタ409を付加させても良い。以下、本実施の形態にサーミスタ409を付加させた場合について説明する。緑色レーザ光源105Gの動作を開始すると、サーミスタ409は環境温度を検出し、その後、LD電源104からのLD電流を励起用LD202に印加し、緑色光出力が可能な状態にする。ここで、LD電流の値は基本波出力にして500mW程度とし、位相整合条件が合致した際に緑色光にして20mW出力できる程度の電流値とした。本実施の形態の場合、1A程度とした。その理由として、立ち上げ用の緑色光として微小な出力のため、2次元画像表示装置とした場合に光を出力していることが目立たないためである。この際、サーミスタ409により検出された環境温度が設定値より低い場合と高い場合で場合分けされる。
環境温度が設定値より低い場合、波長変換素子205aおよび205bの温度を制御するペルチェ素子207aおよび207bへの電流を流し、緑色光出力値が設定値となるまで、ペルチェ素子207aおよび207bはPWM波形の電流で駆動されているため、ペルチェ素子207aおよび207bへ電流を供給する時間を増やして、素子温度を上げながら緑色光出力をモニターする。このようにして、緑色光出力のピークサーチを行う。また、ペルチェ素子207aおよび207bへ供給される電流波形(PWM波形)は、緑色光出力値が設定値に近づくにつれOFF時間が長くなるように比例制御されている。
一方、環境温度が設定値より高い場合、ペルチェ素子207aおよび207bへ流す電流の極性を反転し、同様の動作を行うことで、ピークサーチを完了することができる。サーミスタ409を用いた場合、素子温度を環境温度より低くすべきか高くすべきか判断できるため、波長変換素子205aおよび205bの位相整合温度を40〜60℃と室温よりも高く設計しておく必要はない。なお、この場合には、極性反転のための回路が必要となり、その回路構成によっては制御速度の低下が起こり得る。
次に、判定回路402による波長変換素子205aおよび205bの温度制御について説明する。図6Aは、波長変換素子205aおよび205bの温度特性とその立ち上げ動作後の波長変換素子205aおよび205bの温度の待機位置との関係を表す図である。待機温度としては、高調波強度がピークとなる位相整合温度の85〜95%となり、かつ、位相整合温度より低い温度となるように制御する(図中(a)で示す位置を参照)。この位置で待機させることにより、動作時の環境温度をモニターすることができる。つまり、出力が上昇すれば環境温度が低下しており、出力が減少すれば環境温度が上昇していることが分かる。このため、この出力値の変化に基づいて波長変換素子205aおよび205bの温度を制御することができる。
図6Bに、ファイバレーザ201の発振波長が長波長シフトした場合の位相整合波長の変化を示し、図6Cに、ファイバレーザ201の発振波長が短波長シフトした場合の位相整合波長の変化を示す。まず、図6Bにおいて、上記のように波長変換素子205aおよび205bの温度が待機温度に制御され、波長変換素子205aおよび205bから出力される緑色光がピーク出力の85〜95%となる待機位置で緑色光を出力しているときに、ファイバレーザ201からの基本波波長が長波長側へシフトすると、緑色光の出力は、矢印(1)で示すように、上記の待機位置から移動して上昇する。このとき、波長変換素子205aおよび205bの温度を上昇させると、緑色光の出力に対する位相整合波長の特性曲線は、矢印(2)で示すように、実線から破線へ変化して図中の右側すなわち長波長側へシフトする。このシフトにより、矢印(3)に示すように、緑色光の出力を回復させることができる。
また、図6Cにおいて、上記の待機位置で緑色光を出力しているときに、ファイバレーザ201の基本波波長が短波長側へシフトすると、緑色光の出力は、矢印(1)に示すように、上記の待機位置から移動して下降する。このとき、波長変換素子205aおよび205bの温度を低下させると、緑色光の出力に対する位相整合波長の特性曲線は、矢印(2)で示すように、実線から破線へ変化して図中の左側すなわち短波長側へシフトする。このシフトにより、矢印(3)に示すように、緑色光の出力を回復させることができる。
次に、判定回路402による緑色光の出力値の一定値制御について説明する。図7Aは、判定回路402による緑色光の出力値の一定値制御の処理手順を示すフローチャートである。本実施の形態の緑色レーザ光源105Gでは、各段(波長変換素子205aおよび205b)から出射される高調波光(緑色光)の強度の合算値が一定になるように制御する。つまり、1段目(波長変換素子205a)からの緑色光出力(以下、「G1」とする。)と2段目(波長変換素子205b)からの緑色光出力(以下、「G2」とする。)との和であるG1+G2が一定となるように制御を行っている。
具体的には、まず、ステップS201において、判定回路402は、各段からの緑色光出力を取得する。次に、ステップS202において、判定回路402は、LD電源104の電流値が所定の使用可能範囲内にあることを確認すると共に、緑色光出力の合算値G1+G2が変動したか否かを判定し、合算値G1+G2が変動していない場合は、ステップS201へ処理を戻す。なお、軽微な変動に対しては、判定回路402はLD電源104で励起用LD202の駆動電流を調整し、合算値G1+G2の強度を調整する。このことにより、合算値G1+G2の強度は一定に保たれるAPC制御が動作する。
一方、APC制御により対応できる範囲を逸脱した場合には、ステップS203において、APC制御からACC(オートカレントコントロール)制御に移行し、合算値G1+G2が一定となる制御ループを適用する。この判断を行った後で、ステップS204において、各段から取得した緑色光出力値に基づいて適用するアルゴリズム(サブルーチン)の判定を行う。
ステップS204で用いられる判定基準を図7Bに示す。まず、G1が増加し、G2が減少した場合、合算値G1+G2の変動の原因としては、1段目の素子温度が低下したことが考えられる。逆に、G1が減少し、G2が増加した場合、1段目のみ素子温度が上昇するか、光吸収による素子発熱が原因と考えられる。G1が増加し、G2が一定の場合、1段目の素子温度が低下した上、2段目の素子温度が上昇していることが考えられる。逆に、G1が低下し、G2が一定である場合、1段目の素子温度が上昇し、2段目の素子温度が低下していると考えられる。以上の場合、1段目の素子の温度と2段目の素子温度を逆方向に修正する必要があるため、アルゴリズム1のサブルーチンAを実行し、合算値G1+G2を一定に保つ。
G1、G2ともに上昇あるいは下降した場合、合算値G1+G2の変動の原因として環境温度が変化したか、ファイバレーザ201の基本波レーザの波長が変化したことが考えられる。この場合、1段目の素子温度と2段目の素子温度を同じ方向に修正する必要があるため、アルゴリズム2のサブルーチンBを実行し、合算値G1+G2を一定に保つ。
G1が一定なのに対し、G2のみが変動した場合、合算値G1+G2の変動の原因として、2段目の素子温度が変動したことが考えられる。この場合、2段目の素子温度のみ修正すればよいため、アルゴリズム3のサブルーチンCを実行し、合算値G1+G2を一定に保つ。
以下に、各アルゴリズム1〜3のサブルーチンA〜Cの処理について説明する。図8は、アルゴリズム1のサブルーチンAの処理を説明するためのフローチャートである。アルゴリズム1のサブルーチンAは、1段目の出力値増減と2段目の出力値増減が逆に動いている場合のルーチンである。そのため、1段目と2段目の各出力値G1およびG2を個々に確認しながら波長変換素子205aおよび205bの温調を行う。
図8において、まず、G1の値が上昇または下降しているかによって、波長変換素子205aのペルチェ素子207aに流れる電流量を制御する。具体的には、PWM信号発生器404の波形(ON/OFF時間)を操作することにより、平均的な電流量を増減させる。すなわち、G1値が上昇している場合には(ステップS303)、1段目のペルチェ素子207aへの電流量を増加させ、波長変換素子205aを加熱する。一方、G1値が下降している場合には(ステップS301)、ペルチェ素子207aへの電流量を減少させ、波長変換素子205aを冷却する。上記のステップS301および303での素子温度変動時には、オーバーシュートが発生するため、ステップS302および304において、G1出力を励起用LD202への電流値へフィードバックすることにより、出力変動を抑制する。
続いて、ステップS305において、合算値G1+G2が回復しているかどうかを判定し、回復していれば図7Aのメインルーチンに復帰させ、回復していない場合は、2段目の素子温度の制御を行う。
2段目の素子温度の制御においては、合算値G1+G2が回復させたい値より大きいかまたは小さいかによって、2段目のペルチェ素子207bに流れる電流量を制御する。合算値が回復させたい値より大きい場合には(ステップS308)、2段目のペルチェ素子207bへの電流量を増加させ、波長変換素子205bを加熱する。一方、合算値が回復させたい値より小さい場合には(ステップS306)、ペルチェ素子207bへの電流量を減少させ、波長変換素子205bを冷却する。上記のステップS306および308での素子温度変動時には、オーバーシュートが発生するため、ステップS307および309において、合算値G1+G2を励起用LD202への電流値へフィードバックすることにより、出力変動を抑制する。
最後に、ステップS310において、サブルーチンAを実行した後の合算値G1+G2に対する励起用LD202への電流値と緑色レーザ光源105Gの立ち上げ時における初期電流値との比較を行い、その差が設定範囲内に収まっていればメインルーチンへ復帰し、外れていれば再びアルゴリズム1のサブルーチンAを実行する。
図9は、アルゴリズム2のサブルーチンBの処理を説明するためのフローチャートである。アルゴリズム2のサブルーチンBは、1段目の出力値増減と2段目の出力値増減が同じ方向に動いている場合のルーチンである。そのため、1段目と2段目の各出力値G1およびG2に対して同じ方向(温度上昇/低下)に波長変換素子205aおよび205bの温調を行う。
図9において、まず、G1およびG2が共に増加または減少しているかによって、1段目および2段目のペルチェ素子207aおよび207bに流れる電流値を制御する。G1およびG2が共に上昇している場合には、ステップS405において、1段目のペルチェ素子207aへの電流量を増加させ、波長変換素子205aを加熱する。ステップS405での素子温度変動時には、オーバーシュートが発生するため、ステップS406において、G1出力を励起用LD202への電流値へフィードバックすることにより、出力変動を抑制する。
次に、ステップS407において、2段目のペルチェ素子207bへの電流量を増加させ、波長変換素子205bを加熱する。ステップS407での素子温度変動時には、オーバーシュートが発生するため、ステップS408において、G2出力を励起用LD202への電流値へフィードバックすることにより、出力変動を抑制する。
一方、G1およびG2が共に下降している場合には、ステップS401において、1段目のペルチェ素子207aへの電流量を減少させ、波長変換素子205aを冷却する。ステップS401での素子温度変動時には、オーバーシュートが発生するため、ステップS402において、G1出力を励起用LD202への電流値へフィードバックすることにより、出力変動を抑制する。
次に、ステップS403において、2段目のペルチェ素子207bへの電流量を減少させ、波長変換素子205bを冷却する。ステップS403での素子温度変動時には、オーバーシュートが発生するため、ステップS404において、G2出力を励起用LD202への電流値へフィードバックすることにより、出力変動を抑制する。
最後に、ステップS409において、サブルーチンBを実行した後の合算値G1+G2に対する励起用LD202への電流値と緑色レーザ光源105Gの立ち上げ時における初期電流値との比較を行い、その差が設定範囲内に収まっていればメインルーチンへ復帰し、外れていれば再びアルゴリズム2のサブルーチンBを実行する。
図10は、アルゴリズム3のサブルーチンCの処理を説明するためのフローチャートである。アルゴリズム3のサブルーチンCは、2段目の温度のみを修正して、出力変動に対応する場合のルーチンである。
図10においては、まず、G2値が上昇している場合には、ステップS503において、2段目のペルチェ素子207bへの電流量を増加させ、波長変換素子205bを加熱する。一方、G2値が下降している場合には、ステップS501において、ペルチェ素子207bへの電流量を減少させ、波長変換素子205bを冷却する。上記のステップS501および503での素子温度変動時には、オーバーシュートが発生するため、ステップS502および504において、G2出力を励起用LD202への電流値へフィードバックすることにより、出力変動を抑制する。
続いて、ステップS505において、サブルーチンCを実行した後の合算値G1+G2に対する励起用LD202への電流値と緑色レーザ光源105Gの立ち上げ時における初期電流値との比較を行い、両者の差が設定範囲内に収まっていればメインルーチンへ復帰し、外れていれば再びアルゴリズム3のサブルーチンCを実行する。
上記の各アルゴリズム1〜3のサブルーチンA〜Cの処理においては、波長変換素子205aおよび205bの待機温度として、高調波強度がピークとなる位相整合温度の85〜95%となり、かつ、位相整合温度より低い温度となるように制御されている(図6Aの(a)で示す位置)。しかしながら、波長変換素子205aおよび205bの急激な温度変化により、波長変換素子205aおよび205bの温度がピークを越え、図6Aの(b)で示す位置に達し、立ち上げ動作後の待機位置を逸脱してしまう場合が起こり得る。この場合、本実施の形態では、山越え復帰動作を行う。山越え復帰動作は例えば、上記のサブルーチンA〜CにおけるステップS310、S409およびS505において、合算値G1+G2に対する励起用LD202への電流値と緑色レーザ光源105Gの立ち上げ時における初期電流値との差が、各サブルーチンA〜Cを所定の回数Nだけ実行しても設定範囲内に収まらない場合に、実行すればよい。
図11に、山越え復帰動作の処理を説明するためのフローチャートを示す。山越え復帰動作では、波長変換素子205aおよび205bの各ペルチェ電流を増加させ(ステップS601)、オーバーシュート回避のため、合算値G1+G2を励起用LD202への電流値にフィードバックさせながら(ステップ602)、合算値G1+G2に対する励起用LD202への電流値と緑色レーザ光源105Gの立ち上げ時における初期電流値との比較を行い(ステップS603)、低ければステップS601に戻ることにより徐々に山越えさせ、高くなった時点で図7Aのメインルーチンへ移行し、待機位置への山越え復帰動作は終了する。
図12は、本実施の形態に示した出力一定値制御のルーチンを使用して、制御を行った一例として環境温度が上昇し、緑色光出力が低下した場合における各値を時系列に表す図である。図12において、時刻t1で環境温度が変化した場合、それに伴い、ファイバレーザ201のファイバグレーティング204bの変化により基本波波長が長波長化していく。この基本波波長の変化に波長変換素子205aおよび205bの温度を高速に追従させることは困難であるため、時刻t1で励起用LD202の電流を一時的に増加させ、緑色光出力を一定に保つ。波長変換素子205aおよび205bの温度の上昇にあわせ、励起用LD202への電流値を定常値に戻していく。時刻t2付近で波長変換素子205aおよび205bの温度がオーバーシュートすることがあるため、この場合でも一時的に励起用LD202への電流値を操作することで緑色光出力を一定に保つことができる。
本実施の形態によれば、従来構成のように素子温度の監視を0.01℃の精度で行う必要がなくなり、頻繁に温度を取得する必要がないため、制御回路および制御プログラムを簡略化できる。また、波長変換素子近辺の熱設計によっては、一定値制御から逸脱する「熱暴走」を防止することができる。さらに、本実施の形態では、温度の指標として緑色光出力を用いているため、より高精度の温度制御が可能となる上、励起用LDに供給する電流と相互に監視を行うことで緑色光の出力変動をほとんど起こすことなく、緑色光出力の一定値制御を可能にする。
特に、ファイバグレーティングにより発振波長が決定されたファイバレーザからのレーザ光を基本波とする波長変換装置に対して有効である。
本実施の形態では、Ybファイバレーザを基本波光源とし、波長変換素子を利用して得られた、緑色光源について述べているが、同様にファイバグレーティングにより基本波光源の波長が決定されており、波長変換素子として、分極反転構造を有するMgO:LiNbO素子を用いた光源であれば480〜600nm程度の可視光を同様の構成で安定化させることが可能である。
(実施の形態2)
次に、本発明の実施の形態2について説明する。本実施の形態は、波長変換素子として、Mg、In、Zn、Scの少なくともいずれかの添加物を含むLiNbO結晶またはLiTaO結晶を用い、かつ、1Wを超える緑色光を生成する場合の形態である。
本発明者らの検討の結果、波長変換素子として、Mg、In、Zn、Scのうちの少なくともいずれかの添加物を含むLiNbO結晶またはLiTaO結晶を用い、かつ、1Wを超える緑色光を生成する場合、波長変換素子の素子温度と発生する高調波強度との関係が上記の図6Aに示した関係と異なることが確認された。図13に、本実施の形態の波長変換素子の温度特性とその立ち上げ動作後の波長変換素子の温度の待機位置との関係を表す図である。
図13に示すように、数mW程度の低出力波長変換時において、位相整合温度付近の波長変換素子の温度特性L1は、上記の図6Aと同様に、位相整合温度を中心として、高温側と低温側が対称となる。しかし、上述した非線形光学結晶を波長変換素子として用い、かつ、赤外光から1Wを超える緑色光を得る場合、赤外光と緑色光の和周波として発生する紫外光による緑色光吸収が発生し、ビームパス内に発熱が起こる。このため、ビームパスの温度と素子の温度制御に用いるペルチェ素子(ヒーター)の温度に温度差が発生し、高調波強度を最大とするペルチェ素子(ヒーター)の温度は低温側に移動する。さらに、低温側への移動量は、生成する緑色光出力が多いほど大きい。このため、例えば、波長変換素子としてMgO:LiNbOを用い、素子長を25mmとした場合、緑色最大出力2Wとなる高出力波長変換時の波長変換素子の温度特性L2は、ペルチェ最適温度より高温側における勾配が、低温側における勾配に比べて緩やかとなる。このとき、ペルチェ最適温度より低温側の位置(a)で待機する場合に比べて、高温側の位置(b)で待機することで、温度変化に対する出力変動を約64%軽減することができる。
以上より、上記の実施の形態1において、Mg、In、Zn、Scの少なくともいずれかの添加物を含むLiNbO結晶またはLiTaO結晶を波長変換素子に用い、1Wを超える緑色光を生成する場合、ペルチェ最適温度より高温側において、上記の実施の形態1の制御を行なうことが好ましい。ただし、待機位置が位相整合温度より低温側の位置(a)から高温側の位置(b)になることにより、ペルチェ素子に流す電流量の増減は、上記の実施の形態1と逆となることは言うまでもない。
また、本実施の形態では、赤外光を基本波とし、第2高調波となる緑色光への変換について、本発明の効果を示したが、一般的に、LiNbO結晶またはLiTaO結晶にMg、Zn、Sc、Inなどを添加したものは、波長400nm以下の紫外光により、波長400〜800nmの可視光を吸収することが分かっている。つまり、800〜1200nmの波長の基本波を入射し、その第2高調波を生成する場合、基本波と第2高調波の和周波として発生する第3高調波が、その第2高調波の吸収を引き起こす。また、400〜800nmの波長の基本波を入射し、その第2高調波を生成する場合、第2高調波が基本波の吸収を引き起こす。さらに、1200〜1600nmの波長の基本波を入射し、その第2高調波を生成する場合についても、第2高調波から波長変換した第4高調波が第2高調波の吸収を引き起こすため、同様に、本発明の効果が発揮される。さらに、1200〜2000nmの波長の基本波を入射し、第4高調波を発生させる場合、基本波と第4高調波の和周波として発生する第5高調波が、その第4高調波の吸収を引き起こし、同じく、1200〜2000nmの波長の基本波を入射し、第2高調波と第3高調波の両方を発生させる場合、第2高調波と第3高調波の和周波として発生する第5高調波が第3高調波の吸収を引き起こす。よって、これらの場合においても、本発明の効果が発揮されることは言うまでもない。
また、これらの場合以外にも、LiNbO結晶にEr、Ndを添加することで、紫外光の発生が少ない場合においても、緑色光吸収率を高めることが可能となり、本発明の効果が発揮される。つまり、基本波を入射し、その高調波に変換する場合、高調波の吸収率が基本波の吸収率を上回る場合すべてにおいて、位相整合温度の高温側での制御が望ましい。さらに、基本波の吸収率が高調波の吸収率を上回る場合は、ペルチェ最適温度より低温側において制御することが望ましいことは言うまでもない。また、これらは、波長変換素子が1つとなる1段構成の波長変換装置においても有効となる。
(実施の形態3)
次に、本発明の実施の形態3について説明する。図14に、判定回路402による緑色光の出力値の他の一定値制御の処理手順を示すフローチャートである。本実施の形態では、上記の実施の形態1と同様に、図4で示した波長変換装置を用い、位相整合温度を室温より高い温度とする。
まず、緑色レーザ光源105Gの立上げ動作として、LD電源104からの駆動電流、PWM信号発生器404からのペルチェ電流量を共に最大とする。ペルチェ電流量の急激な増大によって波長変換素子205aおよび205bを急過熱する。ここで、波長変換素子205aおよび205bを急加熱するのは、図1の2次元画像表示装置の立ち上げ時間の短縮のためである。G1、G2値が予め設定した閾値を超えることを確認した後、立上げ動作を終了する。ここで、閾値出力は所望の緑色出力の20〜80%程度が望ましい。
立上げ動作を終了した後、通常動作として図14に示すメインルーチンを実行する。図14に示すように、判定回路402は、ステップS701において、各段の緑色光出力を取得し、ステップS702において、判定回路402は、LD電源104の電流値が所定の使用可能範囲内にあることを確認すると共に、緑色光出力の合算値G1+G2が変動したか否かを判定し、合算値G1+G2が変動していない場合は、励起用LD202の駆動電流をAPC制御し、ペルチェ電流量は一定値制御を続ける。
一方、APC制御により対応できる範囲を逸脱した場合には、ステップS703において、APC制御からACC制御に移行し、素子温度復帰ルーチンへ進む。素子温度復帰ルーチンにおいては、G1、G2の順で、以下の動作を行い、位相整合温度への復帰を行なう。
まず、励起用LD202の駆動電流がACC制御に切り替えられ、ペルチェ電流量を増加させながら、増加電流量ΔIごとの出力値の変化に基づき、直近3回の出力値が図15Aに示すように、単調増加の場合は、緑色光出力が許容範囲に復帰するまで、ペルチェ電流量を増加させる。一方、図15BおよびCに示すように、それ以外の場合は、緑色光出力が所望の値に復帰するまで、ペルチェ電流量を減少させる。G1およびG2とも、上記の動作により出力値が所望の値となったことを確認し、メインルーチンに復帰させる。
ここで、メインルーチンへの復帰の判断基準となる所望の緑色光出力は、励起用LD202の駆動電流をACC制御からAPC制御に戻した場合に、励起用LD202の駆動電流が少なくとも許容範囲内になることが必要となる。
本実施の形態では、上記の実施形態1に比べて、待機位置の変換効率が高く、平均的な波長変換効率が高くなる。
(実施の形態4)
次に、本発明の実施の形態4について説明する。本実施の形態では、上記の実施の形態1〜3の光出力安定機構を用いた2次元画像表示装置における、R、G、B光源それぞれの制御方法について述べる。本実施の形態の2次元画像表示装置の構成については図1に示した通りである。
本実施の形態においては、赤色レーザ光源105Rの温度特性が環境温度変化に敏感なことである。図16Aに、赤色レーザ光源105Rの温度特性の一例であるLDを保持しているLDホルダ部の温度をパラメータとした、印加電流に対するレーザ光出力の変化を示す。図16Aに示すように、LDホルダ部の温度上昇に伴って、徐々に閾値電流は上昇する。しかしながら、35℃までは定格出力である500mWを出力することが可能であるが、40℃を超えたところで定格出力を出すことができなくなり、45℃では発振は停止した。この傾向は歪み量子井戸構造を持ち、LDホルダ部の温度が25℃のとき635〜640nmの波長においてTM偏光で発振するLDを使用すると顕著である。LDホルダ部の温度が25℃のとき640〜650nmの波長においてTE偏光で発振するLDを使用することで、この問題を回避することができるが、635nmと比較して視感度が60%程度となるため、その分多くのレーザ光出力が必要になるという欠点もある。
図16Bは、LDホルダ部の温度に対する赤色LDの発振波長との関係を示す図である。LDホルダ部の温度が変化するに伴って、発振波長が約3.3nm/Kで上昇していることが分かる。このことは、このような赤色LDを2次元画像表示装置に使用した場合、赤色LDの温度が上昇するに従い、白色を得るための他の色(緑色、青色)の割合、つまり、ホワイトバランスが変化し、表示している色が変化するという問題点がある。従来は、LDの温度を高精度で制御することにより、この課題を解決していた。この方法では、温度の調整途中にホワイトバランスがずれてしまい、表示する画像が劣化することがあった。
本実施の形態では、赤色LDの温度を取得し、発振波長と発生可能な出力を判定し、ホワイトバランスの算出を行い、LD電源104へ電流出力の命令を送る構成を取る。図17Aに、本実施の形態における赤色レーザ光源105Rの構成を示す。図17Aに示すように、本実施の形態の赤色レーザ光源105Rにおいては、赤色LD512を保持するLDホルダ(ペルチェ素子)513の温度を取得するサーミスタ508が設置されている。コントローラ510は、出力される赤色光をモニターするフォトダイオード515より送られる電圧信号を信号変換するA/Dコンバータ501と、マイクロコンピュータから構成された判定回路502と、LD電流値信号を生成するためのD/Aコンバータ503と、ペルチェ素子513への制御信号であるPWM信号を送るPWM信号発生器504と、赤色LD512に供給される電流値と出力値との関係を設定しておくための電流‐出力値設定テーブル505と、制御時に電流および出力値を一時的に記憶しておく第1のレジスタ506と、工場出荷時の各設定値を記憶させておく第2のレジスタ507と、で構成されている。必要な光量は外部信号である光量制御信号により決定される。
図17Bに、赤色LD512の監視動作時の処理を説明するためのフローチャートを示す。赤色LD512の動作がスタートされると、ステップS801において、LDホルダ513の温調が開始される。その後、判定回路502は、ステップS802において、LDホルダ513の温度を取得する。ステップS803において、LDホルダ513の温度とコントローラ510の第1のレジスタ506に記憶されている温度をパラメータとした電流‐出力値テーブル505を参照して、判定回路502は、赤色LD512の発振波長および発生可能出力の判定を行う。
上記のステップ803において判定された赤色LD512の発振波長および発生可能出力は、ステップS804において、図1の画像処理部102に送信され、ホワイトバランスの判定と実際にLDより出力指令する出力値が設定される。続いて、ステップS805において、この出力値はLD電源511に送信され、赤色LD512が実際に発光する。
従来技術では、LDが発光中でも出力光の強度が環境温度により時々刻々と変化するため、従来のような温度一定値制御では、制御が間に合わないという問題があったが、本実施の形態の場合、各瞬間の赤色LD512の温度から出力可能値を算出するため、制御が間に合わないという問題を回避することができる。また、突発的に赤色LD512の温度が高くなり、赤色光の出力値が小さくなる場合、画面上の明暗の変化が大きくなるため、通常の明るさに復帰させる際に徐々に復帰させることが望ましい。復帰させる方法としては、後に述べるライトコントロール機能を使用することができる。
図18A〜Cに、ホワイトバランスをとるためにコントローラ510の電流‐出力値テーブル505の一例を示す。図18Aに、赤色LDの場合の一例を示す。電流‐出力値テーブル505に記憶しておく内容は、各温度において、出力上限値を得るための電流値はいくらかという形で記憶している。電源回路で発生できる電流値を印加しても出力上限値が得られない場合(図中で40℃、45℃の場合)、電流上限値で得られる最大出力値を記録している。つまり、図中の黒塗り部分の値を温度ごとに記憶させている。このようなテーブルを緑色レーザ用(図18B)、青色レーザ用(図18C)それぞれ作製し、コントローラ510の電流‐出力値テーブル505に記憶させておく。
また、画像処理部102には、ホワイトバランスをとることができる赤色レーザ光源105R、緑色レーザ光源105Gおよび青色レーザ光源105Bからの必要出力値を記憶しており、各色どのような出力値においてもホワイトバランスをとることが可能になっている。図19に、各色の出力に対するホワイトバランスが取れる比率のカーブを示している。このように、ホワイトバランスのカーブは3次元空間中のある曲線で表すことができるため、いずれか一色の光出力値が分かれば、残りの2色の必要光量も一義的に決定できる。また、各色のLDが経年劣化し、印加電流値に対する光出力値が小さくなった場合、LDへの印加電流量を増やして対応させることができる。
LDの経年劣化により印加電流量を増やさざるを得ない場合、図18A〜Cに示したテーブルの電流値書き換えを行うことで対応する。LD周辺の温度が高いあるいはLDの経年劣化などでLDに印加できる最大電流値を印加しても最大出力値が得られない場合は、もっとも出力が不足している光源にあわせてホワイトバランスをとる。
このようにしてホワイトバランスをとりながら、映像信号の輝度信号にあわせて、光源からの光量を調整するいわゆるライトコントロールやダイナミックアイリスと呼ばれる光量制御機能を実現することも可能である。図20A〜Cに、本実施の形態における、ある1色の光出力最大値からホワイトバランスをとる方法をライトコントロールに適用させた例を示す。図20Aは、ホワイトバランスをとる際、赤色LDからの赤色出力最大値で他の2色の出力が制限される場合を示している。ここでは、8bitでライトコントロールをする場合で、かつ、電流値をリニアに変化させて光量変化させる場合について説明する。赤色出力最大値が決定されるとその赤色出力にあわせて、緑色出力及び青色出力を低下させてホワイトバランスをとる。また、光量0からホワイトバランスが取れる光量が最大となる点までの出力値を8分割し、映像の輝度信号に合わせて光量を調整することができる。図20BおよびCに、そのほかの色の光源で光量制限を受ける場合のそれぞれのレーザ光源からの出力の動きを示している。
レーザ光源をリニア制御することによるライトコントロール以外に点灯時間を時分割制御するPWM制御でも同様にライトコントロール機能を実現することができる。PWM制御であれば、光量の最大値だけ取得していれば、その都度、分割した値を計算する必要なく、点灯時間を時分割するだけでよいので、コントローラ510による計算が大幅に簡略化される。
ライトコントロールする際、光量が0となる点の印加電流値は各レーザ光源の発振閾値以上とすることが望ましい。その理由として、発振閾値を跨いで電流値を急激に変動させる場合、大きな突入電流が発生し、LDを破壊する可能性があるためである。
上記の実施の形態1〜4では、透過型液晶素子を用いた空間変調素子を用いたが、微少反射素子を用いた変調素子やガルバノミラー、メカニカルマイクロスイッチ(MEMS)を用いた2次元変調素子を用いることももちろん可能であり、平面上の導光機構に光を導波させ大型の液晶パネルの裏面より照明することでバックライトとしても用いることが可能である。
上記の実施の形態1〜4において、ファイバレーザは、他の希土類元素、例えば、Nd、Er等から選択された少なくとも1つの希土類元素を用いてもよいが、希土類元素としてYbをドープしたものを用いたものは、ゲインがブロードなため1030〜1150nmと発振波長範囲が非常に広いため様々な光源に使用できるという特徴を持っており、非常に望ましい。また、波長変換装置の波長や出力に応じて希土類元素のドープ量を変えたり、複数の希土類元素をドープしたりしてもよい。
上記の実施の形態1〜4において、ファイバレーザの励起用LDには、波長915nmおよび波長976nmのレーザを用いたが、ファイバレーザを励起できるものであれば、これらの波長以外のレーザ光源を用いてもよい。
上記の実施の形態1〜4において、波長変換素子は周期分極反転MgO:LiNbOを用いたが、他の材料や構造の波長変換素子、例えば、周期的に分極反転構造を有するリン酸チタニルカリウム(KTiOPO:KTP)やMg:LiTaO等を用いてもよい。
上記の実施の形態1〜4における波長変換装置によれば、複数の波長変換機構を持つ波長変換装置において得られる緑色光出力に対し、波長変換素子の温度と励起用LDに供給する電流とをそれぞれ制御を行うことにより、波長変換素子の温度調節を行っている間の出力変動を励起用LDに供給する電流により補償することにより、波長変換素子の温度を一定値に制御するいわゆる「一定値制御」の場合と比較して緑色光の出力変動を小さくすることが可能となる。
従来では、素子温度の監視を0.01℃の精度で行う必要があり、制御回路および制御プログラムが複雑化し、また、波長変換素子近辺の熱設計によっては、一定値制御から逸脱する「熱暴走」が発生することがあったが、上記の実施の形態1〜4における波長変換装置によれば、温度の指標として緑色光出力を用いているため、より高精度の温度制御が可能となる上、励起用LDに供給する電流と相互に監視を行うことで緑色光の出力変動をほとんど起こすことなく、緑色光出力の一定値制御を可能にすることができる。
(実施の形態5)
次に、本発明の実施の形態5について説明する。図21は、本実施の形態における波長変換装置の構成を示す図である。図21において、ポンプ用LD1101でコア部分に希土類としてYbをドープしたダブルクラッド偏波保持ファイバ1103(本実施の形態の場合、ファイバ長10m)を励起し、一組のファイバグレーティング1102および1104で構成された共振器内でレーザ光を発振させる。Ybをドープしたダブルクラッド偏波保持ファイバ1103を用い、ファイバグレーティング1102および1104の特性を操作することにより、1050〜1170nmまでの光を任意に発振でき、ディスプレイ応用面で望ましいため、このレーザ活性物質を選択した。
本実施の形態の場合、ポンプ用LD1101として、発振波長915nmのシングルエミッタレーザダイオード(最大出力8Wを3個)を使用している。ファイバグレーティング1102は、ダブルクラッド偏波保持ファイバ1111のコア部分にゲルマニウムが添加されており、紫外光に対する感度を向上させ、グレーティングを形成させた偏波保持ファイバに形成されており、中心波長1070nm、反射スペクトル半値幅1nm、反射率98%という特性を持っている。また、ファイバグレーティング1104は、一般的なシングルモード偏波保持ファイバ1112(コア径6μm、クラッド外形125μm)のコア部分に同じくゲルマニウムが添加されたものに形成しており、中心波長は1070nmで反射スペクトル半値幅は0.09nm、反射率10%のものを使用している。ファイバグレーティング1104の反射率を大きくすることで、希土類添加ダブルクラッド偏波保持ファイバ1103の長さを長くすることは可能であるが、特性の改善には限界があり、有効な対策とは言えない。また、波長変換用途では狭帯域化が重要だが、反射率を大きくすることでファイバグレーティング1104の狭帯域化が困難になるという問題がある。ポラライザ1105においては、片側の偏光成分のレーザ共振器内損失を大きくすることで、発振させる光の偏光を単一偏光(直線偏光)にするために使用している。直線偏光にする理由としては、SHGモジュール1108aおよび1108b内の波長変換結晶が一方の偏光成分しか波長変換しないからである。その後、発振した1064nm付近の光を伝搬させる光偏波保持ファイバにより、SHGモジュール1108aおよび1108bに導入し、第2高調波発生により532nmの光を発生させる。Ybドープクラッドポンプファイバ1103とポラライザ1105との間に希土類添加ダブルクラッド偏波保持ファイバ1111と一般的なシングルモード偏波保持ファイバ1112との接続部分1110が存在し、ファイバ劣化の要因となるため、ポンプ光発散吸収機構1109を設けている。本実施の形態では、ファイバグレーティング1102の保持方法に関して、新たに提案を行っている。
なお、本実施の形態における波長変換装置は、上記の実施の形態1〜4と同様、2つのSHGモジュール1108aおよび1108bを備えており、いわゆる2段構成となっている。2つのSHGモジュール1108aおよび1108bは、コントローラ1113に接続されており、2つのSHGモジュール1108aおよび1108bからの出力値の合算値の一定値制御がなされている。
次に、本実施の形態におけるファイバグレーティング1102の保持方法について説明する。出力が1Wを超えるような、ファイバグレーティングで発振波長が決定されているファイバレーザにおいて、励起光用レーザダイオードに近い、ダブルクラッドファイバグレーティングが自ら発熱し、反射特性が変化することで、レーザ発振が不安定となることが明らかとなった。具体的には、出力の低下や、発振波長スペクトルが劣化を引き起こし、波長変換レーザ光源の基本波として使用する際に出力が大きく変動するという問題が生じる。図22は、励起用LD電流を横軸に取った時のファイバレーザからの光出力をプロットしたいわゆるI‐Lカーブである、出力が7.5Wを超えたところで出力が低下していることが分かる。この出力が低下する電流値付近における、出力光の波長スペクトルを観測した結果、図23Aに示すように、ピークが割れていることが分かった。また、図23Bに示すように、ピークがシフトしたり、ピークのシフトと共にピークの割れが観測されるような場合があることが分かった。また、現象が観測された出力値はファイバレーザからの光出力が2W以上で観測されていることが分かった。
この現象を解析した結果、ファイバ自体が環境温度と関係なく、強力な励起光により局所的に熱せられることで膨張し、ファイバグレーティング部に生じる応力が原因となり反射特性が変化することにより生じていることが判明した。この現象は、環境温度の変動とは無関係なため、従来の温度補償パッケージを用いて回避することは困難である。温調による温度制御を用いた場合、局所発熱のため、温度を一定に保つことが困難であり、ペルチェ素子を使用するような場合は大幅に消費電力が増加してしまう。
図24Aは、本実施の形態のダブルクラッドファイバに形成されたファイバグレーティングの保持部の模式図であり、図24Bは、図24AのA‐A´部の断面図、図24Cは、図24AのB‐B´部の断面図である。ファイバグレーティング1402が形成されたダブルクラッドファイバ1401の一端は、保持部材1403に接着剤1405で直接固定されているが、もう一端はスリーブ1404を介して接着剤1405で固定されている。接着剤1405は、屈折率1.39のUV硬化樹脂を使用している。ファイバグレーティング1402が保持部材1403に接触しないように、保持部材403に溝あるいはくぼみが設けられている。ファイバグレーティング1402が保持部材403に接触することで、上記の図23AおよびBに示したような、波長スペクトルの異常が生じるため、このようなくぼみを設けている。
ファイバ1401の一端をスリーブ1404を介して固定することにより、ファイバ1401は自由に動くことができる。つまり、ファイバグレーティング1402の一端を固定端とし、もう一方を自由端とすることにより、ファイバ1401が熱により膨張した場合においても、ファイバ1401自体は自由に伸びることができるため、ファイバグレーティング1402に応力が掛からず、ファイバグレーティング1402の反射特性異常を回避することができる。
また、ファイバ1401はダブルクラッドファイバを用いているが、強い励起光強度でレーザを励起した(強励起)際に今回問題となっていた現象が顕著に表れるためである。もちろん、通常のシングルクラッドファイバを用いても効果は得られるが、ダブルクラッドファイバに適用した場合の方が大きな効果が得られる。
また、ファイバ1401が自由に収縮するためにはファイバ1401の固定端を、図25に示すように、Ybドープファイバ1103側とすることが望ましい。
また、ファイバグレーティング1402は、ファイバの被覆がない状態(いわゆるリコートをしない状態)であることが望ましい。
また、組立後、ファイバグレーティング1402への塵の付着を防止するために、保持部材1403全体を覆うカバーを設けることが望ましい。
本実施の形態では、ファイバ1401の自由端の保持にスリーブ1404を設けたが、必ずしもスリーブである必要はなく、ファイバ1401が自由に収縮できる構造であることが重要である。
図26に、本実施の形態のファイバグレーティング保持部材を使用した際のファイバレーザのI‐L特性を示す。上記の図22のような出力低下もなく、良好な特性が得られている。また、波長スペクトルにおいても、図27に示すように、ピークの割れなどは全く観測されなかった。
図28に、本実施の形態のファイバグレーティング保持部材を使用したファイバレーザから発せられる光を基本波として、第2高調波発生を行った結果を示す。波長変換素子には分極反転ニオブ酸リチウム素子を使用しており、この波長変換素子はペルチェ素子で温度管理されている。この結果、8Wの基本波入力に対し3W以上の緑色光発生を確認することができた。この程度のパワーがあれば、1000lm以上のフロントプロジェクタを構成することが可能となり、実用的なディスプレイを構成することができる。
また、本実施の形態では、プレート状の保持部材を使用したが、図29に示すように、円筒状の保持部材1403を使用することももちろん可能である。図29において、自由端を実現するのにファイバ1401はスリーブ1404を介して固定しているが、ファイバグレーティング1402が保持部材1403に触れなければ、接着剤等で固定せず全くフリーの状態であっても同様の効果が得られる。
(実施の形態6)
次に、本発明の実施の形態6について説明する。本実施の形態は、上記の実施の形態5のファイバグレーティング保持部材をファイバグレーティングを1つだけ使用する波長変換装置に適用させた形態である。図30は、本実施の形態における波長変換装置の構成を示す図である。図30において、本実施の形態の波長変換装置2021は、ファイバレーザ2022と、ファイバレーザ2022から出射される基本波2023を高調波出力2024に変換する波長変換素子2025aおよび2025bと、から構成されている。
なお、本実施の形態における波長変換装置は、上記の実施の形態1〜4と同様、2つの波長変換素子2025aおよび2025bを備えており、いわゆる2段構成となっている。2つの波長変換素子2025aおよび2025bは、コントローラ2037に接続されており、2つの波長変換素子2025aおよび2025bからの出力値の合算値の一定値制御がなされている。
ファイバレーザ2022は、図30の破線で囲んだものから構成されている。主な構成要素としては、ファイバ2026に励起光2027を入射するレーザ光源2028、レーザ活性物質を含み一部にファイバグレーティング2029が形成されたファイバ2026からなるレーザ共振器およびファイバ2026から出射される基本波2023を波長変換素子2025aおよび2025bの方向に取り出す取り出しミラー2030である。ファイバ2026からなるレーザ共振器は、ファイバグレーティング2029とファイバ2026の端面に形成された第2の反射面2033を一組の反射面として基本波2023を増幅して出射する。
すなわち、ファイバレーザ2022は、ファイバ2026に入射する励起光2027を出力するレーザ光源2028と、基本波の波長を選択して基本波を反射するファイバグレーティング2029が内部に形成されたファイバ2026と、出力である基本波2023を波長変換素子2025aおよび2025bに導く取り出しミラー2030と、から構成されている。取り出しミラー2030は、励起光2027を透過してレーザ光源2028とファイバ2026を結びつけ、かつ、ファイバ2026から出射する基本波2023を反射して波長変換素子2025aおよび2025bに導く機能を果たしている。ファイバレーザ2022のレーザ共振器の一方の反射面としてファイバグレーティング2029を適用することで、任意の反射中心波長を選択することが可能となり、発振中心波長を任意に選択できる上、波長変換素子2025aおよび2025bの要求する波長帯域0.05〜0.2nmの基本波を発生することができる。誘電体多層膜を用いた反射ミラーでは、この帯域とすることは困難であり、誘電体多層膜のような帯域の広い反射面を用いた場合、ファイバのゲインが高い発振波長で発振する(発振しやすい発振波長で発振する)ため、任意に波長選択することも困難であり、発振波長が不安定になる原因となる。
また、レーザ共振器をファイバ2026内に閉じた系とし、外部からの塵あるいは反射面のミスアライメントなどで共振器の損失が増加することによる出力の経時低下や出力変動を抑制することができる。
次に、ファイバレーザ2022の基本のレーザ動作について説明する。図30において、ピッグテイル型のレーザ光源2028からの励起光2027は、レーザ光源2028に付属したファイバ2031中を伝搬したのち、コリメートレンズ2032aで平行光に変換された状態で取り出しミラー2030を透過する。さらに、励起光2027は集光レンズ2032bにより集光されて、ファイバ2026の第2の反射面2033よりファイバ2026に入射する。入射した励起光2027はファイバ2026に含まれるレーザ活性物質で吸収されつつファイバ2026中を伝搬する。励起光2027はファイバグレーティング2029を通過したのち、第1の反射面2034で反射されてファイバ2026の中を折り返してレーザ活性物質で吸収されつつ伝搬し、第2の反射面2033に到達するまでに1往復してほぼレーザ活性物質に吸収されて消失する。従来はファイバ内を一方向に伝搬しつつ励起光が吸収されるだけなので、基本波を増幅するゲインは励起光が伝搬していく方向に進行するに従い減少していく。一方、本実施の形態では、励起光2027はファイバ2026内を折り返して一往復して吸収されるので、基本波を増幅するゲインは従来に比べてファイバ2026内で一様に高くなる。
本実施の形態では、励起光2027がファイバ2026の中を一往復してほぼ全て吸収され、ファイバ2026内で基本波を増幅するゲインが一様に高くなった状態で、基本波2023の種光がファイバ2026の内部で発生する。この基本波の種光は、ファイバ2026の第2の反射面2033とファイバグレーティング2029をレーザ共振器の一組の反射面として、このレーザ共振器の中を増幅されて強度を増しつつ何度も反射して往復しレーザ発振に至る。
本実施の形態で用いたファイバ2026は、例えば、高出力の励起光2027を伝搬させることが可能なダブルクラッドの偏波保持ファイバを使用した。したがって、励起光2027はファイバ2026のコアと内側のクラッドの比較的広い領域を伝搬して、ファイバ2026に含まれるレーザ活性物質により吸収される。また、広い範囲を伝搬することができるので高出力の励起光202を用いることもできる。
ファイバ2026から出力される基本波2023は、第2の反射面2033から出射した後、集光レンズ2032bにより平行光に変換されて取り出しミラー2030に到達する。取り出しミラー2030の表面には、波長選択用の多層膜2035が形成されている。多層膜2035は励起光2027の波長の光は透過し、基本波2023の波長の光は反射するように構成されているので、基本波2023は取り出しミラー2030の多層膜2035上で反射されて波長変換素子2025aおよび2025bに導かれる。
本実施の形態において、取り出しミラー2030は狭帯域透過フィルタである構成として励起光2027に対して、例えば、40〜50度の角度で挿入するのが望ましい。40〜50度で挿入するのは取り出しミラー2030で反射する励起光2027の一部がレーザ光源2028に戻らないようにするためであり、ファイバレーザ2022から出射される光と波長変換素子2025aおよび2025bから出射される光路とを直角にすることができるため、モジュール化する場合よりコンパクトにすることができるためである。励起光2027の一部がレーザ光源2028に戻るのを防ぐためやフィルタの透過特性から考えた場合、80度程度の角度で挿入するのでもよい。また、取り出しミラー2030とは別個に狭帯域透過フィルタを取り出しミラー2030とコリメートレンズ2032aとの間に挿入してもよい。
このような構成にすると、例えば、ファイバ2026をYbドープファイバとした場合に、透過フィルタの透過波長を915nmや976nmのYbドープファイバの吸収のピーク波長に合わせることができる。しかも、透過波長の915nmや976nmを中心に2〜3nmの狭帯域の半値幅しかもたないこととなる。励起光2027がこのような狭帯域の光となって取り出しミラー2030を透過して光ファイバ2026に入射するとき、励起光2027の一部がファイバ2026の端面である第2の反射面2033で反射される。反射された励起光2027の一部は同じ光路を逆に進行してレーザ光源2028に帰還して、レーザ光源2028の発振波長はこの帰還した励起光2027の一部である狭帯域の光でロックされる。そもそも励起用レーザ光源2028はマルチモードで発振するため比較的広い5nm以上の波長半値幅を持つが、このように透過型フィルタなどの波長を狭帯域にロックする光学部品を用いると波長半値幅が2〜3nmの狭帯域のレーザ光源になる。このような効果により、励起光2027の波長の半値幅が小さくなり、レーザ光源自体の効率も向上する上、励起光2027がファイバレーザ2022でより効率よく吸収され、励起光2027から基本波2023への光出力の変換がさらに高効率で実現できる。また、吸収効率が高くファイバ長をより短くすることができるため1030nm以下の波長を発生させる際に使用するとより高効率なファイバレーザを作製できる。なお、このときにファイバ2026の端面である第2の反射面2033での励起光2027の反射率は少なくとも3〜8%程度に設定されていることが望ましく、励起用レーザ光源2028のエミッタ幅は、発振するモードの数が少ない方が波長ロックを行いやすくなるため、50〜200μm、より望ましくは50〜100μm程度であることが望ましい。
また、波長変換素子2025aおよび2025bは温度調節機構(ペルチェ素子とサーミスタ)2038aおよび2038b上に固定されており、コントローラ2037でコントロールされている。また励起用レーザ光源2028は、LD電流源2039で駆動されている。
ところで、本実施の形態の波長変換装置2021では、ファイバ2026の長さを従来の約半分としている。励起光端面で折り返し、ファイバ2026にすべて吸収させた場合、基本波光の発振出力は上記の実施の形態5の場合と比較して10%程度増加する。本実施の形態の場合、励起光2027を第1の反射面2034で折り返して、ファイバ2026の中を1往復する間に全て吸収してしまう。励起用レーザ光源2028には波長915nmのレーザを用い、光出力9Wの励起光2027をファイバ2026の端面から注入し、1064nmの基本波が発生する場合にファイバ2026の長さを変えて1064nmの基本波の光出力を測定した。
測定の結果、実施の形態5の構成でのファイバの最適な長さは17mであったが、本実施の形態でのファイバの最適な長さは7.5mであることがわかった。このことからも本実施の形態では従来の構成に比べてファイバの長さが半分以下でよいことがわかる。なお、本実施の形態でのファイバの最適な長さでの光出力は、実施の形態5の構成での最適な長さでの光出力に比べて20%程度大きいことがわかった。このことより、発振した光がファイバを1往復する間に効率よく増幅されることで、基本波に対するゲインが高くなっていると考えられる。発振した光強度を入力した励起光強度で割り算して算出する「光‐光変換効率」では、実施の形態5の場合41.3%であったのに対し、本実施の形態で提案した発振光折り返し構成としただけで、50.2%まで向上し、励起光を反射するための反射面2034を設けたことにより54.7%まで向上させることができた。
このファイバを一例として用いて波長変換装置2021を動作させたところ、光出力9Wの励起光でファイバを励起し、基本波出力が6.3Wのときに1.5WのG光が安定に得られた。さらに、基本波出力を増加すると緑色光の変換効率が大きく改善されると考えられる。以上に説明した構成により、本実施の形態のファイバレーザ2022は、従来のファイバの半分の長さで励起光をほぼ全て吸収でき、かつ、基本波の増幅区間が長くなったため、基本波を増幅するのに一様な高いゲインを得ることができる。また、ファイバの長さが半分にできるのでファイバレーザ2022をコンパクトにすることができ、高出力の基本波が得られ、かつ、波長変換装置2021を小型にすることができる。
さらに、本実施の形態のファイバレーザ2022は、従来の半分の長さのファイバで構成できる。したがって、ファイバレーザ2022の基本波の吸収量も半分になるので、光吸収量の多い短波長側での吸収量も半分となり、発振波長域を1030〜1170nmに拡大させることができる。例えば、1064nmよりも短波長の1030nmの基本波のレーザ光が高出力で出力することができるようになり、ディスプレイに応用した際に色再現範囲を拡大することが出来るという利点がある。
また、本実施の形態の場合ファイバグレーティング2029は、ダブルクラッドファイバである必要があるが、その場合、強力な励起光が透過するために実施の形態5に記載したような、出力低下や波長スペクトル変動が観測されていた。本実施の形態では、ダブルクラッドファイバへ形成されたファイバグレーティング2029の一端が上記の実施の形態5の保持部材に固定されている。本実施の形態の構成とすることで、このような問題は発生せず、電気‐光変換効率の向上および、より短波長の光の発生と波長スペクトルや出力の安定化を両方実現することが可能となる。
本実施の形態では、透過型液晶素子を用いた空間変調素子を用いたが、微少反射素子を用いた変調素子やガルバノミラー、メカニカルマイクロスイッチ(MEMS)を用いた2次元変調素子を用いることももちろん可能であり、平面上の導光機構に光を導波させ大型の液晶パネルの裏面より照明することでバックライトとしても用いることが可能である。
上記の実施の形態5〜6において、ファイバレーザは、他の希土類元素、例えば、Nd、Er等から選択された少なくとも1つの希土類元素を用いてもよいが、希土類元素としてYbをドープしたものを用いたものは、ゲインがブロードなため1030〜1170nmと発振波長範囲が非常に広いため様々な光源に使用できるという特徴を持っており、非常に望ましい。また、波長変換装置の波長や出力に応じて希土類元素のドープ量を変えたり、複数の希土類元素をドープしたりしてもよい。
上記の実施の形態5〜6において、希土類添加ファイバのコア径として6μmの物を選択したが、8μm以上とすることで、効率がより改善されることが今回分かった。6μmの場合と比較して8μmで1.2倍、10μmで1.4倍効率が向上するため、コア径は8μm以上であることが望ましい。あまりコア径が大きいと発振した光がシングルモード条件を外れるためコア径の範囲は8〜12μmの範囲であることが望ましい。
上記の実施の形態5〜6において、ファイバレーザの励起用レーザ光源には、波長915nmおよび波長976nmのレーザを用いたが、ファイバレーザを励起できるものであれば、これらの波長以外のレーザ光源を用いてもよい。
上記の実施の形態5〜6において、波長変換素子は周期分極反転MgO:LiNbOを用いたが、他の材料や構造の波長変換素子、例えば、周期的に分極反転構造を有するリン酸チタニルカリウム(KTiOPO:KTP)やMg:LiTaO等を用いてもよい。
上記の実施の形態5〜6において、このような構成の画像表示装置のほかに、スクリーンの背後から投影する形態(リアプロジェクションディスプレイ)や大型液晶パネルに背面から光を照射するバックパネルの形態をとることも可能である。
上記の実施の形態5〜6において、超小型ミラーが集積された反射型空間変調素子を用いたが、液晶を用いた変調素子やガルバノミラー、メカニカルマイクロスイッチ(MEMS)を用いた2次元変調素子を用いることももちろん可能である。
上記の実施の形態5〜6において、反射型空間変調素子やMEMS、ガルバノミラーといった光変調特性に対する偏光成分の影響が少ない光変調素子の場合、高調波を伝搬する光ファイバはPANDAファイバなどの偏波保持ファイバである必要はないが、液晶を用いた2次元変調デバイスを使用する際には、変調特性と偏光特性が大いに関係するため、偏波保持ファイバを使用することが望ましい。
上記の各実施の形態から本発明を要約すると、以下のようになる。すなわち、本発明の一局面に従う波長変換装置は、レーザ光源から出射される励起光を発振させて、基本波を出射するレーザ共振器と、前記レーザ共振器から出射される基本波を高調波に変換する第1の波長変換素子と、前記第1の波長変換素子の温度を制御する第1の温度制御素子と、前記第1の波長変換素子に入射される基本波のうちで前記第1の波長変換素子により高調波に変換されないで前記第1の波長変換素子から出射される基本波を高調波に変換する第2の波長変換素子と、前記第2の波長変換素子の温度を制御する第2の温度制御素子と、前記第1の波長変換素子から出射される高調波の出力を検出する第1の検出部と、前記第2の波長変換素子から出射される高調波の出力を検出する第2の検出部と、前記第1の温度制御素子による前記第1の波長変換素子の温度制御、前記第2の温度制御素子による前記第2の波長変換素子の温度制御、および、前記レーザ光源へ印加される駆動電流の電流値制御を管理するコントローラとを備え、前記コントローラは、前記第1の検出部による第1の検出値と前記第2の検出部による第2の検出値とを合算し、当該合算値を基にして前記第1および第2の波長変換素子の温度制御を行う。
上記の波長変換装置では、第1の検出部による第1の検出値と第2の検出部による第2の検出値との合算値を基にして第1および第2の波長変換素子の温度制御が行われるので、第1の波長変換素子からの高調波の出力変動に依存して第2の波長変換素子からの高調波の出力変動が生じる場合であっても、2つの高調波の合算値の出力変動を効果的に抑制することができる。
前記コントローラは、前記合算値に基づく前記第1および第2の波長変換素子の温度制御を実行する場合には、それまで実行していた前記レーザ光源へ印加される駆動電流の電流値制御を中止して、前記駆動電流を一定値に維持して前記第1および第2の波長変換素子の温度制御を実行することが好ましい。
この場合、それまで実行していた駆動電流の電流値制御を中止し、駆動電流を一定値にして第1および第2の波長変換素子の温度を制御するので、第1および第2の波長変換素子の温度制御をより精度良く実行することが可能となり、2つの波長変換素子を有することに起因する制御回路の暴走を制御することが可能となる。
前記レーザ共振器は、レーザ活性物質を含むダブルクラッドシングルモードファイバと、ファイバグレーティングが形成されたファイバと、前記ファイバに励起光を入射する前記レーザ光源と、を有することが好ましい。
この場合、ファイバグレーティングが形成されたファイバと励起光により励起されるダブルクラッドシングルモードファイバとを別々に作製することができるので、それぞれ要求される特性に応じた構成を実現することができる。
前記第1および第2の波長変換素子の保持温度の範囲は、35〜80℃であり、前記第1および第2の温度制御素子は、ペルチェ素子であり、前記コントローラは、前記ペルチェ素子に印加される電流の極性を反転させることなく、前記第1および第2の波長変換素子の温度の上昇または下降を行うことが好ましい。
この場合、第1および第2の波長変換素子の保持温度を室温より高めの35〜80℃とすることにより、ペルチェ素子に印加される電流の極性を反転させることなく、第1および第2の波長変換素子の温度の上昇または下降を行うことができるので、第1および第2の波長変換素子の温度制御を高速に行うことができる。
前記第1および第2の波長変換素子の保持温度の範囲は、80〜200℃であり、前記第1および第2の温度制御素子は、ヒーターであり、前記コントローラは、前記第1および第2の波長変換素子の温度上昇の際には前記ヒータを発熱させて、前記第1および第2の波長変換素子の温度下降の際には前記ヒータの発熱を中止することが好ましい。
この場合、第1および第2の波長変換素子の保持温度を80〜200℃とすることにより、安価なヒーターを用いて、第1および第2の波長変換素子の温度制御を実現することができる。
前記コントローラは、前記第1および第2の温度制御素子に前記第1および第2の波長変換素子の温度制御を行うための制御電流を供給することにより前記第1および第2の波長変換素子の温度制御を行っており、前記制御電流の波形は、パルス幅変調されることが好ましい。
この場合、制御電流の波形のパルス幅を調整することにより、第1および第2の温度制御素子に供給される制御電流の電流値の平均値を任意に変化させることができる。この結果、第1および第2の波長変換素子の温度制御を精度良く行うことができる。
前記コントローラは、前記第1および第2の波長変換素子の温度制御を行う際に、前記レーザ光源へ印加される駆動電流の電流値に対応する、前記第1および第2の検出値を記録する記憶部、を有することが好ましい。
この場合、レーザ光源へ印加される駆動電流の電流値の変化に伴って第1および第2の検出値が記録されるので、この記録された情報を参照しながら第1および第2の波長変換素子の温度制御を効率よく行うことができる。
前記レーザ共振器内の温度を検出する温度検出部、をさらに備え、前記記憶部は、前記コントローラが前記第1および第2の波長変換素子の温度制御を行う際に、前記温度検出部により検出された温度に対応する、前記第1および第2の検出値を記録することが好ましい。
この場合、レーザ共振器内の温度が検出されるので、検出されたレーザ共振器内の温度に応じて、第1および第2の波長変換素子の温度制御を行うことができるので、第1および第2の波長変換素子の温度制御を簡略化することができる。
前記コントローラは、前記第1および第2の検出値のそれぞれの増減に応じて前記第1および第2の波長変換素子の温度制御を行うことにより、前記第1および第2の検出値の合算値における出力変動を抑制することが好ましい。
この場合、第1および第2の検出値のそれぞれの増減に応じて適切な温度制御を第1および第2の波長変換素子に行うことができる。
前記コントローラは、前記第1の検出値が増加または減少し、かつ、前記第2の検出値の増減方向が前記第1の検出値の増減方向と異なる場合、または、前記第1の検出値が増加または減少し、かつ、前記第2の検出値が一定である場合には、前記第1の波長変換素子の温度制御により前記第1および第2の検出値の合算値を変化させた後、当該変化させた合算値が所定値に回復しているか否かを判定し、前記所定値に回復していないとの判定結果に応じて前記第2の波長変換素子の温度制御により前記第1および第2の検出値の合算値をさらに変化させることにより、前記第1および第2の検出値の合算値における出力変動を抑制することが好ましい。
この場合、第1の波長変換素子の温度と第2の波長変換素子の温度とを逆方向に変化させることができるので、第1および第2の検出値の合算値における出力変動を効果的に抑制することができる。
前記コントローラは、前記第1および第2の検出値が増加または減少し、かつ、前記第1の検出値の増減方向と前記第2の検出値の増減方向とが同じである場合には、前記第1および第2の波長変換素子の温度制御により前記第1および第2の検出値を個別に変化させることにより、前記第1および第2の検出値の合算値における出力変動を抑制することが好ましい。
この場合、第1の波長変換素子の温度と第2の波長変換素子の温度とを同じ方向に変化させることができるので、第1および第2の検出値の合算値における出力変動を効果的に抑制することができる。
前記コントローラは、前記第2の検出値が増加または減少し、かつ、前記第1の検出値が一定である場合には、前記第2の波長変換素子の温度制御により前記第1および第2の検出値の合算値を変化させることにより、前記第1および第2の検出値の合算値における出力変動を抑制することが好ましい。
この場合、第2の波長変換素子の温度だけを変化させることができるので、第1および第2の検出値の合算値における出力変動を効果的に抑制することができる。
前記第1および第2の波長変換素子から出射される高調波は、510〜550nmの緑色光であることが好ましい。
この場合、W級の高出力の緑色光を得ることができる。
前記第1および第2の波長変換素子は、Mg、In、Zn、Sc、Er、Ndのうちの少なくとも1つを含むLiNbOまたはLiTaOからなる非線形光学結晶で構成されることが好ましい。
この場合、第1および第2の出力値が位相整合温度の95〜85%となり、かつ、位相整合温度より高温側を、待機位置として温度制御を行なうことできる。この結果、第1および第2の波長変換素子の温度変化に対する出力変動を軽減することができ、このため、第1および第2の波長変換素子の温度制御を簡略化することができる。
本発明の他の局面に従う画像表示装置は、上記の波長変換装置と、前記波長変換装置から出射されるレーザに画像信号を印加する画像処理部とを備え、前記波長変換装置は、緑色光を発生させる緑色レーザ光源であり、赤色光を発生させる赤色レーザ光源と、青色光を発生させる青色レーザ光源とをさらに備え、前記画像処理部は、前記赤色レーザ光源、青色レーザ光源および緑色レーザ光源のうち最大出力値が最小のレーザ光源の最大出力値を基にして他の2つのレーザ光源の出力上限値を決定することにより、表示させる画像のホワイトバランスを設定する。
上記の画像表示装置では、最大出力値が最小のレーザ光源にあわせて他の2つのレーザ光源の出力値を設定すればよいので、ホワイトバランスの調整の容易化を図ることができる。
前記画像処理部は、前記決定された出力上限値を上限とし、入力される映像信号の輝度信号に応じて前記赤色レーザ光源、青色レーザ光源および緑色レーザ光源の各出力値を変化させることが好ましい。
この場合、決定された出力上限値を上限として各レーザ光源の出力値を変化させるので、レーザ光源の劣化を招くおそれが無くなる。
前記赤色レーザ光源、青色レーザ光源および緑色レーザ光源の各出力値がゼロとなる各レーザ光源の駆動電流の電流値は、前記赤色レーザ光源、青色レーザ光源および緑色レーザ光源の各閾値電流以上であることが好ましい。
この場合、各レーザ光源の駆動電流の電流値は閾値を跨いで変化することが無くなるので、レーザ光源に大きな突入電流が発生することが防止され、レーザ光源を劣化させることも無くなる。
本発明の他の局面に従う波長変換装置は、ファイバに励起光を入射するレーザ光源と、レーザ活性物質を含む光ファイバおよびファイバグレーティング固定部材に固定された2つのファイバグレーティングからなるレーザ共振器と、前記レーザ共振器から出射するレーザの基本波を高調波に変換する波長変換素子とを具備し、前記2つのファイバグレーティングのうち少なくとも1つのファイバグレーティングの一端が前記ファイバグレーティング保持部材に接着されており、もう一端は自由端である。
前記2本のファイバグレーティングのうち少なくとも1本がダブルクラッドファイバに形成されており、その1本のファイバグレーティングが光学的に励起用レーザ光源と近い位置に配置されていることが好ましい。
本発明の他の局面に従う波長変換装置は、ファイバに励起光を入射するレーザ光源と、レーザ活性物質を含む光ファイバおよびファイバグレーティング固定部材に固定された1つのファイバグレーティングと誘電体膜反射面からなるレーザ共振器と、前記レーザ共振器から出射するレーザの基本波を高調波に変換する波長変換素子とを具備し、前記2つのファイバグレーティングのうち少なくとも1つのファイバグレーティングの一端が前記ファイバグレーティング保持部材に接着されており、もう一端は自由端である。
前記ファイバグレーティングがダブルクラッドファイバに形成されていることが好ましい。
前記ファイバグレーティングの自由端においてスリーブを介して保持されていることが好ましい。
前記ファイバのコア径が8〜14μmであることが好ましい。
前記光ファイバに含まれるレーザ活性物質がイッテルビウムイオンであり、発振波長が1050〜1170nmであることが好ましい。
前記光ファイバに含まれるレーザ活性物質がイッテルビウムイオンであり、発振波長が1030〜1070nmであることが好ましい。
発振光の偏光方向が直線偏光であり、発振波長における光出力が2W以上であることが好ましい。
前記ファイバグレーティングの固定端がレーザ活性物質を含む光ファイバ側に設けられていることが好ましい。
前記ファイバグレーティングにおいて、ファイバグレーティング部が再被覆されていないことが好ましい。
前記ファイバグレーティングにおいて、前記ファイバグレーティング部を防塵する保持部材カバーを有していることが好ましい。
本発明の他の局面に従う画像表示装置は、上記の波長変換装置を備える。
本発明によれば、ファイバグレーティングにより波長が選択されたファイバレーザ光源と波長変換素子とを組み合わせて得られた波長変換装置、および、それを用いた画像表示装置の光出力の安定化に有用である。また、本発明によれば、赤色光の光出力を安定化させることが可能となり、画像表示装置の色合いを安定化させることができる。
本発明の実施の形態1にかかる波長変換装置を用いた2次元画像表示装置の構成を示す図である。 緑色レーザ光源の構成を示す図である。 図3Aは、ファイバレーザの環境温度に対する発振波長の関係を示す図、図3Bは、基本波の波長スペクトル(波線)と波長変換素子の位相整合波長スペクトル(実線)との関係を示す図である。 コントローラの構成を示す図である。 波長変換素子の立ち上げ動作の処理手順を示すフローチャートである。 図6Aは、波長変換素子の温度特性と立ち上げ動作後の待機位置を示す図、図6Bは、温度と位相整合波長との関係を示す図、図6Cは、温度と位相整合波長との他の関係を示す図である。 図7Aは、緑色光の出力値の一定値制御の処理手順を示すフローチャート、図7Bは、図7AのステップS204で用いられる判定基準の内容を示す図である。 サブルーチンAの処理を説明するためのフローチャートである。 サブルーチンBの処理を説明するためのフローチャートである。 サブルーチンCの処理を説明するためのフローチャートである。 山越え復帰動作の処理を説明するためのフローチャートである。 緑色光出力が低下した場合における各値を時系列に表す図である。 本発明の実施の形態2の波長変換素子の温度特性とその立ち上げ動作後の波長変換素子の温度の待機位置との関係を表す図である。 緑色光の出力値の一定値制御の処理手順を示すフローチャートである。 図15A〜Cは、緑色光の出力強度とペルチェ電流値との関係を示す図である。 図16Aは、赤色LDの温度に対する出力特性を示す図、図16Bは、温度に対する波長特性を示す図である。 図17Aは、赤色レーザ光源の構成を示す図、図17Bは、赤色LDの監視動作時の処理を説明するためのフローチャートである。 図18A〜Cは、電流‐出力値テーブルの内容を説明するための図である。 ホワイトバランスが取れるカーブを3次元座標で表した模式図である。 図20A〜Cは、ライトコントロールを行った場合の各色の出力調整を示す模式図で、図20Aは、赤色で制限される場合を示す図、図20Bは、緑色で制限される場合を示す図、図20Cは、青色で制限される場合を示す図である。 本発明の実施の形態5における波長変換装置の構成を示す図である。 励起用LD電流とファイバレーザの出力との関係を示す図である。 図23AおよびBは、波長スペクトルの劣化を説明するための図である。 図24Aは、本発明の実施の形態5の保持部の模式図であり、図24Bは、図24AのA‐A´部の断面図、図24Cは、図24AのB‐B´部の断面図である。 ファイバの固定端の位置を説明するための図である。 ファイバレーザの出力特性を示す図である。 ファイバレーザの波長スペクトルを示す図である。 基本波入力と緑色光出力との関係を示す図である。 本発明の実施の形態5の他の保持部の模式図である。 本発明の実施の形態6における波長変換装置の構成を示す図である。 従来の波長変換装置の概略構成を示す図である。

Claims (17)

  1. レーザ光源から出射される励起光を発振させて、基本波を出射するレーザ共振器と、
    前記レーザ共振器から出射される基本波を高調波に変換する第1の波長変換素子と、
    前記第1の波長変換素子の温度を制御する第1の温度制御素子と、
    前記第1の波長変換素子に入射される基本波のうちで前記第1の波長変換素子により高調波に変換されないで前記第1の波長変換素子から出射される基本波を高調波に変換する第2の波長変換素子と、
    前記第2の波長変換素子の温度を制御する第2の温度制御素子と、
    前記第1の波長変換素子から出射される高調波の出力を検出する第1の検出部と、
    前記第2の波長変換素子から出射される高調波の出力を検出する第2の検出部と、
    前記第1の温度制御素子による前記第1の波長変換素子の温度制御、前記第2の温度制御素子による前記第2の波長変換素子の温度制御、および、前記レーザ光源へ印加される駆動電流の電流値制御を管理するコントローラとを備え、
    前記コントローラは、前記第1の検出部による第1の検出値と前記第2の検出部による第2の検出値とを合算し、当該合算値が一定の値となるように、前記第1および第2の検出値のそれぞれの増減に応じて前記第1および第2の波長変換素子の温度制御を行うことを特徴とする波長変換装置。
  2. 前記コントローラは、前記合算値に基づく前記第1および第2の波長変換素子の温度制御を実行する場合には、それまで実行していた前記レーザ光源へ印加される駆動電流の電流値制御を中止して、前記駆動電流を一定値に維持して前記第1および第2の波長変換素子の温度制御を実行することを特徴とする請求項1に記載の波長変換装置。
  3. 前記レーザ共振器は、レーザ活性物質を含むダブルクラッドシングルモードファイバと、ファイバグレーティングが形成されたファイバと、前記ファイバに励起光を入射する前記レーザ光源と、を有することを特徴とする請求項1または2に記載の波長変換装置。
  4. 前記第1および第2の波長変換素子の保持温度の範囲は、35〜80℃であり、
    前記第1および第2の温度制御素子は、ペルチェ素子であり、
    前記コントローラは、前記ペルチェ素子に印加される電流の極性を反転させることなく、前記第1および第2の波長変換素子の温度の上昇または下降を行うことを特徴とする請求項1〜3のいずれか1項に記載の波長変換装置。
  5. 前記第1および第2の波長変換素子の保持温度の範囲は、80〜200℃であり、
    前記第1および第2の温度制御素子は、ヒーターであり、
    前記コントローラは、前記第1および第2の波長変換素子の温度上昇の際には前記ヒータを発熱させて、前記第1および第2の波長変換素子の温度下降の際には前記ヒータの発熱を中止することを特徴とする請求項1〜3のいずれか1項に記載の波長変換装置。
  6. 前記コントローラは、前記第1および第2の温度制御素子に前記第1および第2の波長変換素子の温度制御を行うための制御電流を供給することにより前記第1および第2の波長変換素子の温度制御を行っており、
    前記制御電流の波形は、パルス幅変調されることを特徴とする請求項1〜5のいずれか1項に記載の波長変換装置。
  7. 前記コントローラは、前記第1および第2の波長変換素子の温度制御を行う際に、前記レーザ光源へ印加される駆動電流の電流値に対応する、前記第1および第2の検出値を記録する記憶部、を有することを特徴とする請求項1〜6のいずれか1項に記載の波長変換装置。
  8. 前記レーザ共振器内の温度を検出する温度検出部、をさらに備え、
    前記記憶部は、前記コントローラが前記第1および第2の波長変換素子の温度制御を行う際に、前記温度検出部により検出された温度に対応する、前記第1および第2の検出値を記録することを特徴とする請求項7に記載の波長変換装置。
  9. 前記コントローラは、前記第1および第2の検出値のそれぞれの増減に応じて前記第1および第2の波長変換素子のうち、温度制御を行うべき一方または双方の波長変換素子を特定することを特徴とする請求項1〜8のいずれか1項に記載の波長変換装置。
  10. 前記コントローラは、前記第1の検出値が増加または減少し、かつ、前記第2の検出値の増減方向が前記第1の検出値の増減方向と異なる場合、または、前記第1の検出値が増加または減少し、かつ、前記第2の検出値が一定である場合には、前記第1の波長変換素子の温度制御により前記第1および第2の検出値の合算値を変化させた後、当該変化させた合算値が所定値に回復しているか否かを判定し、前記所定値に回復していないとの判定結果に応じて前記第2の波長変換素子の温度制御により前記第1および第2の検出値の合算値をさらに変化させることにより、前記第1および第2の検出値の合算値における出力変動を抑制することを特徴とする請求項9に記載の波長変換装置。
  11. 前記コントローラは、前記第1および第2の検出値が増加または減少し、かつ、前記第1の検出値の増減方向と前記第2の検出値の増減方向とが同じである場合には、前記第1および第2の波長変換素子の温度制御により前記第1および第2の検出値を個別に変化させることにより、前記第1および第2の検出値の合算値における出力変動を抑制することを特徴とする請求項9または10に記載の波長変換装置。
  12. 前記コントローラは、前記第2の検出値が増加または減少し、かつ、前記第1の検出値が一定である場合には、前記第2の波長変換素子の温度制御により前記第1および第2の検出値の合算値を変化させることにより、前記第1および第2の検出値の合算値における出力変動を抑制することを特徴とする請求項9〜11のいずれか1項に記載の波長変換装置。
  13. 前記第1および第2の波長変換素子から出射される高調波は、510〜550nmの緑色光であることを特徴とする請求項1〜12のいずれか1項に記載の波長変換装置。
  14. 前記第1および第2の波長変換素子は、Mg、In、Zn、Sc、Er、Ndのうちの少なくとも1つを含むLiNbOまたはLiTaOからなる非線形光学結晶で構成されることを特徴とする請求項1〜13のいずれか1項に記載の波長変換装置。
  15. 請求項1〜14のいずれか1項に記載の波長変換装置と、
    前記波長変換装置から出射されるレーザに画像信号を印加する画像処理部と
    を備え、
    前記波長変換装置は、緑色光を発生させる緑色レーザ光源であり、
    赤色光を発生させる赤色レーザ光源と、
    青色光を発生させる青色レーザ光源と
    をさらに備え、
    前記画像処理部は、前記赤色レーザ光源、青色レーザ光源および緑色レーザ光源のうち最大出力値が最小のレーザ光源の最大出力値を基にして他の2つのレーザ光源の出力上限値を決定することにより、表示させる画像のホワイトバランスを設定することを特徴とする画像表示装置。
  16. 前記画像処理部は、前記決定された出力上限値を上限とし、入力される映像信号の輝度信号に応じて前記赤色レーザ光源、青色レーザ光源および緑色レーザ光源の各出力値を変化させることを特徴とする請求項15に記載の画像表示装置。
  17. 前記赤色レーザ光源、青色レーザ光源および緑色レーザ光源の各出力値がゼロとなる各レーザ光源の駆動電流の電流値は、前記赤色レーザ光源、青色レーザ光源および緑色レーザ光源の各閾値電流以上であることを特徴とする請求項16に記載の画像表示装置。
JP2008538724A 2006-10-10 2007-10-09 波長変換装置および画像表示装置 Expired - Fee Related JP5180086B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538724A JP5180086B2 (ja) 2006-10-10 2007-10-09 波長変換装置および画像表示装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006276217 2006-10-10
JP2006276217 2006-10-10
JP2006289819 2006-10-25
JP2006289819 2006-10-25
JP2008538724A JP5180086B2 (ja) 2006-10-10 2007-10-09 波長変換装置および画像表示装置
PCT/JP2007/069674 WO2008044673A1 (fr) 2006-10-10 2007-10-09 Dispositif de conversion de longueur d'onde et dispositif d'affichage d'images

Publications (2)

Publication Number Publication Date
JPWO2008044673A1 JPWO2008044673A1 (ja) 2010-02-12
JP5180086B2 true JP5180086B2 (ja) 2013-04-10

Family

ID=39282866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008538724A Expired - Fee Related JP5180086B2 (ja) 2006-10-10 2007-10-09 波長変換装置および画像表示装置

Country Status (4)

Country Link
US (1) US7796324B2 (ja)
JP (1) JP5180086B2 (ja)
CN (1) CN101523286B (ja)
WO (1) WO2008044673A1 (ja)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274715B2 (en) 2005-07-28 2012-09-25 Omnivision Technologies, Inc. Processing color and panchromatic pixels
US8139130B2 (en) 2005-07-28 2012-03-20 Omnivision Technologies, Inc. Image sensor with improved light sensitivity
US7916362B2 (en) 2006-05-22 2011-03-29 Eastman Kodak Company Image sensor with improved light sensitivity
US8031258B2 (en) 2006-10-04 2011-10-04 Omnivision Technologies, Inc. Providing multiple video signals from single sensor
US8050302B2 (en) * 2007-12-07 2011-11-01 Panasonic Corporation Wavelength conversion laser light source, laser light source device and two-dimensional image display device adopting the same, and method of setting temperature of wavelength conversion element
US20110116520A1 (en) 2008-07-07 2011-05-19 Koninklijke Philips Electronics N.V. Eye-safe laser-based lighting
US8224082B2 (en) 2009-03-10 2012-07-17 Omnivision Technologies, Inc. CFA image with synthetic panchromatic image
US8068153B2 (en) 2009-03-27 2011-11-29 Omnivision Technologies, Inc. Producing full-color image using CFA image
US8045024B2 (en) 2009-04-15 2011-10-25 Omnivision Technologies, Inc. Producing full-color image with reduced motion blur
US8203633B2 (en) 2009-05-27 2012-06-19 Omnivision Technologies, Inc. Four-channel color filter array pattern
US8237831B2 (en) 2009-05-28 2012-08-07 Omnivision Technologies, Inc. Four-channel color filter array interpolation
US8125546B2 (en) 2009-06-05 2012-02-28 Omnivision Technologies, Inc. Color filter array pattern having four-channels
US8253832B2 (en) 2009-06-09 2012-08-28 Omnivision Technologies, Inc. Interpolation for four-channel color filter array
US8142021B2 (en) 2009-06-25 2012-03-27 Eastman Kodak Company Dump path light intensity sensing in light projector
US8220938B2 (en) 2009-06-25 2012-07-17 Eastman Kodak Company Image path light intensity sensing during a blanking period between a left-eye light beam and a right-eye light beam in a stereoscopic light projector
US8237777B2 (en) 2009-06-25 2012-08-07 Eastman Kodak Company Stereoscopic image intensity balancing in light projector
US8162483B2 (en) * 2009-06-25 2012-04-24 Eastman Kodak Company Hierarchical light intensity control in light projector
JP5388913B2 (ja) * 2010-03-15 2014-01-15 三菱電機株式会社 画像表示装置
US8159153B2 (en) * 2010-10-01 2012-04-17 Bridgelux, Inc. LED light sources with improved thermal compensation
WO2012160747A1 (ja) 2011-05-26 2012-11-29 富士電機株式会社 光源装置、分析装置、及び光生成方法
JP2013045054A (ja) * 2011-08-26 2013-03-04 Ushio Inc レーザ光源装置、及び、レーザ光源装置における波長変換素子の温度制御方法
JP5968031B2 (ja) * 2012-04-17 2016-08-10 三菱電機株式会社 レーザー光源プロジェクター
US8891158B2 (en) * 2013-03-15 2014-11-18 Northrup Grumman Systems Corporation Distributed thermal system for nonlinear optical frequency conversion
CN104061446B (zh) * 2013-03-21 2018-04-03 优志旺电机株式会社 激光光源装置
CN103684579A (zh) * 2013-12-04 2014-03-26 国网安徽省电力公司信息通信分公司 带有波段转换功能的光路保护仪及控制方法
WO2015116240A1 (en) * 2014-02-03 2015-08-06 Ipg Photonics Corporation High-power ultra-short pulse fiber laser-illuminated projector
CN103825167B (zh) * 2014-02-12 2015-04-22 华南理工大学 一种连续可调谐单频光纤激光器
CN104701719B (zh) * 2015-03-13 2018-03-20 李斌 一种被动调q激光器及其激光产生方法
JP2016200618A (ja) * 2015-04-07 2016-12-01 富士電機株式会社 光源装置
US11487193B2 (en) 2016-07-07 2022-11-01 Sony Corporation Projector device and control method
CN108303838A (zh) * 2016-09-27 2018-07-20 中航国画(上海)激光显示科技有限公司 一种蓝光光源全光纤传输激光投影机
CN106918972A (zh) * 2017-03-24 2017-07-04 苏州大学 全光波长转换器
CN108766256B (zh) * 2018-02-10 2022-08-16 深圳市亚特联科技有限公司 波长转换头、像素单元、显示器、电子设备及检测方法
JP7087928B2 (ja) * 2018-11-06 2022-06-21 日本電信電話株式会社 波長変換装置
CN110380326B (zh) * 2019-07-29 2020-10-23 武汉电信器件有限公司 一种光信号输出装置及方法、存储介质
CN111583846B (zh) * 2020-04-28 2024-04-26 青岛海信激光显示股份有限公司 一种激光显示设备
WO2022157858A1 (ja) 2021-01-20 2022-07-28 日本電信電話株式会社 波長変換装置
WO2023007547A1 (ja) * 2021-07-26 2023-02-02 日本電信電話株式会社 波長アダプタ及び波長修正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144897A (ja) * 1997-07-25 1999-02-16 Mitsubishi Electric Corp 波長変換レーザ装置
WO2003001635A1 (fr) * 2001-06-22 2003-01-03 Matsushita Electric Industrial Co., Ltd. Appareil a source lumineuse et son procede de commande
JP2003075877A (ja) * 2001-09-06 2003-03-12 Sumitomo Heavy Ind Ltd レーザ光源及び非線型光学素子の温度制御方法
JP2005010340A (ja) * 2003-06-18 2005-01-13 Shimadzu Corp 波長変換レーザ装置
WO2006090721A1 (ja) * 2005-02-25 2006-08-31 Matsushita Electric Industrial Co., Ltd. 波長変換光学装置、レーザ光源、及び画像表示光学装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198282A (ja) 1987-10-12 1989-04-17 Sony Corp 半導体レーザ装置
JPH02253969A (ja) 1989-03-29 1990-10-12 Toshiba Corp 画像形成装置
JP3526282B2 (ja) 1994-09-14 2004-05-10 松下電器産業株式会社 高調波出力安定化方法及びそれを利用する短波長レーザ光源
JP3716355B2 (ja) * 1996-03-18 2005-11-16 株式会社トプコン レーザー装置及びレーザー装置制御方法
JP3334787B2 (ja) 1996-05-22 2002-10-15 松下電器産業株式会社 光源の発振波長安定化装置及び光源の高調波出力安定化装置とそれらを使用した光ディスクシステム
US6130901A (en) * 1997-05-07 2000-10-10 Matsushita Electric Industrial Co., Ltd. SHG laser stabilizing control device and optical disk recording/reproduction device
US5898718A (en) * 1997-05-19 1999-04-27 Altos Inc. Method and apparatus for optimizing the output of a multi-peaked frequency harmonic generator
JP3329446B2 (ja) 1999-10-25 2002-09-30 松下電器産業株式会社 コヒーレント光源およびその制御方法
JP4213436B2 (ja) 2002-09-11 2009-01-21 シャープ株式会社 レーザ装置
JP2004356579A (ja) 2003-05-30 2004-12-16 Toshiba Corp レーザ光出力装置、映像表示装置、および半導体レーザの駆動制御方法
US7103075B2 (en) 2003-06-18 2006-09-05 Shimadzu Corporation Solid laser apparatus
JP2005311133A (ja) 2004-04-22 2005-11-04 Sony Corp 光源装置
US7826502B2 (en) * 2006-12-14 2010-11-02 Jds Uniphase Corporation Circuit and method for lessening noise in a laser system having a frequency converting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1144897A (ja) * 1997-07-25 1999-02-16 Mitsubishi Electric Corp 波長変換レーザ装置
WO2003001635A1 (fr) * 2001-06-22 2003-01-03 Matsushita Electric Industrial Co., Ltd. Appareil a source lumineuse et son procede de commande
JP2003075877A (ja) * 2001-09-06 2003-03-12 Sumitomo Heavy Ind Ltd レーザ光源及び非線型光学素子の温度制御方法
JP2005010340A (ja) * 2003-06-18 2005-01-13 Shimadzu Corp 波長変換レーザ装置
WO2006090721A1 (ja) * 2005-02-25 2006-08-31 Matsushita Electric Industrial Co., Ltd. 波長変換光学装置、レーザ光源、及び画像表示光学装置

Also Published As

Publication number Publication date
CN101523286B (zh) 2010-12-15
WO2008044673A1 (fr) 2008-04-17
JPWO2008044673A1 (ja) 2010-02-12
US7796324B2 (en) 2010-09-14
US20100066649A1 (en) 2010-03-18
CN101523286A (zh) 2009-09-02

Similar Documents

Publication Publication Date Title
JP5180086B2 (ja) 波長変換装置および画像表示装置
JP5259716B2 (ja) 波長変換レーザ光源、これを備えたプロジェクションディスプレイ装置、液晶ディスプレイ装置及びレーザ光源
US7626755B2 (en) Wavelength converter and two-dimensional image display device
JP4271704B2 (ja) コヒーレント光源および光学装置
JP5096379B2 (ja) 固体レーザー装置、表示装置及び波長変換素子
US20080165812A1 (en) Wavelength converter and two-dimensional image display device
JP5484672B2 (ja) 波長変換装置
JP4843506B2 (ja) 変調機能付光源装置とその駆動方法
JP5191692B2 (ja) レーザ光源装置及び画像表示装置
US20070053388A1 (en) Coherent light source and optical device
US7965916B2 (en) Laser light source device, image display and illuminator
US20070280306A1 (en) Laser device, control device of laser device, method of controlling laser device, method of tuning wavelength of laser device and control data of laser device
JP5259385B2 (ja) 波長変換装置及び画像表示装置
JP5064777B2 (ja) レーザ装置
JP2008130848A (ja) レーザ周波数安定化装置、及びレーザ周波数安定化方法
US20070041420A1 (en) Solid-state laser device
JP2007095995A (ja) レーザ装置
JP2000208849A (ja) 半導体レ―ザ励起固体レ―ザ装置
JP2010056265A (ja) レーザ光源と、レーザ光源を用いた2次元画像表示装置、液晶ディスプレイ、医療用レーザ光源装置
JP2008042178A (ja) ファイバ装置、波長変換装置及び画像表示装置
JP2000357833A (ja) 波長変換レーザ装置
JP2003158316A (ja) 固体レーザ装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5180086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees