JP5179919B2 - Sulfuric acid resistant cement composition and sulfuric acid resistant concrete - Google Patents

Sulfuric acid resistant cement composition and sulfuric acid resistant concrete Download PDF

Info

Publication number
JP5179919B2
JP5179919B2 JP2008086427A JP2008086427A JP5179919B2 JP 5179919 B2 JP5179919 B2 JP 5179919B2 JP 2008086427 A JP2008086427 A JP 2008086427A JP 2008086427 A JP2008086427 A JP 2008086427A JP 5179919 B2 JP5179919 B2 JP 5179919B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
water
mass
concrete
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008086427A
Other languages
Japanese (ja)
Other versions
JP2009234893A (en
Inventor
彰 佐々木
清春 弘中
由高 藤野
俊之 高橋
恵子 平泉
竹文 新藤
英司 大脇
茂禎 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Ube Corp
Original Assignee
Taisei Corp
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Ube Industries Ltd filed Critical Taisei Corp
Priority to JP2008086427A priority Critical patent/JP5179919B2/en
Publication of JP2009234893A publication Critical patent/JP2009234893A/en
Application granted granted Critical
Publication of JP5179919B2 publication Critical patent/JP5179919B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/23Acid resistance, e.g. against acid air or rain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、下水道、温泉地などの硫酸あるいは硫酸塩による腐食が問題となる箇所での施工性及び自己充てん性に優れる耐硫酸性セメント組成物及び耐硫酸性コンクリートに関する。   The present invention relates to a sulfate-resistant cement composition and a sulfate-resistant concrete that are excellent in workability and self-fillability in places where corrosion due to sulfuric acid or sulfate such as sewers and hot springs is a problem.

下水道、温泉地等の硫酸もしくは硫酸塩にさらされる箇所においては、従来から、硫酸によるセメント硬化体の腐食が問題となっている。さらに近年、酸性雨による腐食は、下水道、温泉地等の限定された箇所での問題に留まらず、セメントを使用した構築物全体の問題となっている。   In places exposed to sulfuric acid or sulfate such as sewers and hot springs, corrosion of hardened cement by sulfuric acid has been a problem. Furthermore, in recent years, corrosion due to acid rain has become a problem not only in limited places such as sewers and hot springs, but also in the entire structure using cement.

セメント硬化物(モルタルやコンクリート)は硫酸に長期間接触し続けると、難溶性の石膏を形成すると共に、シリカゲルやアルミナゲルを生成する。コンクリートに対する硫酸のこの作用は、当然、酸の濃度に依存する。pHが2より低くない(硫酸濃度0.1%以下)場合には、炭酸ガスや低濃度の酸による腐食,又は硫酸塩などの腐食性を示す塩類などによる腐食の場合と同様に、コンクリートを緻密化させることが腐食物質の内部への浸透を抑制する点から効果があり、高性能AE減水剤等の使用により作業性を確保しながら水セメント比を低下させることにより耐食性を向上させることができる。しかし硫酸の濃度が高くなるとコンクリートの緻密化のみでは対応が難しく、例えばpHが2より低くなると、セメント素材自体に硫酸に対する抵抗性を期待することは困難である。   When the hardened cement (mortar or concrete) is kept in contact with sulfuric acid for a long time, it forms hardly soluble gypsum and produces silica gel and alumina gel. This action of sulfuric acid on concrete naturally depends on the acid concentration. If the pH is not lower than 2 (sulfuric acid concentration 0.1% or less), the concrete should be removed in the same way as in the case of corrosion with carbon dioxide gas or low acid concentration, or corrosion with salts such as sulfate. Densification is effective from the point of suppressing penetration of corrosive substances into the interior, and it is possible to improve corrosion resistance by reducing the water cement ratio while ensuring workability by using a high performance AE water reducing agent. it can. However, when the concentration of sulfuric acid is high, it is difficult to cope only with the densification of concrete. For example, when the pH is lower than 2, it is difficult to expect the cement material itself to be resistant to sulfuric acid.

pHが2より低い場合における硫酸によるセメント硬化物の劣化の防止法として、ナフタレンスルホン酸のホルマリン縮合物塩を多量に添加する方法が提案されている(特許文献1、2及び3参照)。
特開2004−331458号公報 特開2004−331459号公報 特開2005−331062号公報
As a method for preventing deterioration of the cement cured product due to sulfuric acid when the pH is lower than 2, a method of adding a large amount of a formalin condensate salt of naphthalenesulfonic acid has been proposed (see Patent Documents 1, 2, and 3).
JP 2004-331458 A JP 2004-331459 A JP 2005-331062 A

しかしながら、ナフタレンスルホン酸のホルマリン縮合物塩を多量に添加したコンクリート組成物は、自己充てん性能が要求される工事では、通常の自己充てんコンクリートと比較して、自己充てん性や骨材分離性能の面で劣り、更なる改善が望まれていた。   However, concrete compositions containing a large amount of the formalin condensate salt of naphthalene sulfonic acid are more self-filling and aggregate-separating than conventional self-filling concrete in constructions that require self-filling performance. However, further improvement was desired.

そこで、本発明は、耐硫酸性付与のためにナフタレンスルホン酸のホルマリン縮合物塩を多量に添加した場合でも、自己充てん性の高いコンクリート成形体を与えることのできるセメント組成物及びコンクリート組成物を提供することを目的とする。   Therefore, the present invention provides a cement composition and a concrete composition capable of giving a concrete molded body having a high self-filling property even when a large amount of a formalin condensate salt of naphthalene sulfonic acid is added to impart sulfuric acid resistance. The purpose is to provide.

本発明に係る耐硫酸性セメント組成物は、セメントと石灰石微粉末との質量部比率が40:60〜60:40の無機質粉体組成物と、無機質粉体組成物100質量部に対してナフタレンスルホン酸のホルマリン縮合物塩0.5〜5質量部(但し、耐硫酸性セメント組成物の全量に対して0.5〜1.0質量%を除く)と、水溶性増粘剤と、無機増粘剤とを含む耐硫酸性セメント組成物であって、水溶性増粘剤がアクリル系水溶性高分子、バイオポリマーグリコール系水溶性高分子及びセルロース系水溶性高分子からなる群より選ばれる1種以上であり、無機増粘剤がアタパルジャイト及びセピオライトからなる群より選ばれる1種以上であり、無機質粉体組成物100質量部に対して、水溶性増粘剤を有機質成分量基準で0.01〜0.5質量部及び無機増粘剤を0.1〜5質量部含む、耐硫酸性セメント組成物である。 The sulfuric acid resistant cement composition according to the present invention includes an inorganic powder composition having a mass part ratio of 40:60 to 60:40 of cement and limestone fine powder, and naphthalene with respect to 100 parts by mass of the inorganic powder composition. 0.5-5 parts by mass of a formalin condensate salt of sulfonic acid (excluding 0.5-1.0% by mass with respect to the total amount of the sulfate-resistant cement composition) , a water-soluble thickener, and inorganic A sulfate-resistant cement composition containing a thickener, wherein the water-soluble thickener is selected from the group consisting of acrylic water-soluble polymers, biopolymers , glycol-based water-soluble polymers, and cellulose-based water-soluble polymers. one or more kinds, der least one inorganic thickener is selected from attapulgite and sepiolite DOO or Ranaru group is, with respect to inorganic powder composition 100 parts by weight, organic water-soluble thickener component 0.01-0.5 on a quantity basis The amount unit and inorganic thickeners include 0.1 to 5 parts by weight, a sulfuric acid cement composition.

また、本発明に係る耐硫酸性コンクリート組成物は、本発明の耐硫酸性セメント組成物と骨材と水とを含む耐硫酸性コンクリート組成物である。   The sulfuric acid resistant concrete composition according to the present invention is a sulfuric acid resistant concrete composition containing the sulfuric acid resistant cement composition of the present invention, aggregate and water.

本発明に係る耐硫酸性セメント組成物や耐硫酸性コンクリート組成物によれば、耐硫酸性及び自己充てん性に優れるコンクリートを提供することができる。特に、5質量%硫酸水溶液(pH約0.3)に28日間浸せきしたときの侵食深さを3mm以下にすることができる。   According to the sulfuric acid resistant cement composition and the sulfuric acid resistant concrete composition according to the present invention, it is possible to provide concrete having excellent sulfuric acid resistance and self-filling property. In particular, the erosion depth when immersed in a 5% by mass sulfuric acid aqueous solution (pH about 0.3) for 28 days can be 3 mm or less.

先ず、耐硫酸性セメント組成物について説明する。耐硫酸性セメント組成物は、セメント、石灰石粉末、ナフタレンスルホン酸のホルマリン縮合物塩、水溶性増粘剤及び無機増粘剤により構成される。   First, the sulfuric acid resistant cement composition will be described. The sulfuric acid resistant cement composition is composed of cement, limestone powder, a formalin condensate salt of naphthalenesulfonic acid, a water-soluble thickener and an inorganic thickener.

セメントとしては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、耐硫酸塩ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント,高炉セメント,フライアッシュセメント,シリカフュームセメント,アルミナセメント等を挙げることができる。   Examples of cement include ordinary Portland cement, early-strength Portland cement, ultra-early strong Portland cement, sulfate-resistant Portland cement, moderately hot Portland cement, low-heat Portland cement, blast furnace cement, fly ash cement, silica fume cement, alumina cement, etc. Can do.

また、石灰石粉末のブレーン比表面積(JIS R 5201「セメントの物理試験方法」に準拠して測定)は、2000cm/g以上、好ましくは3000cm/g以上、特に好ましくは4000cm/g以上、更に好ましくは4000cm/g以上であり、かつ8000cm/g以下である。石灰石粉末の耐硫酸性の発現機序は明確にされていないが、バリアとなる石膏が生成しやすいこと、石膏生成時の膨張が少ないこと等が関係していると考えられる。 Further, (measured in accordance with JIS R 5201 "Physical testing methods for cement") Blaine specific surface area of the limestone powder, 2000 cm 2 / g or more, preferably 3000 cm 2 / g or more, particularly preferably 4000 cm 2 / g or more, More preferably, it is 4000 cm < 2 > / g or more and 8000 cm < 2 > / g or less. The mechanism of the development of sulfuric acid resistance of limestone powder has not been clarified, but it is thought to be related to the fact that gypsum serving as a barrier is easily generated and that there is little expansion when gypsum is generated.

また、セメント及び石灰石粉末で構成される無機質粉体組成物は、セメントと石灰石粉末とが、質量部比率が20:80〜100:0、好ましくは20:80〜80:20、特に好ましくは30:70〜70:30、更に好ましくは40:60〜60:40の範囲で含まれることが好ましい。無機質粉体組成物における石灰石粉末の質量部比率が80以内であれば、侵食に対する抵抗性の低下を十分防止することができる。なお、侵食に対する抵抗性を高めるには、無機質粉体組成物における石灰石粉末の質量部比率を40〜60にするのが望ましい。   Further, in the inorganic powder composition composed of cement and limestone powder, the mass ratio of cement and limestone powder is 20:80 to 100: 0, preferably 20:80 to 80:20, particularly preferably 30. : 70 to 70:30, more preferably in the range of 40:60 to 60:40. If the mass part ratio of the limestone powder in the inorganic powder composition is within 80, a decrease in resistance to erosion can be sufficiently prevented. In addition, in order to raise the resistance with respect to erosion, it is desirable to make the mass part ratio of the limestone powder in an inorganic powder composition into 40-60.

ナフタレンスルホン酸のホルマリン縮合物塩の添加量は、セメントと石灰石粉末の混合物である無機質粉体組成物100質量部に対して、固形分換算で0.1〜5質量部、好ましくは0.3〜3質量部である。ナフタレンスルホン酸のホルマリン縮合物塩の添加量が0.1質量部以上であれば、減水性は発現し、耐硫酸性も十分発揮する。また、ナフタレンスルホン酸のホルマリン縮合物塩の添加量の増加とともに耐硫酸性は向上するが、5質量部を越えると耐硫酸性の更なる改善効果はあまり見られなくなるため、添加量は5質量部以下で十分である。   The addition amount of the formalin condensate salt of naphthalene sulfonic acid is 0.1 to 5 parts by mass, preferably 0.3 in terms of solid content with respect to 100 parts by mass of the inorganic powder composition which is a mixture of cement and limestone powder. ~ 3 parts by mass. When the addition amount of the formalin condensate salt of naphthalene sulfonic acid is 0.1 parts by mass or more, water reduction is exhibited and sulfuric acid resistance is sufficiently exhibited. In addition, the sulfuric acid resistance is improved with an increase in the addition amount of the formalin condensate salt of naphthalene sulfonic acid, but if the amount exceeds 5 parts by mass, a further improvement effect of the sulfuric acid resistance is not seen so much. Part or less is sufficient.

ナフタレンスルホン酸のホルマリン縮合物塩により耐硫酸性が向上する要因は明確ではないが、硫酸溶液に浸せきした硬化物のSEM観察において、表面に通常見られない石膏の緻密な層が認められる。このことから、この石膏層がバリアとなって硫酸の浸透を抑制しているものと考えることができる。   Although the factor that improves the sulfuric acid resistance by the formalin condensate salt of naphthalene sulfonic acid is not clear, a dense layer of gypsum that is not usually found on the surface is observed in the SEM observation of the cured product immersed in the sulfuric acid solution. From this, it can be considered that this gypsum layer serves as a barrier to suppress the permeation of sulfuric acid.

セメントの組成物は、硫酸溶液中で溶解し石膏を析出するが、ナフタレンスルホン酸のホルマリン縮合物塩によって石膏の析出機序が変化して、上記のような緻密な石膏層が形成されたものと推察される。   The cement composition dissolves in a sulfuric acid solution and precipitates gypsum, but the gypsum precipitation mechanism is changed by the formalin condensate salt of naphthalene sulfonic acid to form a dense gypsum layer as described above. It is guessed.

なお、耐硫酸性セメント組成物を構成するセメント、石灰石粉末、ナフタレンスルホン酸のホルマリン縮合物塩、水溶性増粘剤、無機増粘剤などの材料は、セメント組成物あるいはセメント組成物ペーストにそれぞれ単独で添加して使用することができる。また、その一部あるいは全部を予め混合して用いることもできる。予め混合して用いる場合には、ナフタレンスルホン酸のホルマリン縮合物塩は粉体状のものを用いることが好ましい。予め混合して用いる方法は、添加量の少ない増粘剤やコンクリートミキサで混合し難い微粉末を均一に混合するのに適している。   In addition, materials such as cement, limestone powder, formalin condensate salt of naphthalene sulfonic acid, water-soluble thickener, and inorganic thickener constituting the sulfate-resistant cement composition are added to the cement composition or the cement composition paste, respectively. It can be used alone. Also, some or all of them can be mixed in advance and used. When mixed and used in advance, it is preferable to use a powder of the formalin condensate salt of naphthalenesulfonic acid. The method of mixing and using in advance is suitable for uniformly mixing a thickener with a small amount of addition or fine powder that is difficult to mix with a concrete mixer.

水溶性増粘剤としては、アクリル系水溶性高分子、バイオポリマー、グリコール系水溶性高分子、セルロース系水溶性高分子等から選ばれる1種、又はこれらの混合物が挙げられる。ここで、アクリル系水溶性高分子としては、例えば、アクリルアミドとアクリル酸の共重合体、ポリアクリル酸等を例示することができる。また、バイオポリマーとしては、β−1、3グルカン、水溶性ポリサッカライド等を例示することができる。グリコール系水溶性高分子としては、ポリアルキレングリコール、ジステアリン酸グリコール、繊維素グリコール酸等を例示することができる。セルロース系水溶性高分子としては、例えば、メチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース等のアルキルセルロース、ヒドロキシアルキルセルロース、ヒドロキシアルキルアルキルセルロース等を例示することができる。   Examples of the water-soluble thickener include one selected from acrylic water-soluble polymers, biopolymers, glycol-based water-soluble polymers, cellulose-based water-soluble polymers, and mixtures thereof. Here, examples of the acrylic water-soluble polymer include a copolymer of acrylamide and acrylic acid, polyacrylic acid, and the like. Examples of biopolymers include β-1, 3 glucan, water-soluble polysaccharides and the like. Examples of the glycol-based water-soluble polymer include polyalkylene glycol, glycol distearate, and fiber glycolic acid. Examples of the cellulose-based water-soluble polymer include alkyl celluloses such as methyl cellulose, hydroxyethyl cellulose, and hydroxypropyl methyl cellulose, hydroxyalkyl cellulose, hydroxyalkylalkyl cellulose, and the like.

水溶性増粘剤は、無機質粉体組成物100質量部に対して、有機質成分量基準で好ましくは0.01〜0.5質量部、より好ましくは0.02〜0.2質量部の範囲の量にて使用するとよい。なお、有機質成分量基準とは、示差熱重量分析(TG−DTA)を行なった場合の約210〜510℃の重量減少量をいう。水溶性増粘剤が0.1質量部未満であると、材料分離が発生し、充分な作業性が得られない。また、水溶性増粘剤が、5質量部を越えると、粘性が高くなるため作業性が悪くなり、凝結も遅延する。   The water-soluble thickener is preferably in the range of 0.01 to 0.5 parts by weight, more preferably 0.02 to 0.2 parts by weight, based on the amount of organic components, with respect to 100 parts by weight of the inorganic powder composition. It is good to use in the quantity. In addition, an organic component amount reference | standard refers to the weight reduction amount of about 210-510 degreeC when a differential thermogravimetric analysis (TG-DTA) is performed. When the water-soluble thickener is less than 0.1 part by mass, material separation occurs and sufficient workability cannot be obtained. On the other hand, when the water-soluble thickener exceeds 5 parts by mass, the viscosity becomes high and workability is deteriorated, and the setting is also delayed.

無機増粘剤としては、例えば、アタパルジャイト、セピオライト、ベントナイト、タルク、シリカヒューム等から選ばれる1種、又はこれらの混合物が挙げられる。なお、これらの無機増粘剤は、高流動コンクリート製造あるいは左官用モルタルの作業性の改善に使用されている。   Examples of the inorganic thickener include one selected from attapulgite, sepiolite, bentonite, talc, silica fume, and the like, or a mixture thereof. These inorganic thickeners are used to improve the workability of high fluid concrete production or plastering mortar.

無機増粘剤は、無機質粉体組成物100質量部に対して、好ましくは0.1〜5質量部、より好ましくは0.3〜2質量部の範囲の量にて使用するとよい。無機増粘剤が0.1質量部未満であると、材料分離が発生し、充分な作業性が得られない。無機増粘剤が、5質量部を越えると、粘性が高くなるとともに、スランプフローが小さくなり、自己充てん性が損なわれる。   The inorganic thickener is preferably used in an amount in the range of 0.1 to 5 parts by mass, more preferably 0.3 to 2 parts by mass with respect to 100 parts by mass of the inorganic powder composition. When the inorganic thickener is less than 0.1 parts by mass, material separation occurs and sufficient workability cannot be obtained. When the inorganic thickener exceeds 5 parts by mass, the viscosity increases, the slump flow decreases, and the self-filling property is impaired.

増粘剤のこのような使用方法は、上記の耐硫酸性水硬性組成物のように、増粘剤を使用しないとセメントと水とが分離するような場合に特有の方法である。本発明では鋭意研究を重ね、新たに水溶性増粘剤と無機増粘剤とを適切な比率で添加することにより、良好なフレッシュ性状のコンクリートが得られること、また、これは水溶性増粘剤が水の粘度を上げ、無機増粘剤が粒子としてコンクリートの粘性を上げることにより、両者の性状がバランス良く発揮されることを見出した。   Such a method of using the thickener is a method peculiar to the case where the cement and the water are separated when the thickener is not used, like the above-mentioned sulfuric acid resistant hydraulic composition. In the present invention, earnest research has been repeated, and by adding a water-soluble thickener and an inorganic thickener at an appropriate ratio, a concrete with good fresh properties can be obtained. It has been found that when the agent increases the viscosity of water and the inorganic thickener increases the viscosity of the concrete as particles, the properties of both can be exhibited in a well-balanced manner.

また、セメント組成物には、通常のセメント、モルタル及びコンクリートで使用される高炉スラグ微粉末、フライアッシュ、シリカフューム等の無機粉末を添加することができる。さらに、モルタル用あるいはコンクリート用の化学混和剤を用いることもできる。   In addition, inorganic powders such as blast furnace slag fine powder, fly ash, and silica fume used in ordinary cement, mortar, and concrete can be added to the cement composition. Furthermore, a chemical admixture for mortar or concrete can also be used.

また、このような耐硫酸性水硬性組成物に対し、骨材と水とを混和して硬化させることにより、コンクリートやモルタル等の耐硫酸性硬化物を作製することができる。この場合、骨材として石灰石骨材を使用すると耐硫酸性は更に向上する。これは、石灰石微粉末の添加による効果と同じ要因と思われ、骨材として石灰石を用いると、石灰石量をさらに増やすことができるので非常に好ましい。   Moreover, a sulfate-resistant hardened material, such as concrete and mortar, can be produced by mixing aggregate and water with such a sulfate-resistant hydraulic composition and curing the mixture. In this case, when limestone aggregate is used as the aggregate, the sulfuric acid resistance is further improved. This seems to be the same factor as the effect of adding limestone fine powder, and using limestone as an aggregate is very preferable because the amount of limestone can be further increased.

ここで、耐硫酸性硬化物を形成させる際、耐硫酸性水硬性組成物中のセメント成分に対する添加水量を水/セメント比で40〜60%、好ましくは45〜55%として、混練するとよい。水/セメント比が40%より小さいと耐硫酸性が低下する傾向にあり、水/セメント比が60%を超えると、凝結が遅延するとともに水密性が低下する傾向にある。また、混練の際の単位水量は120〜180kg/mとするのが好ましい。水量が120kg/mより少なくなると、コンクリート成形物の製造の作業性が低下しやすくなり、一方、180kg/mを超えるとコンクリート中の骨材量は少なくなるため、コンクリートとしての特性が低下する傾向にある。 Here, when forming the sulfuric acid-resistant cured product, the amount of water added to the cement component in the sulfuric acid-resistant hydraulic composition is 40 to 60%, preferably 45 to 55% in terms of water / cement ratio. When the water / cement ratio is less than 40%, the sulfuric acid resistance tends to be lowered. When the water / cement ratio exceeds 60%, the setting is delayed and the watertightness tends to be lowered. The unit water amount during kneading is preferably 120 to 180 kg / m 3 . When the amount of water is less than 120 kg / m 3 , the workability of the production of the concrete molding is likely to be lowered. On the other hand, when the amount exceeds 180 kg / m 3 , the amount of aggregate in the concrete is reduced, so the properties as concrete are lowered. Tend to.

このように、耐硫酸性セメント組成物を用い、骨材及び水と混練したのち成形し、養生することにより得られる耐硫酸性コンクリート組成物は、5質量%硫酸水溶液(pH約0.3)に28日間浸せきしたときの侵食深さが3mm以下となり、特に、侵食深さ2mm以下を達成することができる。   Thus, using a sulfuric acid resistant cement composition, kneading with aggregate and water, molding and curing, the sulfuric acid resistant concrete composition is 5% by mass sulfuric acid aqueous solution (pH about 0.3). The depth of erosion when immersed for 28 days is 3 mm or less, and in particular, an erosion depth of 2 mm or less can be achieved.

ここで、5質量%硫酸水溶液に浸せきした時の侵食深さの測定条件及び測定方法は、建材試験センター規格JSTM C 7401:1999「溶液浸せきによるコンクリートの耐薬品性試験方法」[平成11年5月28日改正財団法人建材試験センター発行]に準じて行う。すなわち、10cm×10cm×40cmの寸法の型枠に調整したコンクリートを打設し、材齢1日後、型枠から脱型し20℃の水中で材齢28日まで養生する。その後、20℃、相対湿度60%の恒温恒湿室内で1日乾燥させる。さらに、コンクリートの供試体の6面のうち、打設面に垂直な10cm×40cmの大きさの1面(曝露面)を残し、その他の5面は変性シリコーン樹脂を塗布する。そのシリコーン樹脂が硬化した後、供試体を5質量%硫酸水溶液に56日間浸せきする。さらに、供試体の表面を水洗いの後、コンクリートカッターで長軸方向に端面から約2cm幅で切断する。   Here, the measurement conditions and measurement method of the erosion depth when immersed in a 5% by mass sulfuric acid aqueous solution are as follows: Building Material Test Center Standard JSTM C 7401: 1999 “Testing method for chemical resistance of concrete by solution immersion” [May 1999 March 28, revised by the Building Materials Testing Center]. That is, the adjusted concrete is placed in a mold having a size of 10 cm × 10 cm × 40 cm, and after one day of material age, the concrete is removed from the mold and cured in water at 20 ° C. until the material age is 28 days. Then, it is dried for one day in a constant temperature and humidity room at 20 ° C. and a relative humidity of 60%. Further, among the six surfaces of the concrete specimen, one surface (exposed surface) having a size of 10 cm × 40 cm perpendicular to the placing surface is left, and the other five surfaces are coated with the modified silicone resin. After the silicone resin is cured, the specimen is immersed in a 5% by mass sulfuric acid aqueous solution for 56 days. Further, the surface of the specimen is washed with water, and then cut with a concrete cutter in the long axis direction at a width of about 2 cm from the end face.

侵食深さは、次のように測定する。先ず、浸せき前のコンクリートにおける曝露面とその曝露面の裏面との距離(型枠における内寸法の一辺の長さ)をL(=10cm)とする。そして、侵食されていない領域を染色するため、浸せき後に切断した供試体の断面に、フェノールフタレイン溶液(JIS K 8001の4.4(指示薬)に規定するフェノールフタレイン溶液)を噴霧する。これにより、侵食されていない塩基性を示す領域は赤紫色に呈色される。赤紫色に呈色された領域における、曝露面に直交する方向の幅をノギスで測定し、その幅をL1(cm)とする。侵食深さは、L−L1(cm)により求めることができ、L−L1(cm)分の深さだけ、硫酸水溶液によって侵食されたことがわかる。なお、侵食深さは3箇所(曝露面の中央及び曝露面の両端部からそれぞれ1cm内側の位置)測定した結果の平均とする。
なお,コンクリートは硫酸の作用により,剥落,溶解などが生じ,表面が後退するため,侵食深さは質量減少量としても表すことができる。すなわち,通常のコンクリートの試験で用いられる円筒形の試験体を用いて同様の試験を行った場合には,侵食深さが3mm以下であることは,直径50mm×高さ100mmの試験体の場合には,質量変化が約30%以下であることに相当し,直径100mm×高さ200mmの試験体の場合には,質量変化が約15%以下であることに相当する。
The erosion depth is measured as follows. First, let L (= 10 cm) be the distance between the exposed surface of the concrete before dipping and the back surface of the exposed surface (the length of one side of the inner dimensions in the mold). And in order to dye | stain the area | region which is not eroded, the phenolphthalein solution (The phenolphthalein solution prescribed | regulated to 4.4 (indicator) of JISK8001) is sprayed on the cross section of the test piece cut | disconnected after immersion. Thereby, the area | region which shows the basicity which is not eroded is colored magenta. The width in the direction perpendicular to the exposed surface in the reddish purple colored area is measured with calipers, and the width is defined as L1 (cm). The erosion depth can be obtained by L-L1 (cm), and it can be seen that the erosion depth is eroded by the sulfuric acid aqueous solution by a depth of L-L1 (cm). In addition, erosion depth is taken as the average of the result of measuring 3 places (positions 1 cm inside from the center of the exposed surface and both ends of the exposed surface, respectively).
In addition, since concrete peels off and dissolves due to the action of sulfuric acid and the surface recedes, the erosion depth can also be expressed as a mass loss. That is, when a similar test is performed using a cylindrical specimen used in a normal concrete test, the erosion depth is 3 mm or less in the case of a specimen having a diameter of 50 mm and a height of 100 mm. Corresponds to a mass change of about 30% or less, and in the case of a specimen having a diameter of 100 mm and a height of 200 mm, this corresponds to a mass change of about 15% or less.

このような自己充てん性に優れる耐硫酸性セメント組成物及び耐硫酸性コンクリート組成物は、優れた耐硫酸性が求められる下水道管、下水道処理場や管渠等の下水道関連施設、あるいは温泉施設の給排水設備や温泉地域における農業用および排水用の水路構造物等温泉地関連施設、化学工場等で使用される構造物や二次製品、補修材として有利に適用できる。下水道処理関連のコンクリート施設においては、例えば、ポンプ場、沈殿池、分配槽、反応タンク、汚泥貯留槽、連絡水路、汚泥消化槽等に、本発明の耐硫酸性水硬性組成物や耐硫酸性硬化物を利用することができる。また、温泉地のコンクリート施設としては、温泉施設の浴槽、浴室内装材、内部設備類の他、温泉水や温泉蒸気に影響を受ける温泉地の建築物の基礎や壁、地中ばり、コンクリートを利用したトンネル、電柱、舗装コンクリート等が挙げられる。   Such sulfate-resistant cement compositions and sulfate-resistant concrete compositions that are excellent in self-filling properties are used in sewerage pipes, sewerage treatment plants, pipes, and other hot water facilities that require excellent sulfuric acid resistance. It can be advantageously applied as a structure, secondary product, or repair material used in hot spring-related facilities, chemical factories, etc., such as water supply and drainage facilities and waterway structures for agriculture and drainage in hot spring areas. In concrete facilities related to sewage treatment, for example, pumping stations, sedimentation tanks, distribution tanks, reaction tanks, sludge storage tanks, communication channels, sludge digestion tanks, etc., the sulfuric acid resistant hydraulic composition or sulfuric acid resistance of the present invention is used. A cured product can be used. In addition to the hot spring facility's bathtub, bathroom interior materials, and internal facilities, the hot spring resort's concrete facilities include the foundations and walls of hot springs that are affected by hot spring water and hot spring steam, underground beams, and concrete. Examples include used tunnels, utility poles, and paving concrete.

一般に、「自己充てん性」とは、コンクリートの施工性に関する性能であり、打込み時に振動締固め作業を行うことなく、自重のみで型枠等の隅々まで均等に充てんする性能を意味する。自己充てんコンクリートは、過密配筋部、充てん間隙の狭小部、施工の都合上で振動締め固めが困難な箇所等に用いられる。なお、一般的なコンクリートと同様に、収縮の補償、ケミカルプレストレスの付与及びひび割れの低減を目的に、膨張剤及び/又は収縮低減剤を添加することもできる。また、一般的なコンクリートと同様に、凝結時間を制御するための硬化促進剤や凝結遅延剤を添加することもできる。   In general, the “self-filling property” is a performance related to the workability of concrete, and means a performance that fills every corner of a formwork or the like evenly with its own weight without performing vibration compaction work at the time of placing. Self-compacting concrete is used in overcrowded reinforcement sections, narrow sections of filling gaps, places where vibration compaction is difficult due to construction reasons, and the like. As with general concrete, an expansion agent and / or a shrinkage reducing agent can be added for the purpose of compensating for shrinkage, applying chemical prestress, and reducing cracks. Further, as with general concrete, a hardening accelerator or a setting retarder for controlling the setting time can be added.

以下、実施例及び比較例を挙げて本発明の内容をより具体的に説明する。なお、本発明はこれらの例によって限定されるものではない。   Hereinafter, the contents of the present invention will be described more specifically with reference to examples and comparative examples. Note that the present invention is not limited to these examples.

[使用材料]
以下に示す材料を使用した。
(1)セメント(C):
普通ポルトランドセメント:ブレーン比表面積 3270cm/g
(2)石灰石微粉末
石灰石微粉末(LSP):ブレーン比表面積 4500cm/g
(3)骨材
(i)細骨材
石灰石砕砂(S1)(表乾密度 2.69 g/cm、粗粒率3.10)
海砂(S2)(表乾密度 2.60g/cm、粗粒率2.73)
(ii)粗骨材(G)
石灰石砕石(表乾密度 2.70g/cm、粗粒率6.54)
硬質砂岩砕石(表乾密度 2.69g/cm、粗粒率6.68)
(4)混和剤
(i)増粘剤
・アクリル系増粘剤(V1)
有機質成分として芳香族ポリアクリルアミド、無機質成分としてポルトランドセメント及び炭酸カルシウム微粉末を含有する粉末状増粘剤である。有機質成分量は8%である。
[Materials used]
The following materials were used.
(1) Cement (C):
Normal Portland cement: Blaine specific surface area 3270 cm 2 / g
(2) Limestone fine powder Limestone fine powder (LSP): Blaine specific surface area 4500 cm 2 / g
(3) Aggregate (i) Fine aggregate Limestone crushed sand (S1) (surface dry density 2.69 g / cm 3 , coarse particle ratio 3.10)
Sea sand (S2) (surface dry density 2.60 g / cm 3 , coarse particle ratio 2.73)
(Ii) Coarse aggregate (G)
Limestone crushed stone (surface dry density 2.70 g / cm 3 , coarse particle ratio 6.54)
Hard sandstone crushed stone (surface dry density 2.69 g / cm 3 , coarse particle ratio 6.68)
(4) Admixture (i) Thickener / Acrylic thickener (V1)
It is a powdery thickener containing aromatic polyacrylamide as the organic component and Portland cement and calcium carbonate fine powder as the inorganic component. The amount of organic component is 8%.

ここで、有機質成分量は、示差熱熱重量分析装置TG−DTA320(セイコー電子工業製)を用いて測定した場合の約210〜510℃の重量減少量に該当する値である。室温〜500℃はNを200mL/min、500〜1000℃はAirを200mL/minで測定容器内に流した。昇温速度は500℃で30分間保持した以外は一定速度で室温から1000℃まで昇温した。測定した結果を図1に示す。 Here, the amount of organic component is a value corresponding to a weight loss of about 210 to 510 ° C. when measured using a differential thermothermal gravimetric analyzer TG-DTA320 (manufactured by Seiko Denshi Kogyo). From room temperature to 500 ° C., N 2 was flowed into the measuring container at 200 mL / min, and from 500 to 1000 ° C., Air was flowed at 200 mL / min. The temperature was raised from room temperature to 1000 ° C. at a constant rate except that the temperature was raised at 500 ° C. for 30 minutes. The measurement results are shown in FIG.

また、熱分解−GC/MSにより有機質成分の同定を行った。結果を図2に示す。熱分解はフロンティアラボ製PY−2020iDにより550℃で熱分解した。また、ガスクロマトグラフ質量分析は日本電子製JMS−Gcmateにより下記条件で測定した。   Moreover, the organic component was identified by pyrolysis-GC / MS. The results are shown in FIG. Thermal decomposition was performed at 550 ° C. with PY-2020iD manufactured by Frontier Lab. Moreover, the gas chromatograph mass spectrometry was measured on the following conditions by JMS-Gcmate made from JEOL.

カラム:HP−5MS(0.25mm×30mm、膜厚0.25μm)、カラム温度:50℃(3分保持)−10℃/min−320℃、注入口温度:320℃、インターフェース温度:320℃、キャリアガス(He):1.0mL/min、スプリット比:スプリット(1:50)、イオン化法:EI。   Column: HP-5MS (0.25 mm × 30 mm, film thickness 0.25 μm), column temperature: 50 ° C. (holding for 3 minutes) −10 ° C./min-320° C., inlet temperature: 320 ° C., interface temperature: 320 ° C. Carrier gas (He): 1.0 mL / min, split ratio: split (1:50), ionization method: EI.

・無機増粘剤(V2)(アタパルジャイト)
(針状結晶:平均長さ1.5×10−6mから2.0×10−6m、平均径30nm)
・ Inorganic thickener (V2) (attapulgite)
(Acicular crystals: average length 1.5 × 10 −6 m to 2.0 × 10 −6 m, average diameter 30 nm)

(ii)ナフタレンスルホン酸のホルマリン縮合物(NS)

Figure 0005179919

(5)練混ぜ水(W)
・上水道水 (Ii) Naphthalenesulfonic acid formalin condensate (NS)
Figure 0005179919

(5) Mixing water (W)
・ Water supply water

[コンクリートの調整]
コンクリートの調整は、普通ポルトランドセメント(C)、石灰石微粉末(LSP)、細骨材(S:S1、S2)、粗骨材(G:G1,G2)、アクリル系増粘剤(V1)、及び無機増粘剤(V2)を表1及び表2に示す割合で混合し、二軸強制練りミキサで30秒間撹拌した後、ナフタレンスルホン酸のホルマリン縮合物(NS)と水道水(W)を表1及び表2に示す割合で混合した練混ぜ水をミキサ内に投入し、さらに150秒間撹拌することにより行った。なお、コンクリート中の空気量は3±1%に調整した。なお比較例1の練混ぜ水投入後の撹拌は90秒とした。
[Concrete adjustment]
Concrete adjustment is usually Portland cement (C), fine limestone powder (LSP), fine aggregate (S: S1, S2), coarse aggregate (G: G1, G2), acrylic thickener (V1), And an inorganic thickener (V2) in the proportions shown in Tables 1 and 2, and after stirring for 30 seconds with a biaxial forced kneading mixer, a formalin condensate (NS) of naphthalenesulfonic acid and tap water (W) are added. The mixing water mixed in the ratios shown in Tables 1 and 2 was put into the mixer and further stirred for 150 seconds. The amount of air in the concrete was adjusted to 3 ± 1%. The stirring after the mixing water was added in Comparative Example 1 was 90 seconds.

各実施例のアクリル系増粘剤V1と無機増粘剤V2の混合比率は、アクリル系増粘剤V1及び無機増粘剤V2を単独で添加した場合にコンクリートのスランプフローが約70cmとなる量、すなわちアクリル系増粘剤V1の場合で7kg/m及び無機増粘剤V2の場合で11kg/mとを、それぞれ1として、7:3、5:5、3:7とした。 The mixing ratio of the acrylic thickener V1 and the inorganic thickener V2 in each example is such that when the acrylic thickener V1 and the inorganic thickener V2 are added alone, the concrete slump flow is about 70 cm. That is, 7 kg / m 3 in the case of the acrylic thickener V1 and 11 kg / m 3 in the case of the inorganic thickener V2 were set to 1, respectively 7: 3, 5: 5, and 3: 7.

Figure 0005179919
Figure 0005179919

Figure 0005179919
Figure 0005179919

[実施例1〜4、比較例1〜3]
表1及び2の実施例1〜4は、本発明の耐硫酸性組成物を用いたコンクリートであり、水溶性増粘剤と無機増粘剤の混合比を好適な範囲に調整した例である。また、比較例1は耐硫酸性セメント組成物を含まない一般的なコンクリートである。比較例2及び3は水溶性増粘剤及び無機増粘剤のうち、一種のみを使用したコンクリートである。
[Examples 1-4, Comparative Examples 1-3]
Examples 1 to 4 in Tables 1 and 2 are concretes using the sulfuric acid resistant composition of the present invention, and are examples in which the mixing ratio of the water-soluble thickener and the inorganic thickener is adjusted to a suitable range. . Comparative Example 1 is a general concrete that does not contain a sulfuric acid resistant cement composition. Comparative Examples 2 and 3 are concretes using only one of a water-soluble thickener and an inorganic thickener.

[評価試験方法]
コンクリートの品質は、変形性の指標としてスランプフローを、粘性の指標としてスランプフロー試験の50cmフロー到達時間を、自己充てん性の指標としてU型充てん試験における充てん時間と充てん高さを、材料分離抵抗性の指標として骨材沈下量を測定することとし、以下の試験方法に準拠して行った。
[Evaluation test method]
The quality of concrete is slump flow as an index of deformability, 50 cm flow arrival time of slump flow test as an index of viscosity, filling time and height in U-type filling test as an index of self-filling, and material separation resistance. The amount of aggregate subsidence was measured as a sex indicator, and the test was performed according to the following test method.

(1)スランプフロー:JIS A 1150:2001「コンクリートのスランプフロー試験」に従った。
(2)U型充てん試験:JSCE−F 511−1999「高流動コンクリートの充てん試験装置を用いた間隙通過試験(U型容器、障害R2を使用)」に従った。なお、充てん性の指標としてコンクリート面が下端から300mmとなる時間と充てん高さを測定した。
(3)粗骨材の沈下量:練り上がったコンクリートを直径15cm、高さ30cmの鋼製型枠に流し込み、テーブルバイブレータ上に型枠を設置し、加速度17m/s、振幅0.7mmで10秒間の振動を上下方向に加えた後、7日間静置し、脱枠後のコンクリートをJIS A 1113:1999「コンクリートの割裂引張試験方法」に準じた方法で割裂して、コンクリートの上面からの骨材の沈下量を測定した。なお、測定は断面内で5箇所実施し、その平均値を沈下量とした。
(4)コンクリートの耐硫酸性:建材試験センター規格JSTM C 7401:1999「溶液浸せきによるコンクリートの耐薬品性試験方法」[平成11年5月28日改正財団法人建材試験センター発行]に準じて評価した。すなわち、10cm×10cm×40cmの寸法の型枠に調整したコンクリートを打設し、材齢1日後、型枠から脱型し20℃の水中で材齢28日まで養生した。その後、20℃、相対湿度60%の恒温恒湿室内で1日乾燥させた。さらに、コンクリートの供試体の6面のうち、打設面に垂直な10cm×40cmの大きさの1面(曝露面)を残し、その他の5面は変性シリコーン樹脂を塗布した。そのシリコーン樹脂が硬化した後、供試体を5質量% 硫酸水溶液に28日間浸せきする。さらに、供試体の表面を水洗いの後、コンクリートカッターで長軸方向に端面から約2cm幅で切断した。
侵食深さは、次のように測定した。先ず、浸せき前のコンクリートにおける曝露面とその曝露面の裏面との距離(型枠における内寸法の一辺の長さ)をL(=10cm)とする。そして、侵食されていない領域を染色するため、浸せき後に切断した供試体の断面に、フェノールフタレイン溶液(JIS K 8001の4.4(指示薬)に規定するフェノールフタレイン溶液)を噴霧する。これにより、侵食されていない塩基性を示す領域は赤紫色に呈色される。そこで、赤紫色に呈色された領域における、曝露面に直交する方向の幅をノギスで測定し、その幅をL1(cm)とする。侵食深さは、L−L1(cm)により求めることができ、L−L1(cm)分の深さだけ、硫酸水溶液によって侵食されたことがわかる。なお、侵食深さは3箇所(曝露面の中央及び曝露面の両端部からそれぞれ1cm内側の位置)測定した結果の平均とした。
(5)圧縮強度:JIS A 1107:2002「コンクリートからのコア採取方法及び圧縮強度試験方法」に従った。
(6)静弾性係数の測定:JIS A 1149:2001「コンクリートの静弾性係数試験方法」に従った。
(1) Slump flow: According to JIS A 1150: 2001 “Concrete Slump Flow Test”.
(2) U-type filling test: JSCE-F 511-1999 “Gap passage test using a high-fluidity concrete filling test apparatus (using U-type container, obstacle R2)”. In addition, as a filling index, the time when the concrete surface was 300 mm from the lower end and the filling height were measured.
(3) Sedimentation amount of coarse aggregate: poured concrete into a steel mold with a diameter of 15 cm and a height of 30 cm, a mold is placed on a table vibrator, acceleration is 17 m / s 2 , and amplitude is 0.7 mm. After applying vibration for 10 seconds in the vertical direction, it is left to stand for 7 days, and the concrete after removing the frame is split by a method in accordance with JIS A 1113: 1999 “Split tensile test method for concrete”. The amount of aggregate subsidence was measured. The measurement was carried out at five points in the cross section, and the average value was taken as the amount of settlement.
(4) Sulfuric acid resistance of concrete: Evaluated according to Building Materials Testing Center Standard JSTM C 7401: 1999 “Method of Testing Chemical Resistance of Concrete by Solution Immersion” [issued by Building Materials Testing Center, Revised on May 28, 1999] did. That is, the adjusted concrete was placed in a mold having a size of 10 cm × 10 cm × 40 cm. After one day of material age, the concrete was removed from the mold and cured in water at 20 ° C. until the material age was 28 days. Then, it was dried for one day in a constant temperature and humidity room at 20 ° C. and a relative humidity of 60%. Further, among the six surfaces of the concrete specimen, one surface (exposed surface) having a size of 10 cm × 40 cm perpendicular to the placing surface was left, and the other five surfaces were coated with a modified silicone resin. After the silicone resin is cured, the specimen is immersed in a 5% by mass sulfuric acid aqueous solution for 28 days. Furthermore, the surface of the specimen was washed with water, and then cut with a concrete cutter in the long axis direction at a width of about 2 cm from the end face.
The erosion depth was measured as follows. First, let L (= 10 cm) be the distance between the exposed surface of the concrete before dipping and the back surface of the exposed surface (the length of one side of the inner dimensions in the mold). And in order to dye | stain the area | region which is not eroded, the phenolphthalein solution (The phenolphthalein solution prescribed | regulated to 4.4 (indicator) of JISK8001) is sprayed on the cross section of the test piece cut | disconnected after immersion. Thereby, the area | region which shows the basicity which is not eroded is colored magenta. Therefore, the width in the direction orthogonal to the exposed surface in the reddish purple region is measured with calipers, and the width is set to L1 (cm). The erosion depth can be obtained by L-L1 (cm), and it can be seen that the erosion depth is eroded by the sulfuric acid aqueous solution by a depth of L-L1 (cm). In addition, the erosion depth was taken as the average of the results of measurement at three locations (positions 1 cm inside from the center of the exposed surface and both ends of the exposed surface, respectively).
(5) Compressive strength: in accordance with JIS A 1107: 2002 “Method of sampling core from concrete and test method of compressive strength”.
(6) Measurement of static elastic modulus: According to JIS A 1149: 2001 “Testing method of static elastic modulus of concrete”.

[評価試験結果]
フレッシュコンクリートのスランプフロー及びU型充てん性試験及び骨材沈下量の評価試験結果を表3に示す。

Figure 0005179919
[Evaluation test results]
Table 3 shows the slump flow of fresh concrete, the U-type filling test, and the evaluation test results of the aggregate settlement.
Figure 0005179919

この試験結果から、比較例2は、50cmフロー到達時間が長く施工性に難があり、比較例3は、50cmフロー到達時間が短いが、U型充てん性試験の充てん高さが低く、300mm通過時間も長いため充てん性に多少難があることがわかる。また、比較例2及び比較例3は、骨材の沈下量大きく、実施例に対して材料分離が生じやすいコンクリートであるといえる。   From this test result, Comparative Example 2 has a long 50 cm flow arrival time and difficulty in workability, and Comparative Example 3 has a short 50 cm flow arrival time, but the filling height of the U-type filling test is low and passes 300 mm. It can be seen that the filling time is somewhat difficult due to the long time. Moreover, it can be said that the comparative example 2 and the comparative example 3 are concrete which has a large amount of aggregate subsidence, and is easy to produce material separation with respect to an Example.

これに対して実施例1〜実施例3は、50cmフロー到達時間は比較例2よりも短く、U型充てん試験の充てん高さは比較例3よりも大きく、300mm通過時間も比較例3よりも短い。また、実施例1〜実施例3は、比較例2及び比較例3よりも骨材の沈下量が小さく材料分離抵抗性が高い。   In contrast, in Examples 1 to 3, the 50 cm flow arrival time is shorter than that of Comparative Example 2, the filling height of the U-type filling test is larger than that of Comparative Example 3, and the 300 mm passage time is also longer than that of Comparative Example 3. short. In addition, Examples 1 to 3 have a smaller amount of aggregate settlement and higher material separation resistance than Comparative Examples 2 and 3.

このように実施例1〜実施例3は、比較例2の充てん性は高いが粘性も高い、比較例3の粘性は低いが充てん性も低い、また比較例2及び比較例3の材料分離抵抗性が低いという性質を改善した、施工性、充てん性、材料分離抵抗性において優れたコンクリートである。   As described above, Examples 1 to 3 have high filling property but high viscosity in Comparative Example 2, low viscosity in Comparative Example 3 but low filling property, and material separation resistance in Comparative Example 2 and Comparative Example 3. It is a concrete with improved workability, filling properties, and material separation resistance, with improved properties of low properties.

耐硫酸性の評価試験結果を表4に示す。   The sulfuric acid resistance evaluation test results are shown in Table 4.

Figure 0005179919
Figure 0005179919

実施例2は、本発明の耐硫酸性セメント組成物を使用していない比較例1に対して、5重量%の硫酸水溶液に28日間浸せきした場合の侵食深さが著しく小さく耐硫酸性に優れていることがわかる。   In Example 2, compared to Comparative Example 1 in which the sulfuric acid resistant cement composition of the present invention was not used, the erosion depth when immersed in a 5 wt% sulfuric acid aqueous solution for 28 days was extremely small and excellent in sulfuric acid resistance. You can see that

[実施例4]
実施例1〜実施例3の室内試験で最も好適であったV1とV2の混合比が5:5であるコンクリート(実施例4)について、実機施工試験を実施し、自己充てん性と材料分離抵抗性を確認した。具体的には、コンクリートを生コンクリート工場プラントで製造し、図3のようにポンプ圧送による施工試験を実施した。ポンプ圧送後のコンクリートは、図4に示すように、縦配筋(D16)をピッチ10cmかつ横配筋(D13)をピッチ10cmで施した150×20×120cmの型枠の端部から打設し、自己充てん性を観察した。なお、打設は型枠側面側のフレキシブルホースを引き上げながら実施した。一般的なコンクリートと異なり、バイブレーターによる振動締固めを要せず、良好に充てんされた。
[Example 4]
For concrete (Example 4) in which the mixing ratio of V1 and V2 that was most suitable in the laboratory tests of Examples 1 to 3 was 5: 5, an actual machine construction test was carried out, and the self-filling property and material separation resistance were The sex was confirmed. Specifically, concrete was produced in a ready-mixed concrete plant and a construction test by pumping was performed as shown in FIG. As shown in FIG. 4, the concrete after pumping is placed from the end of a 150 × 20 × 120 cm formwork in which vertical reinforcement (D16) is applied at a pitch of 10 cm and horizontal reinforcement (D13) is applied at a pitch of 10 cm. The self-filling property was observed. The placement was performed while pulling up the flexible hose on the side of the mold. Unlike ordinary concrete, it did not require vibration compaction with a vibrator and was filled well.

また、鉄筋を配していない50×40×200cmの柱状型枠にも打設した。材料分離の傾向を把握するため、材齢28日において、下面から20cm、100cm及び上面から20cmの位置を中心とした直径10cmのコア供試体を採取し、圧縮強度及び静弾性係数を測定した。その結果、表5に示すように採取位置によらず、圧縮強度及び静弾性係数がほぼ同等の値となっており、材料分離抵抗性に優れることがわかる。   Further, it was also placed on a 50 × 40 × 200 cm columnar formwork without reinforcing bars. In order to grasp the tendency of material separation, core specimens having a diameter of 10 cm centered on the positions of 20 cm and 100 cm from the lower surface and 20 cm from the upper surface were collected at 28 days of age, and the compressive strength and the static elastic modulus were measured. As a result, as shown in Table 5, regardless of the sampling position, the compressive strength and the static elastic modulus are almost the same values, and it is understood that the material separation resistance is excellent.

以上のように本発明の耐硫酸性セメント組成物を使用したコンクリートは、良好な自己充てん性と材料分離抵抗性を有する。   As described above, the concrete using the sulfuric acid resistant cement composition of the present invention has good self-filling property and material separation resistance.

Figure 0005179919
Figure 0005179919

アクリル系増粘剤(V1)の示差熱熱重量分析結果を示す図である。It is a figure which shows the differential thermothermal gravimetric analysis result of an acrylic type thickener (V1). アクリル系増粘剤(V1)の熱分解−GC/MS分析結果を示す図である。It is a figure which shows the thermal decomposition-GC / MS analysis result of an acrylic thickener (V1). ポンプ圧送による施工試験を示す図である。It is a figure which shows the construction test by pumping. 配筋を施した型枠を示す図である。It is a figure which shows the formwork which gave reinforcement.

Claims (5)

セメントと石灰石微粉末との質量部比率が40:60〜60:40の無機質粉体組成物と、無機質粉体組成物100質量部に対してナフタレンスルホン酸のホルマリン縮合物塩0.5〜5質量部(但し、耐硫酸性セメント組成物の全量に対して0.5〜1.0質量%を除く)と、水溶性増粘剤と、無機増粘剤とを含む耐硫酸性セメント組成物であって、
水溶性増粘剤が、アクリル系水溶性高分子、バイオポリマー、グリコール系水溶性高分子及びセルロース系水溶性高分子からなる群より選ばれる1種以上であり、
無機増粘剤が、アタパルジャイト及びセピオライトからなる群より選ばれる1種以上であり、
無機質粉体組成物100質量部に対して、水溶性増粘剤を有機質成分量基準で0.01〜0.5質量部及び無機増粘剤を0.1〜5質量部含むことを特徴とする耐硫酸性セメント組成物。
Formalin condensate salt of naphthalenesulfonic acid 0.5 to 5 with respect to 100 parts by mass of the inorganic powder composition having a mass part ratio of cement and fine limestone powder of 40:60 to 60:40 and 100 parts by mass of the inorganic powder composition Sulfur-resistant cement composition containing parts by weight (however, excluding 0.5 to 1.0% by mass with respect to the total amount of the sulfate-resistant cement composition) , a water-soluble thickener, and an inorganic thickener Because
The water-soluble thickener is at least one selected from the group consisting of acrylic water-soluble polymers, biopolymers, glycol-based water-soluble polymers, and cellulose-based water-soluble polymers;
Inorganic thickeners state, and it is one or more selected from attapulgite and sepiolite DOO or Ranaru group,
It is characterized by containing 0.01 to 0.5 parts by mass of a water-soluble thickener on the basis of the amount of organic components and 0.1 to 5 parts by mass of an inorganic thickener with respect to 100 parts by mass of the inorganic powder composition. A sulfuric acid resistant cement composition.
水溶性増粘剤が、アクリル系水溶性高分子であり、無機増粘剤が、アタパルジャイトであり、無機質粉体組成物100質量部に対して、アクリル系水溶性高分子を有機質成分量基準で0.02〜2質量部及びアタパルジャイトを0.3〜2質量部含む、請求項1記載の耐硫酸性セメント組成物。 The water-soluble thickener is an acrylic water-soluble polymer, the inorganic thickener is attapulgite, and the acrylic water-soluble polymer is based on the amount of organic components based on 100 parts by mass of the inorganic powder composition. The sulfuric acid resistant cement composition according to claim 1 , comprising 0.02 to 2 parts by mass and 0.3 to 2 parts by mass of attapulgite . 請求項1又は2に記載の耐硫酸性セメント組成物と骨材と水とを含み、水/セメント比が40〜60%である、耐硫酸性コンクリート組成物 And a sulfuric acid cement composition according to claim 1 or 2 and the aggregate and water, water / cement ratio of 40% to 60%, sulfuric acid concrete composition. 請求項1又は2に記載の耐硫酸性セメント組成物と骨材と水とを含み、水/セメント比が40〜60%である、耐硫酸性モルタル組成物。 And a sulfuric acid cement composition according to claim 1 or 2 and the aggregate and water, water / cement ratio of 40% to 60%, sulfuric acid mortar composition. 請求項3記載の耐硫酸コンクリート成物の硬化物であって、5%硫酸水溶液に28日間浸せきしたときの侵食深さが3mm以下である、耐硫酸コンクリート組成物の硬化物。 A cured product of claim 3 sulfuric acid concrete forming structure according, is less than 3mm corrosion depth when immersed in 5% aqueous sulfuric acid for 28 days, the cured product of the resistance sulfate concrete composition.
JP2008086427A 2008-03-28 2008-03-28 Sulfuric acid resistant cement composition and sulfuric acid resistant concrete Active JP5179919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008086427A JP5179919B2 (en) 2008-03-28 2008-03-28 Sulfuric acid resistant cement composition and sulfuric acid resistant concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008086427A JP5179919B2 (en) 2008-03-28 2008-03-28 Sulfuric acid resistant cement composition and sulfuric acid resistant concrete

Publications (2)

Publication Number Publication Date
JP2009234893A JP2009234893A (en) 2009-10-15
JP5179919B2 true JP5179919B2 (en) 2013-04-10

Family

ID=41249327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008086427A Active JP5179919B2 (en) 2008-03-28 2008-03-28 Sulfuric acid resistant cement composition and sulfuric acid resistant concrete

Country Status (1)

Country Link
JP (1) JP5179919B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10538383B2 (en) 2011-02-17 2020-01-21 Saudi Arabian Oil Company Protection system for sulfur storage apparatus
JP5915303B2 (en) * 2011-03-28 2016-05-11 宇部興産株式会社 Self-leveling material and slurry
CN104496341A (en) * 2014-11-24 2015-04-08 柳州立洁科技有限公司 Plant-derived energy-saving thermal insulation mortar
KR102015597B1 (en) * 2019-03-12 2019-10-21 유한회사 삼흥산업 Composition for concrete waterway pipe for wet vibration molding using electric furnace copper slag fine aggregate
CN114031327A (en) * 2021-12-10 2022-02-11 武安市浩泽环保科技有限公司 High-activity stone powder-based concrete additive
CN114656184B (en) * 2022-04-14 2022-11-15 北京建筑材料科学研究总院有限公司 Sulfate erosion resistant concrete additive, preparation method thereof and concrete

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509321B2 (en) * 2000-07-18 2010-07-21 電気化学工業株式会社 Cement admixture, concrete containing the same, and method for producing the same
JP4290473B2 (en) * 2003-05-08 2009-07-08 日本下水道事業団 Sulfuric acid resistant cement composition and sulfuric acid resistant cement cured product
JP4662413B2 (en) * 2003-06-27 2011-03-30 株式会社大林組 High specific gravity polymer cement mortar for plasterers
JP4551697B2 (en) * 2004-05-27 2010-09-29 日本下水道事業団 Sulfuric acid resistant concrete
JP5022579B2 (en) * 2005-02-14 2012-09-12 株式会社デイ・シイ Grout
JP2007070153A (en) * 2005-09-06 2007-03-22 Japan Sewage Works Agency Highly acid-resistant mortar composition having improved troweling operability
JP4784370B2 (en) * 2006-03-30 2011-10-05 宇部興産株式会社 Hydraulic composition

Also Published As

Publication number Publication date
JP2009234893A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5179919B2 (en) Sulfuric acid resistant cement composition and sulfuric acid resistant concrete
JP5590492B2 (en) Cement-containing polymer-based waterproofing agent and method for producing the same
JP5139777B2 (en) Sulfate-resistant centrifugal molded concrete composition
MX2008007269A (en) Composition and its use for improving the processibility of hydraulically setting compositions
JP3686888B2 (en) Gap filling material and gap filling method
JP2011136864A (en) Admixture for porous concrete and porous concrete
JP4647767B2 (en) Hydraulic composition and its paste, mortar, concrete
JP4290473B2 (en) Sulfuric acid resistant cement composition and sulfuric acid resistant cement cured product
KR100196702B1 (en) Method for preparing concrete
JP4551697B2 (en) Sulfuric acid resistant concrete
JP2007246293A (en) Low shrinkage type light-weight concrete
JP2001240456A (en) Acid proof mortar, grout and concrete, and method for working therewith
JP3806420B2 (en) Low strength mortar filler using shirasu
Udayabanu et al. Self-curing concrete using water-soluble polymerfor developing countries
JP5587007B2 (en) Sulfuric acid resistant cement composition, sulfuric acid resistant mortar composition and sulfuric acid resistant concrete composition
JP5707684B2 (en) Sulfuric acid resistant mortar composition, sulfuric acid resistant concrete composition and cured body thereof
JP2011136887A (en) Repairing material
JP6002432B2 (en) Sulfuric acid resistant grout composition and filling method using the same
Munn et al. Performance and compatibility of permeability reducing and other chemical admixtures in Australian concretes
JP6959000B2 (en) Cement composition
JP4605918B2 (en) Underwater gap filling method
Lang et al. Use of Blast Furnace Slag Cement With High Slag Content for High-Performance Concrete
JP5730627B2 (en) Curing agent for alumina cement composition and repair method using the same
CN107512859A (en) A kind of anti-corrosion additive for big water absorption rate coarse aggregate concrete
JP5446375B2 (en) Sulfuric acid resistance imparting agent, sulfuric acid resistant mortar composition, sulfuric acid resistant concrete composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5179919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250