JP5179004B2 - Infrared sensor - Google Patents

Infrared sensor Download PDF

Info

Publication number
JP5179004B2
JP5179004B2 JP2005312029A JP2005312029A JP5179004B2 JP 5179004 B2 JP5179004 B2 JP 5179004B2 JP 2005312029 A JP2005312029 A JP 2005312029A JP 2005312029 A JP2005312029 A JP 2005312029A JP 5179004 B2 JP5179004 B2 JP 5179004B2
Authority
JP
Japan
Prior art keywords
infrared
base substrate
infrared absorbing
infrared sensor
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005312029A
Other languages
Japanese (ja)
Other versions
JP2007121047A (en
Inventor
祥文 渡部
幸司 辻
山中  浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005312029A priority Critical patent/JP5179004B2/en
Publication of JP2007121047A publication Critical patent/JP2007121047A/en
Application granted granted Critical
Publication of JP5179004B2 publication Critical patent/JP5179004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

本発明は、赤外線センサに関し、特にサーモパイル型の赤外線センサに関するものである。   The present invention relates to an infrared sensor, and more particularly to a thermopile type infrared sensor.

従来より、人体から放射される赤外線(8μm〜13μm程度の波長範囲の赤外線)を検出可能な赤外線センサとして、マイクロマシンニング技術を利用して形成され、赤外線を吸収して熱に変換する赤外線吸収部と、赤外線吸収部の温度変化を検出する感温部とを備えた赤外線センサが知られている。   Conventionally, as an infrared sensor capable of detecting infrared rays radiated from a human body (infrared rays having a wavelength range of about 8 μm to 13 μm), an infrared absorbing portion that is formed using micromachining technology and absorbs infrared rays to convert it into heat. An infrared sensor including a temperature sensing unit that detects a temperature change of the infrared absorption unit is known.

また、上述の赤外線吸収部と感温部とを備えたセンサ部を2次元アレイ状(マトリクス状)に配列し各センサ部が画素を構成するようにした赤外線センサ(赤外線画像センサ)が各所で研究開発されている(例えば、特許文献1参照)。   In addition, infrared sensors (infrared image sensors) in which the sensor units including the infrared absorbing unit and the temperature sensing unit described above are arranged in a two-dimensional array (matrix shape) and each sensor unit constitutes a pixel are provided at various places. Research and development have been conducted (for example, see Patent Document 1).

この種の赤外線センサとしては、例えば、図6に示すように、シリコン基板を用いて形成されたベース基板10と、ベース基板10の一表面(図6(a)における上面)に形成された凹所15の周部の2点間に架け渡された梁部20と、ベース基板10の上記一表面から離間して配置され赤外線を吸収して熱に変換する赤外線吸収部30と、ベース基板10の上記一表面側において赤外線吸収部30の温度変化を検出する感温部40と、梁部20の中間部と赤外線吸収部30の中央部とを機械的且つ熱的に結合する結合部(接合柱)50とを備えた構成のものが提案されている。   As this type of infrared sensor, for example, as shown in FIG. 6, a base substrate 10 formed using a silicon substrate and a concave formed on one surface of the base substrate 10 (upper surface in FIG. 6A). A beam portion 20 spanned between two points on the peripheral portion of the place 15, an infrared absorption portion 30 that is disposed apart from the one surface of the base substrate 10 and absorbs infrared rays to convert it into heat, and the base substrate 10 The temperature sensing part 40 for detecting the temperature change of the infrared absorbing part 30 on the one surface side of the above, and a joint part (joint) for mechanically and thermally joining the intermediate part of the beam part 20 and the central part of the infrared absorbing part 30 Columns) 50 have been proposed.

ここにおいて、図6に示した構成の赤外線センサでは、赤外線吸収部30がSiOもしくはSiにより形成されるとともに、結合部50がSiOもしくはSiにより形成されている。また、この赤外線センサでは、梁部20がSiOにより形成されている。また、感温部40は、異種導電形の半導体エレメント41a,41bの対からなる2つの熱電対41,41が直列接続された細長のサーモパイルであって、梁部20に沿って配置されており、1つの冷接点部40Aがベース基板10における凹所15の周部に配置されるとともに、2つの温接点部40Bが梁部20の中間部に配置されている。ここで、各熱電対41は、対となる半導体エレメント41a,41bの一方をp形ポリシリコンにより形成するとともに他方をn形ポリシリコンにより形成し、両半導体エレメント41a,41aが金属材料からなる接合部41cを介して接続されている。なお、図6に示した構成の赤外線センサは、ベース基板10の上記一表面側に赤外線吸収部30と感温部40とを備えたセンサ部が各画素ごとに備えており、感温部40を構成する細長のサーモパイルの一端部が信号読み出し用の信号線(図示せず)に接続され、他端部が給電用のバイアス線に接続されている。
特許第3040356号公報
Here, in the infrared sensor having the configuration shown in FIG. 6, the infrared absorbing portion 30 is formed of SiO 2 or Si 3 N 4 , and the coupling portion 50 is formed of SiO 2 or Si 3 N 4 . Further, in this infrared sensor, the beam portion 20 is formed by SiO 2. The temperature sensing part 40 is an elongated thermopile in which two thermocouples 41, 41 each consisting of a pair of semiconductor elements 41a, 41b of different conductivity types are connected in series, and is arranged along the beam part 20. One cold junction 40A is disposed in the periphery of the recess 15 in the base substrate 10 and two warm junctions 40B are disposed in the middle of the beam portion 20. Here, in each thermocouple 41, one of the paired semiconductor elements 41a and 41b is formed of p-type polysilicon and the other is formed of n-type polysilicon, and both the semiconductor elements 41a and 41a are made of a metal material. It is connected via the part 41c. In the infrared sensor having the configuration shown in FIG. 6, a sensor unit including the infrared absorption unit 30 and the temperature sensing unit 40 is provided for each pixel on the one surface side of the base substrate 10. One end of the elongated thermopile that constitutes is connected to a signal line for signal readout (not shown), and the other end is connected to a bias line for power supply.
Japanese Patent No. 3040356

上述の図6に示した構成の赤外線センサの各センサ部では、赤外線吸収部30と梁部20とが結合部50を介して熱的に結合されているが、赤外線吸収部30の熱が結合部50を通して温接点部40Bに熱伝達されるので、結合部50の熱抵抗などに起因して赤外線吸収部30と温接点部40Bとの間に温度勾配が生じ、温接点部40Bの温度が赤外線吸収部30の温度に比べて低くなるから、感度が低くなってしまう。   In each sensor part of the infrared sensor having the configuration shown in FIG. 6 described above, the infrared absorption part 30 and the beam part 20 are thermally coupled via the coupling part 50, but the heat of the infrared absorption part 30 is coupled. Since heat is transferred to the hot junction 40B through the part 50, a temperature gradient is generated between the infrared absorbing part 30 and the hot junction 40B due to the thermal resistance of the coupling part 50, and the temperature of the hot junction 40B is increased. Since the temperature is lower than the temperature of the infrared absorbing portion 30, the sensitivity is lowered.

また、上述の赤外線センサでは、結合部50の熱容量に起因して熱時定数が長くなり、応答速度が低下してしまい、熱画像取得に用いる赤外線画像センサとして用いる場合には、フレーム周波数が低くなってしまう。   Further, in the above infrared sensor, the thermal time constant becomes long due to the heat capacity of the coupling portion 50, the response speed decreases, and the frame frequency is low when used as an infrared image sensor used for thermal image acquisition. turn into.

本発明は上記事由に鑑みて為されたものであり、その目的は、感度および応答速度を向上することができる赤外線センサを提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the infrared sensor which can improve a sensitivity and a response speed.

請求項1の発明は、一表面に凹所が形成されたベース基板と、ベース基板の前記一表面側において凹所の周部の内側に配置された梁部と、ベース基板の前記一表面からベース基板の厚み方向に離間して配置され赤外線を吸収して熱に変換する赤外線吸収部と、梁部の中間部と赤外線吸収部の中央部とを機械的に結合する結合部と、ベース基板の前記一表面側において赤外線吸収部の温度変化を検出する感温部とを備え、赤外線吸収部は、ベース基板の前記一表面における凹所の内周形状よりも外形寸法を大きく設定してあり、感温部は、複数の熱電対が直列接続された細長のサーモパイルであって梁部に沿って配置されて冷接点部がベース基板における前記凹所の周部に配置されるとともに、温接点部が梁部の中間部に配置され、温接点部の少なくとも一部が冷接点部よりも前記厚み方向において前記一表面から離れて位置して赤外線吸収部と直接接しており、温接点部の前記一部は、赤外線吸収部の周部まで広げられてなることを特徴とする。 According to the first aspect of the present invention, there is provided a base substrate having a recess formed on one surface thereof, a beam portion disposed inside a peripheral portion of the recess on the one surface side of the base substrate, and the one surface of the base substrate. An infrared absorption part that is arranged spaced apart in the thickness direction of the base substrate and absorbs infrared rays to convert it into heat, a coupling part that mechanically couples the intermediate part of the beam part and the central part of the infrared absorption part, and the base board A temperature-sensitive portion that detects a temperature change of the infrared absorption portion on the one surface side of the infrared absorption portion, and the infrared absorption portion has an outer dimension set larger than an inner peripheral shape of the recess in the one surface of the base substrate. The temperature sensing part is an elongated thermopile in which a plurality of thermocouples are connected in series and is arranged along the beam part, and the cold junction part is arranged at the peripheral part of the recess in the base substrate. Is located in the middle of the beam, and And a portion without the contact than the cold junction is located away from the one surface in the thickness direction directly with the infrared absorbing section, said portion of the hot junction is extended to the peripheral portion of the infrared absorbing section characterized in that it comprises Te.

この発明によれば、サーモパイルからなる感温部の温接点部の少なくとも一部が冷接点部よりもベース基板の厚み方向においてベース基板の一表面から離れて位置して赤外線吸収部と直接接しているので、赤外線吸収部と温接点部との温度差を低減できて感度を向上できるとともに、応答速度を向上することができる。また、この発明によれば、温接点部の前記一部は、赤外線吸収部の周部まで広げられてなるので、赤外線吸収部と温接点部の前記一部との温度差をより低減でき、さらに高感度化を図れる。 According to the present invention, at least a part of the hot junction part of the thermosensitive part made of the thermopile is located farther from one surface of the base substrate in the thickness direction of the base substrate than the cold junction part and is in direct contact with the infrared absorption part. As a result, the temperature difference between the infrared absorbing portion and the hot contact portion can be reduced, the sensitivity can be improved, and the response speed can be improved . In addition, according to the present invention, the part of the hot junction part is extended to the peripheral part of the infrared absorption part, so that the temperature difference between the infrared absorption part and the part of the hot junction part can be further reduced, In addition, higher sensitivity can be achieved.

請求項2の発明は、請求項1の発明において、前記熱電対は、異種導電形の半導体エレメントの対を有し、前記温接点部の前記一部は、各半導体エレメントそれぞれの材料に比べて熱伝導率の高い材料により形成されてなることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the invention, the thermocouple includes a pair of semiconductor elements of different conductivity types, and the part of the hot junction portion is compared with a material of each semiconductor element. It is formed of a material having high thermal conductivity.

この発明によれば、前記赤外線吸収部と前記温接点部との温度差をより低減でき、より一層の高感度化を図れる。   According to this invention, the temperature difference between the infrared ray absorbing portion and the hot junction portion can be further reduced, and the sensitivity can be further increased.

請求項3の発明は、請求項1または請求項2の発明において、前記赤外線吸収部は、赤外線を吸収する赤外線吸収層と、赤外線吸収層よりも熱伝導率の高い材料からなり赤外線吸収層における前記ベース基板側に積層され前記赤外線吸収部の中央部と周部との温度差を低減する均熱層とを備えることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the infrared absorbing portion comprises an infrared absorbing layer that absorbs infrared rays and a material having a higher thermal conductivity than the infrared absorbing layer. characterized in that it comprises a soaking layer to reduce the temperature difference between the central portion and the peripheral portion of the laminated on the base substrate side the infrared absorbing section.

この発明によれば、前記赤外線吸収部が均熱層を備えているので、前記赤外線吸収部の中央部と周部との温度差を低減することができ、さらに高感度化を図れる。   According to this invention, since the infrared absorbing portion includes the soaking layer, the temperature difference between the central portion and the peripheral portion of the infrared absorbing portion can be reduced, and higher sensitivity can be achieved.

請求項4の発明は、請求項1ないし請求項3の発明において、前記梁部は、前記温接点部が配置された中間部が両端部に比べて前記厚み方向において前記一表面から離れて位置していることを特徴とする。 According to a fourth aspect of the present invention, in the first to third aspects of the present invention, the beam portion is positioned such that an intermediate portion where the hot contact portion is disposed is separated from the one surface in the thickness direction as compared to both end portions. It is characterized by that.

この発明によれば、前記温接点部の温度が前記赤外線吸収部の温度により近づき、さらに高感度化を図れる。   According to the present invention, the temperature of the hot junction portion approaches the temperature of the infrared ray absorbing portion, so that higher sensitivity can be achieved.

請求項5の発明は、請求項1ないし請求項4の発明において、前記赤外線吸収部と前記感温部とを備えた複数のセンサ部が前記ベース基板の前記一表面側で2次元アレイ状に配置されてなることを特徴とする。 According to a fifth aspect of the present invention, in the first to fourth aspects of the present invention, a plurality of sensor units including the infrared absorbing unit and the temperature sensing unit are arranged in a two-dimensional array on the one surface side of the base substrate. It is characterized by being arranged.

この発明によれば、従来に比べて高感度で且つ応答速度の速い赤外線画像センサを実現可能となる。   According to the present invention, it is possible to realize an infrared image sensor with higher sensitivity and faster response speed than in the past.

請求項1の発明は、感度および応答速度を向上することができるという効果がある。   The invention of claim 1 has an effect that the sensitivity and the response speed can be improved.

(実施形態1)
本実施形態の赤外線センサは、図1(a),(b)に示すように、シリコン基板からなる半導体基板10aを用いて形成されたベース基板10と、ベース基板10の一表面(図1(a)における上面)に形成された凹所15の周部の2点間に架け渡された梁部20と、ベース基板10の上記一表面からベース基板10の厚み方向に離間して配置され赤外線を吸収して熱に変換する赤外線吸収部30と、ベース基板10の上記一表面側において赤外線吸収部30の温度変化を検出する感温部40と、梁部20の中間部と赤外線吸収部30の中央部とを機械的且つ熱的に結合する結合部(接合柱)50とを備えている。なお、図1(a)は図1(b)のX−X’断面に対応している。
(Embodiment 1)
As shown in FIGS. 1A and 1B, the infrared sensor of this embodiment includes a base substrate 10 formed using a semiconductor substrate 10a made of a silicon substrate, and one surface of the base substrate 10 (FIG. a beam portion 20 spanned between two points of the peripheral portion of the recess 15 formed on the upper surface) in a), and an infrared ray disposed away from the one surface of the base substrate 10 in the thickness direction of the base substrate 10. Infrared absorbing part 30 that absorbs heat and converts it into heat, temperature sensing part 40 that detects a temperature change of infrared absorbing part 30 on the one surface side of base substrate 10, intermediate part of beam part 20 and infrared absorbing part 30 And a coupling portion (joining column) 50 that mechanically and thermally couples the central portion of the two. 1A corresponds to the XX ′ cross section of FIG.

上述のベース基板10は、上述の半導体基板10aを用いて形成されており、半導体基板10aの一表面上に絶縁層11が形成されている。ここで、絶縁層11は、半導体基板10aの上記一表面上に形成されたシリコン酸化膜からなる第1の絶縁膜11aと、第1の絶縁膜11a上に積層されたシリコン酸化膜からなる第2の絶縁膜11bとで構成されている。   The base substrate 10 described above is formed using the semiconductor substrate 10a described above, and the insulating layer 11 is formed on one surface of the semiconductor substrate 10a. Here, the insulating layer 11 includes a first insulating film 11a made of a silicon oxide film formed on the one surface of the semiconductor substrate 10a, and a first oxide film made of a silicon oxide film stacked on the first insulating film 11a. 2 insulating films 11b.

また、上述の梁部20は、ベース基板10の第1の絶縁膜11aに連続一体に形成された下部絶縁膜21aと、ベース基板10の第2の絶縁膜11bに連続一体に形成された上部絶縁膜21bとで構成されている。要するに、梁部20は、ベース基板10における凹所15の周部の内側に配置され凹所15の周部に連続一体に形成されている。ここにおいて、梁部20は、ベース基板10の厚み方向に直交する面内で蛇行する形状(上記面内で複数回折れ曲がったつづら折れ状の形状)に形成され、両端部がベース基板10における凹所15の周部に連結されている。なお、第2の絶縁膜11bおよび上部絶縁膜21bは、シリコン酸化膜に限らず、例えば、シリコン窒化膜により構成していもよい。   In addition, the above-described beam portion 20 includes a lower insulating film 21a formed continuously and integrally on the first insulating film 11a of the base substrate 10 and an upper portion formed continuously and integrally on the second insulating film 11b of the base substrate 10. It is comprised with the insulating film 21b. In short, the beam portion 20 is disposed inside the peripheral portion of the recess 15 in the base substrate 10 and is formed continuously and integrally with the peripheral portion of the recess 15. Here, the beam portion 20 is formed in a meandering shape in a plane perpendicular to the thickness direction of the base substrate 10 (a bent shape in which a plurality of folds are bent in the plane), and both end portions are concave in the base substrate 10. It is connected to the periphery of the place 15. Note that the second insulating film 11b and the upper insulating film 21b are not limited to the silicon oxide film, and may be formed of, for example, a silicon nitride film.

赤外線吸収部30は、それぞれ赤外線を吸収する赤外線吸収材料により形成された第1の赤外線吸収層31と第2の赤外線吸収層32とがベース基板10の厚み方向に積層されている。ここで、赤外線吸収部30は、外周形状が矩形状に形成されており、ベース基板10の上記一表面における凹所15の矩形状の内周形状よりも外形寸法を大きく設定してある。なお、各赤外線吸収層31,32の赤外線吸収材料としては、SiONを採用しているが、SiONに限らず、例えば、Siでもよい。 In the infrared absorbing portion 30, a first infrared absorbing layer 31 and a second infrared absorbing layer 32, each formed of an infrared absorbing material that absorbs infrared rays, are stacked in the thickness direction of the base substrate 10. Here, the outer peripheral shape of the infrared absorbing portion 30 is formed in a rectangular shape, and the outer dimension is set larger than the rectangular inner peripheral shape of the recess 15 on the one surface of the base substrate 10. As the infrared absorbing material of the infrared absorption layers 31 and 32, but employs a SiON, not limited to SiON, for example, it may be Si 3 N 4.

また、上述のように赤外線吸収部30の中央部と梁部20の中間部とを結合する結合部50は、シリコン酸化膜により構成されているが、シリコン酸化膜に限らず、例えば、シリコン窒化膜により構成してもよい。   In addition, as described above, the coupling portion 50 that couples the central portion of the infrared absorption portion 30 and the intermediate portion of the beam portion 20 is formed of a silicon oxide film, but is not limited to a silicon oxide film. You may comprise by a film | membrane.

感温部40は、異種導電形の半導体エレメント41a,41bの対からなる複数(ここでは、2つ)の熱電対41が直列接続された細長のサーモパイルであって、梁部20に沿って配置されており、1つの冷接点部40Aがベース基板10における凹所15の周部に配置されるとともに、2つの温接点部40Bが梁部20の中間部に配置されている。ここで、各熱電対41は、対となる半導体エレメント41a,41bの一方をp形ポリシリコンにより形成するとともに他方をn形ポリシリコンにより形成し、対となる半導体エレメント41a,41aの一端部同士が各半導体エレメント41a,41bそれぞれの材料に比べて熱伝導率の高い材料(例えば、アルミニウムなどの金属材料)からなる接合部41cを介して接続されており、対となる半導体エレメント41a,41bの各一端部と接合部41cとで温接点部40Bを構成している。また、感温部40は、一方の熱電対41の半導体エレメント41bの他端部と他方の熱電対41の半導体エレメント41aの他端部とが金属材料からなる接合部41dを介して接続されており、上記一方の熱電対41の半導体エレメント41bの他端部と上記他方の熱電対41の半導体エレメント41aの他端部と接合部41dとで冷接点部40Aを構成している。ここにおいて、各半導体エレメント41a,41bの全長は、冷接点部40Aがベース基板10における凹所15の周部に位置するように設定してある。なお、本実施形態の赤外線センサでは、各半導体エレメント41a,41bが梁部20および上述の絶縁層11に埋設されているので、製造時には、第1の絶縁膜11aおよび下部絶縁膜21aを形成してから、各半導体エレメント41a,41bを形成し、その後、第2の絶縁膜11bおよび上部絶縁膜21bを形成すればよい。   The temperature sensing unit 40 is an elongate thermopile in which a plurality (two in this case) of thermocouples 41 composed of pairs of semiconductor elements 41 a and 41 b of different conductivity types are connected in series, and is arranged along the beam unit 20. One cold junction part 40A is arranged in the peripheral part of the recess 15 in the base substrate 10, and two warm junction parts 40B are arranged in the middle part of the beam part 20. Here, in each thermocouple 41, one of the paired semiconductor elements 41a and 41b is formed of p-type polysilicon and the other is formed of n-type polysilicon, and one ends of the paired semiconductor elements 41a and 41a are connected to each other. Are connected via a joint portion 41c made of a material having a higher thermal conductivity (for example, a metal material such as aluminum) than the materials of the respective semiconductor elements 41a and 41b, and the pair of semiconductor elements 41a and 41b. Each one end part and the junction part 41c comprise the warm junction part 40B. In the temperature sensing unit 40, the other end of the semiconductor element 41b of one thermocouple 41 and the other end of the semiconductor element 41a of the other thermocouple 41 are connected via a joint 41d made of a metal material. The other end of the semiconductor element 41b of the one thermocouple 41, the other end of the semiconductor element 41a of the other thermocouple 41, and the joint 41d constitute a cold junction 40A. Here, the total length of each of the semiconductor elements 41 a and 41 b is set so that the cold junction portion 40 </ b> A is located in the peripheral portion of the recess 15 in the base substrate 10. In the infrared sensor of this embodiment, since each semiconductor element 41a, 41b is embedded in the beam portion 20 and the above-described insulating layer 11, the first insulating film 11a and the lower insulating film 21a are formed at the time of manufacture. Then, the semiconductor elements 41a and 41b are formed, and then the second insulating film 11b and the upper insulating film 21b are formed.

ところで、本実施形態の赤外線センサでは、上述のように冷接点部40Aがベース基板10における凹所15の周部に配置されるとともに、温接点部40Bが梁部20の中間部に配置されているが、温接点部40Bは当該温接点部40Bの一部が冷接点部40Aよりもベース基板10の厚み方向において当該ベース基板10の上記一表面から離れて位置して赤外線吸収部30と直接接している。具体的には、本実施形態の赤外線センサでは、冷接点部40Aは、絶縁層11に埋設されているのに対して、温接点部40Bにおける接合部41cが断面コ字状に形成されており、当該接合部41cの両脚片がベース基板10の厚み方向に沿って上述の上部絶縁膜21bと結合部50と第1の赤外線吸収層31とに跨って埋設されるとともに中央片がベース基板10の厚み方向に直交する面内で赤外線吸収部30に埋設されている。   By the way, in the infrared sensor of the present embodiment, the cold junction portion 40A is arranged in the peripheral portion of the recess 15 in the base substrate 10 and the hot junction portion 40B is arranged in the intermediate portion of the beam portion 20 as described above. However, the warm contact portion 40B is located partly away from the one surface of the base substrate 10 in the thickness direction of the base substrate 10 than the cold contact portion 40A. It touches. Specifically, in the infrared sensor of this embodiment, the cold junction 40A is embedded in the insulating layer 11, whereas the junction 41c in the hot junction 40B is formed in a U-shaped cross section. In addition, both leg pieces of the joint portion 41 c are embedded in the thickness direction of the base substrate 10 across the upper insulating film 21 b, the coupling portion 50, and the first infrared absorption layer 31, and the central piece is the base substrate 10. Embedded in the infrared absorbing portion 30 in a plane perpendicular to the thickness direction of the infrared absorbing portion.

以上説明した本実施形態の赤外線センサは、サーモパイルからなる感温部40の各温接点部40B,40Bそれぞれの一部が冷接点部40Aよりもベース基板10の厚み方向においてベース基板10の上記一表面から離れて位置して赤外線吸収部30と直接接しているので、図6に示した従来構成に比べて、赤外線吸収部30と各温接点部40B,40Bとの温度差を低減できて感度を向上できるとともに、応答速度を向上することができる。また、各温接点部40B,40Bの一部が各半導体エレメント41a,41bそれぞれの材料に比べて熱伝導率の高い材料により形成されているので、赤外線吸収部30と各温接点部40B,40Bとの温度差をより低減でき、より一層の高感度化を図れる。   In the infrared sensor according to the present embodiment described above, a part of each of the hot contact portions 40B, 40B of the thermosensitive portion 40 made of a thermopile is the above-described one of the base substrate 10 in the thickness direction of the base substrate 10 rather than the cold junction portion 40A. Since it is located away from the surface and is in direct contact with the infrared absorbing portion 30, the temperature difference between the infrared absorbing portion 30 and each of the hot contact portions 40B and 40B can be reduced as compared with the conventional configuration shown in FIG. And the response speed can be improved. Moreover, since a part of each warm junction part 40B, 40B is formed with the material with high heat conductivity compared with the material of each semiconductor element 41a, 41b, the infrared rays absorption part 30 and each warm junction part 40B, 40B. The temperature difference can be further reduced, and higher sensitivity can be achieved.

(実施形態2)
本実施形態の赤外線センサの基本構成は実施形態1と略同じであって、図2に示すように、結合部50と第1の赤外線吸収層31とが梁部20の一部を兼ねている点が相違するだけである。
(Embodiment 2)
The basic configuration of the infrared sensor of the present embodiment is substantially the same as that of the first embodiment, and the coupling portion 50 and the first infrared absorption layer 31 also serve as a part of the beam portion 20 as shown in FIG. The only difference is the point.

(実施形態3)
本実施形態の赤外線センサの基本構成は実施形態1と略同じであって、図3に示すように、赤外線吸収部30における第1の赤外線吸収層31が結合部50に重なる部位のみに形成されており、各赤外線吸収層31,32よりも熱伝導率の高い材料(例えば、CrNi合金、Alなど)からなる均熱層33が第2の赤外線吸収層32におけるベース基板10側に積層されている点が相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 3)
The basic configuration of the infrared sensor of the present embodiment is substantially the same as that of the first embodiment, and as shown in FIG. 3, the first infrared absorption layer 31 in the infrared absorption section 30 is formed only at the portion overlapping the coupling section 50. A soaking layer 33 made of a material having higher thermal conductivity than the infrared absorption layers 31 and 32 (for example, CrNi alloy, Al, etc.) is laminated on the base substrate 10 side in the second infrared absorption layer 32. Is different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

しかして、本実施形態の赤外線センサでは、赤外線吸収部30が均熱層33を備えているので、赤外線吸収部30の中央部と周部との温度差を低減することができ、実施形態1の赤外線センサに比べて、さらに高感度化を図れる。   Therefore, in the infrared sensor of this embodiment, since the infrared absorption part 30 includes the soaking layer 33, the temperature difference between the central part and the peripheral part of the infrared absorption part 30 can be reduced. Higher sensitivity can be achieved compared to other infrared sensors.

(実施形態4)
本実施形態の赤外線センサの基本構成は実施形態1と略同じであって、図4に示すように、各温接点部40Bの上記一部が、赤外線吸収部30の周部まで広げられている点が相違する。したがって、本実施形態では、各温接点部40Bの上記一部のうち赤外線吸収部30の第1の赤外線吸収層31に積層される部位の平面サイズが実施形態1よりも大きくなっている。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 4)
The basic configuration of the infrared sensor of the present embodiment is substantially the same as that of the first embodiment, and as shown in FIG. 4, the above-mentioned part of each hot junction 40 </ b> B is extended to the periphery of the infrared absorber 30. The point is different. Therefore, in this embodiment, the planar size of the part laminated | stacked on the 1st infrared absorption layer 31 of the infrared absorption part 30 among the said part of each warm junction part 40B is larger than Embodiment 1. FIG. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

しかして、本実施形態の赤外線センサでは、赤外線吸収部30と各温接点部40B,40Bとの温度差をより低減でき、さらに高感度化を図れる。   Therefore, in the infrared sensor according to the present embodiment, the temperature difference between the infrared absorbing unit 30 and each of the hot contact portions 40B and 40B can be further reduced, and higher sensitivity can be achieved.

(実施形態5)
本実施形態の赤外線センサの基本構成は実施形態1と略同じであって、図5に示すように、梁部20の全体的な形状が相違し、梁部20の中間部が両端部に比べてベース基板10の厚み方向において当該ベース基板10の上記一表面から離れて位置しており、実施形態1にて説明した結合部50が存在せず、梁部20の中間部と赤外線吸収部30の中央部とが直接結合されている点や、温接点部40Bの接合部41cの形状などが相違する。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 5)
The basic configuration of the infrared sensor of the present embodiment is substantially the same as that of the first embodiment, and as shown in FIG. 5, the overall shape of the beam portion 20 is different, and the intermediate portion of the beam portion 20 is compared to both end portions. The base substrate 10 is located away from the one surface of the base substrate 10 in the thickness direction, and the coupling portion 50 described in the first embodiment is not present, and the intermediate portion of the beam portion 20 and the infrared absorption portion 30 are provided. And the shape of the joint 41c of the hot junction 40B are different. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

しかして、本実施形態の赤外線センサでは、梁部20の中間部が両端部に比べてベース基板10の厚み方向において当該ベース基板10の上記一表面から離れて位置しているので、各温接点部40B,40Bの温度が赤外線吸収部30の温度により近づき、さらに高感度化を図れる。   Therefore, in the infrared sensor of the present embodiment, the intermediate portion of the beam portion 20 is located farther from the one surface of the base substrate 10 in the thickness direction of the base substrate 10 than both ends, so The temperature of the parts 40B and 40B approaches the temperature of the infrared ray absorbing part 30, and higher sensitivity can be achieved.

ところで、各実施形態にて説明した赤外線センサは、赤外線吸収部30と感温部40とを備えたセンサ部を1つだけ設けた赤外線センサであるが、赤外線吸収部30と感温部40とを備えたセンサ部を2次元アレイ状(マトリクス状)に配列し各センサ部が画素を構成するようにすれば、赤外線画像を取得する赤外線画像センサを構成することもできる。なお、赤外線画像センサを構成する場合には、感温部40を構成するサーモパイルの一端部が信号読み出し用の信号線(図示せず)に接続されるとともに、他端部が給電用のバイアス線に接続されるように構成すればよい。ここにおいて、赤外線吸収部30と感温部40とがベース基板10の厚み方向に離間して配置されているので、赤外線吸収部30のサイズを画素のサイズと同程度まで大きくすることで(赤外線吸収部30の面積が画素サイズの面積に占める割合である開口率として90%以上の値を得ることが可能である)、より一層の高感度化を図れる。   By the way, although the infrared sensor demonstrated in each embodiment is an infrared sensor which provided only one sensor part provided with the infrared absorption part 30 and the temperature sensing part 40, the infrared absorption part 30, the temperature sensing part 40, and If the sensor units provided with are arranged in a two-dimensional array (matrix shape) and each sensor unit constitutes a pixel, an infrared image sensor that acquires an infrared image can also be configured. When configuring an infrared image sensor, one end of a thermopile that constitutes the temperature sensing unit 40 is connected to a signal line for signal readout (not shown), and the other end is a bias line for power supply. What is necessary is just to comprise so that it may be connected to. Here, since the infrared absorption part 30 and the temperature sensitive part 40 are spaced apart in the thickness direction of the base substrate 10, the size of the infrared absorption part 30 is increased to the same size as the pixel size (infrared ray). As a result, it is possible to obtain a value of 90% or more as the aperture ratio, which is the ratio of the area of the absorber 30 to the area of the pixel size), and further increase in sensitivity can be achieved.

なお、上記各実施形態では、梁部20がベース基板10における凹所15の周部に連続一体に形成されているが、梁部20は凹所15の周部の内側に配置されていればよく、必ずしも凹所15の周部に連続一体に形成されていなくてもよい。   In each of the above embodiments, the beam portion 20 is formed continuously and integrally with the peripheral portion of the recess 15 in the base substrate 10. However, if the beam portion 20 is disposed inside the peripheral portion of the recess 15. In addition, it is not necessarily required to be continuously formed integrally with the peripheral portion of the recess 15.

実施形態1を示し、(a)は概略断面図、(b)は(a)とは別の概略断面図である。Embodiment 1 is shown, (a) is a schematic sectional view, and (b) is a schematic sectional view different from (a). 実施形態2を示し、(a)は概略断面図、(b)は(a)とは別の概略断面図である。Embodiment 2 is shown, (a) is a schematic sectional view, (b) is a schematic sectional view different from (a). 実施形態3を示し、(a)は概略断面図、(b)は(a)とは別の概略断面図である。Embodiment 3 is shown, (a) is a schematic sectional view, (b) is a schematic sectional view different from (a). 実施形態4を示し、(a)は概略断面図、(b)は(a)とは別の概略断面図である。Embodiment 4 is shown, (a) is a schematic sectional view, (b) is a schematic sectional view different from (a). 実施形態5を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a fifth embodiment. 従来例を示し、(a)は概略断面図、(b)は(a)とは別の概略断面図である。A prior art example is shown, (a) is a schematic sectional view, (b) is a schematic sectional view different from (a).

符号の説明Explanation of symbols

10 ベース基板
15 凹所
20 梁部
30 赤外線吸収部
40 感温部
40A 冷接点部
40B 温接点部
41 熱電対
41a 半導体エレメント
41b 半導体エレメント
41c 接合部
41d 接合部
50 結合部
DESCRIPTION OF SYMBOLS 10 Base substrate 15 Recess 20 Beam part 30 Infrared absorption part 40 Temperature sensing part 40A Cold junction part 40B Hot junction part 41 Thermocouple 41a Semiconductor element 41b Semiconductor element 41c Joint part 41d Joint part 50 Joint part

Claims (5)

一表面に凹所が形成されたベース基板と、ベース基板の前記一表面側において凹所の周部の内側に配置された梁部と、ベース基板の前記一表面からベース基板の厚み方向に離間して配置され赤外線を吸収して熱に変換する赤外線吸収部と、梁部の中間部と赤外線吸収部の中央部とを機械的に結合する結合部と、ベース基板の前記一表面側において赤外線吸収部の温度変化を検出する感温部とを備え、赤外線吸収部は、ベース基板の前記一表面における凹所の内周形状よりも外形寸法を大きく設定してあり、感温部は、複数の熱電対が直列接続された細長のサーモパイルであって梁部に沿って配置されて冷接点部がベース基板における前記凹所の周部に配置されるとともに、温接点部が梁部の中間部に配置され、温接点部の少なくとも一部が冷接点部よりも前記厚み方向において前記一表面から離れて位置して赤外線吸収部と直接接しており、温接点部の前記一部は、赤外線吸収部の周部まで広げられてなることを特徴とする赤外線センサ。 A base substrate having a recess formed on one surface thereof, a beam portion disposed inside a peripheral portion of the recess on the one surface side of the base substrate, and spaced apart from the one surface of the base substrate in the thickness direction of the base substrate An infrared absorbing portion that absorbs infrared rays and converts the infrared rays into heat, a coupling portion that mechanically couples an intermediate portion of the beam portion and a central portion of the infrared absorbing portion, and infrared rays on the one surface side of the base substrate A temperature sensing part for detecting a temperature change of the absorption part, the infrared absorption part has an outer dimension set larger than the inner peripheral shape of the recess in the one surface of the base substrate, and there are a plurality of temperature sensing parts. A thermopile of thermocouples connected in series is arranged along the beam part, and the cold junction part is arranged around the recess of the base substrate, and the hot junction part is an intermediate part of the beam part. At least part of the hot junction Than the point portion positioned away from said one surface in the thickness direction in contact directly with the infrared absorbing section, said portion of the hot junction portion, and characterized by being extended to the peripheral portion of the infrared absorbing section Infrared sensor. 前記熱電対は、異種導電形の半導体エレメントの対を有し、前記温接点部の前記一部は、各半導体エレメントそれぞれの材料に比べて熱伝導率の高い材料により形成されてなることを特徴とする請求項1記載の赤外線センサ。   The thermocouple includes a pair of semiconductor elements of different conductivity types, and the part of the hot junction portion is formed of a material having a higher thermal conductivity than the material of each semiconductor element. The infrared sensor according to claim 1. 前記赤外線吸収部は、赤外線を吸収する赤外線吸収層と、赤外線吸収層よりも熱伝導率の高い材料からなり赤外線吸収層における前記ベース基板側に積層され前記赤外線吸収部の中央部と周部との温度差を低減する均熱層とを備えることを特徴とする請求項1または請求項2記載の赤外線センサ。   The infrared absorbing part is composed of an infrared absorbing layer that absorbs infrared rays, a material having a higher thermal conductivity than the infrared absorbing layer, and is laminated on the base substrate side in the infrared absorbing layer, and a central part and a peripheral part of the infrared absorbing part. The infrared sensor according to claim 1, further comprising a soaking layer that reduces a temperature difference between the infrared sensor and the infrared sensor. 前記梁部は、前記温接点部が配置された中間部が両端部に比べて前記厚み方向において前記一表面から離れて位置していることを特徴とする請求項1ないし請求項3のいずれかに記載の赤外線センサ。 4. The beam portion according to claim 1, wherein an intermediate portion where the hot junction portion is disposed is located farther from the one surface in the thickness direction than both ends . The infrared sensor described in 1. 前記赤外線吸収部と前記感温部とを備えた複数のセンサ部が前記ベース基板の前記一表面側で2次元アレイ状に配置されてなることを特徴とする請求項1ないし請求項4のいずれかに記載の赤外線センサ The plurality of sensor units including the infrared absorption unit and the temperature sensing unit are arranged in a two-dimensional array on the one surface side of the base substrate. An infrared sensor according to claim 1 .
JP2005312029A 2005-10-26 2005-10-26 Infrared sensor Expired - Fee Related JP5179004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312029A JP5179004B2 (en) 2005-10-26 2005-10-26 Infrared sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312029A JP5179004B2 (en) 2005-10-26 2005-10-26 Infrared sensor

Publications (2)

Publication Number Publication Date
JP2007121047A JP2007121047A (en) 2007-05-17
JP5179004B2 true JP5179004B2 (en) 2013-04-10

Family

ID=38145060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312029A Expired - Fee Related JP5179004B2 (en) 2005-10-26 2005-10-26 Infrared sensor

Country Status (1)

Country Link
JP (1) JP5179004B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947787A (en) * 2020-07-06 2020-11-17 北京北方高业科技有限公司 Infrared detector and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655556B2 (en) * 2010-12-27 2015-01-21 セイコーエプソン株式会社 THERMAL TYPE PHOTODETECTOR, THERMAL TYPE PHOTODETECTOR, ELECTRONIC DEVICE, AND METHOD FOR PRODUCING THERMAL TYPE OPTICAL DETECTOR
JP5691502B2 (en) * 2010-12-27 2015-04-01 セイコーエプソン株式会社 THERMAL TYPE PHOTODETECTOR, THERMAL TYPE PHOTODETECTOR, ELECTRONIC DEVICE, AND THERMAL TYPE OPTICAL DETECTOR
CN102564601A (en) * 2010-12-22 2012-07-11 精工爱普生株式会社 Thermal detector, thermal detection device, electronic instrument, and thermal detector manufacturing method
CN102784747B (en) 2012-07-16 2014-12-10 京东方科技集团股份有限公司 High-temperature solidifying furnace
JP2015135306A (en) * 2014-01-20 2015-07-27 パナソニックIpマネジメント株式会社 Infrared sensor and manufacturing method thereof
WO2017220381A1 (en) 2016-06-21 2017-12-28 Heimann Sensor Gmbh Thermopile infrared individual sensor for measuring temperature or detecting gas

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3040356B2 (en) * 1997-01-27 2000-05-15 三菱電機株式会社 Infrared solid-state imaging device
JP3604130B2 (en) * 2001-12-04 2004-12-22 株式会社アイ・エイチ・アイ・エアロスペース Thermal infrared detecting element, method of manufacturing the same, and thermal infrared detecting element array
JP2003304005A (en) * 2002-04-09 2003-10-24 Nissan Motor Co Ltd Thermal infrared detecting element and light receiving element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111947787A (en) * 2020-07-06 2020-11-17 北京北方高业科技有限公司 Infrared detector and preparation method thereof

Also Published As

Publication number Publication date
JP2007121047A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5179004B2 (en) Infrared sensor
KR101910575B1 (en) Infrared detector and infrared image sensor
EP2894443B1 (en) Infrared thermal sensor with good SNR
EP2697616B1 (en) Shared membrane thermopile sensor array
JP5283825B2 (en) Thermal infrared detector
EP1333504A3 (en) Monolithically-integrated infrared sensor
JP2006300623A (en) Infrared sensor
JP5261102B2 (en) Infrared sensor and infrared sensor module
JP4710691B2 (en) Infrared sensor
JP5728978B2 (en) Thermal photodetector, thermal photodetector, and electronic device
JP2008082791A (en) Infrared sensor
JP2000065639A (en) Infrared sensor
JP2011203226A (en) Infrared sensor module
JP2006105651A (en) Thermopile element and infrared sensor using it
JPH06117919A (en) Infrared sensor
JP2002156283A (en) Thermopile-type infrared sensor
JPH02165025A (en) Thermopile
JP2011027650A (en) Infrared sensor
JP2011027652A (en) Infrared sensor
JPH11258039A (en) Infrared ray detecting element, and manufacture thereof
JPH11258040A (en) Thermopile type infrared ray sensor
JP5081116B2 (en) Infrared sensor and infrared sensor module
JP2006047086A (en) Infrared sensor
JPH09113353A (en) Infrared detection element
JP2003254824A (en) Infrared sensor device, non-contacting temperature measuring instrument, and non-contacting clinical thermometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120702

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

LAPS Cancellation because of no payment of annual fees