JP5171022B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5171022B2
JP5171022B2 JP2006338624A JP2006338624A JP5171022B2 JP 5171022 B2 JP5171022 B2 JP 5171022B2 JP 2006338624 A JP2006338624 A JP 2006338624A JP 2006338624 A JP2006338624 A JP 2006338624A JP 5171022 B2 JP5171022 B2 JP 5171022B2
Authority
JP
Japan
Prior art keywords
compressor
pressure
refrigerant
air conditioner
set value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006338624A
Other languages
Japanese (ja)
Other versions
JP2008151386A (en
Inventor
賢 三浦
武 望月
宏昌 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2006338624A priority Critical patent/JP5171022B2/en
Publication of JP2008151386A publication Critical patent/JP2008151386A/en
Application granted granted Critical
Publication of JP5171022B2 publication Critical patent/JP5171022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

この発明は、圧縮機から吐出される冷媒をガス側渡り配管および液側渡り配管を通して室外ユニットおよび室内ユニットの相互間で循環させる空気調和機に関する。   The present invention relates to an air conditioner that circulates refrigerant discharged from a compressor between an outdoor unit and an indoor unit through a gas side crossover pipe and a liquid side crossover pipe.

従来のR22冷媒に代えて、HFC冷媒たとえばR407C冷媒やR410A冷媒を使用する空気調和機がある(例えば特許文献1)。このようなHFC冷媒を使用する新しい空気調和機に替える場合、部品の再利用や工事費削減の観点から、それまで使用していた空気調和機の既設配管たとえば室外ユニットと室内ユニットとの間のガス側渡り配管および液側渡り配管を、そのまま再利用することが考えられる。
特開2002―162126号公報
There is an air conditioner that uses an HFC refrigerant such as R407C refrigerant or R410A refrigerant instead of the conventional R22 refrigerant (for example, Patent Document 1). When switching to such a new air conditioner that uses HFC refrigerant, from the viewpoint of reuse of parts and reduction of construction costs, the existing piping of the air conditioner used so far, for example, between the outdoor unit and the indoor unit is used. It is conceivable to reuse the gas side crossover piping and the liquid side crossover piping as they are.
Japanese Patent Laid-Open No. 2002-162126

しかしながら、R22冷媒の代替冷媒であるHFC冷媒たとえばR410A冷媒は、同一温度での飽和圧力がR22冷媒やR407C冷媒に比べて約1.5倍と高く、再利用される既設配管の設計圧力(耐圧)以上に圧力が上昇してしまう可能性がある。   However, an HFC refrigerant that is an alternative refrigerant of the R22 refrigerant, for example, the R410A refrigerant, has a saturation pressure at the same temperature that is about 1.5 times higher than that of the R22 refrigerant or the R407C refrigerant. ) There is a possibility that the pressure will rise more than that.

この発明は上記の事情を考慮したもので、その目的は、圧力の高い冷媒を使用しながら、しかも既設配管を再利用しながら、圧縮機能力の上昇範囲をできるだけ拡げて運転効率の向上が図れる空気調和機を提供することである。   The present invention takes the above-mentioned circumstances into consideration, and an object of the present invention is to increase the compression function force as much as possible while using a high-pressure refrigerant and reusing existing piping to improve operating efficiency. It is to provide an air conditioner.

請求項1に係る発明の空気調和機は、圧縮機および室外熱交換器を有する室外ユニット、室内熱交換器を有する室内ユニット、これら室外ユニットと室内ユニットとの間に接続されたガス側渡り配管および液側渡り配管を備え、上記圧縮機から吐出される冷媒を上記ガス側渡り配管および上記液側渡り配管を通して上記各ユニット間で循環させるものであって、上記圧縮機から吐出される冷媒の圧力を検知する圧力センサと、この圧力センサの検知圧力が上記各渡り配管の設計圧力に対応する設定値を超過しないよう、上記圧縮機の運転を制御する制御手段と、上記圧縮機の吐出側から上記室外ユニットの冷媒出口までの冷媒の圧力損失を推定する推定手段と、この推定手段で推定される圧力損失の推定値を基に上記設定値を上方に移行する設定値変更手段と、を備えている。そして、上記圧縮機は、空調負荷に応じて回転数が増減される。上記設定値変更手段は、空調負荷に基づく上記圧縮機の単位時間当たりの回転数変化が所定値以上のとき、上記設定値の上方への移行を段階的に行う。 An air conditioner according to a first aspect of the present invention includes an outdoor unit having a compressor and an outdoor heat exchanger, an indoor unit having an indoor heat exchanger, and a gas side crossover pipe connected between the outdoor unit and the indoor unit. The refrigerant discharged from the compressor is circulated between the units through the gas side crossover pipe and the liquid side crossover pipe, and the refrigerant discharged from the compressor A pressure sensor for detecting pressure, control means for controlling the operation of the compressor so that the detected pressure of the pressure sensor does not exceed a set value corresponding to the design pressure of each of the crossover pipes, and a discharge side of the compressor The setting value is shifted upward based on the estimation means for estimating the pressure loss of the refrigerant from the refrigerant outlet to the refrigerant outlet of the outdoor unit, and the estimated value of the pressure loss estimated by the estimation means It is provided with a value change means. And the rotation speed of the said compressor is increased / decreased according to an air-conditioning load. The set value changing means shifts the set value upward in a stepwise manner when the rotation speed change per unit time of the compressor based on the air conditioning load is equal to or greater than a predetermined value.

この発明の空気調和機によれば、圧力の高い冷媒を使用しながら、しかも既設配管を再利用しながら、圧縮機能力の上昇範囲をできるだけ拡げることができる。これにより、運転効率の向上が図れる。   According to the air conditioner of the present invention, the range of increase in the compression function force can be expanded as much as possible while using a high-pressure refrigerant and reusing existing piping. Thereby, the driving efficiency can be improved.

以下、この発明の一実施形態について図面を参照して説明する。図1に冷凍サイクルを示している。
圧縮機1から高圧側配管2にガス冷媒が吐出される。高圧側配管2には、冷媒の逆戻りを防ぐための逆止弁3が設けられている。高圧側配管2に吐出されたガス冷媒は四方弁4およびガス側配管5を通って室外熱交換器6に流れる。室外熱交換器6に流れたガス冷媒は、室外ファン21から供給される室外空気との熱交換により、凝縮して液冷媒となる。この液冷媒は、液側配管7、室外膨張弁8、リキッドタンク9、および配管接続用の液側パックドバルブ10を通り、その液側パックドバルブ10に一端が接続されている液側渡り配管11に流れる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a refrigeration cycle.
A gas refrigerant is discharged from the compressor 1 to the high-pressure side pipe 2. The high pressure side pipe 2 is provided with a check valve 3 for preventing the refrigerant from returning backward. The gas refrigerant discharged to the high pressure side pipe 2 flows to the outdoor heat exchanger 6 through the four-way valve 4 and the gas side pipe 5. The gas refrigerant that has flowed to the outdoor heat exchanger 6 is condensed into liquid refrigerant by heat exchange with outdoor air supplied from the outdoor fan 21. The liquid refrigerant passes through the liquid side pipe 7, the outdoor expansion valve 8, the liquid tank 9, and the liquid side packed valve 10 for pipe connection, and the liquid side crossover pipe 11 having one end connected to the liquid side packed valve 10. Flowing into.

液側渡り配管11に流れた液冷媒は、その液側渡り配管11の他端が接続されている液側パックドバルブ12および室内膨張弁13を通り、室内熱交換器14に流れる。室内熱交換器14に流れた液冷媒は、室内ファン22から供給される室内空気との熱交換により、蒸発してガス冷媒となる。このガス冷媒は、ガス側パックドバルブ15を通り、そのガス側パックドバルブ15に一端が接続されているガス側渡り配管16に流れる。ガス側渡り配管16に流れたガス冷媒は、そのガス側渡り配管16の他端が接続されているガス側パックドバルブ17、ガス側配管18、上記四方弁4、低圧側配管19、およびアキュームレータ20を通り、圧縮機1に吸込まれる。   The liquid refrigerant that has flowed to the liquid side crossover pipe 11 flows to the indoor heat exchanger 14 through the liquid side packed valve 12 and the indoor expansion valve 13 to which the other end of the liquid side crossover pipe 11 is connected. The liquid refrigerant that has flowed to the indoor heat exchanger 14 evaporates into a gas refrigerant by heat exchange with the indoor air supplied from the indoor fan 22. The gas refrigerant flows through the gas side packed valve 15 and flows into the gas side crossover pipe 16 having one end connected to the gas side packed valve 15. The gas refrigerant that has flowed into the gas side crossover pipe 16 is the gas side packed valve 17, the gas side pipe 18, the four-way valve 4, the low pressure side pipe 19, and the accumulator 20 to which the other end of the gas side crossover pipe 16 is connected. And is sucked into the compressor 1.

この冷媒の流れは冷房時のもので、暖房時は四方弁4が切換わることにより、冷媒の流れが反対となって、室内熱交換器14が凝縮器、室外熱交換器6が蒸発器として機能する。なお、この冷凍サイクルに封入される冷媒として、従来のR22冷媒に代わり、同一温度での飽和圧力が高いHFC冷媒たとえばR410A冷媒が使用されている。液側渡り配管11およびガス側渡り配管16は、従来のR22冷媒が使用されているときの既設配管であり、再利用されている。   This refrigerant flow is at the time of cooling. When the four-way valve 4 is switched at the time of heating, the refrigerant flow is reversed, so that the indoor heat exchanger 14 is a condenser and the outdoor heat exchanger 6 is an evaporator. Function. As a refrigerant sealed in this refrigeration cycle, an HFC refrigerant having a high saturation pressure at the same temperature, for example, an R410A refrigerant is used instead of the conventional R22 refrigerant. The liquid side crossover piping 11 and the gas side crossover piping 16 are existing piping when a conventional R22 refrigerant is used, and are reused.

上記圧縮機1の吐出側から室外熱交換器6を含む液側パックドバルブ10までの配管構成、ガス側パックドバルブ17から圧縮機1の吸込み側までの配管構成、および室外ファン21などにより、室外ユニットAが構成されている。また、上記液側パックドバルブ12から室内熱交換器14を含むガス側パックドバルブ15までの配管構成、および室内ファン22などにより、室内ユニットBが構成されている。   The piping configuration from the discharge side of the compressor 1 to the liquid side packed valve 10 including the outdoor heat exchanger 6, the piping configuration from the gas side packed valve 17 to the suction side of the compressor 1, the outdoor fan 21, etc. Unit A is configured. An indoor unit B is configured by the piping configuration from the liquid side packed valve 12 to the gas side packed valve 15 including the indoor heat exchanger 14, the indoor fan 22, and the like.

室外ユニットAにおいて、高圧側配管2に、高圧スイッチSW1、温度センサTD、および圧力センサPDが設けられている。高圧スイッチSW1は、圧縮機1から吐出されるガス冷媒の圧力がR410冷媒に対応した室外ユニットAの設計圧力よりも上昇した場合に圧縮機1の運転を停止させるためのもので、そのガス冷媒の圧力が上昇して所定値3.73Mpa以上になると作動する。温度センサTDは、圧縮機1から吐出されるガス冷媒の温度を検知する。圧力センサPDは、圧縮機1から吐出されるガス冷媒の圧力を検知する。低圧側配管19には、温度センサTSおよび圧力センサPSが設けられている。温度センサTSは、圧縮機1に吸込まれるガス冷媒の温度を検知する。圧力センサPSは、圧縮機1に吸込まれるガス冷媒の圧力を検知する。   In the outdoor unit A, the high pressure side pipe 2 is provided with a high pressure switch SW1, a temperature sensor TD, and a pressure sensor PD. The high pressure switch SW1 is for stopping the operation of the compressor 1 when the pressure of the gas refrigerant discharged from the compressor 1 rises above the design pressure of the outdoor unit A corresponding to the R410 refrigerant. When the pressure increases to a predetermined value of 3.73 Mpa or more, it operates. The temperature sensor TD detects the temperature of the gas refrigerant discharged from the compressor 1. The pressure sensor PD detects the pressure of the gas refrigerant discharged from the compressor 1. The low pressure side pipe 19 is provided with a temperature sensor TS and a pressure sensor PS. The temperature sensor TS detects the temperature of the gas refrigerant sucked into the compressor 1. The pressure sensor PS detects the pressure of the gas refrigerant sucked into the compressor 1.

また、室外ユニットAの液側管7において、室外膨張弁8とリキッドタンク9との間に温度センサTLが設けられ、液側パックドバルブ10の近傍(液側渡り配管11の接続部手前)に高圧スイッチSW2が設けられている。温度センサTLは、液冷媒の温度を検知する。高圧スイッチSW2は、室外ユニットAから液側渡り配管11に流出する液冷媒の圧力が液側渡り配管11の設計圧力よりも上昇した場合に圧縮機1の運転を停止させるためのもので、その液冷媒の圧力が上昇して所定値3.3Mpa以上になると作動する。ガス側管18には、ガス側パックドバルブ17の近傍(ガス側渡り配管16の接続部手前)に高圧スイッチSW3が設けられている。高圧スイッチSW3は、室外ユニットAからガス側渡り配管16に流出するガス冷媒(暖房時)の圧力がガス側渡り配管16の設計圧力よりも上昇した場合に圧縮機1の運転を停止させるためのもので、そのガス冷媒の圧力が上昇して所定値3.3Mpa以上になると作動する。さらに、室外熱交換器6に熱交換器温度センサTEが設けられているとともに、室外ファン21の吸込み風路に室外温度検知用の室外温度センサTOが設けられている。   Further, in the liquid side pipe 7 of the outdoor unit A, a temperature sensor TL is provided between the outdoor expansion valve 8 and the liquid tank 9, and in the vicinity of the liquid side packed valve 10 (before the connection portion of the liquid side transition pipe 11). A high voltage switch SW2 is provided. The temperature sensor TL detects the temperature of the liquid refrigerant. The high pressure switch SW2 is for stopping the operation of the compressor 1 when the pressure of the liquid refrigerant flowing out from the outdoor unit A to the liquid side crossover pipe 11 is higher than the design pressure of the liquid side crossover pipe 11. It operates when the pressure of the liquid refrigerant rises to a predetermined value of 3.3 MPa or more. The gas side pipe 18 is provided with a high pressure switch SW3 in the vicinity of the gas side packed valve 17 (before the connecting portion of the gas side crossover pipe 16). The high pressure switch SW3 is used to stop the operation of the compressor 1 when the pressure of the gas refrigerant (at the time of heating) flowing out from the outdoor unit A to the gas side crossover pipe 16 is higher than the design pressure of the gas side crossover pipe 16. However, it operates when the pressure of the gas refrigerant rises to a predetermined value of 3.3 Mpa or more. Further, the outdoor heat exchanger 6 is provided with a heat exchanger temperature sensor TE, and an outdoor temperature sensor TO for detecting the outdoor temperature is provided in the suction air passage of the outdoor fan 21.

室内ユニットBでは、室内熱交換器14に熱交換器温度センサTCが設けられ、室内ファン22の吸込み風路に室内温度検知用の室外温度センサTIが設けられている。   In the indoor unit B, the heat exchanger temperature sensor TC is provided in the indoor heat exchanger 14, and the outdoor temperature sensor TI for detecting the indoor temperature is provided in the suction air passage of the indoor fan 22.

そして、これら室外ユニットAおよび室内ユニットBを制御するための制御部30が設けられている。制御部30は、主要な機能として次の(1)〜(4)を有している。
(1)圧縮機1の回転数N(rps)(=運転周波数;圧縮機駆動用インバータの出力周波数)を空調負荷に応じて増減する制御手段。
(2)圧力センサPDの検知圧力が各渡り配管11,16の設計圧力(耐圧)に対応する設定値Pdsを超過しないよう、圧縮機1の回転数Nを制御する制御手段。
And the control part 30 for controlling the outdoor unit A and the indoor unit B is provided. The control unit 30 has the following (1) to (4) as main functions.
(1) Control means for increasing or decreasing the rotational speed N (rps) of the compressor 1 (= operating frequency; output frequency of the compressor driving inverter) according to the air conditioning load.
(2) Control means for controlling the rotational speed N of the compressor 1 so that the detected pressure of the pressure sensor PD does not exceed the set value Pds corresponding to the design pressure (pressure resistance) of each of the connecting pipes 11 and 16.

(3)圧縮機1の吐出側から室外ユニットAの冷媒出口までの冷媒の圧力損失ΔP0を推定する推定手段。具体的には、圧縮機1の吐出側の冷媒温度Td(温度センサTDの検知温度)、圧縮機1の吸込側の冷媒温度(飽和蒸発温度;圧力センサPSの検知圧力に対応する温度)Tu、液側渡り配管11における冷媒温度(温度センサTLの検知温度)Tl、圧縮機1の回転数Nなどから、圧力損失の推定値ΔP0(kgf/cm2)を算出する。 (3) Estimating means for estimating the pressure loss ΔP0 of the refrigerant from the discharge side of the compressor 1 to the refrigerant outlet of the outdoor unit A. Specifically, the refrigerant temperature Td on the discharge side of the compressor 1 (detected temperature of the temperature sensor TD), the refrigerant temperature on the suction side of the compressor 1 (saturated evaporation temperature; temperature corresponding to the detected pressure of the pressure sensor PS) Tu. Then, an estimated value ΔP0 (kgf / cm 2 ) of the pressure loss is calculated from the refrigerant temperature (detected temperature of the temperature sensor TL) Tl in the liquid side crossover pipe 11, the rotation speed N of the compressor 1, and the like.

(4)上記推定手段で推定される圧力損失ΔP0を基に、上記設定値Pdsを上方に移行(シフトアップ)する設定値変更手段。なお、設定値変更の仕方として、空調負荷に基づく圧縮機1の単位時間当たりの回転数変化ΔN(=N−N)が所定値ΔNx未満の場合に実行する第1モードと、単位時間当たりの回転数変化ΔNが所定値ΔNx以上と大きい場合に実行する第2モードとがある。第1モードでは、圧力損失ΔP0に制限値ΔP1を設け、その制限値ΔP1として、ΔP0が4.5(kgf/cm2)以上の場合にΔP1=4.5(kgf/cm2)を選定し、ΔP0が0.0(kgf/cm2)以下の場合にΔP1=0.0(kgf/cm2)を選定し、ΔP0が0.0(kgf/cm2)超かつ4.5(kgf/cm2)未満の場合にΔP1=ΔP0を選定する。第2モードでは、圧力損失ΔP0に制限値ΔP1を設け、その制限値ΔP1を圧力損失ΔP0へと所定量たとえば毎秒0.03(kgf/cm2)ずつ段階的に近づける。 (4) Setting value changing means for shifting (shifting up) the setting value Pds upward based on the pressure loss ΔP0 estimated by the estimating means. As a method of changing the set value, the first mode executed when the rotation speed change ΔN (= N 1 −N 0 ) of the compressor 1 based on the air conditioning load is less than a predetermined value ΔNx, and unit time There is a second mode that is executed when the per-rotational speed change ΔN is as large as a predetermined value ΔNx or more. In the first mode, a limit value ΔP1 is provided for the pressure loss ΔP0, and ΔP1 = 4.5 (kgf / cm 2 ) is selected as the limit value ΔP1 when ΔP0 is 4.5 (kgf / cm 2 ) or more. When ΔP0 is 0.0 (kgf / cm 2 ) or less, ΔP1 = 0.0 (kgf / cm 2 ) is selected, and ΔP0 is more than 0.0 (kgf / cm 2 ) and 4.5 (kgf / cm If it is less than cm 2 ), ΔP1 = ΔP0 is selected. In the second mode, a limit value ΔP1 is provided for the pressure loss ΔP0, and the limit value ΔP1 is gradually approached to the pressure loss ΔP0 by a predetermined amount, for example, 0.03 (kgf / cm 2 ) per second.

つぎに、作用を説明する。
まず、圧力損失の推定とそれに関わる制御について、図2のフローチャートを参照しながら説明する。
冷房時(ステップS1のYES)、圧縮機1の吐出側から室外ユニットAの冷媒出口(液側パックドバルブ10)までの冷媒の圧力損失の推定値ΔP0が、圧縮機1の吐出側の冷媒温度Td(温度センサTDの検知温度)、圧縮機1の吸込側の冷媒温度(飽和蒸発温度;圧力センサPSの検知圧力に対応する温度)Tu、液側渡り配管11における冷媒温度(温度センサTLの検知温度)Tl、圧縮機1の回転数Nなどを用いて、下式により算出される(ステップS2)。K,K,K,K,Kは、それぞれ定数である。
ΔP0=−K−K×Td+K×Tu+K×Tl+K×N
続いて、空調負荷に基づく圧縮機1の単位時間当たりの回転数変化ΔN(=N−N)が所定値ΔNx未満であるか否かが判定される(ステップS3)。
回転数変化ΔNが所定値ΔNx未満であれば(ステップS3のYES)、圧力損失ΔP0の制限値ΔP1が用意され、その制限値ΔP1として、ΔP0が4.5(kgf/cm2)以上の場合にΔP1=4.5(kgf/cm2)が選定され、ΔP0が0.0(kgf/cm2)以下の場合にΔP1=0.0(kgf/cm2)が選定され、ΔP0が0.0(kgf/cm2)超かつ4.5(kgf/cm2)未満の場合にΔP1=ΔP0が選定される(ステップS4)。
Next, the operation will be described.
First, estimation of pressure loss and control related thereto will be described with reference to the flowchart of FIG.
During cooling (YES in step S1), an estimated value ΔP0 of refrigerant pressure loss from the discharge side of the compressor 1 to the refrigerant outlet (liquid side packed valve 10) of the outdoor unit A is the refrigerant temperature on the discharge side of the compressor 1. Td (temperature detected by the temperature sensor TD), refrigerant temperature on the suction side of the compressor 1 (saturated evaporation temperature; temperature corresponding to the pressure detected by the pressure sensor PS) Tu, refrigerant temperature in the liquid side crossover pipe 11 (of the temperature sensor TL) It is calculated by the following equation using the detected temperature (Tl), the rotational speed N of the compressor 1, and the like (step S2). K 1 , K 2 , K 3 , K 4 , and K 5 are constants.
ΔP0 = −K 1 −K 2 × Td + K 3 × Tu + K 4 × Tl + K 5 × N
Subsequently, it is determined whether or not the rotation speed change ΔN (= N 1 −N 0 ) per unit time of the compressor 1 based on the air conditioning load is less than a predetermined value ΔNx (step S3).
If the rotational speed change ΔN is less than the predetermined value ΔNx (YES in step S3), a limit value ΔP1 of the pressure loss ΔP0 is prepared, and ΔP0 is 4.5 (kgf / cm 2 ) or more as the limit value ΔP1. to ΔP1 = 4.5 (kgf / cm 2 ) is selected, .DELTA.P0 is 0.0 (kgf / cm 2) or less when the ΔP1 = 0.0 (kgf / cm 2 ) is selected, .DELTA.P0 is 0. ΔP1 = ΔP0 is selected when it is greater than 0 (kgf / cm 2 ) and less than 4.5 (kgf / cm 2 ) (step S4).

制限値ΔP1が選定されると、その制限値ΔP1が圧力スイッチSW2のこれまでの作動回数nAに基づく下式により補正されて、新たな制限値ΔP2が求められる(ステップS5)。なお、作動回数nAは、4回未満ではn回、4回以上で4回が選定され、空気調和機の停止もしくは冷房運転・暖房運転の切換えによりリセットされる。
ΔP2=ΔP1−0.5×nA
そして、新たな制限値ΔP2だけ、圧力センサPDの検知圧力Pdに対する設定値Pdsがシフトアップされる(ステップS6)。
Pds=Pds+ΔP2
このシフトアップにより、液冷媒の圧力が液側渡り配管11の耐圧より十分に低い状態のまま圧縮機1の回転数Nが不要に低減されるといった不具合がなくなって、圧縮機能力の上昇範囲が拡がり、運転効率の向上が図れる。すなわち、圧力の高いR410A冷媒を使用しながら、しかも従来のR22冷媒が使用されているときの既設配管(液側渡り配管11およびガス側渡り配管16)を再利用しながら、圧縮機能力の上昇範囲をできるだけ拡げて運転効率の向上が図れる。
When the limit value ΔP1 is selected, the limit value ΔP1 is corrected by the following equation based on the number of times nA of the pressure switch SW2 has been operated so far, and a new limit value ΔP2 is obtained (step S5). The number of actuations nA is selected to be n times, 4 times or more when it is less than 4, and is reset by stopping the air conditioner or switching between cooling operation and heating operation.
ΔP2 = ΔP1-0.5 × nA
Then, the set value Pds with respect to the detected pressure Pd of the pressure sensor PD is shifted up by the new limit value ΔP2 (step S6).
Pds = Pds + ΔP2
This shift up eliminates the problem that the rotational speed N of the compressor 1 is unnecessarily reduced while the pressure of the liquid refrigerant is sufficiently lower than the pressure resistance of the liquid side crossover pipe 11, and the range of increase in the compression function force is increased. It can be expanded and driving efficiency can be improved. That is, while using the R410A refrigerant having a high pressure and reusing the existing pipes (the liquid side crossover pipe 11 and the gas side crossover pipe 16) when the conventional R22 refrigerant is used, the compression function force is increased. The range can be expanded as much as possible to improve operating efficiency.

ステップS3の判定において、空調負荷の急激な変動が生じて、圧縮機1の回転数変化が所定値ΔNx以上と大きい場合には(ステップS3のNO)、圧力損失ΔP0に制限値ΔP1が設けられ、その制限値ΔP1が圧力損失ΔP0へと毎秒0.03(kgf/cm2)ずつ段階的に近づけられる(ステップS7)。 In the determination in step S3, when the air-conditioning load suddenly fluctuates and the change in the rotation speed of the compressor 1 is as large as a predetermined value ΔNx or more (NO in step S3), a limit value ΔP1 is provided for the pressure loss ΔP0. The limit value ΔP1 is gradually approximated to the pressure loss ΔP0 by 0.03 (kgf / cm 2 ) per second (step S7).

この段階的に増加する制限値ΔP1が補正されて新たな制限値ΔP2が逐次に求められ(ステップS5)、その新たな制限値ΔP2だけ、圧力センサPDの検知圧力Pdに対する設定値Pdsが逐次にシフトアップされる(ステップS6)。
Pds=Pds+ΔP2
空調負荷の急激な変動によって圧縮機1に大きな回転数変化が生じた場合には、実際の圧力損失と推定圧力損失ΔP0とに偏差が生じるため、その推定圧力損失ΔP0に対応する分だけ設定値Pdsが一度にシフトアップされると、その設定値Pdsに基づく圧縮機1の回転数制御が機能しないまま、圧縮機1から吐出されるガス冷媒の圧力が異常上昇して高圧スイッチSW1が作動してしまう。高圧スイッチSW1が作動すると、圧縮機1が停止してしまう。
The limit value ΔP1 that increases stepwise is corrected, and a new limit value ΔP2 is sequentially obtained (step S5), and the set value Pds for the detected pressure Pd of the pressure sensor PD is sequentially increased by the new limit value ΔP2. Shifting up is performed (step S6).
Pds = Pds + ΔP2
When a large rotational speed change occurs in the compressor 1 due to an abrupt change in the air conditioning load, a deviation occurs between the actual pressure loss and the estimated pressure loss ΔP0. Therefore, a set value corresponding to the estimated pressure loss ΔP0 is set. When Pds is shifted up at once, the pressure of the gas refrigerant discharged from the compressor 1 is abnormally increased and the high-pressure switch SW1 is activated without controlling the rotation speed of the compressor 1 based on the set value Pds. End up. When the high pressure switch SW1 is activated, the compressor 1 is stopped.

しかしながら、上記のように、設定値Pdsは、逐次に、段階的に、シフトアップされる。この段階的なシフトアップにより、設定値Pdsに基づく圧縮機1の回転数制御が逐次に繰り返されるようになり、圧縮機1から吐出されるガス冷媒の圧力の不要な異常上昇が防止されて、高圧スイッチSW1の作動が回避される。したがって、圧縮機1の不要な停止を防ぎながら、液冷媒の圧力が液側渡り配管11の耐圧より十分に低い状態のまま圧縮機1の回転数Nが不要に低減されるといった不具合を解消できて、運転効率の向上が図れる。さらに、高圧スイッチSW2を設けたことにより液側渡り配管11の設計圧力を超えると圧縮機1が停止されるので、安全に設定値Psdをシフトアップすることができる。   However, as described above, the set value Pds is shifted up step by step sequentially. By this step-up shift, the rotation speed control of the compressor 1 based on the set value Pds is sequentially repeated, and an unnecessary abnormal increase in the pressure of the gas refrigerant discharged from the compressor 1 is prevented. The operation of the high-pressure switch SW1 is avoided. Therefore, while preventing the compressor 1 from being stopped unnecessarily, it is possible to eliminate the problem that the rotational speed N of the compressor 1 is unnecessarily reduced while the pressure of the liquid refrigerant is sufficiently lower than the pressure resistance of the liquid side crossover pipe 11. Thus, the operation efficiency can be improved. Furthermore, since the compressor 1 is stopped when the design pressure of the liquid side crossover piping 11 is exceeded by providing the high pressure switch SW2, the set value Psd can be safely shifted up.

一方、暖房時(除霜運転や冷媒回収運転を含む)は(ステップS1のNO)、圧力損失ΔP0の制限値ΔP1として“1.0”が選定され(ステップS8)、その制限値ΔP1が室外ユニットAの冷媒出口側に位置する圧力スイッチSW3のこれまでの作動回数nBに基づく下式により補正されて、新たな制限値ΔP2が求められる(ステップS9)。なお、作動回数nBは、6回未満ではn回、6回以上で6回が選定され、空気調和機の停止もしくは冷房運転・暖房運転の切換えによりリセットされる。
ΔP2=ΔP1−0.5×nB
そして、新たな制限値ΔP2だけ、圧力センサPDの検知圧力Pdに対する設定値Pdsがシフトアップされる(ステップS6)。
Pds=Pds+ΔP2
このシフトアップにより、液冷媒の圧力が液側渡り配管11の耐圧より十分に低い状態のまま圧縮機1の回転数Nが不要に低減されるといった不具合がなくなって、圧縮機能力の上昇範囲が拡がり、運転効率の向上が図れる。さらに、高圧スイッチSW3を設けたことによりガス側渡り配管16の設計圧力を超えると圧縮機1が停止されるので、安全に設定値Psdをシフトアップすることができる。
On the other hand, during heating (including defrosting operation and refrigerant recovery operation) (NO in step S1), “1.0” is selected as the limit value ΔP1 of the pressure loss ΔP0 (step S8), and the limit value ΔP1 is the outdoor value. A new limit value ΔP2 is obtained by correcting the pressure switch SW3 located on the refrigerant outlet side of the unit A according to the following equation based on the number of times of operation nB (step S9). The number of actuations nB is selected to be n times when it is less than 6 or 6 times when it is 6 or more, and is reset by stopping the air conditioner or switching between cooling operation and heating operation.
ΔP2 = ΔP1-0.5 × nB
Then, the set value Pds with respect to the detected pressure Pd of the pressure sensor PD is shifted up by the new limit value ΔP2 (step S6).
Pds = Pds + ΔP2
This shift up eliminates the problem that the rotational speed N of the compressor 1 is unnecessarily reduced while the pressure of the liquid refrigerant is sufficiently lower than the pressure resistance of the liquid side crossover pipe 11, and the range of increase in the compression function force is increased. It can be expanded and driving efficiency can be improved. Furthermore, since the compressor 1 is stopped when the design pressure of the gas side crossover piping 16 is exceeded by providing the high pressure switch SW3, the set value Psd can be safely shifted up.

なお、圧力損失推定式の定数K,K,K,K,Kとして“0.4”“0.035”“0.1”“0.01”“0.035”が選定された場合の推定値ΔP0と、実際に測定される圧力損失との関係を図3に示している。一点鎖線は推定値である。 Note that “0.4”, “0.035”, “0.1”, “0.01”, and “0.035” are selected as the constants K 1 , K 2 , K 3 , K 4 , and K 5 of the pressure loss estimation formula. FIG. 3 shows the relationship between the estimated value ΔP0 in this case and the actually measured pressure loss. A one-dot chain line is an estimated value.

なお、上記実施形態では、1台の圧縮機1を有する冷凍サイクルを例に説明したが、図4に示すように、2台の圧縮機1a,1bを有する冷凍サイクルの場合にも、同様に実施可能である。2台の圧縮機1a,1bの採用に伴い、高圧側配管2a,2b、逆止弁3a,3b、高圧スイッチSW1a,SW1b、温度センサTDa,TDbが設けられている。この場合、圧力損失推定式の検知温度Tdとして、圧縮機1aまたは圧縮機1bのどちらか1台が運転している場合は、運転中の圧縮機の温度センサTDの検知温度Tdを使用し、圧縮機1a,1bの両方が運転している場合は、温度センサTDa,TDbの検知温度Tda,Tdbのどちらか高い方の値が使用される。   In the above embodiment, the refrigeration cycle having one compressor 1 has been described as an example. However, as shown in FIG. 4, the same applies to a refrigeration cycle having two compressors 1a and 1b. It can be implemented. With the adoption of the two compressors 1a and 1b, high-pressure side pipes 2a and 2b, check valves 3a and 3b, high-pressure switches SW1a and SW1b, and temperature sensors TDa and TDb are provided. In this case, when one of the compressor 1a or the compressor 1b is operating as the detected temperature Td of the pressure loss estimation formula, the detected temperature Td of the temperature sensor TD of the operating compressor is used, When both the compressors 1a and 1b are operating, the higher value of the detected temperatures Tda and Tdb of the temperature sensors TDa and TDb is used.

圧力損失推定式の圧縮機回転数Nとして、圧縮機1aまたは圧縮機1bのどちらか1台が運転している場合は、運転中の圧縮機の回転数を使用し、圧縮機1a,1bの両方が運転している場合は、各圧縮機の回転数を合計した値が使用される。   When either one of the compressor 1a or the compressor 1b is operating as the compressor rotational speed N of the pressure loss estimation formula, the rotational speed of the operating compressor is used, and the compressor 1a, 1b When both are operating, the total number of rotations of each compressor is used.

高圧スイッチSW1aが作動した場合は圧縮機1aが停止し、高圧スイッチSW1bが作動した場合は圧縮機1bが停止し、高圧スイッチSW2,SW3のどちらか一方が作動すると圧縮機1a,1bの両方が停止するようになっている。   When the high pressure switch SW1a is operated, the compressor 1a is stopped. When the high pressure switch SW1b is operated, the compressor 1b is stopped. When one of the high pressure switches SW2 and SW3 is operated, both the compressors 1a and 1b are turned on. It comes to stop.

これにより、2台の圧縮機1a,1bを有する冷凍サイクルの場合にも、渡り配管11,16の設計圧力より十分に低い状態のまま圧縮機1a,1bの回転数Nが不要に低減されるといった不具合がなくなって、圧縮機能力の上昇範囲が拡がり、運転効率の向上が図れる。さらに、高圧スイッチSW2,SW3を設けたことにより渡り配管11,16の設計圧力を超えると圧縮機1a,1bの両方が停止されるので、安全に設定値Psdをシフトアップすることができる。   Thereby, also in the case of a refrigeration cycle having two compressors 1a and 1b, the rotational speed N of the compressors 1a and 1b is unnecessarily reduced while being sufficiently lower than the design pressure of the transition pipes 11 and 16. Thus, the range of increase in the compression function force is expanded, and the driving efficiency can be improved. Furthermore, since both the compressors 1a and 1b are stopped when the design pressure of the transition pipes 11 and 16 is exceeded by providing the high pressure switches SW2 and SW3, the set value Psd can be safely shifted up.

その他、この発明は上記実施形態に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。   In addition, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention.

一実施形態の冷凍サイクルの構成を示す図。The figure which shows the structure of the refrigerating cycle of one Embodiment. 一実施形態の圧力損失の推定とそれに関わる制御を説明するためのフローチャート。The flowchart for demonstrating the estimation of the pressure loss of one Embodiment, and the control in connection with it. 一実施形態の推定値と実際値との関係を示す図。The figure which shows the relationship between the estimated value of one Embodiment, and an actual value. 一実施形態の冷凍サイクルの変形例の構成を示す図。The figure which shows the structure of the modification of the refrigerating cycle of one Embodiment.

符号の説明Explanation of symbols

A…室外ユニット、B…室内ユニット、1…圧縮機、2…高圧側配管、4…四方弁、6…室外熱交換器、7…液側配管、8…室外膨張弁、9…リキッドタンク、10…液側パックドバルブ、11…液側渡り配管、12…液側パックドバルブ、13…室内膨張弁、14…室内熱交換器、15…ガス側パックドバルブ、16…ガス側渡り配管、17…ガス側パックドバルブ、18…ガス側配管、19…低圧側配管、20…アキュームレータ、SW1,SW2,SW3…高圧スイッチ、TD,TL,TS…温度センサ、PD,PS…圧力センサ、TE,TC…熱交換器温度センサ、TO…室外温度センサ、TI…室内温度センサ、30…制御部   A ... outdoor unit, B ... indoor unit, 1 ... compressor, 2 ... high pressure side piping, 4 ... four-way valve, 6 ... outdoor heat exchanger, 7 ... liquid side piping, 8 ... outdoor expansion valve, 9 ... liquid tank, DESCRIPTION OF SYMBOLS 10 ... Liquid side packed valve, 11 ... Liquid side crossover piping, 12 ... Liquid side packed valve, 13 ... Indoor expansion valve, 14 ... Indoor heat exchanger, 15 ... Gas side packed valve, 16 ... Gas side crossover piping, 17 ... Gas side packed valve, 18 ... gas side piping, 19 ... low pressure side piping, 20 ... accumulator, SW1, SW2, SW3 ... high pressure switch, TD, TL, TS ... temperature sensor, PD, PS ... pressure sensor, TE, TC ... Heat exchanger temperature sensor, TO ... outdoor temperature sensor, TI ... indoor temperature sensor, 30 ... control unit

Claims (3)

圧縮機および室外熱交換器を有する室外ユニット、室内熱交換器を有する室内ユニット、これら室外ユニットと室内ユニットとの間に接続されたガス側渡り配管および液側渡り配管を備え、前記圧縮機から吐出される冷媒を前記ガス側渡り配管および前記液側渡り配管を通して前記各ユニット間で循環させる空気調和機において、
前記圧縮機から吐出される冷媒の圧力を検知する圧力センサと、
前記圧力センサの検知圧力が前記各渡り配管の設計圧力に対応する設定値を超過しないよう、前記圧縮機の運転を制御する制御手段と、
前記圧縮機の吐出側から前記室外ユニットの冷媒出口までの冷媒の圧力損失を推定する推定手段と、
前記推定手段で推定される圧力損失の推定値を基に前記設定値を上方に移行する設定値変更手段と、
を備え
前記圧縮機は、空調負荷に応じて回転数が増減され、
前記設定値変更手段は、空調負荷に基づく前記圧縮機の単位時間当たりの回転数変化が所定値以上のとき、前記設定値の上方への移行を段階的に行う、
ことを特徴とする空気調和機。
An outdoor unit having a compressor and an outdoor heat exchanger, an indoor unit having an indoor heat exchanger, a gas side crossover pipe and a liquid side crossover pipe connected between the outdoor unit and the indoor unit, from the compressor In the air conditioner for circulating the discharged refrigerant between the units through the gas side crossover pipe and the liquid side crossover pipe,
A pressure sensor for detecting the pressure of the refrigerant discharged from the compressor;
Control means for controlling the operation of the compressor so that the detected pressure of the pressure sensor does not exceed a set value corresponding to the design pressure of each of the connecting pipes;
Estimating means for estimating a pressure loss of refrigerant from a discharge side of the compressor to a refrigerant outlet of the outdoor unit;
A set value changing means for moving the set value upward based on an estimated value of pressure loss estimated by the estimating means;
Equipped with a,
The number of rotations of the compressor is increased or decreased according to the air conditioning load,
The set value changing means performs the upward transition of the set value in a stepwise manner when the rotational speed change per unit time of the compressor based on the air conditioning load is a predetermined value or more.
An air conditioner characterized by that.
前記推定手段は、前記圧縮機の吐出側の冷媒温度、前記圧縮機の吸込側の冷媒温度、前記液側渡り配管における冷媒温度、前記圧縮機の回転数から、前記圧力損失の推定値を算出する、
ことを特徴とする請求項1に記載の空気調和機。
The estimation means calculates the estimated value of the pressure loss from the refrigerant temperature on the discharge side of the compressor, the refrigerant temperature on the suction side of the compressor, the refrigerant temperature in the liquid side crossover piping, and the rotation speed of the compressor. To
The air conditioner according to claim 1.
前記室外ユニットは、所定値以上の圧力を検知すると前記圧縮機の運転を停止させるための複数の高圧スイッチを有し、これら高圧スイッチは前記圧縮機の冷媒吐出側および前記各渡り配管の接続部手前にそれぞれ設けられていることを特徴とする請求項1または請求項2に記載の空気調和機。 The outdoor unit has a plurality of high-pressure switches for stopping the operation of the compressor when a pressure equal to or higher than a predetermined value is detected, and the high-pressure switches are connected to the refrigerant discharge side of the compressor and the connecting portions of the crossover pipes. The air conditioner according to claim 1 , wherein the air conditioner is provided in front of the air conditioner.
JP2006338624A 2006-12-15 2006-12-15 Air conditioner Active JP5171022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338624A JP5171022B2 (en) 2006-12-15 2006-12-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338624A JP5171022B2 (en) 2006-12-15 2006-12-15 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008151386A JP2008151386A (en) 2008-07-03
JP5171022B2 true JP5171022B2 (en) 2013-03-27

Family

ID=39653743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338624A Active JP5171022B2 (en) 2006-12-15 2006-12-15 Air conditioner

Country Status (1)

Country Link
JP (1) JP5171022B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796949B2 (en) * 2006-12-19 2011-10-19 東芝キヤリア株式会社 Air conditioner
JP5450208B2 (en) * 2010-03-31 2014-03-26 三洋電機株式会社 Air conditioner
WO2012032587A1 (en) 2010-09-10 2012-03-15 三菱電機株式会社 Updating method for vehicle air conditioning device and vehicle air conditioning device
CN103826888B (en) 2011-09-26 2016-04-27 三菱电机株式会社 The update method of air conditioner for motor vehicle and air conditioner for motor vehicle
JP7490841B1 (en) 2023-02-21 2024-05-27 東芝キヤリア株式会社 Air Conditioning Equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62129656A (en) * 1985-11-28 1987-06-11 株式会社東芝 Air conditioner
JP3063575B2 (en) * 1995-06-27 2000-07-12 株式会社デンソー Refrigeration cycle control device
JP2000314563A (en) * 1999-05-06 2000-11-14 Hitachi Ltd Air conditioner
JP4437868B2 (en) * 2000-11-28 2010-03-24 東芝キヤリア株式会社 Air conditioner
JP4451680B2 (en) * 2004-02-27 2010-04-14 三菱電機株式会社 Air conditioner
JP2006071177A (en) * 2004-09-01 2006-03-16 Denso Corp Ejector type heat pump cycle
JP2006145087A (en) * 2004-11-17 2006-06-08 Denso Corp Supercritical refrigeration cycle

Also Published As

Publication number Publication date
JP2008151386A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4711020B2 (en) Air conditioner
JP6580149B2 (en) Refrigeration cycle equipment
JP6091399B2 (en) Air conditioner
WO2011089938A1 (en) Air conditioner
JP6138711B2 (en) Air conditioner
WO2011010473A1 (en) Heat pump device
JP6494778B2 (en) Refrigeration cycle equipment
JP6678332B2 (en) Outdoor unit and control method for air conditioner
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
WO2017221287A1 (en) Cooling device
JP2008064439A (en) Air conditioner
JP2019020112A (en) Air conditioning system
JP5171022B2 (en) Air conditioner
KR100550566B1 (en) A hotting drive method of heat pump multi-air conditioner
JP2015064169A (en) Hot water generation device
JP6749471B2 (en) Air conditioner
JP2007292439A (en) Outdoor unit
EP2918921B1 (en) Hot water generator
JP2013200085A (en) Air conditioner
JP5772811B2 (en) Refrigeration equipment
JP2014126310A (en) Air conditioner
JP6531794B2 (en) Air conditioner
JP2011242097A (en) Refrigerating apparatus
JP4752579B2 (en) Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP4796949B2 (en) Air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120926

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250