JP5170540B2 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP5170540B2
JP5170540B2 JP2008113819A JP2008113819A JP5170540B2 JP 5170540 B2 JP5170540 B2 JP 5170540B2 JP 2008113819 A JP2008113819 A JP 2008113819A JP 2008113819 A JP2008113819 A JP 2008113819A JP 5170540 B2 JP5170540 B2 JP 5170540B2
Authority
JP
Japan
Prior art keywords
magnetic field
temperature
shim
static magnetic
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008113819A
Other languages
English (en)
Other versions
JP2009261566A (ja
Inventor
宗孝 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2008113819A priority Critical patent/JP5170540B2/ja
Priority to PCT/JP2009/057718 priority patent/WO2009131060A1/ja
Priority to US12/988,406 priority patent/US8723523B2/en
Publication of JP2009261566A publication Critical patent/JP2009261566A/ja
Application granted granted Critical
Publication of JP5170540B2 publication Critical patent/JP5170540B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/389Field stabilisation, e.g. by field measurements and control means or indirectly by current stabilisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、磁気共鳴イメージング装置(以下、MRI装置と称する)に係わり、特に、連続して撮影を実施した場合においても静磁場均一度が安定しており、高画質を得られるMRI装置に関する。
MRI装置は、被検者を静磁場空間に配設して核磁気共鳴(以下、NMRと称する)を生じさせる高周波磁場を印加し、発生するNMR信号を取得し、画像再構成を行うことにより、被検体画像を得る。このとき、NMR信号に位置情報を付加するために、互いに直交する3軸方向に強度勾配を生ずる傾斜磁場を静磁場に重畳している。
画像撮影処理能力の向上や新たな画像撮影機能の開発等のために、傾斜磁場の強度を大きく、そのスイッチング速度を高速にすることが望まれている。しかし、傾斜磁場コイルに大電流を印加すると傾斜磁場コイルが発熱するという問題がある。例えば、特許文献1には、傾斜磁場コイルを封止する樹脂が、傾斜磁場コイルの発熱により破損してしまうことを防止するために、傾斜磁場コイルの温度を測定し、封止樹脂の耐熱温度より低い所定温度に達した場合、撮影を禁止するMRI装置が開示されている。特許文献2には、傾斜磁場コイルの温度が撮影の途中で所定温度に達し、撮影が継続できなくなるのを防止するために、撮影途中の温度上昇を予測するMRI装置が開示されている。
一方、特許文献3には、鉄ヨークを備える構造の静磁場発生磁石において、鉄ヨークが熱膨張により歪み、静磁場均一度が変化するという問題を解決するために、静磁場発生磁石の温度を測定してシムコイルへの供給電流を制御する技術が開示されている。
特開平3‐261455号公報 特開平6‐292662号公報 特開2000−342554号公報
近年、MRI画像の歪みを低減するとともに、脂肪と水の組織を精度良く分離した画像を得るために、静磁場をこれまで以上に均一化させることが望まれている。一般的には、静磁場均一度の向上には、シム鉄片やシムコイルが用いられる。しかし、シム鉄片を用いた場合、傾斜磁場コイルの発熱に伴う輻射熱および傾斜磁場のスイッチングによる誘導電流によりシム鉄片の温度が上昇してシム量が変化することが発明者らの研究により判明した。そのため、傾斜磁場強度およびスイッチング速度を増大させつつ、静磁場均一度をこれまで以上に向上させることは困難である。
シム鉄片の温度上昇によるシム量変化は、傾斜磁場コイルの封止樹脂を損傷させる温度よりも低い温度で発生する。このため、特許文献1および2のような従来の技術ではこの問題を解決することはできない。また、特許文献3の技術は、鉄ヨークの熱膨張に起因する静磁場発生磁石そのものの静磁場変化をシム電流で補正しようとするものであり、シム鉄片のシム量変化を把握することはできない。
特に、撮影空間の上下に磁石部を対向配置させたオープン構造の超電導磁石は、撮影空間を広げ、同時に、遮音特性を向上させるために、超電導磁石の凹部空間に傾斜磁場コイルを収容した構造のものがある。この構造では、傾斜磁場コイルが凹部に密閉されるため、傾斜磁場コイルからの輻射熱によりシム鉄片が加熱されやすい。
本発明の目的は、シム鉄片の温度変化に伴うシム量の変化を把握し、高い静磁場均一度を維持した状態で撮影を行うことができるMRI装置を提供することにある。
上記目的を達成するための本発明によれば、以下のようなMRI装置が提供される。すなわち、被検体を配設する撮影空間の上下に分割して配置された一対の静磁場発生部と、一対の静磁場発生部の撮影空間側に配置され、静磁場発生部の静磁場均一度を調整する磁場を発生するシム用磁性体と、傾斜磁場発生部と、高周波磁場発生部と、シム用磁性体の温度を直接または間接的に計測する温度センサーと、傾斜磁場発生部および高周波磁場発生部を制御して撮影パルスシーケンスを実行させる制御部とを有するMRI装置であって、制御部は、温度センサーの出力から、シム用磁性体の温度変化に伴う磁場調整量の変化を加味した静磁場不均一度を求め、求めた静磁場不均一度が予め定めた許容値より大きい場合には、警報を報知するものである。このように、シム用磁性体の温度を直接または間接的に計測することにより、シム用磁性体の温度変化に伴うシム量の変化を把握することができるため、静磁場不均一度の変化を求めることができる。これにより、所定の許容値を超えている場合には、警報を報知することが可能になり、高い静磁場均一度を維持した状態での撮影が可能になる。
例えば、制御部は、温度センサーの計測する温度から、撮影パルスシーケンスを実行させた場合の撮影中の温度を予測し、これを用いて撮影中の静磁場の不均一度を予測する。これにより、制御部は、撮影中の静磁場均一度を予測して、予め警報を報知できるため、撮影途中で温度が上昇して静磁場均一度が劣化し、高精度な画像が得られず、撮影が無駄になるというおそれを排除できる。
また、制御部は、温度センサーが温度を計測した時点の静磁場の不均一度を求めることも可能である。
また、静磁場を調整する磁場を発生するシムコイルをさらに有する場合には、制御部は、静磁場の不均一度が予め定めた許容値より大きい場合には、前記シムコイルにシム電流を供給することにより補償可能かどうか判断し、補償可能な範囲を超えるときに前記警報を報知することも可能である。これにより、シム電流で補償できる場合には、撮影を続行できる。
制御部は、警報を報知した後、操作者から撮影を実行するか中止するかの指示を受け付ける構成にすることもできる。静磁場均一度の劣化は、傾斜磁場コイル等装置自体に損傷を与えるものではないため、例えば、撮影方法が高い静磁場均一度を要求しない方法である場合には、撮影を続行することを操作者が許容することもあり得るためである。
制御部は、警報を報知した後、操作者から撮影パルスシーケンスの撮影パラメータの修正を受け付ける構成にすることもできる。撮影パラメータの修正することにより、撮影中の温度上昇を抑制できるためである。また、制御部は、操作者から撮影中止の指示を受けた場合には、所定の時間待機し、シム用磁性体を冷却する構成にすることができる。
また、制御部は、撮影中の静磁場不均一度を予測する手法として、例えば、予め求めておいた、撮影パルスシーケンスを実行した場合の温度センサーの計測温度の上昇量から撮影中の温度を予測し、予め求めておいた、温度センサーの温度と静磁場の不均一度との関係を用いて、予測した前記温度センサーの温度に対応する撮影中の静磁場の不均一度を求める手法を用いることができる。
また、制御部は、温度計測時点の静磁場均一度を求める手法として、例えば、予め求めておいた、温度センサーの温度と静磁場の不均一度との関係を用いて、温度センサーの計測した温度に対応する静磁場の不均一度を求める手法を用いることができる。
温度センサーは、傾斜磁場発生部の温度を計測することにより、間接的にシム用磁性体の温度を計測することができる。
本発明によれば、シム鉄片の温度変化に伴うシム量の変化を把握することができるため、高い静磁場均一度を維持した状態で撮影を行うことができる開放的なMRI装置を提供できる。これにより、常に安定な画像を得ることができる。
本発明の一実施形態について図面を用いて説明する。
(実施形態1)
まず、実施形態1のオープン型MRI装置の構成を、図1、図2および図3を用いて説明する。図1は、オープン型MRI装置の全体構成図、図2は、超電導磁石101の断面図、図3は、MRI装置のブロック図である。
図1のように、オープン型MRI装置は、シールド検査室109に配置された超電導磁石101を備えている。静磁場を発生する超電導磁石101は、被検者102が配置される撮影空間103に所望の静磁場強度を発生する。超電導磁石101は、図1および図2に示したように撮影空間103を挟んで上下に配置された起磁力部(クライオスタット)101a、101bを含む。上下のクライオスタット101a,101bには、撮影空間103側の面に凹部210が設けられている。それぞれの凹部210の内側空間には、撮影空間103側から順に高周波コイル106、傾斜磁場コイル105、シムプレート104が順に配置されている。このように、上下クライオスタット101a、101bの凹部210内に高周波コイル106,傾斜磁場コイル105およびシムプレート104を配置することにより、撮影空間103の増大を図っている。
シムプレート104は、クライオスタット101a、101bにしっかりと固定されている。シムプレート104は、磁性体(例えば鉄)からなるシムボルト212を取り付けることが可能な穴が所定の間隔で設けられた板状部材である。例えば、約1cmの格子間隔でM10(ISO規格)のネジ孔があけられた厚さ1cmのアルミニューム板をシムプレート104として用いることができる。この場合、シムボルト212として、鉄製のM10のネジを用い、シムプレート104の必要な位置のネジ孔に挿入することにより、シムボルト212が発生する磁場(シム量)により撮影空間103の静磁場分布を補正することができる。これにより、超電導磁石101が撮影空間103に発生する静磁場の均一度を3ppm以下に調整している。3ppm以下と定めている理由は、水脂肪分離画像を得る際に利用される水分子の水素原子と、脂肪組織のメチル基に含まれる水素原子の核磁気共鳴周波数差(ケミカルシフト)が3ppmであるため、静磁場不均一度を少なくともケミカルシフトの値以下とするためである。
傾斜磁場コイル105は、シムプレート104に対して所定の間隔(例えば5mm)をあけて、クライオスタット101a、101bにボルト214により固定されている。この傾斜磁場コイル105は、撮影空間103の互いに直交する3方向、すなわち、x軸、y軸、z軸方向について、静磁場の磁束密度の強度に勾配をつける磁束を発生するコイルを積層してエポキシ樹脂で封止した平板状のコイルである。傾斜磁場コイル105は、シムプレート104側への磁束漏洩を最小限とするためにシールドタイプとしている。撮影パルスシーケンスで定められたタイミングと強度に対応したパルス的電流をこの傾斜磁場コイル105に流すことで、それぞれの軸にパルス的な磁場勾配が撮影空間103内に発生する。これにより被検者102の検査部位のそれぞれの位置に磁場強度の勾配が対応することになり、NMR信号に空間的な情報が付与される。
また、傾斜磁場コイル105の内部には、静磁場均一度を補正するための電流シムコイル305(図1、図2では不図示)と、温度を計測するための熱電対センサー215(図1、図2では不図示)が傾斜磁場コイルとともにエポキシ樹脂で封止されている。
高周波コイル106は、超電導磁石101の開放的な構造を妨げないように平板状のコイルが採用され、凹部210の開口を塞ぐように配置されている。高周波コイル106は、被検者102の検査組織に含まれる水素原子核スピンを核磁気共鳴励起するのに必要な高周波磁場を発生する。ここでは、例えば、1.2テスラの静磁場強度で水素原子核が核磁気共鳴現象を起こす50メガヘルツの高周波磁場を発生するように設定されている。
このように、シムプレート104、傾斜磁場コイル105と高周波コイル106が凹部空間210内に全て組み込まれることにより、超電導コイル204の発生する磁束を有効に活用できるとともに、超電導磁石101をコンパクトに製作することができる。更に、傾斜磁場コイル105等で撮影空間103を狭めることがなく、超電導磁石101の開放構造を十分に活用することができる。また、高周波コイル106が凹部210の開口を塞ぐように配置されていることにより、傾斜磁場コイル105の振動による騒音が撮影空間103に伝播するのを抑える効果もある。
被検者102の検査位置には、NMR信号を検出する検出コイル107が配置されている。超電導磁石101の前面には、図1のように、被検者102の検査部位を撮影空間103の中心に配置するための搬送手段となる患者テーブル108が組み合わされている。超電導磁石101、傾斜磁場コイル105、高周波コイル106、検出コイル107および患者テーブル108は、電磁遮蔽されたシールド検査室109に配置されている。これにより、外来の電磁波がノイズとなって検出コイル107に混入するのを防止している。
シールド検査室109の壁面には、図1のように超電導磁石101の運転状態を監視する磁石制御ユニット110と、フィルター回路111が取り付けられている。磁石制御ユニット110には、傾斜磁場コイル105内の熱電対センサー215および超電導磁石101に取り付けられている各種センサーの出力が入力される。シールド検査室109の外には、回路キャビネット112とコンピュータ113が配置されている。回路キャビネット112には、図3に示したように、シムコイル305に電流を供給するシム電源304、傾斜磁場コイル105を駆動する傾斜磁場電源301、高周波コイル106に高周波電流を流す高周波パワーアンプ302、検出コイル107で検出されたNMR信号を増幅する高周波信号処理ユニット303が組み込まれている。コンピュータ113は、NMR信号を診断に供するための画像に変換処理する処理、ならびに、MRI装置の動作状態を監視し制御する処理を行う。コンピュータ113には、画像を表示するディスプレー114と操作入力する入力装置115が接続されている。フィルター回路111は、シールド検査室109内のコイル等の機器とシールド検査室109外の回路キャビネット112およびコンピュータ113とをノイズ成分を除去して接続する。
つぎに、図2を用いて、超電導磁石101の上下クライオスタット101a、101bの構造についてさらに説明する。
上クライオスタット101aは、図2のように、液体ヘリウムを貯えた上ヘリウム容器203と、その内部に配置された複数からなる超電導コイル204とを含む。同様に、下クライオスタット101bは、液体ヘリウムを貯えた下ヘリウム容器205と、その内部に配置された複数の超電導コイル204を含む。上ヘリウム容器203と下ヘリウム容器205とは、支柱を兼ねた連結管206により連結されている。上下ヘリウム容器203、205の外側、ならびに、連結管206の最外部は、十分な剛性を有する真空容器207で覆われている。例えば、真空容器207は、厚さ15mmのステンレススチール製のものを用いることができる。真空容器207と上下ヘリウム容器203、205との間の空間、ならびに、真空容器207と連結管206との間の空間には、外部からの熱侵入を防ぐ熱遮蔽板が配置されている。連結管206には、超電導コイル204を接続する超電導リード線や各種センサー回路(図1、図2では図示されていない)が配置されている。
超電導コイル204は、撮影空間103に、上クライオスタット101aから下クライオスタット101bに向かう方向209の磁束を有する静磁場を発生する。例えば、直径40cmの撮影空間103で、磁場強度1.2テスラ、磁場均一度3ppm以内の静磁場を発生させることができる。また、漏洩磁場を低減し、磁場均一度を改善するために、複数の超電導コイル204が組み合わせられて使用される。すなわち、最も外側に配置された超電導コイル204の発生する磁束の向きが、内側の超電導コイル204の磁束の向きと反対になるように電流を流すことで、周辺に分布する磁界強度をキャンセルする。また、超電導コイル204の起磁力をできるだけ効率よく使うために、超電導コイル204は撮影空間103にできるだけ近くになるように、そのクライオスタットを構成することができる。本実施形態では、超電導コイル204の内径部分に凹部空間210を設けることにより、撮影空間103の拡大を図っている。
上クライオスタット101aには、図2に示すようにクライオクーラー211が取り付けられている。クライオクーラー211は、上ヘリウム容器203内の気化したヘリウムガスを再凝縮する。下ヘリウム容器205には、再凝縮された液体ヘリウムが連結管206を通して上ヘリウム容器203から供給される。このように連結管206とクライオクーラー211とを備えたことにより、超電導磁石101は、上クライオスタット101aと下クライオスタット101bとに分割された開放構造であっても、気化したヘリウムガスを再凝縮して冷媒として利用することができる。これにより、開放構造の超電導磁石101でありながら、一個のクライオスタットの超電導磁石と同じように、密閉型のクライオスタットを実現できる。
図1および図2に示したオープンMRI装置の構成において、静磁場均一度の調整方法を図4を用いて説明する。この調整は、一般的に、規定の室温(例えば20℃)で行い、この温度で最も静磁場不均一度が小さくなるように行う。
まず、現在の静磁場不均一度を測定するため、ファントムを撮影する(ステップ401)。操作者が、標準試料である均一なファントムを撮影空間103の中心に配置した後、コンピュータ113は定められたタイミングチャートである撮影パルスシーケンスに従って、傾斜磁場電源301と高周波パワーアンプ302を動作させる。傾斜磁場コイル105から出力された傾斜磁場と高周波コイル106から出力された高周波磁場が、静磁場中のファントムに印加される。この動作により、ファントムの特定部位の水素原子核がNMR現象を起こし、NMR信号を発生する。検出コイル107は、NMR信号を受信する。受信された信号は、高周波信号処理ユニット303で増幅・検波処理され、デジタル信号に変換される。
この信号を受け取ったコンピュータ113は、画像再構成処理を行なうと共に、再構成した各画素の位相情報(位相量)より静磁場の不均一成分を計算して求める。均一な物質であるファントムのNMR信号は、傾斜磁場と静磁場の不均一成分によってのみ位相変調される。コンピュータ113は、位相量より、印加強度が把握できる傾斜磁場に起因する位相量を除外することにより、静磁場の不均一成分に起因する位相量のみを抽出し、抽出した位相量から静磁場の不均一成分を正確に計算で求めることができる(ステップ402)。
次に、計算により求めた不均一成分を補正するようにシムボルト212の配置を決定する。x、y、z成分については、傾斜磁場電源301の電流量を調整することによりこれを補正することも可能である。また、シムコイル305に適切な電流を供給するようシム電源304を制御することにより不均一成分を補償する(ステップ403)。調整後に残存する磁場不均一度の値は、後述する図5の撮影時の動作で使用するため、コンピュータ113内のメモリ領域に格納しておく。以上で、オープンMRI装置の撮影準備が整い、被検者102の撮影が実施可能な状態となる。
次に、本実施の形態のMRI装置の撮影時のコンピュータ113の動作について図5を用いて説明する。
操作者が患者テーブル108を操作することにより、被検者102が撮影空間103に配置されたならば(ステップ501)、コンピュータ113は、操作者による入力装置115の操作により、撮影パラメータの設定を受け付ける(ステップ502)。
コンピュータ113は、傾斜磁場コイル105に組み込まれた熱電対センサー215の出力を磁石制御ユニット110を介して取り込み、傾斜磁場コイル105の温度を計測する(ステップ503)。このとき磁石制御ユニット110は、熱電対センサー215の信号をコンピュータ113で処理可能な電気信号に変換する動作をする。
つぎに、コンピュータ113は、計測した傾斜磁場コイル105の温度が、予め定められた傾斜磁場コイル105の許容温度以下の温度であるかどうか判定する(ステップ504)。傾斜磁場コイル105の許容温度としては、傾斜磁場コイル105の発熱による破損を防止するために、傾斜磁場コイル105の封止樹脂の耐熱温度よりも数度〜十数度程度低い所定温度が予め定められている。計測した傾斜磁場コイル105の温度が、許容温度を超えている場合には、傾斜磁場コイル105が冷却されるまで撮影を中止することを操作者に知らせる表示をディスプレイ114に表示し、ステップ503に戻る。これにより、傾斜磁場コイル105が樹脂の耐熱温度を超えることを防止する。
一方、ステップ504において、傾斜磁場コイル105の温度が許容温度以下である場合には、シムボルト212の温度を傾斜磁場コイル105の温度から求め、これに基づき、現在の静磁場不均一度を求める(ステップ506)。このように、シムボルト212の温度から静磁場不均一度を求めるのは、後述するようにシムボルト212の僅かな温度変化により透磁率が変化し、静磁場不均一度が変化するためである。
求めた静磁場不均一度が予め定めた許容値(例えば3ppm)を超えている場合にはステップ507に進み、図6に一例を示したように、その旨を操作者に警告する表示をディスプレイ114に表示する(ステップ507)。通常、水脂肪分離画像の撮影等、高精度な静磁場均一度での撮影が望ましいため、操作者は撮影の中止を選択することができる。コンピュータ113は、入力装置115を介して操作者から撮影を中止する指示を受け取った場合には、シムボルト212が冷却されるまで所定時間経過するのを待ち、ステップ503に戻る(ステップ508、509)。これにより、所定の静磁場均一度になるまでシムボルト212が冷却されるのを待って、撮影を行うことができる。
一方、操作者は、高精度な静磁場均一度での撮影を望まない場合には、ステップ508で撮影の続行を選択することができる。コンピュータ113は、入力装置115を介して操作者から撮影続行の指示を受け取った場合には、撮影パルスシーケンスを実行して撮影を行う(ステップ510)。このように、撮影の続行を望むのは、検査が緊急を要する場合や、検査の内容が脂肪抑制画像を厳格に必要としない場合等である。ステップ504、505で行っている傾斜磁場コイル105の管理は、傾斜磁場コイル105に損傷を与えないように制御する必要があるため、警告を無視する選択肢はありえず、許容値を超えている場合は冷却されるまで撮影はできない。これに対し、ステップ506、507,508では、磁場均一度の変化が高品質のMRI画像を得るために許容される範囲であるかどうかを判断するため、警告があっても検査の内容によっては撮影を実行するという選択肢を操作者が選択する自由度を持たせることができる。
ここで、シムボルト212の温度変化と超電導磁石101の磁場均一度の関係について、図7を用いて説明する。
図7に示したように、上クライオスタット101aに取り付けられたシムプレート104と傾斜磁場コイル105、下クライオスタット101bに取り付けられたシムプレート104と傾斜磁場コイル105は、垂直軸に沿って順次配置されている。被検者102の撮影にあたって、撮影パルスシーケンスに従って傾斜磁場電源301から電流(i)が印加されると、傾斜磁場コイル105の抵抗成分(r)で消費する電力(r×i)が熱となって、傾斜磁場コイル105の温度を上昇させる。上クライオスタット101aに取り付けた傾斜磁場コイル105の熱はシムプレート104との間隙に対流701を発生させ、シムプレート104との間で熱交換が行われる。一方、下クライオスタット101bに取り付けた傾斜磁場コイル105の熱は高周波コイル106との間隙で対流702となり、高周波コイル106との間で熱交換が行われる。即ち、上クライオスタット101aに組み込まれたシムプレート104は対流と輻射熱で加熱される。下クライオスタット101bに組み込まれたシムプレート104は輻射熱のみで加熱される。さらに、傾斜磁場コイル105が発生する交番磁界による局所的な渦電流によっても上下のシムプレート104のシムボルト212は加熱される。この結果、上下のシムプレート104に組み込まれたシムボルト212は加熱される。また、上クライオスタット101aの方が下クライオスタット101bよりも高温になり、上下のシムプレート104に温度差が生ずる。
シムプレート104に組み込まれたシムボルト212の鉄の透磁率の温度に対する変化量は4000ppm/℃と大きな値である。このため、傾斜磁場コイル105の温度が許容温度まで達していなくても、傾斜磁場コイル105によりシムボルト212が僅かに加熱されることにより、静磁場均一度が変化する。さらに、上下のシムプレートで温度差が生じることによっても静磁場均一度が変化する。
そこで、本実施の形態では、シムボルト212の温度を計測し、静磁場の不均一度の変化を把握する。このとき、シムボルト212に温度センサーを取り付け、その温度を直接計測することももちろん可能であるが、シムボルト212は小型で、しかも、複数配置され、さらに複数のシムボルト212に空間的な温度分布を生じるため、直接その温度を測定しようとすると測定点を多くする必要がある。そこで、ここでは、傾斜磁場コイル105の温度により、シム用磁性体の温度を間接的に計測する。
具体的には、上述のステップ506において、傾斜磁場コイル105の温度を用い、これに基づきシムボルト212の温度を間接的に測定し、静磁場均一度の変化を求める。さらに具体的には、傾斜磁場コイル105の温度変化により生じるシムボルト212の温度変化を予め実験により求め、シムボルト212の温度変化に起因して起こる静磁場の各成分の変化(不均一度)を予め計測しておく。これを傾斜磁場コイル105の温度と磁場不均一度との関係として、例えば図8のグラフのように求め、これをコンピュータ113内のメモリに格納しておくことによりステップ503で計測した傾斜磁場コイル105の温度から静磁場不均一度を求めることが可能になる。
図8のグラフについて説明する。横軸は傾斜磁場コイル105の温度を示しており、図8では、傾斜磁場コイル105の温度が10℃から80℃の範囲を計測範囲としている。左側の縦軸は、静磁場不均一成分の磁場の不均一度をppm単位で示す。図8では、不均一成分のうち代表的なxの3次項成分x3とyの2次項成分y2を示している。xの3次項成分x3はシムボルト212の温度が低いとき(傾斜磁場コイルの温度が10℃)は約0.7ppmの不均一成分を発生し、温度の上昇とともに減少、20℃を超えると不均一成分の極性がマイナスに転じ、65℃付近から再びプラスの不均一成分が発生することを示している。一方、yの2次項成分y2は低温時のマイナス誤差から高温時のプラス誤差にかけて一様に不均一成分が変化することを示している。
図8では簡略のため2成分のみ記述しているが、不均一成分には図8に示した以外にx、y、zの一次項などMRIの画像に影響する十数項がある。実際には、それらを全て計測する。全ての不均一成分の総和(静磁場不均一度)を図8の実線グラフのように求めておく。右側の縦軸は、不均一成分の総和(静磁場均一度)の値を示し、0ppmから2ppmまでの目盛になっている。上述したシムボルト212は、規定の室温(例えば20℃)で最も不均一度が小さくなるように調整されているので、傾斜磁場コイルの温度が同じ20℃であれば、均一度の劣化は無く、0ppmを示している。20℃からの差が大きくなるに従って不均一度が大きくなり80℃では1.5ppmまで劣化する。
したがって、例えば、20℃での静磁場の不均一度が1.8ppmに調整されているとすると、傾斜磁場コイルの温度が70度に達した時、温度変化による磁場不均一度が1.2ppmに達するため、この時点の静磁場の不均一度は3ppm(1.8ppm+1.2ppm)を超えることになる。またこの時のxの3次項やyの2次項の変化がそれぞれ+0.1ppmと+0.4ppmを示すことがわかる。
そこで、図8のグラフ、または、グラフを数式化したものをコンピュータ113のメモリー領域に記録しておき、ステップ503で計測した傾斜磁場コイル105の温度データを当てはめることによって、その時点の温度変化による磁場不均一度を求めることができる。求めた静磁場調整時の磁場不均一度と加算することにより、ステップ506において、許容値を超えているかどうか判定が可能になり、超えている場合にはステップ507で適切な警告を発することができる。
なお、上述の実施の形態では、静磁場不均一度が許容値を超えている場合、ステップ508において操作者が撮影の続行か中止かを選択する構成であったが、コンピュータ113が自動判定する構成にすることも可能である。例えば、ステップ502において設定された撮影パラメータから、撮影方法が高精度な静磁場不均一性を要求する方法(例えば水脂肪分離画像の撮影方法)であるかどうか判定し、その場合には撮影を中止する構成にすることができる。
なお、図8のグラフは、超電導磁石101全体の静磁場均一度の変化と、直接または間接的に計測したシムプレートの温度との関係を明らかにするものであればよい。よって、上記実施形態1では傾斜磁場コイル105の温度を計測しているが、シムプレートの温度や、シムプレートの周辺温度を計測して、静磁場均一度との関係を求め、図8と同様のグラフを得て、図5のステップ506で用いることももちろん可能である。また、傾斜磁場コイル105の温度についても、上下の傾斜磁場コイル105の温度を両方計測することも可能であるし、いずれか一方のみを計測することも可能である。例えば、高温になる上側の傾斜磁場コイル105の温度を計測することが可能である。
また、上記実施形態1においては、傾斜磁場コイルの温度を計測する際には、熱電対センサー215以外の方法を用いることも可能である。例えば、傾斜磁場コイル105に組み込まれている水冷用の配管から排出される冷却水の温度を測定することにより、傾斜磁場コイルの温度に相関する静磁場不均一度の変化値を求めることができる。冷却水温度は、傾斜磁場コイル105の温度と相関関係がある。静磁場の磁場均一度に影響を与える傾斜磁場コイル105の温度の範囲は、図8からも明らかなように水の沸点(100℃)より低い値であるため、冷却水温度を測定することにより、静磁場不均一度を求めることが可能である。この場合、図8のグラフに代えて、冷却水温度と静磁場不均一度との関係を示すグラフ又は数式を予め実験により求めておき、これを図5のステップ506において用いる。
(実施形態2)
つぎに、実施形態2のMRI装置について説明する
実施形態2のMRI装置では、その動作を図9に示したように、現在の静磁場不均一度ではなく、撮影を実行した場合の撮影途中の静磁場不均一度を予測し、この予測値に基づいて警告を表示するかどうか判断する。予測値を用いるのは、撮影実行に伴い傾斜磁場コイル105の温度が上昇するため、シムボルト212の温度も上昇し、静磁場不均一度が撮影前よりも大きくなるためである。
具体的には、図9のようにステップ503において傾斜磁場コイル105の温度(A)を計測する。つぎに、撮影パルスシーケンスを実行した場合の傾斜磁場コイル105の上昇温度(C)を求める。例えば、コンピュータ113内のメモリには、設定可能な撮影パラメータの組み合わせごとに予め実験により求めておいた上昇温度データを格納しておく。コンピュータ113は、メモリ内のデータから、ステップ502で設定された撮影パラメータに対応する温度を読み出して、温度(C)として用いる。
つぎに、コンピュータ113は、温度(A+C)を演算し、これを撮影中の傾斜磁場コイル105の温度であると推測する。この温度(A+C)を、実施形態1の図8のグラフまたはグラフを表す数式に適用することにより、温度(A+C)に対応する静磁場不均一度を求めることができる。求めた静磁場不均一度の変化量を、初期状態(例えば20度)の磁場不均一度と合算することにより、撮影中の静磁場不均一度を推測することができる(ステップ601)。
コンピュータ113は、推測した撮影中の静磁場不均一度を用いて、実施形態1と同様に静磁場不均一度が許容値を超えているかどうかを判定する(ステップ602)。推測した静磁場不均一度が、許容値以内の場合は、撮影パルスシーケンスに従って画像を撮影する(ステップ510)。許容値を超えている場合には、警告を表示し(ステップ507)、撮影続行かどうか、操作者の指示を受け付ける(ステップ508)。撮影を中止する場合、傾斜磁場コイル105の温度が冷却されるまで所定時間待機するか、または、撮影パルスシーケンスのパラメータの修正を操作者から受け付けることができる(ステップ603)。このように撮影パラメータの変更を受け付けるのは、撮影パラメータを変更することにより、撮影中の温度上昇を抑制することができ、傾斜磁場コイル105の冷却を待たずに撮影を続行することができる場合があるためである。
次の画像撮影継続の有無を判定し(ステップ511)、画像撮影が無い場合は終了する。画像撮影がある場合は、ステップ502に戻る。
実施形態2のMRI装置の他の構成および動作は、実施形態1の装置と同様であるので説明を省略する。
実施形態2のMRI装置では、撮影中の磁場不均一度を推測して、それが許容値以内かどうかを判断できるため、撮影の途中で温度上昇に伴い磁場不均一度が劣化し、所望の画像が得られないという可能性を排除できる。これにより、撮影が無駄にならず、高い磁場均一度で撮影した画像を得ることができる。
(実施形態3)
次に、実施形態3のMRI装置について説明する。
実施形態3のMRI装置は、実施形態2のMRI装置と同様に、撮影途中の静磁場不均一度を予測した上で、この静磁場不均一度がシム電流で補償可能である場合には、これを補償した後に撮影を実行する。シム電流で補償できない場合には、警告を表示するものである。
実施形態3のMRI装置の動作を図10を用いて以下説明する。
図10に示したように、操作者により被検者102が撮影空間103に配置された後(ステップ501)、コンピュータ113は、撮影パラメータの設定を受け付け(ステップ502)。傾斜磁場コイル105の温度を熱電対センサー215から取り込む(ステップ503)。その後、撮影を実行した場合の撮影中の静磁場不均一度を予測する(ステップ601)。予測した撮影中の静磁場不均一度を用いて、静磁場不均一度が許容値を超えているかどうかを判定する(ステップ602)。ここまでの動作は、実施形態2と同様である。
実施形態3では、ステップ601で予測した静磁場不均一度が許容値を超えている場合、その静磁場不均一度がシムコイル305にシム電流を供給することにより補償可能な範囲であるかどうかを判定する(ステップ704)。具体的には、シムコイル305の構成する各コイルごとに予め定められた最大シム電流でそれぞれ発生する磁場成分と、予測した静磁場不均一度の各成分とを比較することにより、補償できるかどうかを判定する。
シム電流で補償可能な場合は、撮影パルスシーケンスを実行しながら、コンピュータ113は適切なシム電流を供給するようシム電源304を制御し、静磁場不均一度が補償された状態で撮影を行う(ステップ705、510)。その後、続けて撮影がある場合には(ステップ511)、ステップ502に戻る。
一方、予測した静磁場不均一度がシム電流で補償できない大きさである場合には、操作者にその旨を知らせる警告を表示する(ステップ507)。その後、そのまま撮影を続行するか中止するかの指示を操作者から受け付け(ステップ508)、撮影を中止する場合には、電流シムで補償可能になるまで傾斜磁場コイル105の冷却を所定時間待つ処理、或いは、操作者から撮影パルスシーケンスのパラメータ変更を受け付ける処理を実施する(ステップ603)。その後、ステップ503に戻る。
実施形態3のMRI装置の他の構成は、実施形態1の装置と同様であるので、ここでは説明を省略する。
このように、実施形態3では、予測した静磁場不均一度が許容値を超えていても、シム電流により補償可能な範囲である場合には、補償しながら撮影を行うことができるため、実施形態2の装置と比較すると撮影を実行できる確率が高くなる。
なお、実施形態1では、図5のステップ506において、静磁場の不均一度が許容値を超えている場合、すぐにステップ507で警告を表示する構成であったが、実施形態3と同様に、静磁場の不均一度が許容値を超えている場合、図10のステップ704を実行することによりシム電流で補償可能であるかどうかを判断することもできる。これにより、補償可能である場合には、ステップ705でシム電流で補償することにより、撮影を行うことができる。
上述してきたように本発明によれば、開放的で騒音を低減した検査環境を提供するMRI装置において、シムボルトの温度上昇に伴う静磁場均一度の劣化を把握し、常に安定な画像を得ることができる。
なお、上記実施形態1〜3において、ステップ507の警告はディスプレイ114に表示するだけでなく、通信回線等を介してMRI装置を管理する遠隔サービスの関係者に対して送信し、表示する構成、または、音声メッセージを発する構成にすることも可能である。
警告表示の内容は、上記実施形態では静磁場不均一度が劣化することを報知する内容であるが、この他に、傾斜磁場コイルの温度センサーの値や、静磁場不均一度の値を表示することもできる。あるいは、これらの表示を同時に表示することもできる。
また、上記実施形態では、傾斜磁場コイル105の温度計測(ステップ503)を画像撮影の開始前に行う場合を示したが、本発明はこれに限定されるものではなく、常時、傾斜磁場コイル105の温度センサーの出力をコンピュータ113が取り込んで、静磁場均一度を求め、警報を発する形態にすることも可能である。
本発明の実施形態1のオープン型MRI装置の全体構成を示す説明図。 図1のMRI装置の超電導磁石と傾斜磁場コイルとシムプレートの断面図。 図1のMRI装置のシステム構成を示すブロック図。 図1のMRI装置の静磁場均一度を調整する手順を示すフローチャート。 本発明の実施形態1のMRI装置の動作を示すフローチャート。 図5の動作において、警報表示のためのディスプレイに表示される警告画面例を示す説明図。 図1のMRI装置において、傾斜磁場コイル105の発熱によりシムプレートが温度上昇すること示す説明図。 本発明の実施形態1において、傾斜磁場コイルの温度と磁場均一度の相関を示すグラフ。 本発明の実施形態2のMRI装置の動作を示すフローチャート。 本発明の実施形態3のMRI装置の動作を示すフローチャート。
符号の説明
101…超電導磁石、101a…上クライオスタット(起磁力部)、101b…下クライオスタット(起磁力部)、102…被検体、103…撮影空間、104…シムプレート、105…傾斜磁場コイル、106…高周波コイル、107…検出コイル、110…磁石制御ユニット、111…フィルター回路、113…コンピュータ、114…ディスプレイ、210…凹部、212…シムボルト、215…熱電対センサー、301…傾斜磁場電源、304…シム電源、305…シムコイル。

Claims (10)

  1. 被検体を配設する撮影空間の上下に分割して配置された一対の静磁場発生部と、一対の前記静磁場発生部の撮影空間側に配置され、静磁場を調整する磁場を発生するシム用磁性体と、傾斜磁場発生部と、高周波磁場発生部と、前記シム用磁性体の温度を直接または間接的に計測する温度センサーと、前記傾斜磁場発生部および高周波磁場発生部を制御して撮影パルスシーケンスを実行させる制御部とを有し、
    前記制御部は、前記温度センサーの出力から、前記シム用磁性体の温度変化に伴う磁場調整量の変化を加味した前記静磁場の不均一度を求め、求めた前記静磁場の不均一度が予め定めた許容値より大きい場合には、警報を報知することを特徴とする磁気共鳴イメージング装置。
  2. 請求項1に記載の磁気共鳴イメージング装置において、前記制御部は、前記温度センサーの計測する温度から、前記撮影パルスシーケンスを実行させた場合の撮影中の温度を予測し、これを用いて撮影中の前記静磁場の不均一度を予測することを特徴とする磁気共鳴イメージング装置。
  3. 請求項1に記載の磁気共鳴イメージング装置において、前記制御部は、前記温度センサーが温度を計測した時点の前記静磁場の不均一度を求めることを特徴とする磁気共鳴イメージング装置。
  4. 請求項1ないし3のいずれか1項に記載の磁気共鳴イメージング装置において、静磁場を調整する磁場を発生するシムコイルをさらに有し、
    前記制御部は、前記静磁場の不均一度が予め定めた許容値より大きい場合には、前記シムコイルにシム電流を供給することにより補償可能かどうか判断し、補償可能な範囲を超えるときに前記警報を報知することを特徴とする磁気共鳴イメージング装置。
  5. 請求項1ないし4のいずれか1項に記載の磁気共鳴イメージング装置において、前記制御部は、前記警報を報知した後、操作者から撮影を実行するか中止するかの指示を受け付けることを特徴とする磁気共鳴イメージング装置。
  6. 請求項1ないし4のいずれか1項に記載の磁気共鳴イメージング装置において、前記制御部は、前記警報を報知した後、操作者から撮影パルスシーケンスの撮影パラメータの修正を受け付けることを特徴とする磁気共鳴イメージング装置。
  7. 請求項5に記載の磁気共鳴イメージング装置において、前記制御部は、操作者から撮影中止の指示を受けた場合、所定の時間待機し、シム用磁性体を冷却することを特徴とする磁気共鳴イメージング装置。
  8. 請求項2に記載の磁気共鳴イメージング装置において、前記制御部は、予め求めておいた、前記撮影パルスシーケンスを実行した場合の前記温度センサーの計測温度の上昇量から撮影中の温度を予測し、予め求めておいた、前記温度センサーの温度と前記静磁場の不均一度との関係を用いて、前記予測した前記温度センサーの温度に対応する撮影中の前記静磁場の不均一度を予測することを特徴とする磁気共鳴イメージング装置。
  9. 請求項3に記載の磁気共鳴イメージング装置において、前記制御部は、予め求めておいた、前記温度センサーの温度と前記静磁場の不均一度との関係を用いて、前記温度センサーの計測した温度に対応する前記静磁場の不均一度を求めることを特徴とする磁気共鳴イメージング装置。
  10. 請求項1ないし9のいずれか1項に記載の磁気共鳴イメージング装置において、前記温度センサーは、前記傾斜磁場発生部の温度を計測することを特徴とする磁気共鳴イメージング装置。
JP2008113819A 2008-04-24 2008-04-24 磁気共鳴イメージング装置 Active JP5170540B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008113819A JP5170540B2 (ja) 2008-04-24 2008-04-24 磁気共鳴イメージング装置
PCT/JP2009/057718 WO2009131060A1 (ja) 2008-04-24 2009-04-17 磁気共鳴イメージング装置
US12/988,406 US8723523B2 (en) 2008-04-24 2009-04-17 Magnetic resonance imaging apparatus with temperature sensor for predicting static magnetic field inhomogeneity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113819A JP5170540B2 (ja) 2008-04-24 2008-04-24 磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JP2009261566A JP2009261566A (ja) 2009-11-12
JP5170540B2 true JP5170540B2 (ja) 2013-03-27

Family

ID=41216796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113819A Active JP5170540B2 (ja) 2008-04-24 2008-04-24 磁気共鳴イメージング装置

Country Status (3)

Country Link
US (1) US8723523B2 (ja)
JP (1) JP5170540B2 (ja)
WO (1) WO2009131060A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5170540B2 (ja) * 2008-04-24 2013-03-27 株式会社日立メディコ 磁気共鳴イメージング装置
AU2010327289B2 (en) * 2009-12-02 2015-05-28 Nanalysis Corp. Method and apparatus for producing homogeneous magnetic fields
EP3686620A1 (en) * 2011-06-30 2020-07-29 Liposcience, Inc. Quantitative nmr clinical analyzers with automatic nmr temperature sensitivity compensation that accommodate large ambient operational temperature ranges
GB2511048B (en) 2013-02-20 2016-05-25 Siemens Healthcare Ltd Methods and apparatus for compensating for drift in magnetic field strength in superconducting magnets
GB2511049B (en) * 2013-02-20 2016-05-25 Siemens Healthcare Ltd Methods and apparatus for compensating for drift in magnetic field strength in superconducting magnets
JP6316560B2 (ja) * 2013-09-13 2018-04-25 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置及び冷凍機監視装置
JP6328911B2 (ja) * 2013-11-14 2018-05-23 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置および異常検知プログラム
AU2015311825B2 (en) 2014-09-05 2019-01-17 Hyperfine Operations, Inc. Low field magnetic resonance imaging methods and apparatus
WO2016077417A1 (en) 2014-11-11 2016-05-19 Hyperfine Research, Inc. Low field magnetic resonance methods and apparatus
DE102014224446B4 (de) 2014-11-28 2018-12-20 Siemens Healthcare Gmbh Verfahren zum Bestimmen von Basisshimeinstellungen eines Magnetresonanzgeräts
DE102015205150A1 (de) * 2015-03-23 2016-09-29 Siemens Healthcare Gmbh Verfahren zur Korrektur von durch den Betrieb von Gradientenspulen auftretenden Feldstörungen höherer Ordnung und Magnetresonanzeinrichtung
CN108369261B (zh) * 2015-11-06 2021-07-16 西达-赛奈医疗中心 用于下一代磁共振线圈的联合线圈(unic)***和方法
US9947721B2 (en) 2016-04-01 2018-04-17 Micron Technology, Inc. Thermal insulation for three-dimensional memory arrays
DE102016217223A1 (de) * 2016-09-09 2018-03-15 Siemens Healthcare Gmbh Überprüfung einer zeitlichen Änderung eines Magnetfeldes in einer Magnetresonanzvorrichtung
US10539637B2 (en) 2016-11-22 2020-01-21 Hyperfine Research, Inc. Portable magnetic resonance imaging methods and apparatus
US10627464B2 (en) 2016-11-22 2020-04-21 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
EP3584598A1 (en) * 2018-06-19 2019-12-25 Koninklijke Philips N.V. Mr phantom for spiral acquisition
DE102019212508A1 (de) 2019-08-21 2021-02-25 Bruker Switzerland Ag Temperiersystem für MR-Geräte mit Permanentmagnetanordung
EP4194878A1 (de) * 2021-12-10 2023-06-14 Siemens Healthcare GmbH Verfahren zur automatischen kompensation von wirbelströmen in einer magnetresonanzvorrichtung
JP2024036888A (ja) * 2022-09-06 2024-03-18 キヤノンメディカルシステムズ株式会社 磁気共鳴イメージング装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3462677A (en) * 1967-06-12 1969-08-19 Varian Associates Gyromagnetic resonance spectrometer having means for measuring the rate of sample rotation
JPH1071132A (ja) * 1996-08-30 1998-03-17 Shimadzu Corp 核磁気共鳴イメージング装置
WO2000054069A1 (en) * 1999-03-10 2000-09-14 Koninklijke Philips Electronics N.V. Method of and device for the compensation of variations of the main magnetic field during magnetic resonance imaging
JP3781166B2 (ja) * 1999-03-26 2006-05-31 株式会社日立メディコ 磁気共鳴イメージング装置および静磁場均一度維持方法
US6556012B2 (en) * 2000-01-21 2003-04-29 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
US6954068B1 (en) * 2000-01-21 2005-10-11 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
US6567685B2 (en) * 2000-01-21 2003-05-20 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
DE10209089A1 (de) * 2002-03-01 2003-09-18 Siemens Ag Verfahren zum Betrieb eines Magnetresonanzgeräts sowie Magnetresonanzgerät
DE10217384C1 (de) * 2002-04-18 2003-12-24 Siemens Ag Gradientenspulensystem
US6788060B1 (en) * 2003-05-28 2004-09-07 Ge Medical Systems Global Technology Co., Inc. Imaging system with homogeneous magnetic field
US6906606B2 (en) * 2003-10-10 2005-06-14 General Electric Company Magnetic materials, passive shims and magnetic resonance imaging systems
JP4718790B2 (ja) * 2004-04-05 2011-07-06 株式会社東芝 磁気共鳴イメージング装置
JP2008513477A (ja) * 2004-09-16 2008-05-01 バイロゲノミックス インコーポレイテッド 虚血の治療方法
CN101080644A (zh) * 2004-12-14 2007-11-28 皇家飞利浦电子股份有限公司 用于补偿主磁体的场漂移的磁共振成像设备、方法和计算机程序
WO2007046011A1 (en) * 2005-10-17 2007-04-26 Koninklijke Philips Electronics N.V. Marker tracking for interventional magnetic resonance
JP4077015B2 (ja) * 2006-10-10 2008-04-16 株式会社東芝 Mri装置
GB2442750B (en) * 2006-10-10 2010-09-15 Siemens Magnet Technology Ltd Shimming of Magnet Systems
JP4469835B2 (ja) * 2006-12-11 2010-06-02 株式会社東芝 磁気共鳴映像装置
US7602185B2 (en) * 2007-07-12 2009-10-13 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus and magnetic resonance imaging method
CN101677781B (zh) * 2008-03-13 2012-11-28 株式会社东芝 磁共振成像装置以及冷却装置
JP5170540B2 (ja) * 2008-04-24 2013-03-27 株式会社日立メディコ 磁気共鳴イメージング装置
JP5554031B2 (ja) * 2008-10-03 2014-07-23 株式会社東芝 磁気共鳴イメージング装置および傾斜磁場コイル冷却制御方法

Also Published As

Publication number Publication date
JP2009261566A (ja) 2009-11-12
US20110037467A1 (en) 2011-02-17
WO2009131060A1 (ja) 2009-10-29
US8723523B2 (en) 2014-05-13

Similar Documents

Publication Publication Date Title
JP5170540B2 (ja) 磁気共鳴イメージング装置
JP3907182B2 (ja) 磁気共鳴映像装置
JP5004805B2 (ja) 超電導磁石を用いたmri装置とその保守方法
JP5613379B2 (ja) 磁気共鳴イメージング装置および冷却装置
JP4934067B2 (ja) 超伝導磁石装置および磁気共鳴イメージング装置
US10281538B2 (en) Warm bore cylinder assembly
JP5960152B2 (ja) 磁気共鳴イメージング装置およびその運転方法
JP2010104770A (ja) 磁気共鳴イメージング装置および傾斜磁場コイル冷却制御方法
WO2002071942A1 (fr) Appareil d'imagerie par resonance magnetique et generateur de champ magnetique statique associe
US8593145B2 (en) Magnetic resonance system with cooling system and monitoring of helium pressure
US9536649B2 (en) MRI apparatus, operation method thereof, and quenching prevention device
JP2005152632A (ja) 補助的な静磁場成形コイルを利用するmriシステム
JP2016168265A (ja) 磁気共鳴イメージング装置、および、その運転方法
JP2017086701A (ja) 磁気共鳴イメージング装置
JP2007098150A (ja) 磁気共鳴映像装置
JP5060151B2 (ja) 磁場均一度調整装置、およびこれを用いた超伝導磁石装置、並びに磁気共鳴撮像装置
JP2009011476A (ja) 磁気共鳴イメージング装置
JP2005288025A (ja) 磁気共鳴イメージング装置
JP5331716B2 (ja) Mri装置
JP7231694B2 (ja) 後続mri構成依存渦電流補償
JPWO2016093085A1 (ja) 磁気共鳴イメージング装置及び冷凍機の運転制御方法
JP5558783B2 (ja) 磁気共鳴イメージング装置
JP2017113411A (ja) 磁気共鳴イメージング装置
JP5384043B2 (ja) 磁気共鳴イメージング装置
JPWO2015072301A1 (ja) 磁気共鳴イメージング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121219

R150 Certificate of patent or registration of utility model

Ref document number: 5170540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250