JP5164897B2 - Optical filter - Google Patents

Optical filter Download PDF

Info

Publication number
JP5164897B2
JP5164897B2 JP2009059236A JP2009059236A JP5164897B2 JP 5164897 B2 JP5164897 B2 JP 5164897B2 JP 2009059236 A JP2009059236 A JP 2009059236A JP 2009059236 A JP2009059236 A JP 2009059236A JP 5164897 B2 JP5164897 B2 JP 5164897B2
Authority
JP
Japan
Prior art keywords
light
optical waveguide
wavelength
optical
control light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009059236A
Other languages
Japanese (ja)
Other versions
JP2010211099A (en
Inventor
カジ サルワル アベディン
哲弥 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Information and Communications Technology
Original Assignee
National Institute of Information and Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Information and Communications Technology filed Critical National Institute of Information and Communications Technology
Priority to JP2009059236A priority Critical patent/JP5164897B2/en
Publication of JP2010211099A publication Critical patent/JP2010211099A/en
Application granted granted Critical
Publication of JP5164897B2 publication Critical patent/JP5164897B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光フィルタに関し、より具体的には、透過特性を光制御可能な光フィルタに関する。   The present invention relates to an optical filter, and more specifically to an optical filter capable of optically controlling transmission characteristics.

従来、光ファイバの両端に高反射率の誘電体多層膜をコーティングした光ファブリーペロー型光フィルタが実現されている。ファブリペローを利用するので、この光フィルタの透過特性は波長に関して周期的となり、温度又は機械的変形による屈折率変化を通して、透過特性を波長方向にシフトさせることが可能である。波長特性をチューニングする方法として、温度制御法や、ピエゾ素子を用いた機械的方法が提案されているが、これらの波長可変速度はkHzのオーダーである(非特許文献1参照)。   Conventionally, an optical Fabry-Perot type optical filter in which a dielectric multilayer film having a high reflectance is coated on both ends of an optical fiber has been realized. Since the Fabry-Perot is used, the transmission characteristic of the optical filter becomes periodic with respect to the wavelength, and the transmission characteristic can be shifted in the wavelength direction through a refractive index change due to temperature or mechanical deformation. As a method for tuning the wavelength characteristics, a temperature control method and a mechanical method using a piezo element have been proposed. These wavelength variable speeds are on the order of kHz (see Non-Patent Document 1).

"Pigtailed high-finesse tunable fiber Fabry-Perot interferrometers with large, medium and small free spectral ranges," J. Stone and L.W. Stulz, Electron. Lett. vol. 23, no. 15, page 781-783, (1987)."Pigtailed high-finesse tunable fiber Fabry-Perot interferrometers with large, medium and small free spectral ranges," J. Stone and L.W.Stulz, Electron. Lett.vol. 23, no. 15, page 781-783, (1987). "Cross-phase-modulation-based wavelength conversion using intersubband transition in InGaAs / AlAs / AlAsSb coupled quantum wells," H. Tsuchida, T. Simoyama, H. Ishikawa, T. Mozume, and M. Nagase," Opt. Lett. vol. 32, no. 7, Page. 751-753, (2007)."Cross-phase-modulation-based wavelength conversion using intersubband transition in InGaAs / AlAs / AlAsSb coupled quantum wells," H. Tsuchida, T. Simoyama, H. Ishikawa, T. Mozume, and M. Nagase, "Opt. Lett. vol. 32, no. 7, Page. 751-753, (2007). "High-speed all-optical modulation using an InGaAs/AlAsSb quantum well waveguide," K. S. Abedin, G.-W. Lu, T. Miyazaki, R. Akimoto, and H. Ishikawa, Opt. Exp. vol. 16. No. 13, Page 9684-9690 (2008)."High-speed all-optical modulation using an InGaAs / AlAsSb quantum well waveguide," KS Abedin, G.-W. Lu, T. Miyazaki, R. Akimoto, and H. Ishikawa, Opt. Exp. Vol. 16. No .13, Page 9684-9690 (2008). "Ultrafast all-optical signal processing devices," Ishikawa Hiroshi Editor, publisher, Jone Wiley, UK, 2008."Ultrafast all-optical signal processing devices," Ishikawa Hiroshi Editor, publisher, Jone Wiley, UK, 2008. "Mechanism of ultrafast modulation of refractive index of photoexcited InGaAs/AlAs/AlAsSb quantum wells", G.W. Cong et al., Phy. Rev. B."Mechanism of ultrafast modulation of refractive index of photoexcited InGaAs / AlAs / AlAsSb quantum wells", G.W.Cong et al., Phy. Rev. B.

光通信、光計測及びイメージングなどの多くの分野で、GHzオーダーのように高速に光透過特性を変更可能な光フィルタが望まれている。   In many fields such as optical communication, optical measurement, and imaging, there is a demand for an optical filter that can change a light transmission characteristic at a high speed such as GHz order.

ファブリペロ共振器自体は、光ファイバや、シリコン又はLN(リチウムニオブ酸ナトリウム)の結晶等からなる平面光導波路の端面に反射膜をつけることによって製造でき、この共振特性を外部制御することで、光透過特性を変更可能な光フィルタをできる。   The Fabry-Perot resonator itself can be manufactured by attaching a reflection film to the end face of a planar optical waveguide made of an optical fiber, silicon, or LN (lithium sodium niobate) crystal. An optical filter whose transmission characteristics can be changed can be obtained.

しかし、従来のものは、高速応答性を得られなかった。例えば、光ファイバを用いるものの場合、ピエゾまたは熱によって共振波長をシフトさせることができるが、応答速度が極めて遅い。また、光ファイバ材料の光非線形性を用いて光学(all-optical)的に共振波長を変更する場合、十分におおきなgLPが必要になり、そのため、光ファイバ長が大きくなり、FSRが小さくなってしまう。   However, the conventional one cannot obtain high-speed response. For example, in the case of using an optical fiber, the resonance wavelength can be shifted by piezo or heat, but the response speed is extremely slow. Also, when the resonance wavelength is optically changed using the optical nonlinearity of the optical fiber material, a sufficiently large gLP is required, which increases the optical fiber length and decreases the FSR. End up.

LN(リチウムニオブ酸ナトリウム)の単結晶を用いる場合、電気光学効果を用いて、共振波長をチューニングできる。しかし、光導波路長が数ミリである場合には、大きな電圧が(〜100V)が必要になり、使いにくく、かつ、高速応答が得られなかった。   When a single crystal of LN (sodium lithium niobate) is used, the resonance wavelength can be tuned using the electro-optic effect. However, when the optical waveguide length is several millimeters, a large voltage (˜100 V) is required, which is difficult to use and a high-speed response cannot be obtained.

シリコンの場合、p−nジャンクション構造による電流によって屈折率が変化するので、これにより共振波長をチューニングできる。高速応答を得ることができない。   In the case of silicon, the refractive index is changed by the current due to the pn junction structure, so that the resonance wavelength can be tuned. A high speed response cannot be obtained.

一方、アクティブな光導波路例えば、半導体光増幅器(SOA)の入射端面と出射端面の反射膜を付加して反射率を高める構成では、信号光の吸収があるので、電流注入が不可避である。しかるに、端面反射率を高めていることから、レーザ発振しやすくなり、電流を微細に調整する必要がある。入射光強度によっては、光入射によりレーザ発振してしまう可能性もある。光制御の場合には、パターン効果や利得回復時間なども考慮しないと、満足のいく結果を得るのは難しく、この点でも数GHzオーダー以上の高速動作は困難である。   On the other hand, an active optical waveguide such as a semiconductor optical amplifier (SOA) is added with reflection films on the incident end face and the outgoing end face to increase the reflectivity, so that current injection is inevitable because signal light is absorbed. However, since the end face reflectance is increased, laser oscillation is likely to occur, and it is necessary to finely adjust the current. Depending on the incident light intensity, there is a possibility of laser oscillation due to the incident light. In the case of light control, it is difficult to obtain a satisfactory result unless the pattern effect and gain recovery time are taken into consideration. In this respect, high-speed operation of several GHz order or more is difficult.

本発明は、従来よりも格段に高速に光透過特性を光制御可能な光フィルタを提示することを目的とする。   An object of the present invention is to provide an optical filter capable of optically controlling light transmission characteristics at a much higher speed than in the past.

本発明に係る光フィルタは、サブバンド間遷移によりTM波を吸収しTE波に相互位相変調を起こす光導波路と、当該光導波路にTE波の信号光とTM波の制御光を入射する手段と、当該光導波路の入射端と出射端にそれぞれ配置され、ファブリペロー共振器を構成する2つの反射手段とを具備し、当該信号光に対する光透過率を当該制御光により制御可能であることを特徴とする。   An optical filter according to the present invention includes an optical waveguide that absorbs a TM wave by cross-subband transition and causes cross-phase modulation of the TE wave, and means that makes the TE wave signal light and TM wave control light enter the optical waveguide. The optical waveguide includes two reflecting means that are arranged at the entrance end and the exit end of the optical waveguide and constitute a Fabry-Perot resonator, and the light transmittance for the signal light can be controlled by the control light. And

本発明によれば、全光学的な手法で透過率又は透過特性を波長方向に高速に変更可能な光フィルタを実現できる。   According to the present invention, it is possible to realize an optical filter capable of changing the transmittance or the transmission characteristics at high speed in the wavelength direction by an all-optical method.

本発明の一実施例の斜視図を示す。1 shows a perspective view of one embodiment of the present invention. 本実施例の平面図を示す。The top view of a present Example is shown. 図1に示す実施例の厚み方向(x軸方向)の屈折率分布を示す。The refractive index distribution of the thickness direction (x-axis direction) of the Example shown in FIG. 1 is shown. 本実施例の透過特性の制御光による変化例を示す。An example of change of transmission characteristics of the present embodiment by control light is shown. 本実施例の透過特性の制御光による変化例を示す。An example of change of transmission characteristics of the present embodiment by control light is shown. 本実施例の透過特性の制御光による変化例を示す。An example of change of transmission characteristics of the present embodiment by control light is shown. 本実施例の透過特性の制御光による変化例を示す。An example of change of transmission characteristics of the present embodiment by control light is shown. 反射膜の反射率に対する最大光透過率の変化を示す。The change of the maximum light transmittance with respect to the reflectance of a reflecting film is shown. 反射率(R)×光導波路の透過率(A)に対する消光比Tmax/Tminの変化例を示す。A change example of the extinction ratio T max / T min with respect to the reflectance (R) × the transmittance (A) of the optical waveguide is shown. 信号光波長λs、制御光波長λc、反射膜の反射帯域の関係例を示す。An example of the relationship between the signal light wavelength λs, the control light wavelength λc, and the reflection band of the reflection film is shown. 信号光波長λs、制御光波長λc、反射膜の反射帯域の関係例を示す。An example of the relationship between the signal light wavelength λs, the control light wavelength λc, and the reflection band of the reflection film is shown. 信号光波長λs、制御光波長λc、反射膜の反射帯域の関係例を示す。An example of the relationship between the signal light wavelength λs, the control light wavelength λc, and the reflection band of the reflection film is shown. 信号光波長λs、制御光波長λc、反射膜の反射帯域の関係例を示す。An example of the relationship between the signal light wavelength λs, the control light wavelength λc, and the reflection band of the reflection film is shown.

以下、図面を参照して、本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の一実施例の斜視図を示し、図2は平面図を示す。図3は、図1に示す実施例の厚み方向(x軸方向)の屈折率分布を示す。図1乃至図3では、厚み方向をx軸とし、信号光の伝播方向をz軸としている。   FIG. 1 shows a perspective view of one embodiment of the present invention, and FIG. 2 shows a plan view. FIG. 3 shows a refractive index distribution in the thickness direction (x-axis direction) of the embodiment shown in FIG. In FIGS. 1 to 3, the thickness direction is the x-axis, and the propagation direction of the signal light is the z-axis.

本実施例の光フィルタ10は、基板11上に、光導波路18を構成する下部クラッディング層12、コア層14及び上部クラッディング層16を積層する。そして、面方向に平行な横幅方向で両側を基板11に至るまで切除した直線状のリッジ(ridge)あるいはメサ(messa)型光導波路18を形成する。リッジ(ridge)あるいはメサ(messa)型光導波路18は特に、量子井戸サブバンド間遷移光導波路構造からなる。   In the optical filter 10 of this embodiment, a lower cladding layer 12, a core layer 14, and an upper cladding layer 16 that constitute an optical waveguide 18 are laminated on a substrate 11. Then, a linear ridge or mesa type optical waveguide 18 is formed by cutting both sides to the substrate 11 in the width direction parallel to the surface direction. The ridge or messa type optical waveguide 18 particularly comprises a quantum well intersubband transition optical waveguide structure.

例えば、InGaAs/AlAs/AlAsSb結合量子井戸構造の場合で、基板11はInP結晶からなり、下部クラッディング層12は主にInPからなり、コア層14は、InGaAs/AlAs/AlAsSbの結合量子井戸構造からなり、上部クラッディング層16はInAlAsからなる。他には、InPと同様の格子を持ち、屈折率が自由に制御できるInGaAsPをInP基板上に成長させ、下部クラッディング層12を作ることが可能である。同様に上部クラッディング層16もInGaAsPで生成することができる。   For example, in the case of an InGaAs / AlAs / AlAsSb coupled quantum well structure, the substrate 11 is made of InP crystal, the lower cladding layer 12 is mainly made of InP, and the core layer 14 is an InGaAs / AlAs / AlAsSb coupled quantum well structure. The upper cladding layer 16 is made of InAlAs. In addition, it is possible to grow a lower cladding layer 12 by growing InGaAsP having a lattice similar to that of InP and capable of freely controlling the refractive index on an InP substrate. Similarly, the upper cladding layer 16 can be made of InGaAsP.

本実施例では、光導波路18の入射端面及び出射端面の反射率R,Rを上げたい場合又は互いに異ならせたい場合に、光導波路18の入射側に反射膜20を設け、出射側にも反射膜22を設ける。信号光(TE波)に対する反射膜20、22による反射率R,Rは同じである必要は無い。反射膜20、22で光導波路18の端面の反射率R,Rを上げるほど、本実施例の光フィルタ10は、共振特性の顕著なファブリペロー共振器となるが、入射効率及び出射効率が低下する。ファブリペロー共振により、波長に対して周期的な伝達特性又は光透過特性が得られる。その周期及び透過率の最大値・最小値は、ファブリペロー共振器で周知なように、光導波路18の入射端面及び出射端面の反射率R,R、並びに、光導波路18の伝播距離、実効屈折率(又は伝播定数)及び損失(α)に依存する。 In this embodiment, when the reflectances R 1 and R 2 of the incident end face and the exit end face of the optical waveguide 18 are desired to be increased or different from each other, a reflective film 20 is provided on the incident side of the optical waveguide 18 and is provided on the outgoing side. Also, a reflective film 22 is provided. The reflectivity R 1 and R 2 of the reflection films 20 and 22 for the signal light (TE wave) need not be the same. As the reflectances R 1 and R 2 of the end face of the optical waveguide 18 are increased by the reflection films 20 and 22, the optical filter 10 of this embodiment becomes a Fabry-Perot resonator having more remarkable resonance characteristics. Decreases. The Fabry-Perot resonance provides a periodic transmission characteristic or light transmission characteristic with respect to the wavelength. The maximum value and the minimum value of the period and the transmittance are the reflectances R 1 and R 2 of the incident end face and the exit end face of the optical waveguide 18, and the propagation distance of the optical waveguide 18, as is well known for Fabry-Perot resonators. Depends on the effective refractive index (or propagation constant) and loss (α).

量子井戸サブバンド間遷移導菠路は、TE波はそのまま透過するが、TM波を吸収することが知られている(非特許文献6)。また、TE偏波を持つ光(TE波)とそれと直交する偏波を持つTM波を同時に入射すると、TM波の光強度によってTE波の位相が変調されることが知られている(非特許文献2〜5)。しかも、通常のバンド間遷移による相互位相変調(XPM:Cross Phase Modulation)に比べ、サブバンド間遷移(ISBT:InterSubBand Transition)に基づく相互位相変調は極めて高速であり、キャリア緩和時間はピコ秒以下である。信号光をTE波とし、TM波を制御光とすることで、信号光を減衰させることなしに、サブバンド間遷移に基づき信号光の位相を制御できる。また、制御光の吸収によりコア層の屈折率が変化し、これも、ファブリペロー共振器の共振特性を波長方向でシフトさせる。   The quantum well intersubband transition waveguide is known to absorb the TM wave while transmitting the TE wave as it is (Non-patent Document 6). Further, it is known that when light having TE polarization (TE wave) and TM wave having a polarization orthogonal thereto are simultaneously incident, the phase of the TE wave is modulated by the light intensity of the TM wave (non-patent). Literature 2-5). Moreover, compared to the normal cross-phase modulation (XPM: Cross Phase Modulation), inter-phase modulation based on inter-subband transition (ISBT) is extremely fast, and the carrier relaxation time is less than picoseconds. is there. By using the signal light as the TE wave and the TM wave as the control light, the phase of the signal light can be controlled based on the intersubband transition without attenuating the signal light. Further, the refractive index of the core layer changes due to absorption of the control light, and this also shifts the resonance characteristics of the Fabry-Perot resonator in the wavelength direction.

本実施例では、これらの作用を利用し、制御光により信号光に対するファブリペロー共振器の共振特性を高速にチューニングすることを可能にする。すなわち、制御光の光強度により信号光の透過率を数GHzオーダーの高速で制御することを実現する。   In this embodiment, these functions are utilized, and the resonance characteristics of the Fabry-Perot resonator with respect to the signal light can be tuned at high speed by the control light. That is, it is possible to control the transmittance of the signal light at a high speed on the order of several GHz by the light intensity of the control light.

本実施例では、信号光(波長λs)は、TE波で光導波路18に入射され、光フィルタ10の伝播特性を制御する制御光(波長λc)が、TM波で光導波路18に入射される。信号光の波長λsと制御光の波長λcは等しくても、異なっても良い。光フィルタ10の入射側には、信号光と制御光を合波する偏光合波器24を配置し、光フィルタ10の出射側には、信号光と制御光を分離する偏光ビームスプリッタ26を配置する。すなわち、偏光合波器24は、信号光(TE波)28と制御光(TM波)30を合波し、その合波光を反射膜20を介して光導波路18(のコア層14)に入射する。偏光ビームスプリッタ26は、光導波路18(のコア層14)から出射される光を、信号光(TE波)32と制御光(TM波)34に分離する。制御光34を分離する必要が無ければ、偏光ビームスプリッタ26は不要になる。   In this embodiment, the signal light (wavelength λs) is incident on the optical waveguide 18 as a TE wave, and the control light (wavelength λc) for controlling the propagation characteristics of the optical filter 10 is incident on the optical waveguide 18 as a TM wave. . The wavelength λs of the signal light and the wavelength λc of the control light may be the same or different. A polarization multiplexer 24 that combines the signal light and the control light is disposed on the incident side of the optical filter 10, and a polarization beam splitter 26 that separates the signal light and the control light is disposed on the output side of the optical filter 10. To do. That is, the polarization multiplexer 24 combines the signal light (TE wave) 28 and the control light (TM wave) 30 and enters the combined light into the optical waveguide 18 (the core layer 14 thereof) via the reflection film 20. To do. The polarization beam splitter 26 separates the light emitted from the optical waveguide 18 (the core layer 14 thereof) into signal light (TE wave) 32 and control light (TM wave) 34. If it is not necessary to separate the control light 34, the polarization beam splitter 26 is not necessary.

信号光(TE波)28の波長λsと制御光(TM波)30の波長λcが異なる場合には、偏光ビームスプリッタ26の代わりに、信号光波長λsとを透過し、制御光波長λcを減衰する光減衰器を使うことが出来る。また、光導波路18の伝播により制御光が十分に減衰する場合には、偏光ビームスプリッタ26又は光減衰器のような、信号光32を抽出する、又は制御光を除去する光学素子は不要になる。   When the wavelength λs of the signal light (TE wave) 28 and the wavelength λc of the control light (TM wave) 30 are different, the signal light wavelength λs is transmitted instead of the polarization beam splitter 26, and the control light wavelength λc is attenuated. An optical attenuator can be used. Further, when the control light is sufficiently attenuated by the propagation of the optical waveguide 18, an optical element that extracts the signal light 32 or removes the control light, such as the polarization beam splitter 26 or the optical attenuator, is unnecessary. .

図2に明瞭に図示されるように、本実施例では、光導波路18の入射側及び出射側での光結合効率を改善するために、横幅をテーパ部18a,18bを設けている。勿論、このようなテーパ部18a,18bを設けなくても、即ち、光導波路を入射側から出射側まで一定横幅のものとしても、TM波によるチューニングの可能な後述する光フィルタ特性を実現することは可能である。   As clearly shown in FIG. 2, in this embodiment, in order to improve the optical coupling efficiency on the incident side and the emission side of the optical waveguide 18, tapered portions 18 a and 18 b are provided with a lateral width. Of course, the optical filter characteristics described later that can be tuned by the TM wave can be realized without providing such tapered portions 18a and 18b, that is, even if the optical waveguide has a constant width from the incident side to the output side. Is possible.

光導波路18の入射端面及び出射端面の反射率をそれぞれR,Rをした場合、光フィルタ10の透過率Tは、出射信号光の光強度IOUTと入射信号光の光強度IINの比で定義され、

Figure 0005164897
となる。ここで、光導波路18のコア層14の屈折率、αは光導波路18の減衰率、Aは光導波路18の透過率exp(−αL)である。また、δは、往復の位相シフト量であり、4πnL/λで与えられる。 When the reflectances of the incident end face and the outgoing end face of the optical waveguide 18 are R 1 and R 2 , respectively, the transmittance T of the optical filter 10 is the light intensity I OUT of the outgoing signal light and the light intensity I IN of the incoming signal light. Defined by the ratio,
Figure 0005164897
It becomes. Here, the refractive index of the core layer 14 of the optical waveguide 18, α is the attenuation factor of the optical waveguide 18, and A is the transmittance exp (−αL) of the optical waveguide 18. Further, δ is a reciprocal phase shift amount and is given by 4πnL / λ.

また、光導菠路18のフィネス(finesse)は、

Figure 0005164897
で与えられる。光フィルタ10の最大透過率Tmaxは、
Figure 0005164897
で与えられ、最大透過率Tmaxと最小透過率Tminの比は、
Figure 0005164897
で与えられる。 Also, the finesse of the light duct 18 is
Figure 0005164897
Given in. The maximum transmittance Tmax of the optical filter 10 is
Figure 0005164897
The ratio between the maximum transmittance Tmax and the minimum transmittance Tmin is given by
Figure 0005164897
Given in.

例えば、光導波路18の長さLを30μm、反射膜20,22の反射率R,Rを共に0.99、屈折率nを3.5、光導波路の損失Aを0.9とした場合、光フィルタ10のFSR(Free spectral Range)は1.4THz(=11nm)、消光率は25dBが得られる。 For example, the length L of the optical waveguide 18 is 30 μm, the reflectances R 1 and R 2 of the reflective films 20 and 22 are both 0.99, the refractive index n is 3.5, and the loss A of the optical waveguide is 0.9. In this case, the FSR (Free Spectral Range) of the optical filter 10 is 1.4 THz (= 11 nm), and the extinction rate is 25 dB.

図4乃至図7は、光フィルタ10の透過特性の制御光による変化例を示す。横軸は、波長を示し、縦軸は透過率を示す。実線で示す特性と破線で示す特性との間では、制御光(TM波)の光強度が異なり、制御光の光強度を変更することで、透過特性を長波長方向にシフトすることができる。破線で示す特性は、実線で示す特性に対して一往復の位相シフト量(δ)をπ/2に設定したときの特性を示す。   4 to 7 show examples of changes in the transmission characteristics of the optical filter 10 due to the control light. The horizontal axis indicates the wavelength, and the vertical axis indicates the transmittance. The light intensity of the control light (TM wave) is different between the characteristic indicated by the solid line and the characteristic indicated by the broken line, and the transmission characteristic can be shifted in the long wavelength direction by changing the light intensity of the control light. The characteristic indicated by the broken line indicates the characteristic when the one-reciprocal phase shift amount (δ) is set to π / 2 with respect to the characteristic indicated by the solid line.

図4は、光導波路18の入射端面及び出射端面の反射率R,Rを30%、光導波路18の透過率A(=exp(−αL))を0.8、コア層14の屈折率nを3.378、光導波路18の伝播距離Lを250μmとした場合の例を示す。コア層14の屈折率nを3.378の場合で、光導波路18の入射端面および出射端面にことさらに反射膜を付加せずに、フレネル反射のみとしたときには、光導波路18の端面の反射率30%程度になる。すなわち、図4に示す例は、反射膜20,22で反射率を上げない場合の透過特性を示す。 4 shows that the reflectances R 1 and R 2 of the incident end face and the outgoing end face of the optical waveguide 18 are 30%, the transmittance A (= exp (−αL)) of the optical waveguide 18 is 0.8, and the refraction of the core layer 14 is. An example in which the rate n is 3.378 and the propagation distance L of the optical waveguide 18 is 250 μm is shown. In the case where the refractive index n of the core layer 14 is 3.378 and only the Fresnel reflection is performed without adding a reflection film to the incident end face and the outgoing end face of the optical waveguide 18, the reflectance of the end face of the optical waveguide 18 is determined. It becomes about 30%. That is, the example shown in FIG. 4 shows the transmission characteristics when the reflection films 20 and 22 do not increase the reflectance.

図5は、反射膜20,22の反射率を85%、光導波路18の透過率A(=exp(−αL))を0.95、コア層14の屈折率を3.378、光導波路18の伝播距離Lを250μmとした場合の例を示す。図4に示す例に対して、反射膜20,22の反射率を上げつつ、光導波路18の透過率Aも上げている。   FIG. 5 shows that the reflectivity of the reflective films 20 and 22 is 85%, the transmittance A (= exp (−αL)) of the optical waveguide 18 is 0.95, the refractive index of the core layer 14 is 3.378, and the optical waveguide 18. An example in which the propagation distance L is set to 250 μm is shown. Compared with the example shown in FIG. 4, the transmittance A of the optical waveguide 18 is increased while increasing the reflectance of the reflective films 20 and 22.

図6は、反射膜20,22の反射率を85%、光導波路18の透過率A(=exp(−αL))を0.95、コア層14の屈折率を3.378、光導波路18の伝播距離Lを50μmとした場合の例を示す。図5に示す例に対して、伝播距離Lを短くしている。   FIG. 6 shows that the reflectivity of the reflective films 20 and 22 is 85%, the transmittance A (= exp (−αL)) of the optical waveguide 18 is 0.95, the refractive index of the core layer 14 is 3.378, and the optical waveguide 18. An example in which the propagation distance L is set to 50 μm is shown. The propagation distance L is shortened with respect to the example shown in FIG.

図7は、反射膜20,22の反射率を60%、光導波路18の透過率A(=exp(−αL))を0.95、コア層14の屈折率を3.378、光導波路18の伝播距離Lを50μmとした場合の例を示す。図6に示す例に対して、反射膜20,22の反射率を下げている。図6に比べて、光透過率のピーク値とボトム値があがり、谷部の湾曲が緩やかになる。   In FIG. 7, the reflectance of the reflective films 20 and 22 is 60%, the transmittance A (= exp (−αL)) of the optical waveguide 18 is 0.95, the refractive index of the core layer 14 is 3.378, and the optical waveguide 18. An example in which the propagation distance L is set to 50 μm is shown. Compared to the example shown in FIG. 6, the reflectance of the reflective films 20 and 22 is lowered. Compared to FIG. 6, the peak value and the bottom value of the light transmittance increase, and the curvature of the valley portion becomes gentle.

図8は、反射膜20,22の反射率に対する最大光透過率の変化を示す。横軸は、片面当たりの反射率を示し、縦軸は最大透過率Tmaxを示す。片道の損失が0.05dB(A=0.988)、0.1dB(A=0.977)、0.2dB(A=0.955)及び0.5dB(A=0.89)について、図示した。損失が少ないほど、光フィルタ10の最大透過率が高くなることが分かる。また、反射率が高くなるほど、最大透過率が小さくなるが、これは、反射膜20,22の反射率が高くなると、共振器内で信号光が往復する回数が多くなり、総合吸収が高くなるからである。制御光がゼロの状態で、信号光の波長に対して、ファブリペローフィルタの透過中心波長を合わせるか、または仕様に応じて特定のデチューニングを持たせることは、光導波路18の温度を制御することによって容易に実現できる。   FIG. 8 shows a change in the maximum light transmittance with respect to the reflectance of the reflective films 20 and 22. The horizontal axis represents the reflectance per one side, and the vertical axis represents the maximum transmittance Tmax. One-way loss is illustrated for 0.05 dB (A = 0.888), 0.1 dB (A = 0.777), 0.2 dB (A = 0.955) and 0.5 dB (A = 0.89). did. It can be seen that the smaller the loss, the higher the maximum transmittance of the optical filter 10. Further, the higher the reflectance, the smaller the maximum transmittance. However, when the reflectance of the reflection films 20 and 22 is increased, the number of times signal light reciprocates in the resonator increases, and the total absorption increases. Because. Matching the transmission center wavelength of the Fabry-Perot filter to the wavelength of the signal light in a state where the control light is zero, or having a specific detuning according to the specification controls the temperature of the optical waveguide 18. Can easily be realized.

図9は、数4において、反射率R,Rを互いに等しいとしたときの、反射率(R)×透過率(A)に対する消光比Tmax/Tminの変化を示す。横軸は、R×Aを示し、縦軸は消光比Tmax/Tminを示す。RとRが等しくない場合、横軸は(R1/2×Aを示す。 FIG. 9 shows the change of the extinction ratio T max / T min with respect to the reflectance (R) × the transmittance (A) when the reflectances R 1 and R 2 are equal to each other in the equation (4). The horizontal axis represents R × A, and the vertical axis represents the extinction ratio T max / T min . When R 1 and R 2 are not equal, the horizontal axis represents (R 1 R 2 ) 1/2 × A.

先に説明したように、TE波の信号光とTM波の制御光を光フィルタ10の光導波路18に同時に入射すると、制御光のサブバンド間遷移による相互位相変調により、ファブリペロー共振器の共振特性が変化する。ファブリーペロー共振器内を信号光が往復した場合の、制御光による相互位相変調量をφとすると、透過率τは、

Figure 0005164897
で与えられる。相互位相変調量φ自体は、光導菠路18の変調効率、制御光の光強度、および制御光がパルスの場合の光パルス幅等によって決定される。 As described above, when the TE wave signal light and the TM wave control light are simultaneously incident on the optical waveguide 18 of the optical filter 10, the resonance of the Fabry-Perot resonator is caused by the mutual phase modulation by the intersubband transition of the control light. The characteristic changes. If the amount of cross-phase modulation by the control light when the signal light reciprocates in the Fabry-Perot resonator is φ, the transmittance τ is
Figure 0005164897
Given in. The mutual phase modulation amount φ itself is determined by the modulation efficiency of the optical waveguide 18, the light intensity of the control light, the optical pulse width when the control light is a pulse, and the like.

光フィルタ10の透過波長を制御するには、制御光(波長λc)の光導波路18への入射端面の反射率が小さいことが望ましい。また、高フィネスを得るには、信号光に対して反射率を高くする必要である。   In order to control the transmission wavelength of the optical filter 10, it is desirable that the reflectance of the incident end face of the control light (wavelength λc) to the optical waveguide 18 is small. In order to obtain high finesse, it is necessary to increase the reflectance with respect to signal light.

光導波路18の透過率Aは零ではないので、図8に示すように、反射率が大きくなればなるほど、最大透過率Tmaxの値は、小さくなっていく。そこで、信号波長λsにおける反射率が必要に応じて最適になるように設計すればよい。   Since the transmittance A of the optical waveguide 18 is not zero, as shown in FIG. 8, the value of the maximum transmittance Tmax decreases as the reflectance increases. Therefore, it may be designed so that the reflectance at the signal wavelength λs is optimized as necessary.

図10〜図13は、信号光波長λs、制御光波長λc、反射膜20の反射帯域との関係を示す。何れの図も、横軸は波長を示し、縦軸は反射率を示す。図10は、信号光波長λsが反射膜20,22の反射帯域内にあり、制御光は長λcが、反射膜20,22の反射帯域の外の長波長側に位置する場合である。図11は、信号光波長λsが反射膜20,22の反射帯域内にあり、制御光は長λcが、反射膜20,22の反射帯域の外の短波長側に位置する場合である。図10及び図11に示す例では、制御光を効率よく光り導波路18に入れることが可能になり、比較的小さいパワーの制御光で光フィルタ10の透過特性を効率的にチューニングできる。   10 to 13 show the relationship between the signal light wavelength λs, the control light wavelength λc, and the reflection band of the reflective film 20. In any of the figures, the horizontal axis indicates the wavelength, and the vertical axis indicates the reflectance. FIG. 10 shows a case where the signal light wavelength λs is in the reflection band of the reflection films 20 and 22 and the control light has a length λc located on the long wavelength side outside the reflection bands of the reflection films 20 and 22. FIG. 11 shows the case where the signal light wavelength λs is in the reflection band of the reflection films 20 and 22 and the control light is located on the short wavelength side outside the reflection band of the reflection films 20 and 22. In the example shown in FIGS. 10 and 11, the control light can be efficiently put into the light waveguide 18, and the transmission characteristics of the optical filter 10 can be efficiently tuned with the control light having a relatively small power.

図12は、信号光波長λsと制御光波長λcのいずれも反射膜20の反射帯域内にあるが、信号光波長λsと制御光波長λcがわずかに異なる場合である。この場合には、制御光が光導波路18に入りやすくなるように、少なくとも入射側の反射膜20の反射率を、図12に示すように50〜60%と低くする。   FIG. 12 shows a case where the signal light wavelength λs and the control light wavelength λc are both within the reflection band of the reflective film 20, but the signal light wavelength λs and the control light wavelength λc are slightly different. In this case, at least the reflectance of the reflective film 20 on the incident side is lowered to 50 to 60% as shown in FIG. 12 so that the control light can easily enter the optical waveguide 18.

図13は、信号光波長λsと制御光波長λcのいずれも反射膜20,22の反射帯域内にあるが、信号光波長λsと制御光波長λcが等しい場合である。この例では、信号光と制御光を同じ光源の出力光から生成でき、用途によってはコストを低減できる。図12に示す例と同様に、制御光が光導波路18に入りやすくなるように、少なくとも入射側の反射膜20の反射率を50〜60%と低くする。   FIG. 13 shows a case where the signal light wavelength λs and the control light wavelength λc are both within the reflection band of the reflection films 20 and 22, but the signal light wavelength λs and the control light wavelength λc are equal. In this example, the signal light and the control light can be generated from the output light of the same light source, and the cost can be reduced depending on the application. Similar to the example shown in FIG. 12, at least the reflectance of the reflective film 20 on the incident side is lowered to 50 to 60% so that the control light easily enters the optical waveguide 18.

InGaAs/AlAs/AlAsSb結合量子井戸構造を有する光導波路を使ってファブリペロー共振器を構成したが、相互位相変調が可能な他の量子井戸構造の光導波路を使ってファブリペロー共振器を構成しても、同様の作用効果を得ることができる。   A Fabry-Perot resonator is configured using an optical waveguide having an InGaAs / AlAs / AlAsSb coupled quantum well structure, but a Fabry-Perot resonator is configured using an optical waveguide having another quantum well structure capable of mutual phase modulation. The same effect can be obtained.

本実施例では、信号光(TE波)に対する光導波路18の損失が少なく、電流供給が必要とされない。また、制御光(TM波)の吸収によるXPMは、短い長さ(数十ミクロン程度)で可能であることから、非常に短い素子(すなわち高いFSR)でも透過特性をチューニング可能である。非常に広い波長帯域(300nm以上)(文献3)でもXPMが可能であることもおおきなメリットである。   In the present embodiment, the loss of the optical waveguide 18 with respect to the signal light (TE wave) is small, and no current supply is required. Further, since XPM by absorption of control light (TM wave) can be performed with a short length (about several tens of microns), the transmission characteristics can be tuned even with a very short element (that is, a high FSR). It is a great merit that XPM is possible even in a very wide wavelength band (300 nm or more) (Reference 3).

サブバンド間遷移では、XPMはピコ秒オーダーの極めて早い速度で生じるので、数百GHzオーダーでのチューニングを実現できる。ISBT導波路では、XPM量Δは、
Δ=ηP(t)
で表される。P(t)は制御光のパワー瞬時値であり、ηは変調効率である(非特許文献3)。これから分かるように、波長チューニング量は、制御光の強度に線形的に比例するので、制御上便利である。
In the transition between subbands, XPM occurs at a very high speed on the order of picoseconds, so that tuning on the order of several hundred GHz can be realized. In an ISBT waveguide, the XPM amount Δ is
Δ = ηP (t)
It is represented by P (t) is the instantaneous power value of the control light, and η is the modulation efficiency (Non-Patent Document 3). As can be seen, the wavelength tuning amount is linearly proportional to the intensity of the control light, which is convenient for control.

光フィルタ10を使うことで、波長変換器、光スイッチ及び光演算装置等を実現できる。例えば、信号光を連続光(CW)とし、制御光をパルス光とした場合、制御光の搬送するパルスを信号光波長に変換する波長変換器として機能させることができる。また、信号光と制御光とが共にパルス光の場合、両パルスを光演算する光演算装置、又は、制御光により信号光をゲートする光スイッチを実現できる。なお、制御光がパルス光であるときには、チューニングの効果をあげるため、制御光のパルス幅をファブリペロー共振器の一往復時間に比べ、十分大きくする必要がある。   By using the optical filter 10, a wavelength converter, an optical switch, an optical arithmetic unit, and the like can be realized. For example, when the signal light is continuous light (CW) and the control light is pulsed light, it can function as a wavelength converter that converts a pulse carried by the control light into a signal light wavelength. Further, when both the signal light and the control light are pulsed light, it is possible to realize an optical arithmetic device that performs optical calculation of both pulses or an optical switch that gates the signal light by the control light. When the control light is pulsed light, it is necessary to make the pulse width of the control light sufficiently larger than the one round trip time of the Fabry-Perot resonator in order to increase the tuning effect.

光導波路18中の制御光による信号光の位相変調はピコ秒の極めて速い応答時間を持つことと、光導波路18の長さがわずか数百μmであることから、得られるファブリペローフィルタはGHzオーダー以上の繰り返し速度で制御が可能となる。   The phase modulation of the signal light by the control light in the optical waveguide 18 has a very fast response time of picoseconds, and the length of the optical waveguide 18 is only a few hundred μm, so the Fabry-Perot filter obtained is on the order of GHz. Control is possible at the above repetition rate.

特定の説明用の実施例を参照して本発明を説明したが、特許請求の範囲に規定される本発明の技術的範囲を逸脱しないで、上述の実施例に種々の変更・修整を施しうることは、本発明の属する分野の技術者にとって自明であり、このような変更・修整も本発明の技術的範囲に含まれる。   Although the invention has been described with reference to specific illustrative embodiments, various modifications and alterations may be made to the above-described embodiments without departing from the scope of the invention as defined in the claims. This is obvious to an engineer in the field to which the present invention belongs, and such changes and modifications are also included in the technical scope of the present invention.

10:光フィルタ
11:基板
12:下部クラッディング層
14:コア層
16:上部クラッディング層
18:光導波路
18a,18b:テーパー部
20,22:反射膜
24:偏光合波器
26:偏光ビームスプリッタ
28:入力信号光(TE波)
30:制御光(TM波)
32:出力信号光(TE波)
34:制御光(TM波)
10: Optical filter 11: Substrate 12: Lower cladding layer 14: Core layer 16: Upper cladding layer 18: Optical waveguides 18a, 18b: Tapered portions 20, 22: Reflection film 24: Polarization multiplexer 26: Polarization beam splitter 28: Input signal light (TE wave)
30: Control light (TM wave)
32: Output signal light (TE wave)
34: Control light (TM wave)

Claims (4)

サブバンド間遷移によりTM波を吸収しTE波に相互位相変調を起こす光導波路と、
当該光導波路にTE波の信号光とTM波の制御光を入射する手段と、
当該光導波路の入射端と出射端にそれぞれ配置され、ファブリペロー共振器を構成する2つの反射手段
とを具備し、当該信号光に対する光透過率を当該制御光により制御可能であることを特徴とする光フィルタ。
An optical waveguide that absorbs TM waves by intersubband transition and causes cross phase modulation to TE waves;
Means for injecting TE wave signal light and TM wave control light into the optical waveguide;
Characterized in that it comprises two reflecting means respectively arranged at the entrance end and the exit end of the optical waveguide and constitutes a Fabry-Perot resonator, and the light transmittance with respect to the signal light can be controlled by the control light. Light filter.
更に、当該光導波路の出力光から、当該信号光の成分を抽出する手段を具備することを特徴とする請求項1に記載の光フィルタ。   The optical filter according to claim 1, further comprising means for extracting a component of the signal light from the output light of the optical waveguide. 更に、当該光導波路の出力光から、当該制御光の成分を除去する手段を具備することを特徴とする請求項1に記載の光フィルタ。   2. The optical filter according to claim 1, further comprising means for removing a component of the control light from the output light of the optical waveguide. 当該制御光の波長が、当該2つの反射手段の内の、当該信号光が入射する側に位置する反射手段の反射帯域の外に位置することを特徴とする請求項1乃至3の何れか1項に記載の光フィルタ。   4. The control light according to claim 1, wherein the wavelength of the control light is located outside the reflection band of the reflection means positioned on the signal light incident side of the two reflection means. 5. The optical filter according to item.
JP2009059236A 2009-03-12 2009-03-12 Optical filter Expired - Fee Related JP5164897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059236A JP5164897B2 (en) 2009-03-12 2009-03-12 Optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059236A JP5164897B2 (en) 2009-03-12 2009-03-12 Optical filter

Publications (2)

Publication Number Publication Date
JP2010211099A JP2010211099A (en) 2010-09-24
JP5164897B2 true JP5164897B2 (en) 2013-03-21

Family

ID=42971309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059236A Expired - Fee Related JP5164897B2 (en) 2009-03-12 2009-03-12 Optical filter

Country Status (1)

Country Link
JP (1) JP5164897B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581772A1 (en) * 2011-10-14 2013-04-17 Astrium Limited A spectrometer
JP2017520791A (en) * 2014-06-16 2017-07-27 ユニバーシティ オブ コペンハーゲン Efficient spin photon interface using a projecting plane-symmetric waveguide
CN104570541A (en) * 2015-01-15 2015-04-29 苏州旭创科技有限公司 Electro-optical modulator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455575B2 (en) * 1994-03-14 2003-10-14 株式会社東芝 Optical semiconductor device
JP3566365B2 (en) * 1994-12-26 2004-09-15 株式会社東芝 Optical semiconductor device
JP3503858B2 (en) * 1996-12-11 2004-03-08 日本電信電話株式会社 Waveguide type optical-optical switch
JP2007134401A (en) * 2005-11-08 2007-05-31 Toshiba Corp Optical gate filter, optical integrated circuit and pulse laser equipment
JP4911404B2 (en) * 2006-08-25 2012-04-04 独立行政法人産業技術総合研究所 Optical signal processing circuit

Also Published As

Publication number Publication date
JP2010211099A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US8559470B2 (en) Method and system for hybrid integration of a tunable laser and a phase modulator
JP5206187B2 (en) Optical semiconductor device
KR100326582B1 (en) Optical device with waveguide with nonlinear optical characteristics
Kocaman et al. Observations of temporal group delays in slow-light multiple coupled photonic crystal cavities
Ku et al. Slow light in semiconductor heterostructures
CA2843546C (en) Wave vector matched resonator and bus waveguide system
CN115173215A (en) High-repetition-frequency broad-spectrum femtosecond pulse generating device based on-chip Kerr optical microcavity
JP5164897B2 (en) Optical filter
Cocorullo et al. New possibilities for efficient silicon integrated electro-optical modulators
Abaeiani et al. Design and analysis of resonant cavity enhanced-waveguide photodetectors for microwave photonics applications
CN116544780A (en) High-performance tunable semiconductor laser based on silicon nitride external cavity
Zalevsky Integrated micro-and nanophotonic dynamic devices: a review
Yoffe et al. Efficient compact tunable laser for access networks using silicon ring resonators
Glesk et al. Picosecond all-optical switching using nonlinear Mach–Zehnder with silicon subwavelength grating and photonic wire arms
US4497535A (en) Optical pulse generator
Perron et al. All-optical switching in SU-8 conductor-gap-dielectric plasmonic microring resonator using thermal nonlinearity
Rong et al. Recent development on silicon-based Raman lasers and amplifiers
Hurtado et al. All-optical Light Control in Dielectric Bilayer Optical Surfaces via Optomechanical Interaction
Guo et al. III-V/Si hybrid external-cavity laser utilizing TM mode in the passive photonic circuit
Wu et al. Ultra low threshold optical power limiter based on a silicon photonic crystal cavity
Akimoto et al. Monolithically integrated ultrafast all-optical switch consisting of intersubband optical nonlinear waveguide and Michelson interferometer
Guina et al. Saturable absorber intensity modulator
Wang et al. InGaAsP/InP based Q-modulated slotted Fabry-Perot laser employing lossy half-wave trenches
Xiao et al. Two-photon absorption induced thermal-optic effect in high-Q silicon microring resonators
Kanetake et al. Nonlinear optical properties of an InGaAs/InAlAs multiple quantum well waveguide with pulsed excitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees