JP5164733B2 - Optical semiconductor device and manufacturing method thereof - Google Patents

Optical semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5164733B2
JP5164733B2 JP2008207164A JP2008207164A JP5164733B2 JP 5164733 B2 JP5164733 B2 JP 5164733B2 JP 2008207164 A JP2008207164 A JP 2008207164A JP 2008207164 A JP2008207164 A JP 2008207164A JP 5164733 B2 JP5164733 B2 JP 5164733B2
Authority
JP
Japan
Prior art keywords
light
resin layer
receiving element
emitting element
cylindrical hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008207164A
Other languages
Japanese (ja)
Other versions
JP2010045108A (en
Inventor
直司 出村
治朗 府川
文雄 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2008207164A priority Critical patent/JP5164733B2/en
Publication of JP2010045108A publication Critical patent/JP2010045108A/en
Application granted granted Critical
Publication of JP5164733B2 publication Critical patent/JP5164733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Landscapes

  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)

Description

本発明は、発光素子と受光素子とが、その発光面および受光面を同じ方向に向けて並べて配置され、発光素子から放射された光が対象物で反射して受光素子により検出することにより、対象物を検出する光半導体装置およびその製造方法に関する。さらに詳しくは、たとえば光半導体装置の上面から対象物までの距離が3mm以上と離れた距離でも、正確に対象物のパターンを読み取ることができ、しかも発光素子および受光素子を封止するのにモールド成形によらないで形成することができ、多品種少量生産に適した非常に小型の光半導体装置の構造およびその製造方法に関する。   In the present invention, the light emitting element and the light receiving element are arranged with the light emitting surface and the light receiving surface aligned in the same direction, and the light emitted from the light emitting element is reflected by the object and detected by the light receiving element, The present invention relates to an optical semiconductor device for detecting an object and a method for manufacturing the same. More specifically, for example, even when the distance from the upper surface of the optical semiconductor device to the target is 3 mm or more, the pattern of the target can be read accurately, and the mold is used to seal the light emitting element and the light receiving element. The present invention relates to a structure of a very small optical semiconductor device that can be formed without molding and is suitable for small-lot production of various products, and a method for manufacturing the same.

従来の発光素子と受光素子とを同じ方向に向けて並べて配置し、発光素子から反射された光が対象物で反射して受光素子で検出するフォトリフレクタのような光半導体装置は、ある程度の量産をする場合、2重モールド方式で製造されている。すなわち、基板上に発光素子と受光素子とをダイボンディングし、ワイヤボンディングなどにより、発光素子および受光素子の各電極を基板上の電極端子(配線)と接続して透光性樹脂により1次モールドを行う。そして、発光素子および受光素子の発光面および受光面とする部分を除いて、発光素子および受光素子を被覆する透光性樹脂層の周囲を、再度遮光性樹脂によりモールド成形して(2次モールド)外部からの光や、対象物以外で反射する光が受光素子に入射しないように形成される。この際、高分解能を必要とされるフォトリフレクタは、発光素子の光が直接受光素子に到達しないように、その間に遮光壁を形成する構造が採用され、また、フォトリフレクタの上面から対象物までの距離が遠い場合には、発光素子および受光素子の表面側にレンズ部が形成されるように1次モールドがされている(たとえば特許文献1参照)。なお、1次モールドは、発光素子と受光素子とを1枚の基板上に搭載して同時にモールドしないで、発光素子および受光素子をそれぞれ別々にモールドして、その両方を遮光性樹脂により2次モールドすることもできる。
特開2006−38572号公報
An optical semiconductor device such as a photo reflector in which a conventional light emitting element and a light receiving element are arranged side by side in the same direction and the light reflected from the light emitting element is reflected by an object and detected by the light receiving element is produced to a certain extent. In the case of performing, the double mold method is used. That is, a light emitting element and a light receiving element are die-bonded on a substrate, and each electrode of the light emitting element and the light receiving element is connected to an electrode terminal (wiring) on the substrate by wire bonding or the like, and a primary mold is made of a translucent resin. I do. Then, except for the light emitting surface and the light receiving surface of the light emitting element and the light receiving element, the periphery of the translucent resin layer covering the light emitting element and the light receiving element is again molded with a light shielding resin (secondary mold). ) It is formed so that light from the outside or light reflected from other than the object does not enter the light receiving element. At this time, a photo reflector that requires high resolution employs a structure in which a light-shielding wall is formed between the light-emitting elements so that the light from the light-emitting elements does not directly reach the light-receiving elements. When the distance is long, primary molding is performed so that a lens portion is formed on the surface side of the light emitting element and the light receiving element (see, for example, Patent Document 1). In the primary mold, the light-emitting element and the light-receiving element are mounted on one substrate and not molded at the same time, but the light-emitting element and the light-receiving element are separately molded, and both of them are formed by a light-shielding resin. It can also be molded.
JP 2006-38572 A

前述のように、2重モールド方式で成形すると、1種類の製品に対して2種類のモールド用金型が必要となり、少品種で大量生産をする場合には、金型作製費を回収することができるが、多品種少量生産の場合には、金型費が嵩み、光半導体装置のコストアップになるという問題がある。   As described above, when molding with the double mold method, two types of mold dies are required for one type of product, and in the case of mass production with small varieties, the mold production cost must be recovered. However, in the case of high-mix low-volume production, there is a problem that the mold cost increases and the cost of the optical semiconductor device increases.

たとえば、ただ単に対象物の有無を検出するフォトリフレクタのような光半導体装置なら、光半導体装置を製造する場合に、発光素子と受光素子との位置関係などに関して、それほど精密さを必要としないが、カメラモジュールなどのズームレンズ移動距離の検出など高分解能を必要としたり、光半導体装置からの距離が比較的遠い対象物の有無などを正確に検出したりする光半導体装置では、ノイズの影響などを極力排除し、かつ、発光素子からの光で対象物により反射した光を確実に受光素子で受光することが非常に重要となり、ノイズなどが入らないように、さらには、遠い距離に焦点を結ぶようにレンズを形成するなど、相当精密に製造する必要がある。このような発光面および受光面にレンズを形成したり、精密さを必要としたりする高分解能の光半導体装置は、金型成形による2重モールド方式で製造することが望ましいが、使用用途により外形の大きさが若干異なったり、対象物までの最適な距離が異なったりするような場合、一々金型を変更しなければならず、前述のように2重モールドでは1つの製品に対して2つの金型を必要とするため、しかも金型費用は非常に高価であるため、多品種少量生産の場合には、2重モールド成形による製造は適しないという問題がある。   For example, an optical semiconductor device such as a photoreflector that simply detects the presence or absence of an object does not require so much precision regarding the positional relationship between the light emitting element and the light receiving element when manufacturing the optical semiconductor device. In optical semiconductor devices that require high resolution such as camera lens zoom lens movement distance detection or accurately detect the presence or absence of objects that are relatively far from the optical semiconductor device, the effects of noise, etc. It is very important to receive the light reflected from the object with the light from the light-emitting element as much as possible, and to receive the light with the light-receiving element. It is necessary to manufacture the lens with considerable precision, such as forming a lens so as to be tied. Such a high-resolution optical semiconductor device in which a lens is formed on the light-emitting surface and the light-receiving surface, or precision is required, is preferably manufactured by a double molding method by mold molding. If the size of the product is slightly different or the optimum distance to the object is different, the mold must be changed one by one. Since a mold is required and the cost of the mold is very high, there is a problem that the production by double molding is not suitable in the case of multi-product small-quantity production.

本発明は、このような問題を解決するためになされたもので、高分解能で、発光面および受光面にレンズを必要とするフォトリフレクタのような比較的長距離を正確に検出し得る高性能な光半導体装置を、金型を用いることなく簡単に製造することができる構造の光半導体装置およびその製造方法を提供することを目的とする。   The present invention has been made to solve such problems, and has high resolution and can detect a relatively long distance accurately such as a photo reflector that requires lenses on the light emitting surface and the light receiving surface. An object of the present invention is to provide an optical semiconductor device having a structure in which a simple optical semiconductor device can be easily manufactured without using a mold, and a method for manufacturing the same.

本発明による光半導体装置は、基板と、発光面および受光面が同じ方向を向くように、前記基板上に搭載される発光素子および受光素子と、前記発光素子および受光素子を被覆する透光性樹脂層と、該透光性樹脂層の外周および前記発光素子と受光素子との間に設けられる遮光性樹脂層とからなり、前記発光素子および受光素子の前記発光面上および受光面上の前記透光性樹脂層および前記遮光性樹脂層の一部を除去した円筒状穴を備え、該円筒状穴内に該円筒状穴の上面から突出しないようにレンズ部材が前記円筒状穴の底部に貼り付けられていることを特徴としている。   An optical semiconductor device according to the present invention includes a light emitting element and a light receiving element mounted on the substrate such that the light emitting surface and the light receiving surface are oriented in the same direction, and a light transmitting property that covers the light emitting element and the light receiving element. A resin layer, and an outer periphery of the translucent resin layer and a light-shielding resin layer provided between the light-emitting element and the light-receiving element, the light-emitting element and the light-receiving element on the light-emitting surface and the light-receiving surface A cylindrical hole is formed by removing a part of the light-transmitting resin layer and the light-shielding resin layer, and a lens member is attached to the bottom of the cylindrical hole so as not to protrude from the upper surface of the cylindrical hole in the cylindrical hole. It is characterized by being attached.

ここに発光素子および受光素子とは、半導体ウェハからチップ化したベアチップのものが一般的に用いられるが、チップ型素子などの素子の形にパッケージしたものでもよい。要は、光を発光し、または受光する状態に形成されたものであればよく、その外観の形状には制約されない。また、受光素子とは、フォトダイオード、フォトトランジスタなどの他、光を検出し得る素子であれば何でもよい意味である。   Here, as the light emitting element and the light receiving element, a bare chip formed from a semiconductor wafer is generally used, but it may be packaged in the form of an element such as a chip type element. In short, it is sufficient if it is formed so as to emit or receive light, and the shape of its appearance is not limited. The light receiving element means any element other than a photodiode and a phototransistor as long as it can detect light.

本発明による光半導体装置の製造方法は、集合基板上に発光素子および受光素子の組を複数組搭載すると共に、該発光素子および受光素子の電極を前記集合基板上の電極端子と接続し、前記複数組の発光素子および受光素子を一体に被覆するように透光性樹脂層で封止し、前記発光素子および受光素子の組のそれぞれの前記発光素子と前記受光素子との間、および前記発光素子および受光素子の各組の境界部における前記透光性樹脂層に前記基板に達する溝を形成し、該溝内を含め前記透光性樹脂の周囲を被覆するように遮光性樹脂層で被覆し、前記発光素子および受光素子の発光面および受光面の上の前記遮光性樹脂層および前記透光性樹脂層を円筒状に切削除去することにより円筒状穴を形成し、該円筒状穴の底面にレンズ部材を貼り付け、その後前記発光素子および受光素子の各組の境界部の前記遮光性樹脂層を、該各組の側壁に前記遮光性樹脂層が残存するように切断することにより個片化することを特徴としている。   A method of manufacturing an optical semiconductor device according to the present invention includes mounting a plurality of sets of light emitting elements and light receiving elements on a collective substrate, connecting electrodes of the light emitting elements and light receiving elements to electrode terminals on the collective substrate, A plurality of sets of light emitting elements and light receiving elements are sealed with a translucent resin layer so as to integrally cover the light emitting elements and the light receiving elements, and between the light emitting elements and the light receiving elements, and the light emission A groove reaching the substrate is formed in the translucent resin layer at the boundary between each pair of the element and the light receiving element, and the light-transmitting resin layer is covered so as to cover the periphery of the translucent resin including the inside of the groove A cylindrical hole is formed by cutting and removing the light-shielding resin layer and the light-transmitting resin layer on the light-emitting surface and the light-receiving surface of the light-emitting element and the light-receiving element into a cylindrical shape, Attaching a lens member to the bottom Then, the light-shielding resin layer at the boundary portion of each set of the light-emitting element and the light-receiving element is separated into pieces by cutting so that the light-shielding resin layer remains on the side wall of each set. Yes.

ここに集合基板とは、複数組の発光素子および受光素子の組を同時に形成し得る大きな基板を意味する。また、電極端子とは、発光素子および受光素子の電極(パッケージで被覆されている場合にはリードを含む)を中継する部分を意味し、配線などを含む意味である。   Here, the collective substrate means a large substrate on which a plurality of sets of light emitting elements and light receiving elements can be formed simultaneously. The electrode terminal means a portion that relays the electrodes of the light emitting element and the light receiving element (including a lead when covered with a package), and includes a wiring and the like.

本発明の光半導体装置によれば、発光素子と受光素子とが、その間に遮光性樹脂層を挟んで透光性樹脂層により封止され、その透光性樹脂層の発光面および受光面上に円筒状穴が形成され、その円筒状穴の底部にレンズ部材が貼り付けられた構造になっているため、発光素子と受光素子とは光学的に完全に分離されており、発光面上の円筒状穴から上方に向かって出た光で、対象物により反射して受光素子に至る光のみが検出され、非常にノイズの侵入を抑制することができる。さらに、発光素子からの光は、レンズ効果により所定の寸法の位置に集光され、この種の光半導体装置としては光半導体装置の表面から対象物までの距離が比較的長い3mm程度以上の距離の所でも、対象物との距離を非常に正確に検出することができる。また、発光素子と受光素子との間には遮光性樹脂層が挟まれるように形成されると共に、発光面および受光面上に形成される円筒状穴内にレンズ部材を貼り付ける構造にしているため、2重モールドは勿論、一度のモールド成形をすることなく製造することができ、非常に安価に得ることができる。   According to the optical semiconductor device of the present invention, the light-emitting element and the light-receiving element are sealed with the light-transmitting resin layer with the light-blocking resin layer interposed therebetween, and the light-emitting surface and the light-receiving surface of the light-transmitting resin layer A cylindrical hole is formed on the bottom of the cylindrical hole, and a lens member is attached to the bottom of the cylindrical hole. Therefore, the light emitting element and the light receiving element are completely separated from each other optically. Only light that has been emitted upward from the cylindrical hole and reflected by the object to reach the light receiving element is detected, and noise intrusion can be extremely suppressed. Furthermore, the light from the light emitting element is condensed at a position of a predetermined size by the lens effect, and for this type of optical semiconductor device, the distance from the surface of the optical semiconductor device to the object is relatively long, about 3 mm or more. Even in this case, the distance to the object can be detected very accurately. In addition, a light-shielding resin layer is formed between the light-emitting element and the light-receiving element, and a lens member is attached in a cylindrical hole formed on the light-emitting surface and the light-receiving surface. Of course, the double mold can be manufactured without performing molding once, and can be obtained at a very low cost.

さらに、本発明による光半導体装置の製造方法によれば、発光素子および受光素子を集合基板上に搭載(ダイボンディング)して、その電極を集合基板に形成された電極端子(配線)などと接続した後に、透光性樹脂で全体を一体に封止してから、発光素子および受光素子の間および1組の発光素子および受光素子の周辺の透光性樹脂層に溝を形成し、その溝を含めて遮光性樹脂層で被覆した後に、発光面および受光面上に円筒状穴を形成してレンズ部材を円筒状穴の底部に貼り付けているため、一切金型の成形による封止を必要とすることがなく、樹脂の流し込みと研削だけで非常に精密な光半導体装置を得ることができる。その結果、ユーザによる仕様変更にも直ちに対応することができると共に、多品種少量の生産でも、非常に安価に、かつ、短期間で製造することができる。   Further, according to the method for manufacturing an optical semiconductor device according to the present invention, the light emitting element and the light receiving element are mounted on the collective substrate (die bonding), and the electrode is connected to the electrode terminal (wiring) formed on the collective substrate. Then, after the whole is integrally sealed with a translucent resin, grooves are formed in the translucent resin layer between the light emitting element and the light receiving element and around the pair of light emitting elements and the light receiving element. After covering with a light-shielding resin layer, a cylindrical hole is formed on the light emitting surface and the light receiving surface, and the lens member is attached to the bottom of the cylindrical hole. A very precise optical semiconductor device can be obtained only by pouring and grinding the resin without any need. As a result, it is possible to immediately cope with a specification change by the user, and it is possible to manufacture a variety of products in a small amount and in a short period of time even in the production of small quantities.

つぎに、図面を参照しながら本発明の光半導体装置およびその製造方法について説明する。図1は、本発明による光半導体装置の一実施形態を示す全体の斜視説明図および破断斜視説明図を示す図で、基板1上に、発光面2aおよび受光面3aが同じ方向を向くように、発光素子2および受光素子3が搭載されており、発光素子2および受光素子3の間に遮光性樹脂層6aが介在されるように、発光素子2および受光素子3を被覆する透光性樹脂層5が設けられ、その透光性樹脂層5の外周に遮光性樹脂層6が設けられている。そして、発光素子2および受光素子3の発光面2a上および受光面3a上の透光性樹脂層5および遮光性樹脂層6に円筒状穴8が形成され、その円筒状穴8内に円筒状穴8から外に突出しないようにレンズ部材7が円筒状穴8の底部に貼り付けられている。   Next, an optical semiconductor device and a manufacturing method thereof according to the present invention will be described with reference to the drawings. FIG. 1 is an overall perspective explanatory view and a broken perspective explanatory view showing an embodiment of an optical semiconductor device according to the present invention, with a light emitting surface 2a and a light receiving surface 3a facing the same direction on a substrate 1. The light-emitting element 2 and the light-receiving element 3 are mounted, and the light-transmitting resin that covers the light-emitting element 2 and the light-receiving element 3 so that the light-shielding resin layer 6 a is interposed between the light-emitting element 2 and the light-receiving element 3. A layer 5 is provided, and a light-shielding resin layer 6 is provided on the outer periphery of the translucent resin layer 5. A cylindrical hole 8 is formed in the light-transmitting resin layer 5 and the light-shielding resin layer 6 on the light-emitting surface 2 a and the light-receiving surface 3 a of the light-emitting element 2 and the light-receiving element 3, and a cylindrical shape is formed in the cylindrical hole 8. The lens member 7 is attached to the bottom of the cylindrical hole 8 so as not to protrude outward from the hole 8.

基板1は、たとえば有機基板からなり、発光素子2や受光素子3の電極(パッケージで被覆されている場合には、素子の電極端子やリード)と接続する電極端子または配線(外部回路と接続する電極端子や配線)が形成されており、製造段階では、複数個の発光素子2および受光素子3の組を纏めて製造するための大きな基板(集合基板)が用いられる。   The substrate 1 is made of, for example, an organic substrate, and is connected to an electrode terminal or wiring (connected to an external circuit) connected to an electrode of the light emitting element 2 or the light receiving element 3 (in the case of being covered with a package, an electrode terminal or lead of the element). In the manufacturing stage, a large substrate (collected substrate) for collectively manufacturing a set of a plurality of light emitting elements 2 and light receiving elements 3 is used.

発光素子2は、たとえば赤外光や赤色光を発光するLEDなどが用いられる。また、受光素子3は、たとえばフォトトランジスタやフォトダイオードなどを用いることができるが、光を検出することができるものであれば何でもよい。たとえば発光素子2としてLEDのベアチップを用いると、その大きさは、0.25mm角程度で、受光素子として、フォトトランジスタのベアチップを用いると、その大きさは、0.6mm角程度である。この発光素子2および受光素子3は、その一対の電極が、図示しない基板1上の電極端子(配線)と、ワイヤ4(図3参照)や図示しない導電性接着剤などを介して接続されている。   The light emitting element 2 is, for example, an LED that emits infrared light or red light. Further, for example, a phototransistor or a photodiode can be used as the light receiving element 3, but anything may be used as long as it can detect light. For example, when an LED bare chip is used as the light emitting element 2, the size is about 0.25 mm square, and when a phototransistor bare chip is used as the light receiving element, the size is about 0.6 mm square. A pair of electrodes of the light emitting element 2 and the light receiving element 3 are connected to an electrode terminal (wiring) on a substrate 1 (not shown) via a wire 4 (see FIG. 3) or a conductive adhesive (not shown). Yes.

透光性樹脂層5は、たとえばエポキシ樹脂などの発光素子2で発光する光を透過させる樹脂で、発光素子2、受光素子3およびワイヤ4などを被覆して保護するように形成されている。この透光性樹脂層5は、製造方法を後述するように、大きな集合基板の上に複数組の発光素子2および受光素子3の組を並べて搭載し、その集合基板の周囲にダムを形成しておいて、透光性樹脂を流し込むことにより形成される。そのため、モールド成形する必要はなく、ただ集合基板上に透光性樹脂を流し込むだけで上面は平坦に形成することができる。この透光性樹脂層5には、発光素子2と受光素子3との間、および発光素子と受光素子の各組の周囲に、遮光溝5aおよび分離溝5b(図3(c)参照、分離溝5bは透光性樹脂層5の四方の側壁部)が形成されており、その遮光溝5aおよび分離溝5b内に遮光性樹脂層6が充填されている。遮光性樹脂層6は、たとえばエポキシ樹脂に、カーボンブラックのような光を遮断する粉末などを混入したものを用いることができる。   The translucent resin layer 5 is a resin that transmits light emitted from the light emitting element 2 such as an epoxy resin, and is formed so as to cover and protect the light emitting element 2, the light receiving element 3, the wire 4, and the like. The translucent resin layer 5 includes a plurality of sets of light emitting elements 2 and light receiving elements 3 arranged side by side on a large collective substrate, and a dam is formed around the collective substrate, as will be described later. It is formed by pouring translucent resin. Therefore, it is not necessary to mold, and the upper surface can be formed flat simply by pouring translucent resin onto the aggregate substrate. The translucent resin layer 5 includes a light shielding groove 5a and a separation groove 5b (see FIG. 3C, separation between the light emitting element 2 and the light receiving element 3 and around each set of the light emitting element and the light receiving element. The groove 5b is formed with four side walls of the translucent resin layer 5, and the light shielding resin layer 6 is filled in the light shielding groove 5a and the separation groove 5b. As the light-shielding resin layer 6, for example, an epoxy resin mixed with a powder such as carbon black that blocks light can be used.

この遮光性樹脂層6および透光性樹脂層5の一部が切削されて除去されることにより、発光素子2および受光素子3の発光面2aおよび受光面3a上に円筒状穴8が形成されている。この円筒状穴8は、後述する製造方法で示すように、たとえばフラットエンドミル10(図3(e)参照)などの切削工具で切削することにより、所定の深さまで正確に切削することができる。この円筒状穴8の径は、後述するレンズ部材7の径とほぼ一致する大きさ、たとえば1mm程度に形成され、その深さは、透光性樹脂層5に達すると共に、レンズ部材7の頂部が円筒状穴8から外に突出しない深さ、たとえば上面から0.6mm程度の深さになるように形成されている。この場合、円筒状穴8の底面から基板1の裏面までの厚さは0.8mm程度になる。   A part of the light-shielding resin layer 6 and the light-transmitting resin layer 5 is cut and removed, so that a cylindrical hole 8 is formed on the light-emitting surface 2 a and the light-receiving surface 3 a of the light-emitting element 2 and the light-receiving element 3. ing. The cylindrical hole 8 can be accurately cut to a predetermined depth by cutting with a cutting tool such as a flat end mill 10 (see FIG. 3 (e)), as shown in the manufacturing method described later. The diameter of the cylindrical hole 8 is formed so as to be approximately the same as the diameter of the lens member 7 described later, for example, about 1 mm. The depth reaches the translucent resin layer 5 and the top of the lens member 7. Is formed so as not to protrude outward from the cylindrical hole 8, for example, about 0.6 mm deep from the upper surface. In this case, the thickness from the bottom surface of the cylindrical hole 8 to the back surface of the substrate 1 is about 0.8 mm.

レンズ部材7は、紫外線硬化性樹脂やエポキシ樹脂などにより、表面が球面状で凸型形状に形成されたものからなり、たとえばレンズ部材7の外径が0.96mm程度で、その高さが0.48mm程度に形成され、前述の円筒状穴8の底部に紫外線硬化性樹脂などにより貼り付けられている。   The lens member 7 is made of an ultraviolet curable resin, an epoxy resin, or the like and has a spherical surface and a convex shape. For example, the lens member 7 has an outer diameter of about 0.96 mm and a height of 0. It is formed to have a thickness of about .48 mm and is attached to the bottom of the cylindrical hole 8 with an ultraviolet curable resin or the like.

このようにして形成した本発明の光半導体装置の上面から対象物までの距離を変えたときの出力電流を測定した結果、図2の(A)に示すように、4.5mm程度離した位置の対象物の検出出力が一番大きく、従来のレンズ部を有しないで、発光面および受光面の上部の遮光性樹脂のみを除去した構造(円筒状穴もなし)の光半導体装置と対比して、検出距離を遠くすることができると共に、対象物の距離が遠くなっても、検出出力が殆ど下がっていないことが分る。   As a result of measuring the output current when the distance from the upper surface of the optical semiconductor device of the present invention thus formed to the object was changed, as shown in FIG. Compared with an optical semiconductor device having the largest detection output of the object, having no lens part, and having only the light-shielding resin above the light-emitting surface and light-receiving surface removed (no cylindrical holes) Thus, it can be seen that the detection distance can be increased and the detection output is hardly lowered even when the distance of the object is increased.

つぎに、図1に示される構造の光半導体装置(フォトリフレクタ)の製造方法について、図3を参照しながら説明する。まず、図3(a)に示されるように、集合基板1上に、発光素子2および受光素子3の組を複数組搭載すると共に(図3では、1組のみが示されている)、その発光素子2および受光素子3の電極(図示せず)を集合基板1上の図示しない電極端子(配線)と接続する。この集合基板1は、前述のように、複数個のフォトリフレクタを纏めて製造するための大きな基板で、実際には、図4に概略図を示すように、集合基板1上に、マトリクス状に発光素子2および受光素子3の組を搭載(ダイボンディング)することにより、それぞれの一方の電極を集合基板1の配線などと接着剤により接続すると共に、それぞれの他方の電極を図示しない電極端子(配線)とワイヤ4をボンディングすることにより接続する。   Next, a method of manufacturing the optical semiconductor device (photo reflector) having the structure shown in FIG. 1 will be described with reference to FIG. First, as shown in FIG. 3A, a plurality of sets of light emitting elements 2 and light receiving elements 3 are mounted on the collective substrate 1 (only one set is shown in FIG. 3). Electrodes (not shown) of the light emitting element 2 and the light receiving element 3 are connected to electrode terminals (wiring) (not shown) on the collective substrate 1. As described above, the collective substrate 1 is a large substrate for manufacturing a plurality of photo reflectors together. In practice, the collective substrate 1 is arranged in a matrix on the collective substrate 1 as schematically shown in FIG. By mounting (die bonding) a set of the light emitting element 2 and the light receiving element 3, each one electrode is connected to the wiring of the collective substrate 1 by an adhesive, and each other electrode is connected to an electrode terminal (not shown). Wiring) and wire 4 are connected by bonding.

つぎに、図3(b)に示すように、発光素子2、受光素子3およびワイヤ4の部分を透光性樹脂層5により被覆する。この透光性樹脂層5は図4に示すように、集合基板1の周囲に、たとえば1.5mm程度の高さのダム9を形成し、透光性樹脂を流し込むことにより、ほぼダム9の高さで平らになり、透光性樹脂層5が形成される。   Next, as shown in FIG. 3B, the light emitting element 2, the light receiving element 3, and the wire 4 are covered with a translucent resin layer 5. As shown in FIG. 4, the translucent resin layer 5 has a dam 9 having a height of about 1.5 mm, for example, around the collective substrate 1. It becomes flat in height and the translucent resin layer 5 is formed.

つぎに、図3(c)に示すように、発光素子2および受光素子3の間、および図3(c)には符号のみしか図示されていないが、発光素子2および受光素子3の1組の周囲(図4に示される発光素子2および受光素子3の各組の境界部、すなわち個片化のため切断するラインSの部分)における透光性樹脂層5に基板1に達する遮光溝5a、および分離溝5bを形成する。発光素子2と受光素子3との間の溝、すなわち遮光溝5aは、発光素子2と受光素子3との間に遮光壁を形成するための溝で、0.4mm程度の幅に形成し、素子周囲の溝、すなわち分離溝5bは、個片化のための切断により削られる厚さと、切断後に各光半導体装置の周囲に溝内に埋め込んだ遮光性樹脂層6が残存するような幅、すなわち0.3〜0.6mm程度の幅に形成する。この遮光溝5aおよび分離溝5bの深さは、集合基板1の厚さの半分ぐらいまで達するように深く形成する。   Next, as shown in FIG. 3C, only a reference numeral is shown between the light emitting element 2 and the light receiving element 3 and in FIG. 3C, but one set of the light emitting element 2 and the light receiving element 3 , A light shielding groove 5a that reaches the substrate 1 in the translucent resin layer 5 in the periphery of the light emitting element 2 and the light receiving element 3 shown in FIG. And a separation groove 5b. A groove between the light emitting element 2 and the light receiving element 3, that is, a light shielding groove 5a, is a groove for forming a light shielding wall between the light emitting element 2 and the light receiving element 3, and is formed with a width of about 0.4 mm. The groove around the element, that is, the separation groove 5b has a thickness that is cut by cutting for separation, and a width that leaves the light-shielding resin layer 6 embedded in the groove around each optical semiconductor device after cutting, That is, it is formed to have a width of about 0.3 to 0.6 mm. The light shielding grooves 5a and the separation grooves 5b are formed so deep that they reach about half the thickness of the collective substrate 1.

つぎに、図3(d)に示すように、遮光溝5aおよび分離溝5bの溝内を含め透光性樹脂層5の上面を被覆するように遮光性樹脂層6を形成する。この遮光性樹脂層6の形成も、図4に示す大きな集合基板1の状態で、ダム9の外周にさらに別の図示しないダムを形成し、前述の透光性樹脂層5と同様に、液状の遮光性樹脂を塗り込むことにより、溝内に流れ込み、その表面は平坦になる。また、図示しないダムは、透光性樹脂を塗り込む際に用いたダム9が、遮光溝5aや分離溝5bを形成する際に、切断されていること、透光性樹脂層5よりも若干高く遮光性樹脂層6を形成した方が、表面を平らにしやすいため、ダム9の外周に、そのダム9よりも若干(0.1〜0.2mm程度)高くなるように形成するのが好ましい。   Next, as shown in FIG. 3D, the light shielding resin layer 6 is formed so as to cover the upper surface of the light transmissive resin layer 5 including the inside of the light shielding grooves 5a and the separation grooves 5b. The light shielding resin layer 6 is also formed in the state of the large collective substrate 1 shown in FIG. 4 by forming another dam (not shown) on the outer periphery of the dam 9, and in the same manner as the light transmitting resin layer 5 described above. By coating the light-shielding resin, it flows into the groove and the surface becomes flat. Further, the dam (not shown) is slightly cut from the transmissive resin layer 5 in that the dam 9 used when applying the translucent resin is cut when the light shielding groove 5a and the separation groove 5b are formed. Since it is easier to flatten the surface when the high light-shielding resin layer 6 is formed, it is preferable to form the outer periphery of the dam 9 to be slightly higher (about 0.1 to 0.2 mm) than the dam 9. .

その後、図3(e)に示すように、発光素子2および受光素子3上の遮光性樹脂層6および透光性樹脂層5を、たとえば1mm程度の径で、0.6mm程度の深さになるようにエンドミル10を用いて研削し、円筒状穴8を形成する。この円筒状穴8の径および深さは、光半導体装置の使用目的に応じて、発光素子2および受光素子3の上にどの程度のレンズ部7を形成するかにより定まり、そのレンズ部7の大きさに応じて、そのレンズ部7の径とほぼ同じ径の大きさに形成する。この場合、その径は、エンドミルの太さを変えることにより自由に変更でき、また、深さは、エンドミル10の送り寸法により正確に制御することができる。   Thereafter, as shown in FIG. 3E, the light-shielding resin layer 6 and the light-transmitting resin layer 5 on the light-emitting element 2 and the light-receiving element 3 have a diameter of, for example, about 1 mm and a depth of about 0.6 mm. In this way, the cylindrical hole 8 is formed by grinding using the end mill 10. The diameter and depth of the cylindrical hole 8 are determined depending on how many lens portions 7 are formed on the light emitting element 2 and the light receiving element 3 in accordance with the purpose of use of the optical semiconductor device. Depending on the size, the lens portion 7 is formed to have the same size as the diameter. In this case, the diameter can be freely changed by changing the thickness of the end mill, and the depth can be accurately controlled by the feed dimension of the end mill 10.

その後、円筒状穴8の底面に紫外線硬化性樹脂などを塗り、別途製造したレンズ部7を、たとえば図示しないコレットなどにより吸着してこの円筒状穴8内に運び、押し付け、紫外線を照射することにより、容易に接着することができる。このレンズ部7の貼り付けを発光素子1の上および受光素子2の上に貼り付けることにより、図1に示す構造の光半導体装置(フォトリフレクタ)を得ることができる。   Thereafter, an ultraviolet curable resin or the like is applied to the bottom surface of the cylindrical hole 8, and the separately manufactured lens part 7 is adsorbed by, for example, a collet (not shown) and carried into the cylindrical hole 8, pressed, and irradiated with ultraviolet rays. Thus, it can be easily bonded. By attaching the lens portion 7 on the light emitting element 1 and the light receiving element 2, an optical semiconductor device (photo reflector) having the structure shown in FIG. 1 can be obtained.

以上のように、本発明によれば、発光素子および受光素子の正面側にレンズ部を有する光半導体装置でも、発光素子2および受光素子3を封止する透光性樹脂層5およびその周囲を被覆する遮光性樹脂層6に形成した円筒状穴8内にレンズ部を、その円筒状穴8の上面から突出しないように設けているため、製造工程が非常に簡単であると共に、発光素子2の光が直接受光素子3に到達することはなく、また、外乱光が直接受光素子3には到達しにくいことにより、非常にノイズが少なく、しかも遠方の対象物を感度よく検出することができる。   As described above, according to the present invention, even in the optical semiconductor device having the lens portion on the front side of the light emitting element and the light receiving element, the translucent resin layer 5 for sealing the light emitting element 2 and the light receiving element 3 and the periphery thereof are provided. Since the lens portion is provided in the cylindrical hole 8 formed in the light-shielding resin layer 6 to be coated so as not to protrude from the upper surface of the cylindrical hole 8, the manufacturing process is very simple and the light emitting element 2 is provided. Light does not reach the light receiving element 3 directly, and disturbance light does not easily reach the light receiving element 3, so that there is very little noise and a far object can be detected with high sensitivity. .

本発明による光半導体装置の一実施形態を示す斜視説明図である。It is a perspective view showing an embodiment of an optical semiconductor device according to the present invention. 図1の構造の光半導体装置による対象物までの距離と感度の特性を示す図であるIt is a figure which shows the distance to an object and the characteristic of a sensitivity by the optical semiconductor device of the structure of FIG. 図1に示される光半導体装置の製造方法を示す製造工程図である。FIG. 3 is a manufacturing process diagram illustrating a method of manufacturing the optical semiconductor device shown in FIG. 1. 図3に示す製造方法で、大きな集合基板により製造する説明図である。It is explanatory drawing manufactured with a big aggregate substrate with the manufacturing method shown in FIG.

符号の説明Explanation of symbols

1 集合基板
2 発光素子
3 受光素子
4 ワイヤ
5 透光性樹脂層
5a 遮光溝
5b 分離溝
6 遮光性樹脂層
7 レンズ部
8 円筒状穴
9 ダム
10 エンドミル
S 切断ライン
DESCRIPTION OF SYMBOLS 1 Collective substrate 2 Light emitting element 3 Light receiving element 4 Wire 5 Translucent resin layer 5a Light shielding groove 5b Separation groove 6 Light shielding resin layer 7 Lens part 8 Cylindrical hole 9 Dam
10 End mill S Cutting line

Claims (2)

基板と、発光面および受光面が同じ方向を向くように、前記基板上に搭載される発光素子および受光素子と、前記発光素子および受光素子を被覆する透光性樹脂層と、該透光性樹脂層の外周および前記発光素子と受光素子との間に設けられる遮光性樹脂層とからなり、前記発光素子および受光素子の前記発光面上および受光面上の前記透光性樹脂層および前記遮光性樹脂層の一部を除去した円筒状穴を備え、該円筒状穴内に該円筒状穴の上面から突出しないようにレンズ部材が前記円筒状穴の底部に貼り付けられていることを特徴とする光半導体装置。   A light-emitting element and a light-receiving element mounted on the substrate, a light-transmitting resin layer that covers the light-emitting element and the light-receiving element, and the light-transmitting property; An outer periphery of a resin layer and a light-blocking resin layer provided between the light-emitting element and the light-receiving element, the light-transmitting resin layer on the light-emitting surface and the light-receiving surface of the light-emitting element and the light-receiving element, and the light blocking A cylindrical hole from which a part of the functional resin layer is removed, and a lens member is attached to the bottom of the cylindrical hole so as not to protrude from the upper surface of the cylindrical hole in the cylindrical hole. An optical semiconductor device. 集合基板上に発光素子および受光素子の組を複数組搭載すると共に、該発光素子および受光素子の電極を前記集合基板上の電極端子と接続し、前記複数組の発光素子および受光素子を一体に被覆するように透光性樹脂層で封止し、前記発光素子および受光素子の組のそれぞれの前記発光素子と前記受光素子との間、および前記発光素子および受光素子の各組の境界部における前記透光性樹脂層に前記基板に達する溝を形成し、該溝内を含め前記透光性樹脂の周囲を被覆するように遮光性樹脂層で被覆し、前記発光素子および受光素子の発光面および受光面の上の前記遮光性樹脂層および前記透光性樹脂層を円筒状に切削除去することにより円筒状穴を形成し、該円筒状穴の底面にレンズ部材を貼り付け、その後前記発光素子および受光素子の各組の境界部の前記遮光性樹脂層を、該各組の側壁に前記遮光性樹脂層が残存するように切断することにより個片化することを特徴とする光半導体装置の製造方法。   A plurality of sets of light emitting elements and light receiving elements are mounted on the collective substrate, electrodes of the light emitting elements and light receiving elements are connected to electrode terminals on the collective substrate, and the plural sets of light emitting elements and light receiving elements are integrated. Sealing with a translucent resin layer so as to cover, between the light emitting element and the light receiving element of each set of the light emitting element and the light receiving element, and at the boundary of each set of the light emitting element and the light receiving element A groove reaching the substrate is formed in the translucent resin layer, and is covered with a light-shielding resin layer so as to cover the periphery of the translucent resin including the inside of the groove, and the light emitting surfaces of the light emitting element and the light receiving element Then, the light shielding resin layer and the light transmitting resin layer on the light receiving surface are cut and removed in a cylindrical shape to form a cylindrical hole, and a lens member is attached to the bottom surface of the cylindrical hole, and then the light emission Element and light receiving element The light-shielding resin layer set of boundaries, a method of manufacturing an optical semiconductor device in which the light-shielding resin layer on the respective pair of the side walls is characterized in that singulation by cutting to remain.
JP2008207164A 2008-08-11 2008-08-11 Optical semiconductor device and manufacturing method thereof Active JP5164733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008207164A JP5164733B2 (en) 2008-08-11 2008-08-11 Optical semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008207164A JP5164733B2 (en) 2008-08-11 2008-08-11 Optical semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010045108A JP2010045108A (en) 2010-02-25
JP5164733B2 true JP5164733B2 (en) 2013-03-21

Family

ID=42016285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008207164A Active JP5164733B2 (en) 2008-08-11 2008-08-11 Optical semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5164733B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005370A1 (en) * 2010-07-07 2012-01-12 Sumitomo Electric Industries, Ltd. Optical module with a lens encapsulated within sealant and method for manufacturing the same
CN102971654B (en) 2010-07-07 2014-12-24 住友电气工业株式会社 Optical module with a lens encapsulated within sealant and method for manufacturing the same
US10921447B2 (en) 2018-01-29 2021-02-16 Rohm Co., Ltd. Control circuit of light emitting and receiving device
CN109164432A (en) * 2018-09-14 2019-01-08 Oppo广东移动通信有限公司 Depth obtaining module and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209490A (en) * 1997-01-17 1998-08-07 Sharp Corp Reflection-type optically coupled device
JPH11289105A (en) * 1998-04-03 1999-10-19 Citizen Electronics Co Ltd Photoreflector and manufacture thereof
JP2004193451A (en) * 2002-12-13 2004-07-08 Citizen Electronics Co Ltd Light emitting diode
JP4400786B2 (en) * 2004-06-11 2010-01-20 シチズン電子株式会社 Light emitting diode
JP4349978B2 (en) * 2004-06-17 2009-10-21 シチズン電子株式会社 Optical semiconductor package and manufacturing method thereof
JP2007305785A (en) * 2006-05-11 2007-11-22 Nichia Chem Ind Ltd Light emitting device

Also Published As

Publication number Publication date
JP2010045108A (en) 2010-02-25

Similar Documents

Publication Publication Date Title
TWI556422B (en) Image module package and manufacturing method thereof
TWI735538B (en) Optoelectronic module having dual encapsulation with opening for receiving an optical assembly
US9570648B2 (en) Wafer level optical proximity sensors and systems including wafer level optical proximity sensors
KR102123128B1 (en) Opto-electronic modules and methods of manufacturing the same
TWI458113B (en) Proximity sensor and its manufacturing method
TWI657603B (en) Semiconductor package device and method of manufacturing the same
TWI523242B (en) Optical sensor, optoelectronics devices and packaging method thereof
CN113161318A (en) Sensor package
TW201523912A (en) Compact optoelectronic modules
US20150330772A1 (en) Proximity Sensor Having a Daughterboard-Mounted Light Detector
US10043924B1 (en) Low cost optical sensor package
JP2014099468A (en) Semiconductor device manufacturing method and semiconductor device
JP5164733B2 (en) Optical semiconductor device and manufacturing method thereof
US9793427B1 (en) Air venting on proximity sensor
CN109962041A (en) Ambient light sensor with light protection
TWI578491B (en) Optical sensing device and manufacturing method for optical device
TW201816981A (en) Optoelectronic modules including optoelectronic device subassemblies and methods of manufacturing the same
TWI606571B (en) Optical sensing device
JP2017098571A (en) Light source-integrated optical sensor
KR101457500B1 (en) Proximity ambient light sensor and its manufacturing method
JP5255950B2 (en) Manufacturing method of optical semiconductor device
JP2005317878A (en) Photo-reflector device and its manufacturing method
TW201715253A (en) Optical module and manufacturing process thereof
JP6104624B2 (en) Semiconductor device manufacturing method and semiconductor device
TW201834224A (en) Optical sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250