JP5161414B2 - High strength magnesium alloy - Google Patents

High strength magnesium alloy Download PDF

Info

Publication number
JP5161414B2
JP5161414B2 JP2002566397A JP2002566397A JP5161414B2 JP 5161414 B2 JP5161414 B2 JP 5161414B2 JP 2002566397 A JP2002566397 A JP 2002566397A JP 2002566397 A JP2002566397 A JP 2002566397A JP 5161414 B2 JP5161414 B2 JP 5161414B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
alloy
strength
produced
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002566397A
Other languages
Japanese (ja)
Other versions
JPWO2002066696A1 (en
Inventor
能人 河村
明久 井上
Original Assignee
能人 河村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 能人 河村 filed Critical 能人 河村
Publication of JPWO2002066696A1 publication Critical patent/JPWO2002066696A1/en
Application granted granted Critical
Publication of JP5161414B2 publication Critical patent/JP5161414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、マグネシウム合金に関し、特に、微細結晶構造を有する高強度マグネシウム合金に関する。   The present invention relates to a magnesium alloy, and more particularly to a high-strength magnesium alloy having a fine crystal structure.

マグネシウム合金は、その軽量性に加えて比強度・比剛性に優れていることから軽量高強度材として注目されており、今後さらなる特性の向上を図ることが切望されている材料である。   Magnesium alloys are attracting attention as lightweight high-strength materials because they are superior in specific strength and specific rigidity in addition to their lightweight properties, and are a material that is desired to further improve their properties in the future.

さて、高強度の新しいマグネシウム合金を創製するためには、急速凝固法などの非平衡プロセスの適用が有効である。マグネシウム合金における急速凝固粉末冶金(RS P/M)法の適用例としては、ガスアトマイズ法により作製したアモルファス合金粉末の押出成形により作製したナノ結晶合金が報告されている。しかし、これらの材料は優れた引張り強度を示すが、伸びが小さいといった問題がある。一方、既存の合金組成に対してもRS P/M法は適用されているが、著しい強度の向上は達成されていない。   In order to create a new high strength magnesium alloy, it is effective to apply a non-equilibrium process such as rapid solidification. As an application example of the rapidly solidified powder metallurgy (RS P / M) method in a magnesium alloy, a nanocrystalline alloy produced by extrusion molding of an amorphous alloy powder produced by a gas atomizing method has been reported. However, these materials exhibit excellent tensile strength but have a problem of low elongation. On the other hand, although the RSP / M method is applied to the existing alloy composition, a significant improvement in strength has not been achieved.

本発明の目的は、優れた引張り強度と良好な延性を有する高強度マグネシウム合金を提供することである。
上記目的を達成するために、本発明は、一般式で、Mg(100−x−y)YxZny(1<x<5,0.3<y<6:x,yはいずれも原子%)の組成を有し、1マイクロメートル以下の微細結晶組織を有することを特徴とする高強度マグネシウム合金である。
また、本発明は、Mg24およびYZnを有し、他はhcp−Mgであり、それぞれが1マイクロメータ以下の微細結晶組織を有することを特徴とする高強度マグネシウム合金でもある。
これらの高強度マグネシウム合金において、液体から急速に凝固された粉末、薄帯又は細線を、せん断が付加されるように固化することで作製することができる。このようにして作製することにより、超塑性を発現することができる。
An object of the present invention is to provide a high strength magnesium alloy having excellent tensile strength and good ductility.
In order to achieve the above object, the present invention provides a general formula of Mg (100-xy) YxZny (1 <x <5, 0.3 <y <6: where x and y are atomic%). A high-strength magnesium alloy having a composition and a fine crystal structure of 1 micrometer or less.
The present invention is also a high-strength magnesium alloy having Mg 24 Y 5 and YZn, the other being hcp-Mg, each having a fine crystal structure of 1 micrometer or less.
In these high-strength magnesium alloys, powders, ribbons or fine wires rapidly solidified from a liquid can be produced by solidification so that shear is applied. Superplasticity can be expressed by producing in this way.

本発明の実施形態を、図面を参照して詳細に説明する。   Embodiments of the present invention will be described in detail with reference to the drawings.

本発明においては、Mg−Zn−Y急速凝固薄帯を用いて行った合金組成探査を行い、これら一連の組成探査の結果を基に、ガスアトマイズ法でMg−Zn−Y RS P/M材を作製して、機械的性質を詳しく測定した。この合金の機械的性質は、延性および引張り強度が大変すぐれている。   In the present invention, the alloy composition exploration performed using the Mg—Zn—Y rapidly solidified ribbon is performed, and based on the results of the series of composition exploration, the Mg—Zn—Y RS P / M material is obtained by the gas atomization method. Fabricated and mechanical properties were measured in detail. The mechanical properties of this alloy are very good in ductility and tensile strength.

さて、まず、合金組成探査について説明する。組成探査のためのマグネシウム合金の母合金は高周波溶解炉を用いて、Ar雰囲気中で作製した。合金組成探査に用いた急速擬固薄帯は、単ロール式液体急冷法により作製した。得られた急速凝固薄帯に対して、RS P/M法における固化成形(押出成形)を想定した573Kおよび673Kにおける熱処理を施して、熱処理材を作製した。急速凝固材および熱処理材の組織はX線回折法により調べた。また、引張り強さおよび硬さなどの機械的性質は、インストロン引張り試験機およびマイクロビッカース硬さ試験機を用いて調べた。延性は180°密着曲げ試験により評価した。その合成組成探査の結果を、図面の第1図〜第3図を用いて説明する。なお、以下の記述で、合金の組成は、原子%で示している。   First, the alloy composition exploration will be described. A magnesium alloy master alloy for composition exploration was produced in an Ar atmosphere using a high-frequency melting furnace. The rapid quasi-solid ribbon used for exploration of alloy composition was prepared by a single roll liquid quenching method. The obtained rapidly solidified ribbon was subjected to heat treatment at 573K and 673K assuming solidification molding (extrusion molding) in the RS P / M method, and a heat treatment material was produced. The structures of the rapidly solidified material and the heat-treated material were examined by an X-ray diffraction method. Further, mechanical properties such as tensile strength and hardness were examined using an Instron tensile tester and a micro Vickers hardness tester. The ductility was evaluated by a 180 ° contact bending test. The result of the synthetic composition search will be described with reference to FIGS. In the following description, the composition of the alloy is shown in atomic%.

第1図〜第3図に、熱処理を行う前、573Kおよび673Kで熱処理した後のMg−Zn−Y急速凝固薄帯の硬さと延性を、それぞれの組成の合金に対して示す。これらの温度は、押出成形を行うための下限(573K)と上限(673K)の温度である。これらの図において、白抜きの丸として示したのは、180度曲げても折れない、延性が高いものを示している。180度近くで折れるものは、脆性を示す黒い丸として表した。半黒丸印は、180度曲げでは折れたが、180度近くまで曲げても折れない程度の良好な延性を示したものを示している。また、各丸印の下の数字は、ダイヤモンド・ピラミッド硬度数(ビッカース硬度)を示している。   FIGS. 1 to 3 show the hardness and ductility of Mg—Zn—Y rapidly solidified ribbons after heat treatment at 573 K and 673 K before the heat treatment, for the alloys of the respective compositions. These temperatures are the lower limit (573K) and the upper limit (673K) for performing extrusion molding. In these figures, the white circles indicate those that are not broken even when bent 180 degrees and that have high ductility. Those that broke near 180 degrees were represented as black circles indicating brittleness. The half-black circle mark shows a good ductility that is broken by bending at 180 degrees but not broken even when bent to near 180 degrees. The numbers under each circle indicate the diamond pyramid hardness number (Vickers hardness).

これらの図でわかるように、Mg−Zn−Y合金は、熱処理後に良好な延性と高い硬さを示すことが分かった。   As can be seen from these figures, the Mg—Zn—Y alloy was found to exhibit good ductility and high hardness after heat treatment.

次に、急速凝固粉末の作製とその固化成形を行った。固化成形まで行ったMg−Zn−Y合金は、第2図や第3図において、良好な延性と高硬度を示したMg−Zn−Y合金である、Mg97Zn合金(第2図,第3図のA)の組成を有するものを用いて行った。

<Mg97ZnRS P/M材の作製と機械的性質>
Next, a rapidly solidified powder was produced and solidified. The Mg—Zn—Y alloy which has been solidified and formed is an Mg 97 Zn 1 Y 2 alloy ( second alloy) which is an Mg—Zn—Y alloy showing good ductility and high hardness in FIGS. It carried out using what has the composition of A) of a figure and FIG.

<Preparation and mechanical properties of Mg 97 Zn 1 Y 2 RS P / M material>

急速凝固粉末の作製とその固化成形には、クローズドP/Mプロセッシング・システムを使用した。作製に使用したシステムを第4図及び第5図に示す。第4図は、ガス・アトマイズ法による急速凝固粉末の作製と、作製された粉末から、固化成形してビレットを作製する工程を示している。第5図は作製したビレットを押出成形するまでを示している。第4図および第5図を用いて、急速凝固粉末の作製と固化成形について、詳しく説明する。   A closed P / M processing system was used for the preparation of the rapidly solidified powder and its solidification molding. The system used for production is shown in FIG. 4 and FIG. FIG. 4 shows a process for producing a rapidly solidified powder by a gas atomization method and a process for producing a billet by solidification molding from the produced powder. FIG. 5 shows the process up to extruding the produced billet. The production and solidification of rapidly solidified powder will be described in detail with reference to FIG. 4 and FIG.

第4図において、高圧ガス・アトマイザ100を用いて目的とする成分比のMg−Zn−Y合金の粉末を作製する。これは、まず、溶解室110中のるつぼ116中で、目的の成分比を有する合金を誘導コイル114により溶解する。この溶けた合金を、ストッパ112を上げて噴出させ、それにノズル132から高圧の不活性ガス(例えば、ヘリウム・ガスやアルゴン・ガス)を吹きつけて噴霧することで、合金の粉末を作製する。ノズル等はヒータ131で加熱されている。また、アトマイズ室130は、酸素分析器162や真空ゲージ164で監視されている。   In FIG. 4, a high-pressure gas atomizer 100 is used to produce Mg—Zn—Y alloy powder having a target component ratio. First, an alloy having a target component ratio is melted by the induction coil 114 in the crucible 116 in the melting chamber 110. The melted alloy is ejected by raising the stopper 112, and sprayed by spraying high pressure inert gas (for example, helium gas or argon gas) from the nozzle 132, thereby producing alloy powder. The nozzle and the like are heated by the heater 131. The atomizing chamber 130 is monitored by an oxygen analyzer 162 and a vacuum gauge 164.

作製した合金粉末は、サイクロン分級機140を介して、真空グローブ・ボックス200中のホッパ220中に収集される。以後の処理は、この真空グローブ・ボックス200の中で行われる。次に、真空グローブ・ボックス200中で徐々に細かいふるい230にかけることにより、目的とする細かさの粉末を得る。本発明では、粒径32μm以下の粉末を得ている。   The produced alloy powder is collected in a hopper 220 in a vacuum glove box 200 via a cyclone classifier 140. Subsequent processing is performed in the vacuum glove box 200. Next, by gradually passing through a fine sieve 230 in the vacuum glove box 200, a powder having a desired fineness is obtained. In the present invention, a powder having a particle size of 32 μm or less is obtained.

この合金の粉末から、ビレットを作製するために、まず、予備圧縮を真空ホットプレス機240を用いて行う。この場合の真空ホットプレス機は、30トンのプレスを行うことができるものを用いた。   In order to produce a billet from the alloy powder, first, preliminary compression is performed using a vacuum hot press machine 240. In this case, a vacuum hot press machine capable of pressing 30 tons was used.

まず、合金粉末をホットプレス機240を用いて銅の缶254に充填し、上からキャップ252をかぶせる。キャップ252と缶254とを、回転盤258で回転しながら、溶接機256で溶接してビレット260を作製する。このビレット260の漏れチェックのため、バルブ262を介して真空ポンプに接続することで、ビレット260の漏れをチェックする。漏れが無かった場合、バルブ262を閉じて、バルブ262を付けたまま容器ごと、真空グローブ・ボックス200のエントランス・ボックス280から合金のビレット260を取り出す。   First, the alloy powder is filled into a copper can 254 using a hot press machine 240, and a cap 252 is covered from above. The cap 252 and the can 254 are welded by a welding machine 256 while being rotated by a turntable 258 to produce a billet 260. In order to check the leakage of the billet 260, the leakage of the billet 260 is checked by connecting to the vacuum pump via the valve 262. If there is no leak, the valve 262 is closed and the alloy billet 260 is removed from the entrance box 280 of the vacuum glove box 200 with the valve 262 attached.

取り出したビレット260は、第5図に示すように、加熱炉にいれて予備加熱を行いながら、真空ポンプに接続してガス抜きを行う。次にビレット260のキャップを圧搾してから、スポット溶接機340でスポット溶接して、ビレット260と外部との接続を遮断する(第5図(b)参照)。そして、容器ごと、合金のビレットを押出プレス機400にかけて、最終形状に成形する(第5図(c)参照)。押出プレス機は、メイン・プレス(メイン・ステム450側)は100トン、バック・プレス(バック・ステム470側)は20トンの性能を有し、ヒータ410でコンテナ420を加熱することで、押出温度を設定することができる。   As shown in FIG. 5, the taken billet 260 is connected to a vacuum pump and degassed while being preheated in a heating furnace. Next, after the cap of the billet 260 is squeezed, it is spot welded by the spot welder 340, and the connection between the billet 260 and the outside is cut off (see FIG. 5B). Then, for each container, the billet of the alloy is passed through the extrusion press 400 and formed into a final shape (see FIG. 5 (c)). The extrusion press has a performance of 100 tons for the main press (on the main stem 450 side) and 20 tons on the back press (on the back stem 470 side). The temperature can be set.

本発明の急速凝固粉末は、上述のように、高圧Heガスアトマイズ法により作製した。そして、作製した粒径32μm以下の粉末を銅製の缶に充填し、それを真空封入することでビレットを作製し、押出温度623〜723K、押出し比10:1の押出成形により固化成形を行った。この押出成形により、粉末に圧力とせん断が加わり、緻密化と粉末間の結合が達成される。なお、圧延法や鍛造法による成形でもせん断が生じる。急速凝固粉末および押出材の組織はX線回折法およびTEM観察により調べた。引張り試験は、インストロン引張り試験機を用いて初期ひずみ速度5×10−4−1で行った。 The rapidly solidified powder of the present invention was produced by the high pressure He gas atomization method as described above. Then, the produced powder with a particle size of 32 μm or less was filled into a copper can, and it was vacuum-sealed to produce a billet, and solidified by extrusion molding at an extrusion temperature of 623 to 723 K and an extrusion ratio of 10: 1. . By this extrusion, pressure and shear are applied to the powder to achieve densification and bonding between the powders. It should be noted that shearing occurs even in forming by a rolling method or a forging method. The structures of the rapidly solidified powder and the extruded material were examined by X-ray diffraction and TEM observation. The tensile test was performed at an initial strain rate of 5 × 10 −4 s −1 using an Instron tensile tester.

第6図に種々の温度で押出成形することにより作製したMg97Zn材の引張り降伏強度(0.2%耐力)と伸びを示す。第6図の横軸は押出成形の温度を示している。第7図にそのX線のスペクトル回折の結果を示す。第8図には、様々の雰囲気温度でのMg97Zn材(573Kで押出成形)の引張り降伏強度と伸びを示す。第9図に、周囲温度623KにおけるMg97Zn材(573K,押出比10で押出成形)のひずみ率に対する伸びと応力を示す。また、Mg97Zn材(573K,押出比10で押出成形)の電子顕微鏡写真を第10図に示す。 FIG. 6 shows the tensile yield strength (0.2% yield strength) and elongation of Mg 97 Zn 1 Y 2 material produced by extrusion molding at various temperatures. The horizontal axis in FIG. 6 represents the extrusion temperature. FIG. 7 shows the result of X-ray spectral diffraction. FIG. 8 shows the tensile yield strength and elongation of Mg 97 Zn 1 Y 2 material (extruded at 573 K) at various atmospheric temperatures. FIG. 9 shows the elongation and stress with respect to the strain rate of the Mg 97 Zn 1 Y 2 material (573K, extrusion molding at an extrusion ratio of 10) at an ambient temperature of 623K. FIG. 10 shows an electron micrograph of the Mg 97 Zn 1 Y 2 material (573K, extrusion molding at an extrusion ratio of 10).

この第6図から、Mg97ZnRS P/M材の降伏強度と伸びが押出温度に依存していることがわかる。押出温度が高まると引張り降伏強度が低下するのは、結晶粒径が大きくなるためである。しかし、Mg97ZnRS P/M材は、いずれの押出温度においても、400MPa以上の高い降伏強度を示した。特に、押出温度573Kで作製したP/M材は、625MPaの最大降伏強度、606MPaの降伏強度、5%の伸びを示し、高強度と高延性を併せ持つRS P/Mマグネシウム合金を開発することができた。 From FIG. 6, it can be seen that the yield strength and elongation of the Mg 97 Zn 1 Y 2 RS P / M material depend on the extrusion temperature. The reason why the tensile yield strength decreases as the extrusion temperature increases is because the crystal grain size increases. However, the Mg 97 Zn 1 Y 2 RS P / M material showed a high yield strength of 400 MPa or more at any extrusion temperature. In particular, a P / M material produced at an extrusion temperature of 573 K exhibits a maximum yield strength of 625 MPa, a yield strength of 606 MPa, and an elongation of 5%, and an RSP / M magnesium alloy having both high strength and high ductility can be developed. did it.

第7図にはX線回折の結果が示されている。これでわかるように、ガス・アトマイズ法により作製された粉末のスペクトラム(第7図(a)参照)には、hcp−MgとYZnが検出されているが、押出成形された合金材(第7図(b)〜(e)参照)では、全て、hcp−Mg、Mg24およびYZnが検出されている。 FIG. 7 shows the result of X-ray diffraction. As can be seen, hcp-Mg and YZn are detected in the spectrum of the powder produced by the gas atomization method (see FIG. 7A), but the extruded alloy material (No. 7 In all the figures (b) to (e), hcp-Mg, Mg 24 Y 5 and YZn are detected.

第8図において、市販のマグネシウム合金(WE54−T6)と本発明のマグネシウム合金の引張り強さの周囲温度依存性を示している。作製したMg97ZnRS P/M材は、市販のマグネシウム合金より良好な引張り強さを、大部分の周囲温度で示している。 FIG. 8 shows the ambient temperature dependence of the tensile strength of a commercially available magnesium alloy (WE54-T6) and the magnesium alloy of the present invention. The produced Mg 97 Zn 1 Y 2 RS P / M material exhibits better tensile strength than most commercially available magnesium alloys at most ambient temperatures.

第9図では、作製したマグネシウム合金であるMg97ZnRS P/M材が、超塑性を有していることを示している。「超塑性」とは、雰囲気温度、加える歪速度が何であれ、その伸びが200%を超えると同時に、歪速度に対する流動応力の勾配(m値)が0.3以上であることを意味している。特に1×10−2−1以上の歪速度で出現する超塑性は高速超塑性と言われている。第9図の下の図では、1×10−2−1以上で300%以上の伸びを示しており、最大で750%の伸びが5×10−3−1で得られている。また、上の図ではm値が0.4であることを示しており、作製したマグネシウム合金が高速超塑性を有していることがわかる。 FIG. 9 shows that the produced Mg 97 Zn 1 Y 2 RS P / M material, which is a magnesium alloy, has superplasticity. “Superplasticity” means that the elongation (m value) with respect to the strain rate is 0.3 or more at the same time as the elongation exceeds 200% whatever the ambient temperature and the applied strain rate. Yes. In particular, superplasticity that appears at a strain rate of 1 × 10 −2 s −1 or higher is said to be high-speed superplasticity. In the lower figure of FIG. 9, the elongation of 300% or more is shown at 1 × 10 −2 s −1 or more, and the maximum elongation of 750% is obtained at 5 × 10 −3 s −1 . Moreover, in the upper figure, it has shown that m value is 0.4, and it turns out that the produced magnesium alloy has high-speed superplasticity.

第10図に示す顕微鏡写真でわかるように、この作製したマグネシウム合金の組成物は、約200nmの微粒子で構成されている。この微粒子は、ガスアトマイズで作製した粉体の結晶組織ではなく、成形物としての結晶組織であり、六方最密構造(hcp)のマグネシウムと、他の化合物の混相である。第10図の電子顕微鏡の写真における他の化合物は、第7図に示すX線回折のスペクトル回折から、Mg24およびYZnである。 As can be seen from the micrograph shown in FIG. 10, the produced magnesium alloy composition is composed of fine particles of about 200 nm. The fine particles are not a crystal structure of a powder produced by gas atomization but a crystal structure as a molded product, and are a mixed phase of magnesium having a hexagonal close-packed structure (hcp) and other compounds. The other compounds in the electron microscope photograph of FIG. 10 are Mg 24 Y 5 and YZn from the spectral diffraction of X-ray diffraction shown in FIG.

第11図に、本発明で作製したマグネシウム合金と、既存のマグネシウム合金との伸びと引張り降伏強度の比較を示す。第11図において、既存のI/M(ingot metallurgy)法で作製したマグネシウム合金(AZ91,ZK60等),急速凝固粉末冶金(RS P/M)で作製したマグネシウム合金(AZ91,ZK61等),本発明以外の組成の急速凝固粉末冶金(RS P/M)によるナノ結晶マグネシウム合金,本発明の組成を有する微細結晶組織を有するRS P/M法のマグネシウム合金を比較している。この図でわかるように、本発明のマグネシウム合金は、他の製法や組成のマグネシウム合金と比較して、引張り降伏強度や伸びに対して大変良好な性能を有している。   FIG. 11 shows a comparison of elongation and tensile yield strength between the magnesium alloy produced in the present invention and the existing magnesium alloy. In FIG. 11, a magnesium alloy (AZ91, ZK60, etc.) produced by an existing I / M (ingot metallurgy) method, a magnesium alloy (AZ91, ZK61, etc.) produced by rapid solidification powder metallurgy (RS P / M), this Comparison is made between a nanocrystalline magnesium alloy by rapid solidification powder metallurgy (RS P / M) having a composition other than that of the invention and a magnesium alloy by RSP / M method having a fine crystal structure having the composition of the present invention. As can be seen from this figure, the magnesium alloy of the present invention has very good performance with respect to tensile yield strength and elongation as compared with magnesium alloys of other production methods and compositions.

本発明のマグネシウム合金は、高強度と高延性を有している。本発明のマグネシウム合金を用いることにより、マグネシウム合金の軽量性を生かすことで、高強度と高延性が必要な部材における軽量化を図ることができる。   The magnesium alloy of the present invention has high strength and high ductility. By using the magnesium alloy of the present invention, it is possible to reduce the weight of a member that requires high strength and high ductility by taking advantage of the light weight of the magnesium alloy.

Mg−Zn−Y 三元系急速凝固薄帯の急速凝固状態における硬さと延性を示す図である。It is a figure which shows the hardness and ductility in the rapid solidification state of a Mg-Zn-Y ternary system rapid solidification ribbon. Mg−Zn−Y 三元系急速凝固薄帯の573Kでの熱処理状態における硬さと延性を示す図である。It is a figure which shows the hardness and ductility in the heat processing state by 573K of a Mg-Zn-Y ternary system rapid solidification ribbon. Mg−Zn−Y 三元系急速凝固薄帯の673Kでの熱処理状態における硬さと延性を示す図である。It is a figure which shows the hardness and ductility in the heat processing state of 673K of a Mg-Zn-Y ternary system rapid solidification ribbon. ガス・アトマイジング法による急速凝固粉末作製と押出ビレットの作製を行うシステムを示す図である。It is a figure which shows the system which performs quick-solidification powder preparation by gas atomizing method, and preparation of an extrusion billet. ビレットを加熱押圧して、固化成形する過程を示す図である。It is a figure which shows the process of heat-pressing a billet and solidifying and forming. 種々の温度で押出成形した合金に対する引張り降伏強度と伸びを示すグラフである。2 is a graph showing tensile yield strength and elongation for alloys extruded at various temperatures. X線回折によるスペクトルを示す図である。It is a figure which shows the spectrum by X-ray diffraction. 押出成形した合金に対する様々の雰囲気温度での引張り降伏強度と伸びを示すグラフである。It is a graph which shows the tensile yield strength and elongation in various atmospheric temperature with respect to the extruded alloy. 押出成形した合金が超塑性を有していることを示すグラフである。It is a graph which shows that the extruded alloy has superplasticity. 押出成形した合金の電子顕微鏡による写真を示す図である。It is a figure which shows the photograph by the electron microscope of the extruded alloy. 本発明のマグネシウム合金と他のマグネシウム合金の引張り降伏強度と伸びの比較を示す図である。It is a figure which shows the comparison of the tensile yield strength and elongation of the magnesium alloy of this invention, and another magnesium alloy.

符号の説明Explanation of symbols

100:高圧ガス・アトマイザ, 110:溶解室, 112:ストッパ,
114:誘導コイル, 116:るつぼ, 130:アトマイズ室,
131:ヒータ, 132:ノズル, 140:サイクロン分級機,
150:フィルタ, 162,166:酸素分析器, 164:真空ゲージ,
200:真空グローブ・ボックス, 210:アルゴンガス・リファイナ,
220:ホッパ, 230:ふるい, 240:真空ホットプレス機,
242:真空室, 244:パンチ, 246:型, 248:ヒータ,
252:キャップ, 254:缶, 256:溶接機, 258:回転盤,
260:ビレット, 262:バルブ, 270:酸化ボックス,
280:エントランス・ボックス, 292:真空ゲージ, 294:湿度計,
296:酸素分析器, 340:スポット溶接機, 400:押出プレス機,
410:ヒータ, 420:コンテナ, 430:型(ダイ),
450:メイン・ステム, 460:ダイ・バッカー,
470:バック・ステム
100: High pressure gas atomizer, 110: Dissolution chamber, 112: Stopper,
114: induction coil, 116: crucible, 130: atomizing room,
131: heater, 132: nozzle, 140: cyclone classifier,
150: Filter, 162, 166: Oxygen analyzer, 164: Vacuum gauge,
200: Vacuum glove box, 210: Argon gas refiner,
220: Hopper, 230: Sieve, 240: Vacuum hot press machine,
242: Vacuum chamber, 244: Punch, 246: Mold, 248: Heater,
252: Cap, 254: Can, 256: Welder, 258: Turntable,
260: billet, 262: valve, 270: oxidation box,
280: Entrance box, 292: Vacuum gauge, 294: Hygrometer,
296: Oxygen analyzer, 340: Spot welder, 400: Extrusion press,
410: heater, 420: container, 430: mold (die),
450: Main stem, 460: Die backer,
470: Back stem

Claims (2)

一般式で、Mg (100−x−y) Zn (1<x<5,0.3<y<6:x、yはいずれも原子%)の組成を有し、1マイクロメートル以下の微細結晶組織を有するマグネシウム合金であって、該マグネシウム合金は400MPa以上の降伏強度(0.2%耐力)を示し且つ5%以上の伸びを示すものであり、
当該高強度マグネシウム合金が、急速凝固粉末冶金成形物で、Mg24およびYZnを有し、他はhcp−Mgであり、それぞれが1マイクロメータ以下の微細結晶組織を有すると共に、高速超塑性を有していることを特徴とする高強度マグネシウム合金。
It is a general formula and has a composition of Mg (100-xy) Y x Zn y (1 <x <5, 0.3 <y <6: where x and y are atomic%), and 1 micrometer or less A magnesium alloy having a fine crystal structure of, wherein the magnesium alloy exhibits a yield strength (0.2% yield strength) of 400 MPa or more and an elongation of 5% or more,
The high-strength magnesium alloy is a rapidly solidified powder metallurgical molded product having Mg 24 Y 5 and YZn, the other being hcp-Mg, each having a fine crystal structure of 1 micrometer or less, and high-speed superplasticity A high-strength magnesium alloy characterized by having
当該高強度マグネシウム合金において、液体から急速に凝固された粉末、薄帯又は細線を、せん断が付加されるようにして固化させることで、作製されていることを特徴とする請求項1に記載の高強度マグネシウム合金。  The high-strength magnesium alloy is produced by solidifying powder, ribbon or fine wire rapidly solidified from a liquid by applying shear. High strength magnesium alloy.
JP2002566397A 2001-01-26 2001-01-26 High strength magnesium alloy Expired - Fee Related JP5161414B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/000533 WO2002066696A1 (en) 2001-01-26 2001-01-26 High strength magnesium alloy

Publications (2)

Publication Number Publication Date
JPWO2002066696A1 JPWO2002066696A1 (en) 2004-06-24
JP5161414B2 true JP5161414B2 (en) 2013-03-13

Family

ID=11736953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002566397A Expired - Fee Related JP5161414B2 (en) 2001-01-26 2001-01-26 High strength magnesium alloy

Country Status (2)

Country Link
JP (1) JP5161414B2 (en)
WO (1) WO2002066696A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005052204A1 (en) 2003-11-26 2005-06-09 Yoshihito Kawamura High strength and high toughness magnesium alloy and method for production thereof
JP4139841B2 (en) * 2004-09-30 2008-08-27 能人 河村 Casting and production method of magnesium alloy
JP2009144215A (en) * 2007-12-17 2009-07-02 Japan Steel Works Ltd:The Heat resistant magnesium alloy material and its manufacturing method
CN107761022B (en) * 2017-09-28 2020-03-20 青海大学 Mixed-phase reinforced magnesium-based composite material and preparation method thereof
CN109852857B (en) * 2019-03-29 2021-08-06 上海交通大学 High-strength-toughness heat-resistant Mg-Y alloy suitable for gravity casting and preparation method thereof
CN109868402B (en) * 2019-03-29 2021-08-17 上海交通大学 High-strength-toughness heat-resistant die-casting Mg-Y alloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347941A (en) * 1989-07-13 1991-02-28 Yoshida Kogyo Kk <Ykk> High strength magnesium base alloy
JPH05306424A (en) * 1992-04-30 1993-11-19 Yoshida Kogyo Kk <Ykk> High strength magnesium-base alloy and its laminated and solidified material
JPH0641701A (en) * 1991-09-06 1994-02-15 Takeshi Masumoto High strength amorphous magnesium alloy and its manufacture
JPH073375A (en) * 1993-03-15 1995-01-06 Takeshi Masumoto High strength magnesium alloy and production thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938809A (en) * 1988-05-23 1990-07-03 Allied-Signal Inc. Superplastic forming consolidated rapidly solidified, magnestum base metal alloy powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0347941A (en) * 1989-07-13 1991-02-28 Yoshida Kogyo Kk <Ykk> High strength magnesium base alloy
JPH0641701A (en) * 1991-09-06 1994-02-15 Takeshi Masumoto High strength amorphous magnesium alloy and its manufacture
JPH05306424A (en) * 1992-04-30 1993-11-19 Yoshida Kogyo Kk <Ykk> High strength magnesium-base alloy and its laminated and solidified material
JPH073375A (en) * 1993-03-15 1995-01-06 Takeshi Masumoto High strength magnesium alloy and production thereof

Also Published As

Publication number Publication date
JPWO2002066696A1 (en) 2004-06-24
WO2002066696A1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
JP5239022B2 (en) High strength and high toughness magnesium alloy and method for producing the same
RU2729569C2 (en) Materials with a body-centered cubic arrangement based on titanium, aluminum, vanadium and iron and articles made therefrom
JP7107476B2 (en) Bioabsorbable medical device and manufacturing method thereof
CN104342588B (en) Aluminum material with improved precipitation-hardening
JP2019527299A5 (en)
RU2713668C1 (en) Materials with hca structure based on aluminium, titanium and zirconium and articles made therefrom
EP0997546A1 (en) Aluminum alloy and method for manufacturing aluminum-alloy member
JPH07179974A (en) Aluminum alloy and its production
CA3020502A1 (en) Alpha-beta titanium alloys having aluminum and molybdenum, and products made therefrom
US11421303B2 (en) Titanium alloy products and methods of making the same
JP2019516017A (en) BCC materials of titanium, aluminum, niobium, vanadium and molybdenum, and products produced therefrom
JP5161414B2 (en) High strength magnesium alloy
US3698962A (en) Method for producing superalloy articles by hot isostatic pressing
JP2000225412A (en) Method for plastically working aluminum alloy and high- strength/high-ductility aluminum alloy worked by the same
JPH02163305A (en) Method for molding material produced
JPS6247449A (en) Heat resistant aluminum alloy for powder metallurgy and its manufacture
JPS6360265A (en) Production of aluminum alloy member
JPS62250146A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPH08269589A (en) Production of superplastic az91 magnesium alloy
JPS62250145A (en) Heat-resisting aluminum powder metallurgical alloy and its production
JPS63247321A (en) Formation of ti-al intermetallic compound member
WO2021215543A1 (en) Magnesium alloy for implants, bone fixation device, method for producing magnesium alloy for implants, and method for producing bone fixation device
CN109136658A (en) A kind of No oxided film residual nanocrystalline aluminum alloy and preparation method thereof
JPS5887204A (en) Constant temperature forging method for superalloy using quickly soldified powder
JP2636114B2 (en) Production of TiAl-based intermetallic compounds by diffusion synthesis

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120525

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

R150 Certificate of patent or registration of utility model

Ref document number: 5161414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees