JP5156589B2 - Journal bearing device - Google Patents

Journal bearing device Download PDF

Info

Publication number
JP5156589B2
JP5156589B2 JP2008289364A JP2008289364A JP5156589B2 JP 5156589 B2 JP5156589 B2 JP 5156589B2 JP 2008289364 A JP2008289364 A JP 2008289364A JP 2008289364 A JP2008289364 A JP 2008289364A JP 5156589 B2 JP5156589 B2 JP 5156589B2
Authority
JP
Japan
Prior art keywords
bearing
lubricating oil
cooling groove
liner
peripheral side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008289364A
Other languages
Japanese (ja)
Other versions
JP2010116953A (en
Inventor
健太 鈴木
知昭 井上
真 辺見
初 鳥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008289364A priority Critical patent/JP5156589B2/en
Publication of JP2010116953A publication Critical patent/JP2010116953A/en
Application granted granted Critical
Publication of JP5156589B2 publication Critical patent/JP5156589B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Mounting Of Bearings Or Others (AREA)

Description

本発明は回転体を支持する軸受の構造に関り、特に高荷重の回転体を支持し、かつ焼きつきを防止するジャーナル軸受に関り、軸受の背面に冷却された潤滑油を供給し、軸受温度を低減することを目的としたジャーナル軸受の潤滑供給構造に関するものである。   The present invention relates to a structure of a bearing that supports a rotating body, and particularly relates to a journal bearing that supports a high-load rotating body and prevents seizure, and supplies cooled lubricating oil to the back surface of the bearing, The present invention relates to a lubrication supply structure for a journal bearing for the purpose of reducing the bearing temperature.

従来より、火力プラント等の多スパン軸の固有振動数が比較的低い大形回転体を支持する軸受には自励振動を防止する目的から楕円軸受が一般的に用いられている。   Conventionally, an elliptical bearing is generally used for the purpose of preventing self-excited vibration in a bearing that supports a large rotating body having a relatively low natural frequency of a multi-span shaft such as a thermal power plant.

例えば、図17に示した従来蒸気タービンのように、特に大容量機蒸気タービン用軸受では1次危険速度が低いために、下半軸受2aの軸受幅方向中央部に周方向の油溝を設け耐荷重性を低下させ、偏心率を大きくし、安定性を確保している。一方、これらの大型軸受は軸周速が100m/s程度あるため、軸受の潤滑状態は乱流となり見掛けの粘性が上がり軸受温度が上昇するため、上半軸受2bには冷却溝が設けられている。前記冷却溝は前記回転軸の冷却が目的であり、軸受の最高温度を低減することは困難である。   For example, as in the conventional steam turbine shown in FIG. 17, since the primary critical speed is low particularly in a large-capacity steam turbine bearing, a circumferential oil groove is provided in the center portion in the bearing width direction of the lower half bearing 2a. The load resistance is reduced, the eccentricity is increased, and stability is ensured. On the other hand, since these large bearings have a shaft peripheral speed of about 100 m / s, the lubrication state of the bearings becomes turbulent, the apparent viscosity increases, and the bearing temperature rises. Therefore, the upper half bearing 2b is provided with a cooling groove. Yes. The purpose of the cooling groove is to cool the rotating shaft, and it is difficult to reduce the maximum temperature of the bearing.

軸受を冷却する技術としては、特開平8−93769号公報に開示されているように、軸受摺動面に周方向油溝とダムを設けダムの圧力を調整することにより焼きつきと振動を防止している。   As a technology for cooling the bearing, as disclosed in JP-A-8-93769, seizure and vibration are prevented by adjusting the pressure of the dam by providing a circumferential oil groove and a dam on the bearing sliding surface. doing.

特開平10−213130号公報及び特開2006−138353号公報に開示されているように裏金に溝を設け、前記溝に潤滑油を供給して冷却し、軸受の焼きつきを防止している。また、特開2004−92878号公報では静圧軸受において軸受本体の外周面に冷媒供給ポケットを形成して冷媒又は潤滑油を供給し、軸受を冷却する構造が開示されている。   As disclosed in JP-A-10-213130 and JP-A-2006-138353, a groove is provided in the back metal, and lubricating oil is supplied to the groove to cool it, thereby preventing the bearing from sticking. Japanese Unexamined Patent Application Publication No. 2004-92878 discloses a structure in which a coolant supply pocket is formed on the outer peripheral surface of a bearing body to supply coolant or lubricating oil and cool the bearing in a hydrostatic bearing.

特開平8−93769号公報JP-A-8-93769 特開平10−213130号公報Japanese Patent Laid-Open No. 10-213130 特開2006−138353号公報JP 2006-138353 A 特開2004−92878号公報JP 2004-92878 A

上記従来技術は、特開平8−93769号公報のように圧力ダムの油圧を調整する方法はロータ自重が大きく軸受の平均面圧(軸受荷重/軸受径×軸受幅)が高い場合、油膜厚さが低下し軸受温度上昇を抑制することは困難である。また、本発明は以上の点に鑑み為されたもので、高荷重条件でも軸受に冷却された潤滑油を供給し焼損防止性能を向上できる軸受を提供することを目的としている。   In the above prior art, the method of adjusting the hydraulic pressure of the pressure dam as disclosed in Japanese Patent Laid-Open No. 8-93769 is such that when the rotor's own weight is large and the average surface pressure of the bearing (bearing load / bearing diameter × bearing width) is high, the oil film thickness It is difficult to suppress the rise in the bearing temperature and the bearing temperature. The present invention has been made in view of the above points, and an object of the present invention is to provide a bearing capable of improving the burnout prevention performance by supplying a lubricating oil cooled to the bearing even under high load conditions.

特開平10−213130号公報及び特開2006−138353号公報に開示されているように裏金の一部に溝を設け冷却用の潤滑油を供給する方法では溝を設けたごく1部しか冷却できない。   As disclosed in JP-A-10-213130 and JP-A-2006-138353, a method of supplying a lubricating oil for cooling by providing a groove in a part of the back metal can cool only one part provided with the groove. .

また、特開2004−92878号公報のように軸受の外周面に冷媒又は潤滑油を冷却専用に供給経路を設け軸受を冷却する方法では、冷却剤を回転方向上流側から供給しているが、軸受温度はやはり上流側から下流側にいくに従って高くなるため、冷却剤との温度差が小さく冷却能力が低い。また、潤滑油と冷却剤を別々な経路から供給しているため冷却剤として潤滑油を用いた場合でも多量の潤滑油が必要であり、補機の大型化を招く。   Further, in the method of cooling the bearing by providing a cooling or lubricating oil supply path exclusively for cooling on the outer peripheral surface of the bearing as in JP-A-2004-92878, the coolant is supplied from the upstream side in the rotational direction. Since the bearing temperature also increases as it goes from the upstream side to the downstream side, the temperature difference from the coolant is small and the cooling capacity is low. Further, since the lubricating oil and the coolant are supplied from different paths, a large amount of the lubricating oil is required even when the lubricating oil is used as the coolant, resulting in an increase in the size of the auxiliary machine.

本発明の目的は、負荷側の軸受外周に冷却油を供給して軸受を冷却した後に前記潤滑油を軸受摺動面に供給することにより、軸受の冷却と軸受損失の低減を図れるジャーナル軸受を提供することにある。   An object of the present invention is to provide a journal bearing capable of cooling a bearing and reducing bearing loss by supplying cooling oil to the outer periphery of the bearing on the load side to cool the bearing and then supplying the lubricating oil to the bearing sliding surface. It is to provide.

上記目的は、回転軸を支持するジャーナル軸受装置において、軸受部は、軸受台金と、該軸受台金の内周側に設けられる軸受ライナーとを備え、下側軸受ライナーに設けた冷却溝内に、潤滑油を流れ方向が前記ロータの回転方向と逆方向となるように供給し、前記冷却構内に潤滑油の流れを乱す乱流促進体を設け、該乱流促進体は、軸受温度最後部よりも潤滑油流れ方向上流側に設けることにより、具体的には特許請求の範囲の各請求項に記載した構成により達成される。   The above object is to provide a journal bearing device for supporting a rotating shaft, wherein the bearing portion includes a bearing base and a bearing liner provided on the inner peripheral side of the bearing base, and the inside of the cooling groove provided in the lower bearing liner. A turbulent flow accelerator that disturbs the flow of the lubricating oil is provided in the cooling structure, and the turbulent flow accelerator is provided at the end of the bearing temperature. By providing it on the upstream side in the lubricating oil flow direction from the portion, specifically, it is achieved by the configuration described in each claim of the claims.

本発明によれば、軸受ライナーの外周側を冷却された潤滑油を回転方向と逆向きに供給し、冷却溝内に設けた乱流促進体により潤滑油の流れを積極的に乱すことにより、軸受最高温度部分を効果的に冷却できるため軸受の焼損を防止することができ、軸受の高面圧が達成できると共に、軸受損失,給油量を低減したジャーナル軸受を提供できる。   According to the present invention, the lubricating oil cooled on the outer peripheral side of the bearing liner is supplied in the direction opposite to the rotation direction, and the flow of the lubricating oil is positively disturbed by the turbulence promoting body provided in the cooling groove. Since the bearing maximum temperature portion can be effectively cooled, it is possible to prevent the bearing from being burned out, to achieve a high bearing pressure of the bearing, and to provide a journal bearing with reduced bearing loss and oil supply.

以下、本発明の一実施例を図にしたがって説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施例を備えた軸受の縦断面図である。
図2は図1のA−A線断面図である。
図1,図2において、回転軸1を支持する軸受2は上下方向に2分割されている。この軸受2は内周側の軸受ライナー3と外周側の軸受台金4で構成されている。この軸受台金4は外周が球面形状となっており、前記軸受台金4の外周に球面座15が設けられている。前記軸受ライナー3には内周側に軸受メタル5がライニングされており、2分割された負荷側の前記軸受ライナー3aの外周側には周方向に冷却溝6が複数本設けられている。反負荷側の前記軸受ライナー3bには内周側の前記軸受メタルに冷却溝7が周方向に設けられている。
FIG. 1 is a longitudinal sectional view of a bearing provided with an embodiment of the present invention.
2 is a cross-sectional view taken along line AA in FIG.
1 and 2, the bearing 2 that supports the rotating shaft 1 is divided into two in the vertical direction. The bearing 2 includes an inner bearing liner 3 and an outer bearing base 4. The bearing base 4 has a spherical outer periphery, and a spherical seat 15 is provided on the outer periphery of the bearing base 4. The bearing liner 3 is lined with a bearing metal 5 on the inner circumferential side, and a plurality of cooling grooves 6 are provided in the circumferential direction on the outer circumferential side of the bearing liner 3a on the load side divided into two. In the bearing liner 3b on the side opposite to the load, cooling grooves 7 are provided in the circumferential direction in the bearing metal on the inner circumferential side.

また、前記台金4も接線4cを境として4a,4bとに2分割されており、合せ目近傍には潤滑油の給油ポケット8a,8bが前記台金4a,4bに設けられている。前記給油ポケット8aは前記冷却溝6及び前記冷却溝7に連通すると共に前記軸受2の合せ目に設けられた油ポケット9a,9b及び前記台金4aにも受けられた潤滑油ポケット19を通り、外周側に配置された前記球面座15に設けられた給油孔10にも連通している。前記油ポケット9a,9bの他の潤滑油は前記冷却溝6に流れ込み摺動面16を冷却することになる。   The base metal 4 is also divided into two parts 4a and 4b with a tangent line 4c as a boundary, and lubricating oil supply pockets 8a and 8b are provided in the base metal 4a and 4b in the vicinity of the joint. The oil supply pocket 8a communicates with the cooling groove 6 and the cooling groove 7, and passes through the oil pockets 9a and 9b provided at the joint of the bearing 2 and the lubricating oil pocket 19 received by the base metal 4a. The oil supply hole 10 provided in the spherical seat 15 disposed on the outer peripheral side is also communicated. The other lubricating oil in the oil pockets 9a and 9b flows into the cooling groove 6 and cools the sliding surface 16.

一方、反負荷側の前記冷却溝7は前記軸受2の内周面に回転方向に沿って設けられており、その終端は反負荷側に設けられたオイルポケット11に連通している。このオイルポケット11はこのオイルポケット11に設けられた排油孔12から前記軸受ライナー3b及び前記台金4bに設けられた潤滑油排出孔13に連通している。また、軸受が設置されている軸受ハウジング(図示せず)の開放端側(図2では右側)は潤滑油の漏洩を防止するために、軸受端面に潤滑油逃がし溝14(図2に示す)を設け、潤滑油を下部に排出している。   On the other hand, the cooling groove 7 on the anti-load side is provided on the inner peripheral surface of the bearing 2 along the rotational direction, and the end thereof communicates with an oil pocket 11 provided on the anti-load side. The oil pocket 11 communicates from the oil drain hole 12 provided in the oil pocket 11 to the lubricating oil drain hole 13 provided in the bearing liner 3b and the base metal 4b. Further, an open end side (right side in FIG. 2) of a bearing housing (not shown) in which the bearing is installed is provided with a lubricating oil relief groove 14 (shown in FIG. 2) in the bearing end face to prevent leakage of the lubricating oil. The lubricating oil is discharged to the lower part.

次に、本実施例の作用効果について図3で説明する。
図3は本実施例の軸受における給油状態を説明する部分拡大断面図である。
図3において、冷却された潤滑油(図示せず)は前記給油孔10より供給され前記台金4aの前記潤滑油ポケット19を通って前記油ポケット9bに導かれる。前記油ポケット9bの潤滑油の一部は前記冷却溝7を通り、前記回転軸1を冷却しながら前記オイルポケット11へ導かれ、前記オイルポケット11でせき止められ前記排油孔12から前記台金4を通り前記潤滑油排出孔13から外部に排出される。
Next, the function and effect of this embodiment will be described with reference to FIG.
FIG. 3 is a partially enlarged cross-sectional view for explaining the oil supply state in the bearing of the present embodiment.
In FIG. 3, a cooled lubricating oil (not shown) is supplied from the oil supply hole 10 and guided to the oil pocket 9b through the lubricating oil pocket 19 of the base metal 4a. Part of the lubricating oil in the oil pocket 9 b passes through the cooling groove 7, is guided to the oil pocket 11 while cooling the rotating shaft 1, is dammed by the oil pocket 11, and is discharged from the oil drain hole 12 to the base metal. 4 is discharged to the outside through the lubricating oil discharge hole 13.

従ってこの前記回転軸を冷却し温度上昇した潤滑油は下半軸受2aの摺動面16に流入することはない。また、前記油ポケット9の他の潤滑油は前記冷却溝6に流れ込み、前記冷却溝6を流れることにより前記摺動面16を冷却しながら前記油ポケット9bの対向側の油ポケット9aを通り前記摺動面16に供給される。   Therefore, the lubricating oil whose temperature has been increased by cooling the rotating shaft does not flow into the sliding surface 16 of the lower half bearing 2a. Further, the other lubricating oil of the oil pocket 9 flows into the cooling groove 6 and passes through the oil pocket 9a on the opposite side of the oil pocket 9b while cooling the sliding surface 16 by flowing through the cooling groove 6. It is supplied to the sliding surface 16.

次に、ジャーナル軸受における油膜の圧力分布と温度分布の関係を図4に示す。
図4は油膜圧力と温度分布を説明する図である。
図4において、破線は圧力分布で実線が温度分布である。油膜圧力は最小膜厚付近手前でピークを持ち、油膜温度は最小膜厚位置で最大となり、それ以降はなだらかに低下する。最小膜厚位置は通常真下から回転方向に30〜40゜付近で、この位置で軸受温度は最も高くなる。従って、冷却された潤滑油を前記回転軸1の回転方向と逆方向から供給することにより、軸受との温度差が最も大きい状態で冷却されるため冷却効果が高く、しかも軸受最高温度を効果的に下げることができる。
Next, the relationship between the oil film pressure distribution and the temperature distribution in the journal bearing is shown in FIG.
FIG. 4 is a diagram for explaining oil film pressure and temperature distribution.
In FIG. 4, the broken line is the pressure distribution, and the solid line is the temperature distribution. The oil film pressure has a peak near the minimum film thickness, and the oil film temperature becomes maximum at the minimum film thickness position, and then gradually decreases. The minimum film thickness position is usually around 30 to 40 ° in the rotational direction from directly below, and the bearing temperature is highest at this position. Accordingly, by supplying the cooled lubricating oil from the direction opposite to the rotation direction of the rotary shaft 1, the cooling effect is high because the cooling is performed in a state where the temperature difference with the bearing is the largest, and the maximum bearing temperature is effective. Can be lowered.

図5は本発明の他の実施例を備えた軸受の縦断面図である。
図5において、回転軸1を支持する軸受2は上下方向に2分割されており、かつ前記軸受2は内周側の軸受ライナー3と外周側の軸受台金4(後述するが4a,4bに2分割されている)で構成されている。前記軸受台金4は外周が球面形状となっており、前記軸受台金4の外周に球面座15が設けられている。前記軸受ライナー3には内周側に軸受メタル5がライニングされており、2分割された負荷側の前記軸受ライナー3aの外周側には周方向に冷却溝6が複数本設けられている。反負荷側の前記軸受ライナー3bには内周側の前記軸受メタルに冷却溝7が周方向に設けられている。
FIG. 5 is a longitudinal sectional view of a bearing provided with another embodiment of the present invention.
In FIG. 5, the bearing 2 that supports the rotating shaft 1 is divided into two in the vertical direction, and the bearing 2 is divided into an inner peripheral bearing liner 3 and an outer peripheral bearing base 4 (which will be described later as 4a and 4b). Divided into two). The bearing base 4 has a spherical outer periphery, and a spherical seat 15 is provided on the outer periphery of the bearing base 4. The bearing liner 3 is lined with a bearing metal 5 on the inner circumferential side, and a plurality of cooling grooves 6 are provided in the circumferential direction on the outer circumferential side of the bearing liner 3a on the load side divided into two. In the bearing liner 3b on the side opposite to the load, cooling grooves 7 are provided in the circumferential direction in the bearing metal on the inner circumferential side.

また、前記台金4も2分割されており、合せ目近傍には潤滑油の給油ポケット8a,8bが前記台金4a,4bに設けられている。前記給油ポケット8aは前記冷却溝7に連通すると共に前記軸受2の合せ目に設けられた油ポケット9b及び前記台金4aに設けられた潤滑油ポケット19を通り、外周側に配置された前記球面座15に設けられた給油孔10にも連通している。更に、前記給油孔10は軸受ライナー3aに設けられた前記冷却溝6に連通する給油穴17が設けられている。   The base metal 4 is also divided into two parts, and lubricating oil supply pockets 8a and 8b are provided in the base metal 4a and 4b in the vicinity of the joint. The oil supply pocket 8a communicates with the cooling groove 7 and passes through an oil pocket 9b provided at the joint of the bearing 2 and a lubricating oil pocket 19 provided in the base metal 4a, and the spherical surface arranged on the outer peripheral side. The oil supply hole 10 provided in the seat 15 is also communicated. Further, the oil supply hole 10 is provided with an oil supply hole 17 communicating with the cooling groove 6 provided in the bearing liner 3a.

一方、反負荷側の前記冷却溝7は前記軸受2の内周面に回転方向に沿って設けられており、その終端は反負荷側に設けられたオイルポケット11に連通し、前記オイルポケット11は前記オイルポケット11に設けられた排油孔12から前記軸受ライナー3b及び前記台金4bに設けられた潤滑油排出孔13に連通している。   On the other hand, the cooling groove 7 on the anti-load side is provided on the inner peripheral surface of the bearing 2 along the rotation direction, and the end thereof communicates with an oil pocket 11 provided on the anti-load side. Is communicated from the oil drain hole 12 provided in the oil pocket 11 to the bearing oil drain hole 13 provided in the bearing liner 3b and the base metal 4b.

また、負荷側の前記軸受ライナー3aは油膜圧力が発生しない範囲、すなわち真下から30〜40゜位置から上下半軸受の合せ目位置まで摺動面が削除され、空隙部18が設けられている。   In addition, the bearing liner 3a on the load side is provided with a gap 18 by removing the sliding surface from the range where no oil film pressure is generated, that is, from the position of 30 to 40 ° from right below to the joint position of the upper and lower half bearings.

本実施例では潤滑油は前記給油孔10から供給され、前記潤滑油ポケット19から前記給油穴17及び前記油ポケット9bに分流され、前記給油穴17へ流入した潤滑油は前記冷却溝7を通り軸受摺動面よりの熱を冷却した後、前記油ポケット9aを通り前記摺動面16に供給される。一方、前記油ポケット9bに流入した潤滑油は冷却溝7を通り、前記回転軸1を冷却した後、前記オイルポケット11へ導かれ、前記オイルポケット11でせき止められ前記排油孔12から前記台金4を通り前記潤滑油排出孔13から外部に排出される。従ってこの前記回転軸1を冷却し温度上昇した潤滑油は下半軸受2aの摺動面16に流入することはない。   In this embodiment, the lubricating oil is supplied from the oil supply hole 10, and is divided from the lubricating oil pocket 19 into the oil supply hole 17 and the oil pocket 9 b, and the lubricating oil that has flowed into the oil supply hole 17 passes through the cooling groove 7. After the heat from the bearing sliding surface is cooled, it is supplied to the sliding surface 16 through the oil pocket 9a. On the other hand, the lubricating oil flowing into the oil pocket 9 b passes through the cooling groove 7, cools the rotating shaft 1, is guided to the oil pocket 11, is dammed by the oil pocket 11, and is discharged from the oil drain hole 12 to the base. It passes through the gold 4 and is discharged from the lubricating oil discharge hole 13 to the outside. Therefore, the lubricating oil whose temperature has been increased by cooling the rotary shaft 1 does not flow into the sliding surface 16 of the lower half bearing 2a.

本実施例においては、油膜圧力の発生しない領域を削除することにより、この領域での潤滑油のせん断による損失を減らすことができる。また、潤滑油が最初に軸受最高温度部を冷却するため、冷却効果が最も高い。   In the present embodiment, the loss due to the shearing of the lubricating oil in this region can be reduced by deleting the region where the oil film pressure is not generated. In addition, since the lubricating oil first cools the bearing maximum temperature portion, the cooling effect is the highest.

図6は本発明の他の実施例を示す軸受の縦断面図である。
図7は図6の縦断面図である。
図6,図7において、回転軸1を支持する軸受2は上下方向に2分割されており、かつ前記軸受2は内周側の軸受ライナー3と外周側の軸受台金4(後述するが4a,4bに2分割されている)で構成されている。前記軸受台金4は外周が球面形状となっており、前記軸受台金4の外周に球面座15が設けられている。前記軸受ライナー3には内周側に軸受メタル5がライニングされており、2分割された負荷側の前記軸受ライナー3aの外周側には周方向に冷却溝6が複数本設けられている。
FIG. 6 is a longitudinal sectional view of a bearing showing another embodiment of the present invention.
FIG. 7 is a longitudinal sectional view of FIG.
6 and 7, the bearing 2 for supporting the rotary shaft 1 is divided into two in the vertical direction, and the bearing 2 is composed of an inner peripheral bearing liner 3 and an outer peripheral bearing base 4 (which will be described later 4a). , 4b). The bearing base 4 has a spherical outer periphery, and a spherical seat 15 is provided on the outer periphery of the bearing base 4. The bearing liner 3 is lined with a bearing metal 5 on the inner circumferential side, and a plurality of cooling grooves 6 are provided in the circumferential direction on the outer circumferential side of the bearing liner 3a on the load side divided into two.

前記軸受ライナー3a,3bはいずれも100゜程度の部分軸受となっている。また、前記軸受ライナー3a,3bには入り口部に給油ポケット8a,8bが設けられており、前記給油ポケット8aは前記冷却溝6に連通し、前記冷却溝6は前記台金4aに設けられた潤滑油ポケット19に連通している。一方前記給油ポケット8bは前記台金4bに設けられた前記油ポケット9bに連通しており、前記給油ポケット8b及び前記油ポケット9bは前記油ポケット19で合流して前記油ポケット19は給油孔10に連通している。   The bearing liners 3a and 3b are both partial bearings of about 100 °. The bearing liners 3a and 3b are provided with oil supply pockets 8a and 8b at the entrance, the oil supply pocket 8a communicates with the cooling groove 6, and the cooling groove 6 is provided in the base metal 4a. The lubricant pocket 19 communicates. On the other hand, the oil supply pocket 8b communicates with the oil pocket 9b provided in the base metal 4b. The oil supply pocket 8b and the oil pocket 9b merge at the oil pocket 19, and the oil pocket 19 is connected to the oil supply hole 10. Communicating with

なお、本実施例は反負荷側の軸受にも動圧が発生する楕円軸受において特に有効であるが、真円軸受にも適用できる。   The present embodiment is particularly effective in an elliptical bearing in which dynamic pressure is generated also in the bearing on the anti-load side, but can also be applied to a perfect circle bearing.

以上のごとく本実施例では、潤滑油は前記給油孔10から供給され前記潤滑油ポケット19から前記給油穴17及び前記油ポケット9bに分流され、前記給油穴17へ流入した潤滑油は前記冷却溝7を通り軸受摺動面よりの熱を冷却した後、前記油ポケット9aを通り前記摺動面16に供給される。一方、前記油ポケット9bに流入した潤滑油は反負荷側の摺動面を潤滑した後、軸受両側面及び下流の切欠部18bから外部に排出される。従ってこの反負荷側の摺動面を潤滑し温度上昇した潤滑油は下半軸受2aの摺動面16に流入することはない。   As described above, in this embodiment, the lubricating oil is supplied from the oil supply hole 10 and is divided into the oil supply hole 17 and the oil pocket 9b from the lubricating oil pocket 19, and the lubricating oil flowing into the oil supply hole 17 is supplied to the cooling groove. After cooling the heat from the bearing sliding surface through 7, the oil is supplied to the sliding surface 16 through the oil pocket 9 a. On the other hand, the lubricating oil that has flowed into the oil pocket 9b lubricates the sliding surface on the anti-load side, and is then discharged to the outside from both side surfaces of the bearing and the downstream notch 18b. Therefore, the lubricating oil whose temperature has risen by lubricating the sliding surface on the opposite load side does not flow into the sliding surface 16 of the lower half bearing 2a.

本発明の他の実施例に係る軸受について、図8から図13で説明する。   A bearing according to another embodiment of the present invention will be described with reference to FIGS.

図8は本実施例を示すジャーナル軸受装置の軸受部の縦断面図である。   FIG. 8 is a longitudinal sectional view of the bearing portion of the journal bearing device showing the present embodiment.

図9,図10は、下側軸受部102aの斜視図である。   9 and 10 are perspective views of the lower bearing portion 102a.

回転軸101を支持する軸受部102は、図8及び図9では特に図示していないが、軸受台金104と、前記軸受台金104の内周側に設置される軸受ライナー103とで構成されている。さらに前記軸受ライナー103の内周面には軸受メタル105がライニングされており(図示せず)、回転軸101と対向する摺動面127を構成する。   Although not specifically shown in FIGS. 8 and 9, the bearing portion 102 that supports the rotating shaft 101 includes a bearing base 104 and a bearing liner 103 installed on the inner peripheral side of the bearing base 104. ing. Further, a bearing metal 105 is lined on the inner peripheral surface of the bearing liner 103 (not shown), and constitutes a sliding surface 127 that faces the rotating shaft 101.

なお、前記軸受台金104の外周側には球面座128(図示せず)が設けられている。   A spherical seat 128 (not shown) is provided on the outer peripheral side of the bearing base 104.

図8に示したように、軸受部102は接線135を境にして上下方向に、上側軸受部102bと下側軸受部102aとに2分割されている。即ち、軸受台金104は135を境にして上下方向に、上側台金104bと下側台金104aとに二分割されている。また軸受ライナー103も上下方向に、上側軸受ライナー103bと下側軸受ライナー103aとに二分割されている。   As shown in FIG. 8, the bearing portion 102 is divided into two in the vertical direction with the tangent line 135 as a boundary, an upper bearing portion 102 b and a lower bearing portion 102 a. That is, the bearing base metal 104 is divided into two in the vertical direction with respect to 135 as an upper base metal 104b and a lower base metal 104a. The bearing liner 103 is also divided into two parts in the vertical direction, an upper bearing liner 103b and a lower bearing liner 103a.

図10に示すように、下側軸受部102aは軸受台金104aと、軸受台金104aの内周側に設置される軸受ライナー103aとからなり、軸受ライナー103aの外周面には冷却溝106が1本または複数本、周方向に沿って設けられている。   As shown in FIG. 10, the lower bearing portion 102a includes a bearing base metal 104a and a bearing liner 103a installed on the inner peripheral side of the bearing base metal 104a. A cooling groove 106 is formed on the outer peripheral surface of the bearing liner 103a. One or more are provided along the circumferential direction.

下側軸受台金104aは、上側軸受台金104bとの合わせ面129aには給油路107が設けられており、給油路107は、球面座128に設けられた給油孔131(図示せず)及び軸受台金の内周面と連通しており、給油孔131は軸受部102外部に設けられた給油ポンプ(図示せず)と接続している。従って、給油ポンプから供給された潤滑油は、給油孔131を通過し、給油路107を軸受台金外周側から軸受台金内周側に流入する。   The lower bearing base 104a is provided with an oil supply passage 107 on the mating surface 129a with the upper bearing base 104b. The oil supply passage 107 includes an oil supply hole 131 (not shown) provided in the spherical seat 128, and It communicates with the inner peripheral surface of the bearing base, and the oil supply hole 131 is connected to an oil supply pump (not shown) provided outside the bearing portion 102. Accordingly, the lubricating oil supplied from the oil supply pump passes through the oil supply hole 131 and flows into the oil supply passage 107 from the bearing base outer peripheral side to the bearing base inner peripheral side.

なお、給油路107は、溝が設けられた軸受台金104aの合わせ面129aに、合わせ面104aと対面する上側軸受台金104bの合わせ面129c(図示せず)を合わせて構成されている。   The oil supply passage 107 is configured by aligning a mating surface 129a of the upper bearing base 104b facing the mating surface 104a with a mating surface 129a of the bearing base 104a provided with the groove.

下側軸受ライナー103aは、上側軸受ライナー103bとの合わせ面130aに潤滑油導入路108aが、また合わせ面130bに潤滑油導入路108bが設けられている。潤滑油導入路108a,108bはそれぞれ軸受ライナー内周側の摺動面127aと連通している。   The lower bearing liner 103a is provided with a lubricating oil introduction path 108a on the mating surface 130a with the upper bearing liner 103b and a lubricating oil introduction path 108b on the mating surface 130b. The lubricating oil introduction paths 108a and 108b communicate with the sliding surface 127a on the bearing liner inner peripheral side.

なお、潤滑油導入路108a,108bは、合わせ面130a,130bに、合わせ面130aと対面する上側軸受ライナー103bの合わせ面130cを合わせることで構成されている。   The lubricating oil introduction paths 108a and 108b are configured by matching the mating surfaces 130a and 130b with the mating surfaces 130c of the upper bearing liner 103b facing the mating surfaces 130a.

また、潤滑油導入路108bは冷却溝106と連通しており、冷却溝106は潤滑油導入路108aに連通している。また潤滑油導入路108aは給油路107とも連通している。   Further, the lubricating oil introduction path 108b communicates with the cooling groove 106, and the cooling groove 106 communicates with the lubricating oil introduction path 108a. The lubricating oil introduction path 108 a communicates with the oil supply path 107.

よって、軸受部102外部から給油ポンプにより給油された潤滑油は、給油孔131および供給路107を通過して潤滑油導入路108aに流れ込み、潤滑油の一部は潤滑油導入路108aに連通する冷却溝106に流入し、下側軸受102aの摺動面127a下方部を冷却した後、潤滑油導入路108bを通過して摺動面127上に流入する。   Therefore, the lubricating oil supplied from the outside of the bearing portion 102 by the oil supply pump passes through the oil supply hole 131 and the supply passage 107 and flows into the lubricating oil introduction passage 108a, and a part of the lubricating oil communicates with the lubricating oil introduction passage 108a. After flowing into the cooling groove 106 and cooling the lower portion of the sliding surface 127a of the lower bearing 102a, it passes through the lubricating oil introduction path 108b and flows onto the sliding surface 127.

なお、給油路107は、合わせ面129a,129bのうち、潤滑油導入路108aを介して冷却溝106内に給油した潤滑油の流れ方向が、回転軸101の回転方向と逆向きとなる側に設けられている。   The oil supply passage 107 is located on the side of the mating surfaces 129a and 129b where the flow direction of the lubricant supplied into the cooling groove 106 via the lubricant introduction passage 108a is opposite to the rotation direction of the rotary shaft 101. Is provided.

なお、特に図示しないが、実施例1と同様、上側軸受ライナー103bの内周側の軸受メタル105には、周方向に沿って冷却溝109(図示せず)が設けられており、冷却溝109の一端は潤滑油導入路108aと連通している。また冷却溝109の他の一端は上側軸受102bに設けられたオイルポケット110(図示せず)に連通している。オイルポケット110は、このオイルポケット110に設けられた排油孔111(図示せず)から前記軸受ライナー103b及び前記台金104bに設けられた潤滑油排出孔112(図示せず)に連通している。また、軸受が設置されている軸受ハウジング(図示せず)の開放端側は潤滑油の漏洩を防止するために、軸受端面に潤滑油逃がし溝113(図示せず)を設け、潤滑油を下部に排出している。   Although not particularly illustrated, similarly to the first embodiment, a cooling groove 109 (not shown) is provided in the bearing metal 105 on the inner peripheral side of the upper bearing liner 103b along the circumferential direction. One end of this is in communication with the lubricating oil introduction path 108a. The other end of the cooling groove 109 communicates with an oil pocket 110 (not shown) provided in the upper bearing 102b. The oil pocket 110 communicates with a lubricating oil discharge hole 112 (not shown) provided in the bearing liner 103b and the base metal 104b from an oil discharge hole 111 (not shown) provided in the oil pocket 110. Yes. In addition, on the open end side of the bearing housing (not shown) in which the bearing is installed, a lubricating oil relief groove 113 (not shown) is provided on the bearing end face to prevent the lubricating oil from leaking, and the lubricating oil is placed in the lower part. Is discharged.

次に、冷却溝106の構造を説明する。図8及び図9に示すように、冷却溝106には、溝内を流通する潤滑油の流れを乱す乱流促進構造114が一箇所または複数箇所設けられている。   Next, the structure of the cooling groove 106 will be described. As shown in FIGS. 8 and 9, the cooling groove 106 is provided with one or a plurality of turbulent flow promoting structures 114 that disturb the flow of the lubricating oil flowing in the groove.

図11に乱流促進構造114の一例を示す。本例では冷却溝106を構成する摺動面側内壁115、及び側壁116のうち、摺動面側内壁115に、回転軸101の軸方向に平行に列設された、複数の突起形状の乱流促進体117aを設けている。   FIG. 11 shows an example of the turbulent flow promoting structure 114. In this example, among the sliding surface side inner wall 115 and the side wall 116 constituting the cooling groove 106, a plurality of protrusion-shaped disturbances arranged in parallel on the sliding surface side inner wall 115 in the axial direction of the rotating shaft 101. A flow promoting body 117a is provided.

さらに図12に示した他の例では、冷却溝106の両側壁116間を繋ぐ円柱状の部材からなる乱流促進体117bを設けている。   Furthermore, in another example shown in FIG. 12, a turbulent flow promoting body 117b made of a cylindrical member that connects between the side walls 116 of the cooling groove 106 is provided.

次に乱流促進構造114の冷却溝106内における設置位置について説明する。   Next, the installation position of the turbulent flow promoting structure 114 in the cooling groove 106 will be described.

図18に、摺動面127上の油膜の温度分布を示す。実施例1と同様、回転軸101が回転することによって、油膜温度は、下側軸受102aの周方向において、破線で示したロータ軸心133を通る垂線から白抜き矢印で示したロータ回転方向に30°〜40°の付近で最も高くなり、軸受温度もこの付近で最高となる。   FIG. 18 shows the temperature distribution of the oil film on the sliding surface 127. As in the first embodiment, when the rotating shaft 101 rotates, the oil film temperature changes in the circumferential direction of the lower bearing 102a from the perpendicular passing through the rotor axis 133 indicated by the broken line to the rotor rotating direction indicated by the white arrow. The highest temperature is in the vicinity of 30 ° to 40 °, and the bearing temperature is highest in this vicinity.

本実施例では、潤滑油は、冷却溝106内を回転軸101の回転方向と逆方向に流れており、潤滑油導入路108aから冷却溝106に流れ込み、潤滑油導入路108bに流れ込む間で、軸受温度が最も高い部位を通過することになる。そこで、乱流促進構造114は、軸受温度最高部よりも、冷却溝106内を流れる潤滑油の流れ方向上流側に設けられている。または乱流促進構造114は、下側軸受102aの周方向において、破線で示したロータ軸心133を通る垂線からロータ回転方向に30°以上の位置に設けられている。   In this embodiment, the lubricating oil flows in the cooling groove 106 in the direction opposite to the rotation direction of the rotary shaft 101, and flows into the cooling groove 106 from the lubricating oil introduction path 108a and into the lubricating oil introduction path 108b. It passes through the part where the bearing temperature is highest. Therefore, the turbulent flow promoting structure 114 is provided on the upstream side in the flow direction of the lubricating oil flowing in the cooling groove 106 from the highest bearing temperature portion. Alternatively, the turbulent flow promoting structure 114 is provided at a position of 30 ° or more in the rotor rotation direction from a perpendicular passing through the rotor axis 133 indicated by a broken line in the circumferential direction of the lower bearing 102a.

これにより潤滑油導入路108aから冷却溝106に流れ込んだ潤滑油は、乱流促進構造114にて流れを乱された後、軸受温度最高部を通過しながら軸受を冷却し、その後、潤滑油導入路108bより摺動面127上に供給される。最高温度部よりも上流側で潤滑油の流れを乱すことで、潤滑油の熱伝達性が向上し、実施例1の軸受と比較しても、より高い冷却効果が得られる。   As a result, the lubricating oil flowing into the cooling groove 106 from the lubricating oil introduction path 108a is disturbed by the turbulent flow promoting structure 114, then cools the bearing while passing through the highest bearing temperature, and then the lubricating oil is introduced. It is supplied onto the sliding surface 127 from the path 108b. Disturbing the flow of the lubricating oil upstream of the maximum temperature portion improves the heat transfer performance of the lubricating oil, and a higher cooling effect can be obtained compared to the bearing of the first embodiment.

また、乱流促進構造117は、冷却溝内の最高温度部にも設置しても良い。乱流促進体117は設置箇所の表面積を大きくする効果もあることから、最高温度部にも乱流促進構造114を設置することで、さらに高い冷却効果が得られる。   Moreover, you may install the turbulent flow promotion structure 117 also in the highest temperature part in a cooling groove. Since the turbulent flow promoting body 117 also has an effect of increasing the surface area of the installation location, a higher cooling effect can be obtained by installing the turbulent flow promoting structure 114 in the maximum temperature portion.

次に、乱流促進体117の具体的な設置方法を図10及び図13に基づいて説明する。   Next, a specific method for installing the turbulence promoting body 117 will be described with reference to FIGS.

図10の下側軸受部102aの斜視図に示すように、軸受部102aを軸受ライナー103aと軸受台金104aとに分割し、ライナー103aの外周面に沿って周方向に一箇所または複数箇所の冷却溝106が設けられている。この冷却溝106にはスリット状の取付け溝118が設けられている。この取付け溝118に、図13に示した乱流促進体117を有する構造体119を挿入し、嵌設することにより、通油孔106に乱流促進体117を設置し、乱流促進構造114を構成する。   As shown in the perspective view of the lower bearing portion 102a in FIG. 10, the bearing portion 102a is divided into a bearing liner 103a and a bearing base metal 104a, and one or a plurality of locations are provided in the circumferential direction along the outer peripheral surface of the liner 103a. A cooling groove 106 is provided. The cooling groove 106 is provided with a slit-like mounting groove 118. The structure body 119 having the turbulent flow promoting body 117 shown in FIG. 13 is inserted into the mounting groove 118 and fitted, whereby the turbulent flow promoting body 117 is installed in the oil passage hole 106 and the turbulent flow promoting structure 114. Configure.

図13に前記構造体119の具体的な例(a)および(b)を示す。構造体119a,119bは共に、取付け溝118のうち、側壁116に設けられた部位に挿入される側壁挿入部位120と、取付け溝118のうち、摺動面側内壁115に設けられた部位に挿入される内壁挿入部位121とを有する。そして、構造体119aでは内壁挿入部位121の冷却溝側に複数の突起からなる乱流促進体117aを設けている。なお、突起の形状は、図示したものに限られず、円柱状等でも良い。また119bの例では側壁挿入部位120間に乱流促進体117bとして側壁挿入部位間を繋ぐ円柱状の部材を設けている。   FIG. 13 shows specific examples (a) and (b) of the structure body 119. Both of the structures 119a and 119b are inserted into the side wall insertion part 120 to be inserted into the part provided in the side wall 116 in the mounting groove 118 and the part provided in the sliding surface side inner wall 115 in the mounting groove 118. And an inner wall insertion portion 121. And in the structure 119a, the turbulent flow promotion body 117a which consists of several protrusion is provided in the cooling groove side of the inner wall insertion site | part 121. FIG. The shape of the protrusion is not limited to that shown in the figure, and may be a columnar shape. In the example of 119b, a columnar member is provided between the side wall insertion portions 120 as the turbulent flow promoting body 117b to connect the side wall insertion portions.

なお、構造体119は、軸受ライナー103を構成する部材よりも熱伝達性の良い部材、例えばアルミニウム,銅、または銅の合金であるクロム銅等で構成されている。軸受ライナーを構成する部材よりも熱伝達性の良い部材で構成することで、冷却媒体でもある潤滑油と軸受ライナー間の熱伝達効率が向上し、冷却性能の向上に寄与する。   The structure 119 is made of a member having better heat transfer than the members constituting the bearing liner 103, for example, aluminum, copper, or chromium copper that is an alloy of copper. By using a member having better heat transfer than the member constituting the bearing liner, the heat transfer efficiency between the lubricating oil, which is also the cooling medium, and the bearing liner is improved, and the cooling performance is improved.

次に本実施例の作用効果について説明する。   Next, the function and effect of this embodiment will be described.

図8の矢印は潤滑油の流れを示している。軸受外部から給油ポンプにより給油された潤滑油は給油孔131および給油路107を通過して潤滑油導入路108aから摺動面127aに供給される。また他の潤滑油は給油路107,潤滑油導入路108aを通過して冷却溝106に流れ込み、乱流促進構造114で流れを乱される。   The arrows in FIG. 8 indicate the flow of the lubricating oil. The lubricating oil supplied from the outside of the bearing by the oil supply pump passes through the oil supply hole 131 and the oil supply passage 107, and is supplied from the lubricant introduction passage 108a to the sliding surface 127a. Other lubricating oil passes through the oil supply passage 107 and the lubricating oil introduction passage 108 a and flows into the cooling groove 106, and the flow is disturbed by the turbulent flow promoting structure 114.

一般的に潤滑油は粘度が高く、熱伝達性が低い。このため通油孔での流れは層流になりやすく、より冷却効果を向上するためには流れを乱すのが効果的である。潤滑油が乱流促進構造114を通ることにより、乱流促進体117により流れが乱され、熱伝達性が向上する。また通油孔106を通り軸受温度最高部の冷却に使用された潤滑油は、自らは温度が上昇することで粘度が下がり、該潤滑油を、潤滑油導入路108bより摺動面127上に導入することで摩擦損失も低減できる。   In general, lubricating oil has high viscosity and low heat transfer. For this reason, the flow through the oil passage holes tends to be laminar, and it is effective to disturb the flow in order to further improve the cooling effect. When the lubricating oil passes through the turbulent flow promoting structure 114, the flow is disturbed by the turbulent flow promoting body 117, and the heat transfer performance is improved. Further, the lubricating oil used for cooling the highest bearing temperature through the oil passage hole 106 decreases in viscosity as the temperature rises itself, and the lubricating oil is transferred onto the sliding surface 127 from the lubricating oil introduction path 108b. By introducing it, friction loss can be reduced.

乱流促進体117の作用効果について説明する。図3に示したように冷却溝106の摺動面側内壁115に突起形状の乱流促進体114aを設けることで、冷却溝106の摺動面側表面付近の流れを乱し、熱伝達性を向上させる。また図4に示したように冷却溝106の摺動面側表面付近の側壁に円柱状の部材からなる乱流促進体114bを配置することで、潤滑油流れに渦が発生し、熱伝達性を向上させることができる。   The effect of the turbulence promoting body 117 will be described. As shown in FIG. 3, by providing a projection-shaped turbulence promoting body 114a on the sliding wall side inner wall 115 of the cooling groove 106, the flow near the sliding surface side surface of the cooling groove 106 is disturbed, and the heat transfer performance is improved. To improve. Also, as shown in FIG. 4, by arranging the turbulent flow promoting body 114b made of a cylindrical member on the side wall near the sliding surface side surface of the cooling groove 106, a vortex is generated in the lubricating oil flow, and the heat transfer property Can be improved.

油膜の最高温度位置は軸からの最大負荷のかかる位置の近辺であるが、本発明では、この負荷により冷却溝106上部の軸受表面を変形させることで、油溜まりを軸受表面に発生し、潤滑性能を向上する効果もある。   The maximum temperature position of the oil film is in the vicinity of the position where the maximum load is applied from the shaft. However, in the present invention, the bearing surface above the cooling groove 106 is deformed by this load, thereby generating an oil reservoir on the bearing surface and lubricating. There is also an effect of improving performance.

図14は本実施例におけるジャーナル軸受の温度特性を示す。破線は従来の軸受の回転数における軸受摺動面最高温度を示しており、回転数が上がるにつれて軸受摺動面の温度は上昇する。実線は本実施例のジャーナル軸受の温度特性を示している。本実施例のジャーナル軸受は、下側軸受ライナー103aに冷却溝106を設けることで、油膜温度が最も高い位置を潤滑油が流れるため、従来の軸受と比較し温度が上昇しにくい。そのため旧来軸受が焼損して使用できなかった回転数にも対応可能である。これにより、蒸気タービンや、ガスタービン,遠心圧縮機などの回転機械の高速化及び高荷重化が可能となる。   FIG. 14 shows the temperature characteristics of the journal bearing in this embodiment. The broken line indicates the maximum temperature of the bearing sliding surface at the rotational speed of the conventional bearing, and the temperature of the bearing sliding surface increases as the rotational speed increases. The solid line shows the temperature characteristics of the journal bearing of this embodiment. In the journal bearing of the present embodiment, the cooling groove 106 is provided in the lower bearing liner 103a, so that the lubricating oil flows through the position where the oil film temperature is the highest, so that the temperature is less likely to rise compared to the conventional bearing. Therefore, it is possible to cope with the rotational speed that the conventional bearing could not be used due to burning. This makes it possible to increase the speed and load of rotating machines such as steam turbines, gas turbines, and centrifugal compressors.

図15は本発明の他の実施例を示す軸受の縦断面図である。   FIG. 15 is a longitudinal sectional view of a bearing showing another embodiment of the present invention.

実施例4と同様の構成部分については説明を省略し、以下、実施例4と異なる構成箇所について説明する。   The description of the same components as those in the fourth embodiment will be omitted, and the components different from those in the fourth embodiment will be described below.

本実施例では、軸受台金104aに設けられた給油路107の内周側は、冷却溝106とのみ連通している。   In this embodiment, the inner peripheral side of the oil supply passage 107 provided in the bearing base metal 104 a communicates only with the cooling groove 106.

また、上側軸受ライナー103bは外周面に周方向にそって冷却溝132を有する。冷却溝132は、上側軸受部102bと下側軸受部102aを締結部材で一体化した際には、下側軸受ライナー103aの潤滑油導入路108bに連通するように設けられている。また下側軸受ライナーの合わせ面130aと、対面する上側軸受ライナーの合わせ面130c(図示せず)近傍には、軸受ライナー内周側の摺動面127b及び冷却溝132と連通する潤滑油導入孔134が設けられている。   Further, the upper bearing liner 103b has cooling grooves 132 along the circumferential direction on the outer peripheral surface. The cooling groove 132 is provided so as to communicate with the lubricating oil introduction passage 108b of the lower bearing liner 103a when the upper bearing portion 102b and the lower bearing portion 102a are integrated with a fastening member. Further, in the vicinity of the mating surface 130a of the lower bearing liner and the mating surface 130c (not shown) of the upper bearing liner facing each other, a lubricating oil introduction hole communicating with the sliding surface 127b on the inner peripheral side of the bearing liner and the cooling groove 132 is provided. 134 is provided.

よって、軸受部102外部から給油ポンプにより給油された潤滑油は給油孔131,供給路107を通過して全量が冷却溝106に流入する。また冷却溝106に流入した潤滑油は下側軸受102aを冷却した後、一部は潤滑油導入路108bを介して摺動面127a上に流入する。また残りの潤滑油は潤滑油導入路108bに連通する冷却溝132に流入し、冷却溝132に連通する潤滑油導入孔134より、上側軸受102bの摺動面127bに流入する。   Accordingly, the lubricating oil supplied from the outside of the bearing portion 102 by the oil supply pump passes through the oil supply hole 131 and the supply passage 107 and the entire amount flows into the cooling groove 106. Further, the lubricating oil flowing into the cooling groove 106 cools the lower bearing 102a, and then partially flows onto the sliding surface 127a via the lubricating oil introduction path 108b. The remaining lubricating oil flows into the cooling groove 132 communicating with the lubricating oil introduction path 108b, and flows into the sliding surface 127b of the upper bearing 102b through the lubricating oil introduction hole 134 communicating with the cooling groove 132.

なお、実施例4と同様に冷却溝106には乱流促進構造114が設けられている。乱流促進構造114は、軸受温度最高部よりも、冷却溝106内を流れる潤滑油の流れ方向上流側に設けられている。   As in the fourth embodiment, the cooling groove 106 is provided with a turbulent flow promoting structure 114. The turbulent flow promoting structure 114 is provided on the upstream side in the flow direction of the lubricating oil flowing in the cooling groove 106 from the highest bearing temperature portion.

または乱流促進構造114は、下側軸受102aの周方向において、破線で示したロータ軸心133を通る垂線からロータ回転方向に30°以上の位置に設けられている。   Alternatively, the turbulent flow promoting structure 114 is provided at a position of 30 ° or more in the rotor rotation direction from a perpendicular passing through the rotor axis 133 indicated by a broken line in the circumferential direction of the lower bearing 102a.

次に本実施例の作用効果を図15に基づいて説明する。   Next, the function and effect of this embodiment will be described with reference to FIG.

図15の矢印は潤滑油の流れを示している。潤滑油は、軸受外部から給油孔131を通過して給油路107に供給され、全量が冷却溝106を通り下側軸受102を冷却する。また、実施例4と同様に、冷却溝106には、乱流促進構造114が一箇所または複数箇所けられており、乱流促進体117により流れが乱され、潤滑油の熱伝達性が向上する。   The arrows in FIG. 15 indicate the flow of the lubricating oil. Lubricating oil passes through the oil supply hole 131 from the outside of the bearing and is supplied to the oil supply passage 107, and the entire amount passes through the cooling groove 106 to cool the lower bearing 102. Similarly to the fourth embodiment, the cooling groove 106 is provided with one or a plurality of turbulent flow promoting structures 114, the flow is disturbed by the turbulent flow promoting body 117, and the heat transfer performance of the lubricating oil is improved. To do.

本実施例では、給油路107から供給された潤滑油を全て冷却溝106に供給する構造とすることで、実施例4と比較すると潤滑油の流速が向上し、潤滑油が流れを乱す乱流促進構造114を通過するとき、より熱伝達の向上が期待できる。よって、従来の軸受と比較し温度が上昇しにくく、旧来軸受が焼損して使用できなかった回転数にも対応可能である。これにより、蒸気タービンや、ガスタービン,遠心圧縮機などの回転機械の高速化及び高荷重化が可能となる。   In this embodiment, all the lubricating oil supplied from the oil supply passage 107 is supplied to the cooling groove 106, so that the flow velocity of the lubricating oil is improved compared to the fourth embodiment, and the turbulent flow in which the lubricating oil disturbs the flow. When passing through the accelerating structure 114, further improvement in heat transfer can be expected. Therefore, the temperature is less likely to rise compared to a conventional bearing, and it is possible to cope with the number of rotations that the conventional bearing could not be used due to burning. This makes it possible to increase the speed and load of rotating machines such as steam turbines, gas turbines, and centrifugal compressors.

図16は本発明のジャーナル軸受を適用した回転機械の具体例として蒸気タービンに適用した例を示す。   FIG. 16 shows an example applied to a steam turbine as a specific example of a rotating machine to which the journal bearing of the present invention is applied.

高圧タービン122及び低圧タービン123を有する一軸式の蒸気タービンにおいては、一般的に高圧タービンロータ124と低圧タービンロータ125が存在し、これらのロータと発電機126が一本の軸に連結されている。蒸気タービンにおいては効率の向上のため、ロータの翼の長翼化に伴う軸径の増大などにより重量が増してきており、このような蒸気タービンでは各ロータを二つの軸受で支える(a)のように軸受25を配置することが多い。   In a single-shaft steam turbine having a high-pressure turbine 122 and a low-pressure turbine 123, there are generally a high-pressure turbine rotor 124 and a low-pressure turbine rotor 125, and these rotor and generator 126 are connected to one shaft. . In order to improve efficiency in a steam turbine, the weight has increased due to an increase in shaft diameter accompanying the increase in the length of the rotor blades. In such a steam turbine, each rotor is supported by two bearings (a). Thus, the bearing 25 is often arranged.

しかしながら、本発明によるジャーナル軸受を使用することで従来よりも高荷重を支えることが可能となり、(b)に示すようにロータ間の軸受数を1つにすることが可能となる。これにより、タービンの全長を短縮することが可能となり、タービン建屋の小型化、また軸受の個数を減らせることからメンテナンス性の向上といったメリットがある。   However, by using the journal bearing according to the present invention, it becomes possible to support a higher load than before, and the number of bearings between the rotors can be reduced to one as shown in FIG. As a result, the total length of the turbine can be shortened, and the turbine building can be downsized, and the number of bearings can be reduced.

本発明の一実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Example of this invention. 図1の縦断面図である。It is a longitudinal cross-sectional view of FIG. 本発明の軸受の給油状態の説明図である。It is explanatory drawing of the oil supply state of the bearing of this invention. 油膜圧力と温度分布を説明する図である。It is a figure explaining an oil film pressure and temperature distribution. 本発明の他の実施例を説明する図である。It is a figure explaining the other Example of this invention. 本発明の他の実施例を説明する図である。It is a figure explaining the other Example of this invention. 図6の縦断面図である。It is a longitudinal cross-sectional view of FIG. 本発明の一実施例を示す縦断面図である。It is a longitudinal cross-sectional view which shows one Example of this invention. 図8における下側軸受の斜視図である。It is a perspective view of the lower bearing in FIG. 潤滑油の流れを乱す構造の設置例を説明する下側軸受の斜視図である。It is a perspective view of the lower bearing explaining the example of installation of the structure which disturbs the flow of lubricating oil. 潤滑油の流れを乱す乱流促進体の一例を示す図である。It is a figure which shows an example of the turbulent flow promoter which disturbs the flow of lubricating oil. 潤滑油の流れを乱す乱流促進体の一例を示す図である。It is a figure which shows an example of the turbulent flow promoter which disturbs the flow of lubricating oil. 本発明の軸受通油孔の流れを乱す構造体を示す図である。It is a figure which shows the structure which disturbs the flow of the bearing oil passage hole of this invention. 回転機械高速化における本軸受採用のメリットを説明するグラフである。It is a graph explaining the merit of this bearing adoption in rotation machine speeding up. 本発明の一実施例を示す図である。It is a figure which shows one Example of this invention. 本発明の軸受を適用した回転機械を説明する図である。It is a figure explaining the rotary machine to which the bearing of this invention is applied. 従来の軸受構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the conventional bearing structure. 温度分布とその位置関係を説明する図である。It is a figure explaining temperature distribution and its positional relationship.

符号の説明Explanation of symbols

1 軸
2 軸受
2a 下半軸受
2b 上半軸受
3a,3b,103a,103b 軸受ライナー
4a,4b,104a,104b 軸受台金
5,105 軸受メタル
6,7,106,109,132 冷却溝
8a,8b 給油ポケット
9 油ポケット
10,131 給油孔
11,110 オイルポケット
12,111 排油孔
13,112 潤滑油排出孔
14,113 潤滑油逃がし溝
15,128 球面座
16,127a,127b 摺動面
17 給油穴
18 空隙部
19 潤滑油ポケット
101 回転軸
102a 下側軸受
102b 上側軸受
107 給油路
108a,108b 潤滑油導入路
114 乱流促進構造
115 摺動面側内壁
116 側壁
117a,117b 乱流促進体
118 取付け溝
119a,119b 構造体
120 側壁挿入部位
121 内壁挿入部位
122 高圧タービン
123 低圧タービン
124 高圧タービンロータ
125 低圧タービンロータ
126 発電機
129a,129b,130a,130b,130c 合わせ面
133 ロータの軸心
134 潤滑油導入孔
135 接線
1 shaft 2 bearing 2a lower half bearing 2b upper half bearing 3a, 3b, 103a, 103b bearing liner 4a, 4b, 104a, 104b bearing base 5,105 bearing metal 6,7,106,109,132 cooling groove 8a, 8b Oil supply pocket 9 Oil pocket 10, 131 Oil supply hole 11, 110 Oil pocket 12, 111 Oil drain hole 13, 112 Lubricant oil discharge hole 14, 113 Lubricant oil relief groove 15, 128 Spherical seat 16, 127a, 127b Sliding surface 17 Oil supply Hole 18 Cavity 19 Lubricant pocket 101 Rotating shaft 102a Lower bearing 102b Upper bearing 107 Oil supply path 108a, 108b Lubricating oil introduction path 114 Turbulence promoting structure 115 Sliding surface side inner wall 116 Side wall 117a, 117b Turbulence promoting body 118 Installation Groove 119a, 119b Structure 120 Side wall insertion part 121 Inner wall insertion part 122 High Pressure turbine 123 Low-pressure turbine 124 High-pressure turbine rotor 125 Low-pressure turbine rotor 126 Generators 129a, 129b, 130a, 130b, 130c Mating surface 133 Rotor axis 134 Lubricating oil introduction hole 135 Tangent

Claims (5)

回転機械のロータを支持するジャーナル軸受装置において、
前記ジャーナル軸受装置の軸受部は、軸受台金と、該軸受台金の内周側に設けられる軸受ライナーとを備え、
前記軸受台金,前記軸受ライナーはそれぞれ上下方向に2分割されており、
下側の前記軸受台金は、潤滑油が前記軸受台金外周側から内周側に向かって通油する給油路を有し、
下側の前記軸受ライナーは、前記給油路及び前記軸受ライナーの内周側の摺動面に連通する第1の潤滑油導入路と、前記軸受ライナー外周面の周方向に沿って設けられ、前記第1の潤滑油導入路に連通し、前記給油路から給油された潤滑油の一部が通油する冷却溝と、該冷却溝及び前記軸受ライナーの内周側の摺動面に連通し、前記冷却溝を通過した潤滑油が通油する第2の潤滑油導入路とを有し、
前記給油路は、前記第1の潤滑油導入路を介して前記冷却溝に給油した潤滑油の流れ方向が前記ロータの回転方向と逆向きとなる位置に設けられており、
前記冷却溝は、溝内を通油する潤滑油の流れを乱す乱流促進体を有し、
前記乱流促進体は、軸受温度最高部よりも潤滑油流れ方向上流側に設けられている
ことを特徴とするジャーナル軸受装置。
In a journal bearing device that supports a rotor of a rotating machine,
The journal bearing device includes a bearing base and a bearing liner provided on the inner peripheral side of the bearing base,
The bearing base and the bearing liner are each divided into two in the vertical direction,
The lower bearing base has an oil supply passage through which lubricating oil passes from the outer peripheral side of the bearing base toward the inner peripheral side,
The lower bearing liner is provided along the circumferential direction of the first lubricating oil introduction passage communicating with the oil supply passage and the sliding surface on the inner peripheral side of the bearing liner, and the outer circumferential surface of the bearing liner, Communicating with the first lubricating oil introduction path, communicating with a cooling groove through which a part of the lubricating oil supplied from the oil supply path passes, and with the cooling groove and a sliding surface on the inner peripheral side of the bearing liner; A second lubricating oil introduction path through which the lubricating oil that has passed through the cooling groove passes,
The oil supply passage is provided at a position where the flow direction of the lubricant supplied to the cooling groove via the first lubricant introduction passage is opposite to the rotation direction of the rotor,
The cooling groove has a turbulence promoting body that disturbs the flow of lubricating oil passing through the groove,
The journal bearing device according to claim 1, wherein the turbulent flow promoting body is provided upstream of the bearing temperature maximum portion in the lubricating oil flow direction.
回転機械のロータを支持するジャーナル軸受装置において、
前記ジャーナル軸受装置の軸受部は、軸受台金と、該軸受台金の内周側に設けられる軸受ライナーとを備え、
前記軸受台金,前記軸受ライナーはそれぞれ上下方向に2分割されており、
下側の前記軸受台金は、潤滑油が前記軸受台金外周側から内周側に向かって通油する給油路を有し、
下側の前記軸受ライナーは、前記軸受ライナー外周面の周方向に沿って設けられ、前記給油路に連通し、前記給油路から給油された潤滑油が通油する第1の冷却溝と、該第1の冷却溝及び前記軸受ライナーの内周側の摺動面に連通し、前記第1の冷却溝を通過した潤滑油が通油する潤滑油導入路とを有し、
上側の前記軸受ライナーは、前記軸受ライナー外周面の周方向に沿って設けられ、前記潤滑油導入路と連通し、前記第1の冷却溝を通過した潤滑油の一部が前記潤滑油導入路を介して通油する第2の冷却溝と、該第2の冷却溝及び前記軸受ライナー内周側の摺動面と連通し、前記第2の溝を通過した潤滑油が通油する潤滑油導入孔とを有し、
前記給油路は、前記第1の溝に給油した潤滑油の流れ方向が前記ロータの回転方向と逆向きとなる位置に設けられており、
前記冷却溝は、溝内を通油する潤滑油の流れを乱す乱流促進体を有し、
前記乱流促進体は、軸受温度最高部よりも潤滑油流れ方向上流側に設けられている
ことを特徴とするジャーナル軸受装置。
In a journal bearing device that supports a rotor of a rotating machine,
The journal bearing device includes a bearing base and a bearing liner provided on the inner peripheral side of the bearing base,
The bearing base and the bearing liner are each divided into two in the vertical direction,
The lower bearing base has an oil supply passage through which lubricating oil passes from the outer peripheral side of the bearing base toward the inner peripheral side,
The lower bearing liner is provided along the circumferential direction of the outer peripheral surface of the bearing liner, communicates with the oil supply passage, and includes a first cooling groove through which lubricating oil supplied from the oil supply passage passes. A lubricating oil introduction path that communicates with the first cooling groove and the sliding surface on the inner peripheral side of the bearing liner and through which the lubricating oil that has passed through the first cooling groove passes;
The upper bearing liner is provided along the circumferential direction of the outer peripheral surface of the bearing liner, communicates with the lubricating oil introduction path, and a part of the lubricating oil that has passed through the first cooling groove is the lubricating oil introduction path. A second cooling groove that passes through the second cooling groove, a lubricating oil that communicates with the second cooling groove and the sliding surface on the inner peripheral side of the bearing liner, and through which the lubricating oil that has passed through the second groove passes. An introduction hole,
The oil supply path is provided at a position where the flow direction of the lubricating oil supplied to the first groove is opposite to the rotation direction of the rotor,
The cooling groove has a turbulence promoting body that disturbs the flow of lubricating oil passing through the groove,
The journal bearing device according to claim 1, wherein the turbulent flow promoting body is provided upstream of the bearing temperature maximum portion in the lubricating oil flow direction.
回転機械のロータを支持するジャーナル軸受装置において、
前記ジャーナル軸受装置の軸受部は、軸受台金と、該軸受台金の内周側に設けられる軸受ライナーとを備え、
前記軸受台金,前記軸受ライナーはそれぞれ上下方向に2分割されており、
下側の前記軸受台金は、潤滑油が前記軸受台金外周側から内周側に向かって通油する給油路を有し、
下側の前記軸受ライナーは、前記給油路及び前記軸受ライナーの内周側の摺動面に連通する第1の潤滑油導入路と、前記軸受ライナー外周面の周方向に沿って設けられ、前記第1の潤滑油導入路に連通し、前記給油路から給油された潤滑油の一部が通油する冷却溝と、該冷却溝及び前記軸受ライナーの内周側の摺動面に連通し、前記冷却溝を通過した潤滑油が通油する第2の潤滑油導入路とを有し、
前記給油路は、前記第1の潤滑油導入路を介して前記冷却溝に給油した潤滑油の流れ方向が前記ロータの回転方向と逆向きとなる位置に設けられており、
前記冷却溝は、溝内を通油する潤滑油の流れを乱す乱流促進体を有し、
前記乱流促進体は、前記下側軸受ライナーの周方向において、前記ロータの軸心を通る垂線から前記ロータの回転方向30°以上の位置に設けられている
ことを特徴とするジャーナル軸受装置。
In a journal bearing device that supports a rotor of a rotating machine,
The journal bearing device includes a bearing base and a bearing liner provided on the inner peripheral side of the bearing base,
The bearing base and the bearing liner are each divided into two in the vertical direction,
The lower bearing base has an oil supply passage through which lubricating oil passes from the outer peripheral side of the bearing base toward the inner peripheral side,
The lower bearing liner is provided along the circumferential direction of the first lubricating oil introduction passage communicating with the oil supply passage and the sliding surface on the inner peripheral side of the bearing liner, and the outer circumferential surface of the bearing liner, Communicating with the first lubricating oil introduction path, communicating with a cooling groove through which a part of the lubricating oil supplied from the oil supply path passes, and with the cooling groove and a sliding surface on the inner peripheral side of the bearing liner; A second lubricating oil introduction path through which the lubricating oil that has passed through the cooling groove passes,
The oil supply passage is provided at a position where the flow direction of the lubricant supplied to the cooling groove via the first lubricant introduction passage is opposite to the rotation direction of the rotor,
The cooling groove has a turbulence promoting body that disturbs the flow of lubricating oil passing through the groove,
The journal bearing device according to claim 1, wherein the turbulent flow promoting body is provided in a circumferential direction of the lower bearing liner at a position of 30 ° or more in a rotation direction of the rotor from a perpendicular passing through the axis of the rotor.
回転機械のロータを支持するジャーナル軸受装置において、
前記ジャーナル軸受装置の軸受部は、軸受台金と、該軸受台金の内周側に設けられる軸受ライナーとを備え、
前記軸受台金、前記軸受ライナーはそれぞれ上下方向に2分割されており、
下側の前記軸受台金は、潤滑油が前記軸受台金外周側から内周側に向かって通油する給油路を有し、
下側の前記軸受ライナーは、前記軸受ライナー外周面の周方向に沿って設けられ、前記給油路に連通し、前記給油路から給油された潤滑油が通油する第1の冷却溝と、該第1の冷却溝及び前記軸受ライナーの内周側の摺動面に連通し、前記第1の冷却溝を通過した潤滑油が通油する潤滑油導入路とを有し、
上側の前記軸受ライナーは、前記軸受ライナー外周面の周方向に沿って設けられ、前記潤滑油導入路と連通し、前記第1の冷却溝を通過した潤滑油の一部が前記潤滑油導入路を介して通油する第2の冷却溝と、該第2の冷却溝及び前記軸受ライナー内周側の摺動面と連通し、前記第2の溝を通過した潤滑油が通油する潤滑油導入孔とを有し、
前記給油路は、前記第1の溝に給油した潤滑油の流れ方向が前記ロータの回転方向と逆向きとなる位置に設けられており、
前記冷却溝は、溝内を通油する潤滑油の流れを乱す乱流促進体を有し、
前記乱流促進体は、前記下側軸受ライナーの周方向において、前記ロータの軸心を通る垂線から前記ロータの回転方向30°以上の位置に設けられている
ことを特徴とするジャーナル軸受装置。
In a journal bearing device that supports a rotor of a rotating machine,
The journal bearing device includes a bearing base and a bearing liner provided on the inner peripheral side of the bearing base,
The bearing base and the bearing liner are each divided into two in the vertical direction,
The lower bearing base has an oil supply passage through which lubricating oil passes from the outer peripheral side of the bearing base toward the inner peripheral side,
The lower bearing liner is provided along the circumferential direction of the outer peripheral surface of the bearing liner, communicates with the oil supply passage, and includes a first cooling groove through which lubricating oil supplied from the oil supply passage passes. A lubricating oil introduction path that communicates with the first cooling groove and the sliding surface on the inner peripheral side of the bearing liner and through which the lubricating oil that has passed through the first cooling groove passes;
The upper bearing liner is provided along the circumferential direction of the outer peripheral surface of the bearing liner, communicates with the lubricating oil introduction path, and a part of the lubricating oil that has passed through the first cooling groove is the lubricating oil introduction path. A second cooling groove that passes through the second cooling groove, a lubricating oil that communicates with the second cooling groove and the sliding surface on the inner peripheral side of the bearing liner, and through which the lubricating oil that has passed through the second groove passes. An introduction hole,
The oil supply path is provided at a position where the flow direction of the lubricating oil supplied to the first groove is opposite to the rotation direction of the rotor,
The cooling groove has a turbulence promoting body that disturbs the flow of lubricating oil passing through the groove,
The journal bearing device according to claim 1, wherein the turbulent flow promoting body is provided in a circumferential direction of the lower bearing liner at a position of 30 ° or more in a rotation direction of the rotor from a perpendicular passing through the axis of the rotor.
請求項1乃至4記載いずれかのジャーナル軸受装置において、
前記乱流促進体は、前記軸受ライナーを構成する部材より熱伝導性のよい部材で構成されていることを特徴とするジャーナル軸受装置。
The journal bearing device according to any one of claims 1 to 4,
The journal bearing device according to claim 1, wherein the turbulent flow promoting body is made of a member having better thermal conductivity than a member constituting the bearing liner.
JP2008289364A 2008-11-12 2008-11-12 Journal bearing device Expired - Fee Related JP5156589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008289364A JP5156589B2 (en) 2008-11-12 2008-11-12 Journal bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008289364A JP5156589B2 (en) 2008-11-12 2008-11-12 Journal bearing device

Publications (2)

Publication Number Publication Date
JP2010116953A JP2010116953A (en) 2010-05-27
JP5156589B2 true JP5156589B2 (en) 2013-03-06

Family

ID=42304754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008289364A Expired - Fee Related JP5156589B2 (en) 2008-11-12 2008-11-12 Journal bearing device

Country Status (1)

Country Link
JP (1) JP5156589B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010040158B4 (en) 2010-09-02 2017-12-21 Federal-Mogul Wiesbaden Gmbh Textured dirt deposits in plain bearing surfaces
JP6231792B2 (en) 2013-07-09 2017-11-15 三菱日立パワーシステムズ株式会社 Slide bearing device
CN113983069B (en) * 2021-11-11 2024-04-09 中国船舶重工集团公司第七0三研究所 High-speed heavy-load low-power consumption dislocation molded line sliding support bearing

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2410605C2 (en) * 1973-03-16 1986-04-24 ISOVOLTA Österreichische Isolierstoffwerke AG, Wiener Neudorf Building material body and process for its manufacture
JPS5142351U (en) * 1974-09-25 1976-03-29
JPS5271644U (en) * 1975-11-26 1977-05-28
JPS5754731U (en) * 1980-09-18 1982-03-30
JPS5977127A (en) * 1982-10-25 1984-05-02 Hitachi Ltd Cylindrical slide bearing of rotary electrical equipment
JPS6030824A (en) * 1983-07-29 1985-02-16 Kawasaki Heavy Ind Ltd Slide bearing device
JPS63163095A (en) * 1986-12-26 1988-07-06 Hitachi Ltd Cooling device for bearing
JPH0893769A (en) * 1994-09-28 1996-04-09 Toshiba Corp Journal bearing device
JPH10213130A (en) * 1997-01-31 1998-08-11 Mitsubishi Heavy Ind Ltd Slide bearing
JP2004092878A (en) * 2002-09-04 2004-03-25 Mitsubishi Heavy Ind Ltd Slide bearing
JP2006138353A (en) * 2004-11-10 2006-06-01 Toshiba Corp Slide bearing and rotary electric machine including slide bearing

Also Published As

Publication number Publication date
JP2010116953A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
EP2103823B1 (en) Journal bearing device
JP5570544B2 (en) Slide bearing device
JP6070232B2 (en) Turbocharger
US20140169712A1 (en) Journal Bearing Device
JP2015007463A (en) Tilting pad bearing
JP2016061430A (en) Bearing and bearing pad
JP5094833B2 (en) Tilting pad journal bearing device
JP5156589B2 (en) Journal bearing device
JP5860172B2 (en) Combined bearing device
KR102115856B1 (en) Journal bearing and rolling machine
JP2019035435A (en) Thrust bearing device
JP6704107B2 (en) Thrust collar and thrust bearing device
JP2008151239A (en) Tilting pad type bearing
WO2019142383A1 (en) Tilting pad bearing device and rotating machine
JP5802599B2 (en) Pressure balance land type thrust bearing device
JP2004197890A (en) Tilting pad bearing device
JP6174863B2 (en) Bearing pad, bearing device using the same, and rotating machine
KR20050060000A (en) Bearing device for rotor of gas turbine
JP2001132737A (en) Bearing device and turbine
JP2006138353A (en) Slide bearing and rotary electric machine including slide bearing
KR102115855B1 (en) Journal bearing and rolling machine
JP6403593B2 (en) Journal bearing and rotating machine
WO2020021866A1 (en) Tilting pad-type journal bearing and rotary machine using same
WO2014162594A1 (en) Thrust bearing device, method for supplying lubricant therefor, rotating mechanism, and steam turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5156589

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees