JP5151288B2 - Sample preparation method - Google Patents

Sample preparation method Download PDF

Info

Publication number
JP5151288B2
JP5151288B2 JP2007188072A JP2007188072A JP5151288B2 JP 5151288 B2 JP5151288 B2 JP 5151288B2 JP 2007188072 A JP2007188072 A JP 2007188072A JP 2007188072 A JP2007188072 A JP 2007188072A JP 5151288 B2 JP5151288 B2 JP 5151288B2
Authority
JP
Japan
Prior art keywords
needle
sample
island
substrate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007188072A
Other languages
Japanese (ja)
Other versions
JP2009025127A (en
Inventor
雅弘 上野
賢洋 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2007188072A priority Critical patent/JP5151288B2/en
Publication of JP2009025127A publication Critical patent/JP2009025127A/en
Application granted granted Critical
Publication of JP5151288B2 publication Critical patent/JP5151288B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、試料の作製方法に関するものであり、特に、三次元アトムプローブ分析装置(以下、3DAPと呼ぶ)に用いる試料の作製方法に関するものである。   The present invention relates to a sample preparation method, and more particularly to a sample preparation method used in a three-dimensional atom probe analyzer (hereinafter referred to as 3DAP).

近年、携帯電話やパーソナルコンピュータなど情報通信機器の大容量化が進むにつれ、製品を成す構造の微細化が進んでいる。またそれに伴い、より微細な構造や組成を分析する手法や装置が増えている。特に記録メディア等の磁性材料を扱う分野では、磁性層を構成する膜組成やその多層構造の界面状態は製品そのものの性質に大きく影響を与えるため、膜構造を細かく分析する事は非常に重要である。このような微細構造を分析する装置にはTEM、SEM、AFM、XRD、SIMS、3DAP等が挙げられる。このような分析装置の中で取り分け3DAPは試料の微小領域における三次元構造を原子レベルで分析する事が出来る装置であり、組成と構造を同時に分析出来る手段として有用である。   In recent years, as the capacity of information communication devices such as mobile phones and personal computers has increased, the structure of products has been miniaturized. Along with this, methods and apparatuses for analyzing finer structures and compositions are increasing. Especially in the field of handling magnetic materials such as recording media, it is very important to analyze the film structure in detail because the film composition of the magnetic layer and the interface state of the multilayer structure greatly affect the properties of the product itself. is there. Examples of such an apparatus for analyzing a fine structure include TEM, SEM, AFM, XRD, SIMS, and 3DAP. Among these analyzers, 3DAP is an apparatus that can analyze a three-dimensional structure in a microscopic region of a sample at an atomic level, and is useful as a means for simultaneously analyzing a composition and a structure.

3DAPの原理としては、次のとおりである。まず、試料表面に高電界を加えた際に、試料表面上の突起のある部位で電界が局所的に上昇する。この時、突起部の表面では電界蒸発により原子がイオン化して飛び出す電界イオン化現象が起こり、飛び出したイオン化原子はバイアスをかけられた検出面のスクリーン方向に向って放射状に加速する。加速したイオンはその質量に応じて検出器に到達するまでの飛行時間が異なるため、元素の同定を行う事が出来る。また、試料から飛び出したイオン化された原子は、試料中での位置情報をそのまま有して検出スクリーンに衝突するため、連続して分析を行う事で、試料中の原子分布をそのまま3次元的に再構成する事が出来る。また、近年では、高電界を用いる代わりにレーザーを照射する事によって、原子をイオン化する事によるレーザーアシスト型の3DAPの開発も進められている。   The principle of 3DAP is as follows. First, when a high electric field is applied to the sample surface, the electric field locally rises at a site with a protrusion on the sample surface. At this time, a field ionization phenomenon occurs in which atoms are ionized and ejected by electric field evaporation on the surface of the protrusion, and the ejected ionized atoms are accelerated radially toward the screen direction of the biased detection surface. Since the accelerated ions have different flight times until they reach the detector according to their mass, the elements can be identified. Moreover, since the ionized atoms that have jumped out of the sample have positional information in the sample as it is and collide with the detection screen, the atomic distribution in the sample can be three-dimensionally as it is by performing continuous analysis. Can be reconfigured. In recent years, laser-assisted 3DAP has been developed by ionizing atoms by irradiating a laser instead of using a high electric field.

前述のような分析原理より、高電界を局所的に集中させるために針状の試料が必要となる。さらに3DAPの分析領域はおよそ100nm角程度である為、針状体の先端部は同程度の平面を備えている必要がある。   According to the analysis principle as described above, a needle-like sample is required to concentrate a high electric field locally. Furthermore, since the analysis area of 3DAP is about 100 nm square, the tip of the needle-like body needs to have the same level plane.

このような針状の試料を作製する方法は様々にあるが、合金等の内部偏析を分析する際にはその合金そのものを、電界研磨法を用いて針状の試料を作製する方法が一般的である。   There are various methods for producing such needle-shaped samples. However, when analyzing internal segregation of an alloy or the like, it is common to prepare the needle-like sample by electropolishing the alloy itself. It is.

また、平面に構成された単一膜や多層膜の組成や構造を分析する際には、集束イオンビーム(以下FIB)等を用いて平面から切り出し処理を行い、それを分析補助具である金属製のワイヤの上に接着し、電界研磨法によって分析に足る大きさの針状の試料を作製する方法が提案されている(特許文献1参照)。   In addition, when analyzing the composition and structure of a single film or multilayer film formed on a flat surface, it is cut out from the flat surface using a focused ion beam (hereinafter referred to as FIB), and this is analyzed as a metal that is an analysis aid. There has been proposed a method in which a needle-like sample having a size sufficient for analysis is prepared by bonding onto a manufactured wire and electropolishing (see Patent Document 1).

また、フォトリソグラフィ法を用いて針状体を作製し、その針状体に分析すべき膜を形成する方法が提案されている(特許文献2参照)。
特開2001‐208659号公報 特開2005‐233786号公報
In addition, a method has been proposed in which a needle-like body is produced using a photolithography method and a film to be analyzed is formed on the needle-like body (see Patent Document 2).
JP 2001-208659 A JP 2005-233786 A

3DAPの試料は、高電界を局所的に集中させるために針状の試料が必要である。   The 3DAP sample requires a needle-like sample to locally concentrate a high electric field.

しかしながら、平面に構成された単一膜もしくは多層膜に対してFIB加工を用いて切り出し処理を行う場合、実際のプロセスでは加工時間が長く非効率である。   However, when the cutting process is performed on a single film or a multilayer film configured in a plane using FIB processing, the processing time is long and inefficient in an actual process.

また、フォトリソグラフィ法等を用いて加工を施す場合、試料作製にはレジスト塗布工程、レジストパターニング工程、エッチング工程、レジスト除去工程など多くの工程を必要とするために多大な時間を費やす。さらに、フォトリソグラフィ法を用いる場合には分析すべき単一膜または多層膜を形成すべき面に一度レジストを形成する事になり、その後、分析対象の膜を形成する際にレジストが異物として残留し、正確な検査結果を得られない恐れがある。   In addition, when processing is performed using a photolithography method or the like, a great amount of time is consumed because sample preparation requires many steps such as a resist coating step, a resist patterning step, an etching step, and a resist removing step. Furthermore, when using the photolithography method, a resist is once formed on a surface on which a single film or a multilayer film to be analyzed is to be formed, and then the resist remains as a foreign substance when forming a film to be analyzed. However, there is a risk that accurate test results cannot be obtained.

そこで、本発明は、上述の問題を解決するためになされたものであり、試料作製に対する加工時間が短く、試料に異物が混入しないような試料作製方法を提供することを目的とする。   Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a sample preparation method in which a processing time for sample preparation is short and foreign matters are not mixed into the sample.

請求項1に記載の本発明は、三次元アトムプローブによる分析に用いる試料の作製方法であって、側面と底面のなす角が90°のダイシングブレードを用いた機械加工で基板に溝加工を施す事により上部に平面を有する島状構造体を形成する工程と、
前記島状構造体に等方性エッチング処理を施し上部に平面を有する針状体を形成する工程と、前記針状体の少なくとも先端部に分析対象を膜状に形成する工程と、を備えた事を特徴とする試料の作製方法である。
The present invention according to claim 1 is a method for preparing a sample used for analysis by a three-dimensional atom probe , and the substrate is grooved by machining using a dicing blade having a 90 ° angle between the side surface and the bottom surface. A step of forming an island-like structure having a flat surface on top of it,
And a step of subjecting the island-like structure to an isotropic etching process to form a needle-like body having a flat surface thereon, and a step of forming an analysis target in a film shape at least at the tip of the needle-like body. This is a sample preparation method characterized by the above.

本発明の試料の作製方法は、基板に溝加工を施す事により島状構造体を形成する工程と、前記島状構造体に等方性エッチング処理を施し針状体を形成する工程と、前記針状体の少なくとも先端部に分析対象を膜状に形成する工程と、を備える。
本発明の構成によれば、溝加工を施す事により島状構造体を形成するため、多数の針状体を列ごとに多数一括生産することが出来、針状体生産の加工時間を短縮することが出来る。また、等方性エッチング処理による全面エッチングを行うことにより、島状構造体を針状に形状調整すると同時に異物の除去を行うため、レジストなどの異物が残留しにくいという効果を奏する。
これにより、試料作製に対する加工時間が短く、試料に異物が混入しないような試料作製方法を提供することが可能となる。
The sample manufacturing method of the present invention includes a step of forming an island-like structure by performing groove processing on a substrate, a step of subjecting the island-like structure to isotropic etching to form a needle-like body, Forming an analysis target in a film shape at least at the tip of the needle-like body.
According to the configuration of the present invention, since the island-like structure is formed by performing the groove processing, a large number of needle-like bodies can be produced in batches for each row, and the processing time of needle-like body production is shortened I can do it. Further, by performing whole surface etching by isotropic etching, the shape of the island-like structure is adjusted to a needle shape and the removal of foreign matters is performed at the same time, so that there is an effect that foreign matters such as resist hardly remain.
As a result, it is possible to provide a sample preparation method in which the processing time for sample preparation is short and foreign matter is not mixed into the sample.

以下、本発明の試料の作製方法について、具体的に図1を用いながら説明を行う。
本発明の試料の作製方法は、
基板に溝加工を施す事により島状構造体を形成する工程と、
前記島状構造体に等方性エッチング処理を施し針状体を形成する工程と、
前記針状体の少なくとも先端部に分析対象を膜状に形成する工程と、
を備える。
Hereinafter, a method for manufacturing a sample of the present invention will be specifically described with reference to FIGS.
The method for preparing the sample of the present invention is as follows.
Forming an island structure by grooving the substrate;
Applying an isotropic etching process to the island-shaped structure to form a needle-shaped body;
Forming an analysis target in a film shape at least at the tip of the needle-like body;
Is provided.

<基板に溝加工を施す事により島状構造体を形成する工程(図1(A)〜(B))>
まず、基板を用意し、溝加工を施す。
これにより、碁盤目形状に整列した島状構造体形成する事が出来る。ここで、碁盤目形状とは、連続した直線または曲線により閉じた図形が一定間隔に並んでいる形状の事であり、例えば、図2(A)に示す四角形が並んだ形状、図2(B)に示す三角形が並んだ形状の他、任意の頂点数を持つ図形が並んだ形状を含むものとする。
基板に溝を設け、列ごとに島状構造体を形成する事により、列ごとに加工が行われる事になり、針状体を複数一括して作製する事が出来、針状体がアレイ状に整列された構造体を容易に形成する事が可能となる。
<Process for Forming Island Structures by Grooving Substrate (FIGS. 1A to 1B)>
First, a substrate is prepared and groove processing is performed.
Thereby, island-like structures aligned in a grid pattern can be formed. Here, the grid shape is a shape in which figures closed by continuous straight lines or curves are arranged at regular intervals, for example, a shape in which squares shown in FIG. ) And a shape in which figures having an arbitrary number of vertices are arranged.
By forming grooves on the substrate and forming island-like structures for each row, processing will be performed for each row, so that multiple needle-like bodies can be produced at once, and the needle-like bodies are arrayed. It is possible to easily form a structure aligned with each other.

基板としては、ある程度導電性の高いものである必要があり、取分け金属が好適であるがレーザーアシスト型の3DAPを利用する場合には半導体のような材料を用いてもよい。例えば、シリコン、ニッケル、アルミなどの基板を用いてよい。特に、シリコン、ニッケル、アルミの基板は、既知の微細加工方法に対して、良好な加工特性を備えているため、本発明の基板として好ましい。   The substrate needs to be highly conductive to some extent, and is preferably a metal. However, when laser-assisted 3DAP is used, a material such as a semiconductor may be used. For example, a substrate such as silicon, nickel, or aluminum may be used. In particular, silicon, nickel, and aluminum substrates are preferable as the substrate of the present invention because they have good processing characteristics with respect to known fine processing methods.

溝の加工方法としては、所望する針状体の形状、寸法に併せて適宜選択する事が出来る。例えば、切削加工や研削加工、ワイヤ放電加工といった機械加工技術を用いる方法が挙げられる。   The groove processing method can be appropriately selected according to the desired shape and dimensions of the needle-like body. For example, a method using a machining technique such as cutting, grinding, or wire electric discharge machining may be used.

また、基板に溝加工を施す事により島状構造体を形成する工程は、ダイシングブレードを用いた機械加工により溝加工を施す工程であることが好ましい。ダイシングを用いた機械加工を行うにより、ダイシングブレードを基板に対して直線的に走らせる事で一度に一列分の加工が出来るため、加工時間を大幅に短縮することが出来る。   Moreover, it is preferable that the process of forming an island-like structure by grooving the substrate is a process of grooving by machining using a dicing blade. By performing machining using dicing, the dicing blade can be moved linearly with respect to the substrate to process one row at a time, so that the processing time can be greatly reduced.

<島状構造体に等方性エッチング処理を施し針状体を形成する工程(図1(C))>
次に、島状構造体11を有した基板10に等方性エッチング処理を施す。等方性エッチング処理による全面エッチングを行うことにより、島状構造体を針状に形状調整することが出来、また、同時に異物の除去を行うことが出来る。このため、レジストなどの異物が残留しにくいという効果を奏する。
なお、ここで「等方性エッチング」とは、完全な等方性を示すエッチングのみならず、わずかに異方性の傾向を示す等方性の傾向が強いエッチングをも含むものとして定義する。
<Process for forming an acicular body by subjecting an island-shaped structure to isotropic etching (FIG. 1C)>
Next, an isotropic etching process is performed on the substrate 10 having the island-like structures 11. By performing the whole surface etching by the isotropic etching process, the shape of the island-like structure can be adjusted to a needle shape, and foreign substances can be removed at the same time. For this reason, there exists an effect that foreign materials, such as a resist, do not remain easily.
Here, “isotropic etching” is defined as including not only etching showing complete isotropic property but also etching having a strong isotropic tendency showing a slightly anisotropic tendency.

また、等方性エッチング処理として、ドライエッチング加工を行ってもよい。ドライエッチング加工を行った場合、先端部と根元部では供給されるエッチング種に対する被エッチング部の密度の差により先端部より根元部のほうが若干太く形成される。このため、負荷のかかる根元部が補強された形状となり、取り回しに際して、針状体が破損しにくいという効果を奏する。   Moreover, you may perform a dry etching process as an isotropic etching process. When dry etching is performed, the root portion is slightly thicker than the tip portion due to the difference in the density of the etched portion with respect to the supplied etching species. For this reason, the base part to which a load is applied becomes a reinforced shape, and there is an effect that the needle-like body is not easily damaged during handling.

また、ドライエッチング加工は、ドライエッチング時の条件(ガス流量、ガス種など)により、精度良く微細加工を行うことが出来る。このため、針状体の先端部を1μm未満の精度で加工する事が出来る。   In addition, the dry etching process can be performed with high precision according to the conditions (gas flow rate, gas type, etc.) at the time of dry etching. For this reason, the tip of the needle-like body can be processed with an accuracy of less than 1 μm.

また、ドライエッチング加工としては、例えば、RIE、マグネトロンRIE、ECR、ICP、NLD、マイクロ波、ヘリコン波等の放電方式を用いたドライエッチング装置を用いて良い。また、このとき用いるガスとしては、例えば、SF等を用いてもよい。 As the dry etching process, for example, a dry etching apparatus using a discharge method such as RIE, magnetron RIE, ECR, ICP, NLD, microwave, helicon wave, or the like may be used. Moreover, as a gas used at this time, for example, SF 6 or the like may be used.

<針状体の少なくとも先端部に分析対象を膜状に形成する工程(図1(D))>
次に、針状体12の少なくとも先端部に分析対象を膜状に形成する。膜の成膜方法は、例えばCVD、スパッタリング、MBE、抵抗加熱蒸着、EB蒸着等の方法が挙げられる。
<Step of forming an analysis target in a film shape at least at the tip of the needle-like body (FIG. 1D)>
Next, the analysis target is formed in a film shape at least at the tip of the needle-like body 12. Examples of the film forming method include CVD, sputtering, MBE, resistance heating vapor deposition, and EB vapor deposition.

以上より、本発明の三次元アトムプローブによる分析に用いる試料の作製方法を実施することが出来る。   As described above, the method for preparing a sample used for analysis by the three-dimensional atom probe of the present invention can be implemented.

<実施例1>
まず、基板として、525μm厚さの単結晶シリコン基板を用意した。
<Example 1>
First, a single crystal silicon substrate having a thickness of 525 μm was prepared as a substrate.

次に、側面と底面の成す角が90°のダイジングブレードを用い、シリコン基板を碁盤目状に研削加工を行った。このとき、加工によって形成される島状構造体の上部平面を一辺の長さが40μmの正方形状とした。また、加工深さが150μmとなるように加工を施した。   Next, the silicon substrate was ground into a grid pattern using a dicing blade having a 90 ° angle between the side surface and the bottom surface. At this time, the upper plane of the island-shaped structure formed by processing was formed into a square shape with a side length of 40 μm. Moreover, it processed so that a processing depth might be set to 150 micrometers.

次に、形成された島状構造体にドライエッチング加工を施し、針状体を形成した。反応ガス種にはSFガスを用い、島状構造体の上部平面が1μm角になるまでエッチング加工を行った。
以上より、先端径1μm、根元径8μm、高さ150μm、の針状体を基板上にアレイ状に形成する事ができた。
Next, the formed island-shaped structure was dry-etched to form a needle-shaped body. The reactive gas species was SF 6 gas, and etching was performed until the upper plane of the island-shaped structure became 1 μm square.
From the above, needle-like bodies having a tip diameter of 1 μm, a root diameter of 8 μm, and a height of 150 μm could be formed in an array on the substrate.

次に、上記針状体にスパッタリング法を用いて、分析対象のTaN膜を厚さ100nmで形成した。
以上より、三次元アトムプローブの分析に用いる試料を作製することが出来た。
Next, a TaN film to be analyzed was formed to a thickness of 100 nm on the needle-like body using a sputtering method.
From the above, a sample used for analysis of a three-dimensional atom probe could be prepared.

本発明の試料の作製方法を経時的に説明するための図である。It is a figure for demonstrating the preparation methods of the sample of this invention with time. 本発明の試料の作製方法における溝加工形成方法の例を示す図である。It is a figure which shows the example of the groove processing formation method in the preparation methods of the sample of this invention. 本発明の試料の作製方法に用いる針状体を示す図である。It is a figure which shows the acicular body used for the preparation methods of the sample of this invention.

符号の説明Explanation of symbols

10……基板
11……島状構造体
12……針状体
13……溝加工部
14……ダイシングブレード
15……分析対象膜
DESCRIPTION OF SYMBOLS 10 ... Board | substrate 11 ... Island-like structure 12 ... Needle-like body 13 ... Groove processing part 14 ... Dicing blade 15 ... Analysis object film

Claims (1)

三次元アトムプローブによる分析に用いる試料の作製方法であって、
側面と底面のなす角が90°のダイシングブレードを用いた機械加工で基板に溝加工を施す事により上部に平面を有する島状構造体を形成する工程と、
前記島状構造体に等方性エッチング処理を施し上部に平面を有する針状体を形成する工程と、
前記針状体の少なくとも先端部に分析対象を膜状に形成する工程と、
を備えた事を特徴とする試料の作製方法。


A method for preparing a sample used for analysis by a three-dimensional atom probe,
Forming an island-like structure having a flat surface on the top by grooving the substrate by machining using a dicing blade having a 90 ° angle between the side surface and the bottom surface;
Performing an isotropic etching process on the island-shaped structure to form a needle-like body having a flat surface on the top;
Forming an analysis target in a film shape at least at the tip of the needle-like body;
A method for producing a sample characterized by comprising:


JP2007188072A 2007-07-19 2007-07-19 Sample preparation method Expired - Fee Related JP5151288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188072A JP5151288B2 (en) 2007-07-19 2007-07-19 Sample preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188072A JP5151288B2 (en) 2007-07-19 2007-07-19 Sample preparation method

Publications (2)

Publication Number Publication Date
JP2009025127A JP2009025127A (en) 2009-02-05
JP5151288B2 true JP5151288B2 (en) 2013-02-27

Family

ID=40397070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188072A Expired - Fee Related JP5151288B2 (en) 2007-07-19 2007-07-19 Sample preparation method

Country Status (1)

Country Link
JP (1) JP5151288B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157123A (en) * 2013-02-18 2014-08-28 Toshiba Corp Sample, sample preparation device and sample observation method
CN109346391B (en) * 2018-08-26 2020-10-30 南京理工大学 Double-beam system sample table for loading near-local-area electrode
CN111829841A (en) * 2019-04-15 2020-10-27 台湾积体电路制造股份有限公司 Needle-shaped sample, analysis and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3266995B2 (en) * 1993-07-30 2002-03-18 株式会社日立製作所 Method and apparatus for observing and measuring conductive members
JP3695431B2 (en) * 2001-08-03 2005-09-14 日本電気株式会社 Separation apparatus and method of manufacturing separation apparatus
JP2005233786A (en) * 2004-02-19 2005-09-02 Toshiba Corp Needle-like sample for local analysis, sample holder assembly, local analyzer and method for manufacturing needle-like sample for local analysis
JP4316400B2 (en) * 2004-02-19 2009-08-19 富士通株式会社 Surface layer evaluation method
JP4464223B2 (en) * 2004-08-10 2010-05-19 富士通株式会社 Nano-level structural composition evaluation sample, manufacturing method thereof, and nano-level structural composition evaluation method
JP4628153B2 (en) * 2005-03-18 2011-02-09 富士通株式会社 Nano-level structural composition observation apparatus and nano-level structural composition observation method
JP2006343285A (en) * 2005-06-10 2006-12-21 Olympus Corp Sample stand array for scanning probe microscope
JP2007017366A (en) * 2005-07-11 2007-01-25 Tohoku Univ Strain sensor and method for manufacturing strain sensor

Also Published As

Publication number Publication date
JP2009025127A (en) 2009-02-05

Similar Documents

Publication Publication Date Title
Kim et al. Developments in micro/nanoscale fabrication by focused ion beams
US8476585B2 (en) Microtome utilizing a movable knife in a retardation field scanning electron microscope and a retardation field scanning electron microscope including the same
JP4570980B2 (en) Sample stage and sample processing method
US6686600B2 (en) TEM sample slicing process
US6956210B2 (en) Methods for preparing samples for atom probe analysis
Blum et al. Atom probe sample preparation
JP5151288B2 (en) Sample preparation method
JP2010230518A (en) Thin sample preparing method
TW202230425A (en) End-point detection for similar adjacent materials
Xia et al. Enhancement of XeF2-assisted gallium ion beam etching of silicon layer and endpoint detection from backside in circuit editing
JP5044003B2 (en) Probe production method and probe, and scanning probe microscope
JP4309857B2 (en) Method for forming needle-like body used for field ion microscope or atom probe, and needle-like body used for field ion microscope or atom probe
Atiqah et al. Application of focused ion beam micromachining: a review
McKenzie et al. Focused ion beam sample preparation for atom probe tomography
Tkadletz et al. Efficient preparation of microtip arrays for atom probe tomography using fs-laser processing
Raffa et al. Focused ion beam as a scanning probe: Methods and applications
Anderson et al. Practical Aspects of FIB Tem Specimen Preparation: With Emphasis On Semiconductor Applications
Nellen et al. Preparative methods for nanoanalysis of materials with focused ion beam instruments
JP2006337266A (en) Detection method of glass substrate film thickness and method for forming thin film of glass substrate
US20220349789A1 (en) Method to prepare a sample for atom probe tomography (apt), preparation device to perform such method and method to investigate a region of interest of a sample including such performing method
KR20060078915A (en) Manufacturing method of sample for tem analysis
JP4316400B2 (en) Surface layer evaluation method
Bachmann et al. Focused ion beam micro-machining
WO2006042065A2 (en) Method to form microptips
Alvis et al. Site-Specific Sample Preparation Method for Atom Probe Tomography on Semiconductor Devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees