JP5150403B2 - 熱アシスト磁気記録ヘッド - Google Patents

熱アシスト磁気記録ヘッド Download PDF

Info

Publication number
JP5150403B2
JP5150403B2 JP2008202545A JP2008202545A JP5150403B2 JP 5150403 B2 JP5150403 B2 JP 5150403B2 JP 2008202545 A JP2008202545 A JP 2008202545A JP 2008202545 A JP2008202545 A JP 2008202545A JP 5150403 B2 JP5150403 B2 JP 5150403B2
Authority
JP
Japan
Prior art keywords
slider
optical waveguide
substrate
light
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008202545A
Other languages
English (en)
Other versions
JP2010040112A5 (ja
JP2010040112A (ja
Inventor
直樹 松嶋
聡 荒井
拓也 松本
淳一郎 清水
入三 難波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008202545A priority Critical patent/JP5150403B2/ja
Priority to PCT/JP2009/060500 priority patent/WO2010016329A1/ja
Priority to US13/057,585 priority patent/US8437228B2/en
Publication of JP2010040112A publication Critical patent/JP2010040112A/ja
Publication of JP2010040112A5 publication Critical patent/JP2010040112A5/ja
Application granted granted Critical
Publication of JP5150403B2 publication Critical patent/JP5150403B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6088Optical waveguide in or on flying head
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Recording Or Reproducing By Magnetic Means (AREA)
  • Magnetic Heads (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

本発明は、磁気記録媒体と記録媒体に磁界によって書き込む手段と記録媒体をレーザ光によって加熱する手段を備えた熱アシスト磁気記録ヘッドに関する。
近年の情報化社会の発展にともない、音声や映像の高精細化が進みかつインターネットのデータ通信量も著しく増加している。これにともない、サーバ等に蓄積される電子データ量が増加し、情報記録システムの大容量化が求められている。情報記録装置として、パソコン、レコーダ、カメラなどに装備されている光ディスクドライブ装置やハードディスクドライブ装置は、膨大な情報を蓄積するための高記録密度化が求められている。この高密度化は、ディスクの記録ビットサイズの微小化を表している。
ハードディスクの高密度化を達成するためには、記録媒体とヘッドの距離を狭め、磁気記録媒体の磁性膜の結晶粒径を微細化することが必要である。磁気記録媒体において、結晶粒径を微細化すると、粒子が熱的に不安定になるという熱ゆらぎの問題があり、近年、高密度化における阻害の主要因として顕在化されてきている。結晶粒径を微細化し、熱的な安定を同時に達成するためには、保持力を大きくすることが有効である。保持力の増加により、記録に必要な磁気ヘッド磁界強度の増加が必要となる。しかし、記録ヘッドに使われる磁性材料の物性及び磁気ディスクとヘッドの距離を狭めることに限界があるため、高密度化にともない保持力を増大させることが困難である。上記の問題を解決するために、光記録と磁気記録を融合した光・磁気ハイブリッド記録技術が提案されている。記録時に印加磁界発生と同時に媒体を加熱して、媒体の保持力を低減させる。これによって、従来の磁気ヘッドでは、記録磁界強度が不足して記録が困難であった高保持力の記録媒体にも記録が容易となる。再生は、従来の磁気記録で用いられている磁気抵抗効果を用いる。このハイブリッド記録方法を熱アシスト磁気記録と呼ぶ。ここで、光による加熱方法は、近接場を利用する方法が提案されている。近接場を用いた熱アシスト磁気記録は、レーザ光源が発生したレーザ光を記録ヘッドに導き、近接場光を発生させる機能を有する素子(以下、近接場光発生素子)を用いて光スポット径を記録に適した大きさと形に変換して使用する。
通常、レーザ光源には、ディスクドライブのパッケージ内で使用する必要性から、レーザ光源の中でも小型で低消費電力の半導体レーザが用いられる。Tb/in2以上の記録密度を実現する近接場を用いた熱アシスト磁気記録装置で使用する用途の場合、記録媒体表面に達するまでには、数mW程度のパワーが必要となる。
LDで発生したレーザ光を近接場発生素子に導く光学部品は、反射ミラー、レンズ、光導波路などの光学部品である。LDから発生した光は、光路に配置された光学部品を通過して、近接場発生素子、またその先の記録媒体に到達する。光路を通過する途中に光強度は減衰し、LDの発生した光出力の数十分の一になる。光強度の減衰の主な原因は、光学部品内を通過する時の吸収損失や散乱損失、及び光学部品を接着する時に生じる理想的な位置からのずれに起因する結合損失等である。よって、熱アシスト磁気記録において、近接場発生素子に入射するまでの結合損失を小さくした構造が必須となる。
一方、ハードディスクのスライダは、ピコスライダからフェムトスライダへと小型化が進んでいる。また、浮上面は10nm程度まで浮上量も小さくなってきている。今後はさらに小型化が進み、浮上面が小さくなることも予想される。しかし、小型化及び浮上量が小さくなると、スライダ自身の反りが問題になってくる。そのため、上記述べた結合損失を小さくすることに加え、スライダの反りを抑えた構造が必須となってきている。
なお、特開2002−298302号公報(以下、特許文献1)には、溝を形成したスライダの上に光ファイバーを配置し、スライダ端面の光プリズムを介して、レーザ光を、ギャップを介して対向する一対の構造体である近接場プローブ及び書き込みヘッドに入射することで、媒体の低ノイズ化、熱擾乱耐性の確保、実用的な記録ヘッドによる記録を実現する光アシスト磁気記録ヘッドを提供している。特開2006−185548号公報(以下、特許文献2)には、サスペンションの下側にスライダ、磁気磁極、磁気記録素子、磁気再生素子、光導波路、開口を取付けており、サスペンションの反対側にレーザダイオードを配置することで、小型軽量化を図った熱アシスト磁気記録ヘッドを提供している。さらに、スライダと同様の方向に導波路とLD素子を縦に並べて配置する構造についても記載されている。特開2007−95167号公報(以下、特許文献3)には、サスペンション上に、半導体レーザ、導波路、近接場発生素子及びスライダとして機能する回折素子が設け、半導体レーザから出射されたレーザ光は導波路を伝播して回折素子によって集光され、プラズモンプローブを照射することで、簡単な構成によって薄型化を達成できる熱アシスト磁気記録ヘッドを提供している。
特開2002−298302号公報 特開2006−185548号公報 特開2007−95167号公報
上記特許文献1で論じられている従来技術では、光ファイバーを介してスライダ端まで光を導いている。レーザ光源及び光ファイバーを固定する配置について、示唆されていないが、サスペンションもしくはアームに実装された場合、スライダまでのファイバの引き回しが大きな課題となる。加えて、光ファイバは剛性が高く、ディスクのうねりに対応して、浮上するスライダの動きを阻害するため、本構造では、浮上特性において課題が多い。
上記特許文献2で論じられている従来技術では、サスペンションの厚みやサスペンションとの接続材の厚みを通して、導波路に光を導く構成となるため、光の結合の効率が悪いという課題がある。また、スライダはディンプルで微小に稼動するのが一般的だが、上記構成では、LD光が追従しないため、光結合に大きな問題が出る。一方、サブマウントをスライダ側に設けた場合は、スライダの追従に問題はないが、一般的に、LDの長さ(共振器長)は500μm程度必要となることから、厚くなり、サイズに大きな課題がある。また、LD素子の放熱やサスペンションとスライダ、スライダとサブマウントの接続材などについての示唆されていない。上記特許文献3で論じられている従来技術では、サスペンション上に導波路を配置され、スライダがサスペンションに接続される構成となっているが、従来のディンプルのように、ねじれ方向や曲げに対応して動く機能がなく、浮上特性の観点において課題が多い。また、スライダとして、樹脂や石英からなる透光性平板が提案されているが、これまで使用されているAlTiCに対して、加工精度や剛性や価格の観点から代替とすることは困難である。
そこで、本発明は、放熱性と浮上特性を確保しつつ、半導体レーザからの光を効率よく、磁気ヘッド近傍の光導波路に伝播させることで、高密度・高速記録対応を可能となる熱アシスト磁気記録ヘッドを提供することにある。
本発明は、上記課題を解決するために、基板と、基板上に設けられ、レーザ光を発生させる半導体レーザ素子と、レーザ光を受けて近接場光を発する近接場発生素子、記録を行う磁気ヘッド及び浮上面を有するスライダとを備えた熱アシスト磁気ヘッドにおいて、半導体レーザ光を出射したレーザ光が伝播する第一の光導波路が前記基板上に設けられ、スライダは、第一の光導波路上に設けられるとともに、その端面に第一の光導波路を伝播したレーザ光をスライダの厚さ方向に伝搬させて近接場発生素子に導く第二の光導波路を有することを特徴とする、熱アシスト磁気記録ヘッドである。
本発明によれば、光導波路が形成された第一の基板を用い、これに半導体レーザとスライダを搭載することによって、放熱性を確保しつつ、磁気ヘッド近傍に半導体レーザを配置できるため、半導体レーザからの光を効率良く、光導波路に伝播させることが可能となる。さらに、スライダの反りを抑えることができる構造のため、良好な浮上特性を確保することができる。以上より、厚みがそれほど厚くなることなく、コンパクトな構成で、高密度・高速対応を可能とする熱アシスト磁気記録ヘッドが実現可能となる。
以下、本発明の実施の形態を説明する。
本発明による熱アシスト磁気記録を達成するために必要な磁気記録ヘッド部の主要部品は、半導体レーザ、光導波路の形成された基板、光導波路・近接場発生素子・磁界発生素子を具備したスライダである。
半導体レーザは動作中に高温になるが、その時の温度と発光特性や寿命には密接な関係がある。従って、放熱性を確保するために、半導体レーザとそれを搭載する基板との接続は、活性層を基板接続面に近い位置に配置するジャンクションダウン構造をとることが望ましい。半導体レーザと基板とは、光を伝搬させる光導波路との相対位置が経時変化することを避けるために、クリープ変形の極めて小さいAu-Snはんだを用いるのが好ましい。
また、良好な放熱を確保できないと、半導体レーザの寿命が低下する以外に、動作によりスライダに反りが発生するという問題がある。この反りの程度が大きくなると浮上特性が悪化する。
以上より、半導体レーザとスライダが高温にならないように効率良く熱を逃がすことが必須となる。従って、基板の材料としては、熱伝導率の高いもの、半導体レーザの部材(GaAs)やスライダの部材(AlTiC)のそれに近い熱膨張係数を有する部材を用いるのが望ましい。具体的には、SiC、Al、AlN、Si、AlTiCなどから、加工性などを加味して選ぶと良い。基板の厚みとしては、浮上特性、剛性などから100μm〜200μm程度が好ましい。
スライダの一端面には、光導波路がスライダの厚さ方向に、スライダの上面から下面を貫通するように設けられている。さらに、スライダの浮上面(ABS:Air Bearing Surface)には、近接場発生素子が設けられている。スライダの材料としては、AlTiCが従来から使用されている。以上の構成する部材を接着剤やはんだなどの接続部材を用いて高精度に固定することが重要となる。
本発明の第一の実施の形態を、図1を用いて説明する。
図1は、第一の光導波路1の形成された基板2上に、半導体レーザ100と、端面に第二の光導波路3を形成したスライダ4とを搭載した熱アシスト磁気記録ヘッドである。
半導体レーザ100は、基板2上の第一の光導波路1が形成されていない位置に設けられる。半導体レーザ100の光出射部は、第一の光導波路1の、一方の端部と近接して配置されており、半導体レーザ100から放出された光ビームが効率良く第一の光導波路1に伝搬するようになっている。半導体レーザ100の位置合わせは、光導波路1にできる限り効率良く入射できるように高精度に配置する必要がある。基板2に位置合わせマークを形成し、また半導体レーザ100にも位置合わせマークを作り込み、これらを基準にして位置合わせをする。このとき、基板1の位置あわせマークには光導波路1のコアを形成するプロセスにて作製し、また半導体レーザ100の位置あわせマークはレーザのメサ構造を形成するときのプロセスで形成した位置合わせマークを用いると高精度に搭載することができる。
本実施例では、半導体レーザ100の電極5は、p型電極とn型電極共に、半導体レーザ100の、基板2に接合する側に設けた構造となっている。そして、半導体レーザ100の電極5と基板2の電極6とを、はんだ7によって、p電極とn電極がつながらないように留意しながら電気的に接続する。半導体レーザ100の電極接続方法は、上記以外の、例えば、p電極を基板2の電極とはんだ接続し、n電極は、半導体レーザ100の基板2に接合する面と反対側の面に電極を形成し、これと基板2等に形成した電極とをワイヤボンディングで接続する方法をとっても構わない。但し、ボンディングワイヤがスライダやディスクに接触しないことが条件となる。
第一の光導波路1の、もう一方の端部には、光の伝搬方向を変換するミラー8が形成されている。ミラーによる光ビームの変換角は60°〜120°が望ましく、85°〜95°の間であるとなおよい。光導波路1の材料としては、本実施例ではレーザ光の波長に対して透過率の高いポリマを用いている。その形成手順としては、アンダークラッド16、コアパターン15、オーバークラッド16を逐次積層して形成する。コアパターン15の形成方法としては露光・現像法、フォトブリーチング法、ドライエッチング法など多種あるが、そのいずれでも構わない。また、図2に示すように、予めアンダークラッド/コアパターン/オーバークラッドからなるフィルム状の光導波路を作製し、これを接着剤11などの接合方法にて基板2に搭載するという方式を用いても構わない。ポリマ光導波路の部材に関しては、レーザ光の透過性が良く、屈折率の厳密な制御が可能な材料が望ましい。例えばフッ素化ポリイミド、エポキシ樹脂、アクリル樹脂、シリコーン樹脂などを主成分とした部材が望ましい。なお、光導波路1の材料はポリマ以外の、例えば石英を主成分とする部材でも構わない。
本実施例では、ミラー8はダイシングにより光導波路1を斜めに削ることで形成した。光導波路を削る方法としては、ダイシング以外の、ドライエッチング、ウェットエッチングなどでも構わない。また、図3に示すように、光導波路のみでなく基板2ごとカットする構造としても構わない。図2に示すように光導波路フィルム1を基板2に貼付する構造の場合には、光導波路フィルムを貼付する前にミラー溝を形成する、もしくは45°にカットする方式としてよい。但し、この場合、ミラー面に接着剤が接触すると屈折率差が極端に減って光が反射しなくなるため、ミラー面に接着剤がはみださないように接合するか、図2に示すようにミラー面に予め金属膜9を形成して接着剤の有無に関わらず光を反射できるようにする必要がある。
基板2上の第一の光導波路1の上には、端面に第二の光導波路3が形成されたスライダ4が設けられている。第二の光導波路3は、第一の光導波路1にミラー面が形成された側と同じ方向のスライダ3の端面に形成されている。ミラー8により伝搬方向が変換された光は、スライダ4に形成された第二の光導波路3に伝搬し、近接場素子13に至る。第一の光導波路1から第二の光導波路3に効率良く光を伝搬させるためには、半導体レーザ100と同様、スライダ4も高精度に搭載する必要がある。パッシブアライメントで搭載する場合は、第一の光導波路1のコアと第二の光導波路3のコアを位置合わせマークとして搭載する。このとき、それぞれの光導波路のコア形成工程と同じプロセスにて位置合わせマークを形成し、これを目安にして搭載しても構わない。一方、半導体レーザ100に電流を流すことができれば、第二の光導波路3から出射する光の出力が最大となるように位置調整をする、いわゆるアクティブアライメントが可能である。位置合わせ方法は、上記のいずれでも構わない。
基板2とスライダ4の接合には、接着剤を用いた。基板2のスライダ4と接する面に接着剤10を塗布し、スライダ4を搭載する。現在のハードディスクにおいて、スライダの浮上量は10nm程度である。そのため、数nmオーダの反りが不均一に起こると浮上特性が悪化する。また、スライダの厚みは230μmと非常に薄くなっており、スライダに熱応力がかかると反りやすい状況にある。そこで、接着剤10は、スライダ4の反りを最小限にするために、低弾性率・低硬度の接着剤を用いる必要がある。具体的には、室温での弾性率100MPa以下、ショアA硬度50以下の物性が望ましい。
スライダの位置合わせを行った後、接着剤10を硬化させてスライダ4を固定する。本実施例では、接着剤10として紫外線と熱硬化併用の機能を加えた導電性接着剤を用いる。位置合わせ後、接着剤10に紫外線を照射して仮固定する。すると、接触などしない限りスライダ4は基板2に対して移動しなくなる。その後、ベークを行い接着剤10を本硬化させ、完全に固定する。
なお、接着剤10に関しては、接着部の面部分に熱硬化型接着剤、端の部分に紫外線硬化型接着剤と分けて形成しても構わない。このとき、紫外線硬化型接着剤は仮固定の、熱硬化型接着剤は、本接合の機能を果たす。また、光導波路同士の光結合部分に接着剤10がはみ出さないように、スライダ4にめっきなどでダム構造を設けておくとなおよい。
接着剤10は、できる限り薄く、具体的には20μm以下にすることが望ましい。接着剤の厚みが薄いほど、第一の光導波路1の出射端と、第二の光導波路3の入射端の距離が短くなり、すなわち光結合効率が向上する。
基板2の、スライダ4との接着面は、光導波路のオーバークラッド面であっても、あるいは光導波路のクラッドがない部分を設け、基板2の表面であっても、いずれでも構わない。前者であれば接着剤10の厚さが可能な限り薄くできるメリットがある。後者であれば、放熱性に優れるという利点がある。
図11には、光導波路200付きのスライダ10の一例が示され、(a)にはLD素子100を搭載した基板2に対向する端面(x−y平面)が、その近傍に形成される近接場発生素子13と記録媒体に情報を書き込むための磁界発生素子(以下、書き込み素子)14Wとの透視像とともに示され、(b)には(a)のB−B’線からz軸方向に切断されたスライダ10のy−z平面図が、(c)には(a)のC−C’線からz軸方向に切断されたスライダ4のy−z平面図が、夫々示される。スライダ4に対し、図示されぬ記録媒体(磁気ディスクのトラック)は、z軸を示す「矢印」の方向に進む。この「矢印」は、スライダ4の基材101上に形成される磁界発生素子14や近接場発生素子13の薄膜の成長方向をも示す。
AlTiC(Al−TiC)などの非磁性材料から成る基材101の主面(x−y平面)には、記録媒体から情報を読み出すための磁界発生素子(以下、読み出し素子)14Rと、近接場発生素子13を兼ねた書き込み素子14Wとが順次形成され、誘電体膜(絶縁膜)11,12により互いに隔てられている。即ち、図示されない磁気ディスクのトラックには、読み出し素子14Rと書き込み素子14Wとが順次対向し、書き込み素子14Wと対向したトラックは、これから磁気信号(書き込み信号)を受けるとともに、これに並設された近接場発生素子13で生じた近接場光で照射される。
読み出し素子14Rは、GMR(巨大磁気抵抗効果,Giant Magneto Resistive)型として構成されても、TMR(トンネル磁気抵抗効果,Tunnel Magneto Resistive)型として構成されてもよい。前者の読み出し素子14Rは、基材101側から、例えばMnIr(マンガン・イリジウム)等の反強磁性層、Ru(ルテニウム)膜をz軸方向にCoFe(コバルト・鉄)膜で挟んで成る積層フェリ構造、Cu(銅)から成る酸化防止層、及びCoFeとその酸化物から成る電流狭窄層をこの順に積層して構成される。読み出し素子14Rの上下には、上部シールド層141U及び下部シールド層141Lが夫々誘電体膜(絶縁膜)12を隔てて形成される。これらのシールド層141U,141Lは、例えば、NiFe(ニッケル・鉄),CoZrNb(コバルト・ジルコニウム・ニオブ),CoFe,CoNiFe等の軟磁性材料で形成される。
書き込み素子14Wは、上部磁極142Uと下部磁極142Lとから成るヨーク(Yoke)142と、この磁極142U,142Lとの間に磁界(磁気信号)を発生させるコイル143とを備える。コイル143は、Au(金),Ag(銀),Cu,Cr(クロム),Al(アルミニウム),Ti(チタン),NiP(ニッケル・燐),Mo(モリブデン),Pd(パラジウム),Rh(ロジウム)等の非磁性金属材料からなり、ポリイミド(Polyimide)やポリカーボネイト(Polycarbonate)等からなる有機絶縁膜144に埋め込まれて、ヨーク(磁極)142から隔てられる。ヨーク142は、例えば上記シールド層141U,141Lと同様の軟磁性材料で形成される。しかし、本発明による磁気ヘッドのヨーク142は、その2つの磁極142U,142Lを隔てる間隙が記録媒体に印加される磁界を発生するとともに、この記録媒体の表面近傍に上記近接場光を発生させる所謂プラズモンプローブ(Plasmon Probe)としても機能するように作製される。近接場光は、可視光(波長帯域:380〜780nm)の光(レーザ光)がその波長より小さい間隙を通過する際に起きるプラズモン共鳴で発生し、この間隙に近接された記録媒体の表面近傍を局所的に加熱する。図11(c)に示されたスライダ4の下面(x−z平面)から露出された磁極142U,142Lは、z軸方向に例えば、10〜100nmの間隙(プローブ間隙,Probe Gap)13Gで隔てられる。この間隙13GがAu、Pt(白金)、Ag等の貴金属からなる部材で形成されると、これに入射する光のプラズモン共鳴が生じ易くなる。従って、ヨーク142の「コイル143から信号が印加される部分(例えば、図11(a)のB−B’線で横切られた部分)」を軟磁性材料で形成し、その「誘電体層11,12から露出されて記録媒体に磁気信号を印加し且つ近接場光を当てる部分(例えば、図11(a)のC−C’線で横切られた部分)」では当該軟磁性材料膜の上に貴金属膜を形成して間隙13Gを調整するとよい。この貴金属膜は、ヨーク142を成す上部磁極142Uと下部磁極142Lとの接合部材として利用してもよい。
図11(a)のC−C’線近傍でスライダ4の下面に対向する磁気ディスク(不図示)のトラックに対し、これに記録された情報は読み出し素子14Rで読み出され、これに新しい情報が書き込み素子14Wで書き込まれる。一方、この磁気ディスクの他のトラック(上記トラックに対して磁気ディスクの半径方向に並ぶ)の各々においては、これに記録された情報が読み出し素子14Rで読み出されることはなく、また、これに新しい情報が書き込み素子14Wで書き込まれることもない。即ち、図11(a)のC−C’線近傍以外の場所では、図11(b)の断面図に破線枠(14R)で例示されるように、読み出し素子14Rは形成されない。書き込み素子14Wのヨーク142も、図11(b)の断面図に例示されるように、磁気ディスクに対向するスライダ4の下面(x−z平面)から離され、その2つの磁極142U,142Lを隔てる間隙も、図11(a)のC−C’線近傍における上記プローブ間隙13Gより広い。これにより、スライダ4は、磁気ディスクの特定のトラックに対して選択的に磁気信号の授受を行なう。本実施例では更に、LD素子100で発振されたレーザ光を図11(a)のC−C’線近傍に形成された近接場発生素子13(プローブ間隙13G)に選択的に導くことで、磁気ディスクへの情報の記録密度を上げる。このため、本実施例のスライダ4では、磁界発生素子14等が埋め込まれる誘電体膜(絶縁膜)12の材料として、通常用いられるアルミナ(Al)に代えて、ガラス(SiO他)を用い、また、その内部に屈折率が高い領域11をプローブ間隙13Gからy軸方向(C−C’線沿い)に延在させて形成する。即ち、誘電体膜(絶縁膜)12における高屈折率領域11を「コア(Core)」とすると、これを囲む屈折率の低い領域は「クラッド(Clad)」となり、LD素子100から出射された光をコア11に閉じ込める。以降、参照番号11が付される部材は「コア」、参照番号12が付される部材は「クラッド」、と夫々記される。先述した光導波路200は、コア11とその周囲を囲むクラッド12とにより構成される。
コア11及びクラッド12のいずれも、基材101の主面又はその上に形成された構造物上にガラス微粒子を堆積させ、この堆積層を高温で加熱することにより透明化して形成される。コア11には、クラッド12に比べて酸化チタンや、酸化ゲルマニウム等のドーパントが高い濃度で含まれて、その屈折率がクラッド12よりも高く上げられている。図11(a)及び図11(c)において、LD素子100から出射された光は、スライダ4の上面(x−z平面)からコア11に入射し、コア11内をy軸方向沿いに伝播して、スライダ4の下面近傍に形成された近接場発生素子13に到る。近接場発生素子13に到達した光は、これに設けられたプローブ間隙13Gでプラズモン共鳴を起こし、近接場光に変換されて磁気ディスクの表面(上面)の近傍を局所的に加熱する。
本実施例によれば、半導体レーザをその活性層を基板側に向けた構造とすることにより、半導体レーザで発生した熱が基板に伝わりやすく、放熱性が良い。また、半導体レーザを直接スライダ上に搭載していないので、スライダに熱が伝わることによる応力の影響などの弊害を抑制することができる。
以上により、放熱性を確保しつつ、半導体レーザからの光を効率良く光導波路に伝播させることができ、かつスライダの反りを抑えることにより良好な浮上特性を確保することができる熱アシスト磁気記録ヘッドが実現可能となる。
本発明の第二の実施の形態を、図4を用いて説明する。
本実施例は、基本的には図1に示す第一の実施例と同様の構造であるが、違いは、第一の光導波路1に設けるミラーの形成方法である。図4に示すように、基板2上に斜面を有し、表面が金属などレーザ光を反射する部材でできた突起50を形成し、この上に光導波路を形成することでこの突起50をミラーとする。突起50の斜面の角度は、光ビームの変換角が60°〜120°になるようにすることが望ましく、85°〜95°の間であるとなおよい。突起50の形成方法としては、金属で形成してもよいし、あるいは樹脂で形成した後にスパッタやめっきを用いて金属薄膜で覆っても構わない。第一の光導波路1の形成方法も、アンダークラッド/コア/オーバークラッドを逐次積層する方式でも、あるいはコアが形成されたフィルムを貼付する方式でも構わない。基板2上に予めミラーを形成することで、ダイシング等により溝を形成する工程を省くことができる。
本発明の第三の実施の形態を、図5を用いて説明する。
本実施例の図1に示す第一の実施例との違いは、基板2が段差構造になっており、段差の下面51に半導体レーザ100と第一の光導波路1とが形成され、段差の斜面52が第一の光導波路1から伝搬した光のミラーの役割を果たしている点である。基板2の段差の形成には、本実施例ではSiの異方性エッチングを用いた。基板表面が100面のSi基板を用い、SiO2をエッチングマスクにしてKOH等でSiを異方性エッチングすると、段差の斜面52の角度は54.7°となる。これにより、基板表面に対し平行に伝搬するレーザ光の変換角は約70°となる。もちろんこれでもよいが、本実施例ではさらに望ましい形態にするために、結晶方位を9°シフトさせたSi基板を用いた。これにより異方性エッチングにより形成される斜面52の角度はおよそ45°となり、基板表面に対し平行に伝搬するレーザ光の変換角は約90°となる。基板の部材に関しては、Si以外のSiC、Al、AlN、AlTiCでも構わない。その場合、段差の斜面52の形成方法は機械加工などにより行う。その際、段差の斜面は光ビームの変換角が60°〜120°になるような角度にすることが望ましく、85°〜95°の間になるようにするとなおよい。
基板2の、スライダ4との接着面に関しては、基板表面または光導波路のオーバークラッド面いずれでもよいが、図5に示すように、段差を光導波路のコアの近傍だけ設け、コア近傍の横は段差を設けない(エッチング等を行わない)構造とすれば、接着剤10の厚みを最小限にでき、かつ放熱性は良好にできる。
第一の光導波路の形成方法など、その他の部分に関しては、実施例1と同様である。
本発明の第四の実施の形態を、図6を用いて説明する。
本実施例では、レーザ半導体100から出射されたレーザ光が第一の光導波路1に入射する部分と、第一の光導波路1から出射されたレーザ光が第二の光導波路3に入射する部分に、屈折率を調整したマッチング樹脂54を充填した構造となっている。このような構成とすることで、出射ビームのビーム広がり角を抑えることができ、また光導波路の入射部分での光の反射を抑えることができる。マッチング樹脂54の屈折率は、光導波路のコアのそれに近い材料を用いると反射を最小限に抑えることができ、望ましい。
本実施例では、マッチング樹脂54は光結合部分2箇所に設けているが、これはいずれか一方に設ける形態でも構わない。また、本実施例は実施例1の構造を用いているが、実施例2や実施例3の構造も用いても当然構わない。
本発明の第五の実施の形態を、図7を用いて説明する。
本実施例では、レーザ半導体100全体をポッティング樹脂55で覆っている構造となっている。これにより、数μm〜数10μmオーダの微小な屑が半導体レーザから発生する懸念が払拭され、ハードディスクを動作する際に再生・記録に障害が発生する可能性が低減する。本実施例では、ポッティング樹脂55には、実施例4にて述べたマッチング樹脂の機能も備えたものを用いているが、実施例4に示すようなマッチング樹脂を形成した後にポッティング樹脂を形成するという形態にしても構わない。また、本実施例は実施例1の構造を用いているが、実施例2や実施例3の構造も用いても当然構わない。
本発明の第六の実施の形態を、図8を用いて説明する。
本実施例では、第一の光導波路1の途中に1/2波長板56を挿入した構造となっている。1/2波長板56は、第一の光導波路1に溝を掘り、そこに挿入し接着固定することによって固定されている。この1/2波長板の存在により、半導体レーザ100から出射した光の偏光方向を回転させることができる。例えば、半導体レーザ100からの光の偏光方向が基板2の表面に対して平行である場合、1/2波長板56の基板2の表面に対する偏角を45°とすることで、光の偏光方向を基板2の表面に対して垂直方向に変換することができる。このような措置を施すことにより、どのような偏光方向の光源を用いても近接場プローブに対して最適な偏光方向に光を照射することができ、高性能な熱アシスト磁気記録ヘッドを提供することができる。なお、1/2波長板の固定方法は、上記以外の方法でも構わない。また、その設置位置も第一の光導波路の光の入射端部、あるいは出射端部にあっても構わない。また、1/2波長板以外の光学機能素子であっても構わない。さらに、本実施例は実施例1の構造を用いているが、実施例2や実施例3の構造も用いても当然構わない。
本発明の第七の実施の形態を、図9を用いて説明する。
図9は、ヘッド200を機械的に駆動するサスペンション20に基板2を接着固定したヘッドジンバルアセンブリ(Head Gimbal Assembly)の模式図である。磁気ディスク31は回転時には図のZ方向に移動する。スライダー4は磁気ディスク31の移動により生じた気流をその浮上面に受けることで浮上力を得て、また、サスペンション20はスライダ4から応力を受けてたわむことで、ヘッド200と磁気ディスク31との距離を所定の範囲に保つ。
ヘッド200とサスペンション20の間には、ジンバルバネ(Gimbal Spring,板バネの一種)33が設けられており、ヘッド200とジンバルバネ33とは接着剤12により接着されている。本固定に用いた接着剤12は、主に放熱を考慮すれば良く、熱伝導率の高い接着剤を用いるのが良い。また、接着剤12は、基板2のスライダ4と光導波路1を搭載した位置に対応する反対側の面に設けられており、基板2の半導体レーザ4を搭載した位置は自由端になっている。従って、半導体レーザ100の熱が伝わって基板2が熱膨張しても、サスペンション20とヘッド200との相対位置に影響を与えないようになっている。
サスペンション20とジンバルバネ33の間には、ディンプル21が設けられている。ディンプル21の位置は、スライダ4の中心付近に配置するのが望ましい。熱アシスト磁気記録ヘッドの場合、磁界発生素子22と半導体レーザ素子100の駆動電力の供給は、サスペンション20に設けられたリードライン(図示せず)を通して行われる。そのため、サスペンション20と基板2、基板2とスライダ4をはんだ等を用いて電気的に接続する必要がある。その際、はんだ接続には、はんだボール23を電極部に供給した後に、レーザを照射し接続を行う方法を用いた。接続方法に関しては、はんだ以外の、例えばAuのボールを用いて超音波接合により行っても構わない。また、本実施例は実施例1の構造を用いているが、実施例2〜6のいずれかを用いても当然構わない。
本発明の第八の実施の形態を、図10を用いて説明する。
図10は、本発明による熱アシスト磁気記録ヘッド200を搭載したハードディスクドライブ装置300の構造を示した模式図である。ハードディスクドライブ装置300の筐体32の中に、記録媒体である磁気ディスク31が配置され、スピンドルモータ24で磁気ディスク31は高速回転する。サスペンション20には、熱アシスト磁気記録ヘッド200が搭載され、もう一方向は、アーム25に接続されている。熱アシスト磁気記録ヘッドとしては、実施例1〜6のいずれも用いることができ、ヘッドジンバルアセンブリとしては実施例7記載のものが用いることができる。アーム25はボイスコイルモータ26で駆動し、回転するディスク31の記録する位置へヘッド200を移動させる。記録データの書き込み及び読み込み情報を処理する信号処理用LSI30も筐体32内に配置されている。
磁気ディスク31へ書き込みを行う場合には、ボイスコイルモータ26によりヘッド200を書き込みを行う位置に移動させる。そして、半導体レーザ100が発したレーザが光導波路1、15を伝わって、スライダの近接場発生素子13に達し、近接場発生素子13は、近接場光を発して磁気ディスク31の表面を局所的に加熱する。加熱されて保磁力が弱くなった場所へ磁極により磁気を印加することで、熱アシストを用いない場合に比べて弱い磁力で記録を行う。
本発明の実施例により、放熱性と浮上特性を確保した上で、半導体レーザをヘッド近傍に配置でき、高い光結合効率で光を伝搬させることができる。その結果、コンパクトな構成で、高密度・高速対応を可能とする熱アシスト磁気記録ヘッドが実現可能となる。
本発明の第一の実施の形態を示す模式図である。 本発明の第一の実施のバリエーションを示す模式図である。 本発明の第一の実施のバリエーションを示す模式図である。 本発明の第二の実施の形態を示す模式図である。 本発明の第三の実施の形態を示す模式図である。 本発明の第四の実施の形態を示す模式図である。 本発明の第五の実施の形態を示す模式図である。 本発明の第六の実施の形態を示す模式図である。 本発明の第七の実施の形態を示す模式図である。 本発明の第八の実施の形態を示す模式図である。 本発明の実施例にかかるスライダの図である。
符号の説明
1・・・第一の光導波路、2・・・基板、3・・・第二の光導波路、4・・・スライダ、5・・・半導体レーザの電極、6・・・基板2の電極、7・・・はんだ、8・・・ミラー、10、11、12・・・接着剤、15・・・コア、16・・・クラッド、20・・・サスペンション、21・・・ディンプル、22・・・近接場発生素子、23・・・はんだボール、24・・・スピンドルモータ、25・・・アーム、26・・・ボイスコイルモータ、30・・・信号処理用LSI、31・・・磁気ディスク、32・・・筐体、50・・・突起、51・・・段差下面、52・・・段差の斜面、53・・・段差上面、54・・・マッチング樹脂、55・・・ポッティング樹脂、56・・・1/2波長板(光学機能素子)、100・・・半導体レーザ、101・・・半導体レーザの活性層、200・・・熱アシスト磁気ヘッド、300・・・ハードディスクドライブ装置

Claims (1)

  1. 基板と、
    前記基板上に設けられ、レーザ光を発生させる半導体レーザ素子と、
    前記レーザ光を受けて近接場光を発する近接場発生素子、記録を行う磁気ヘッド及び浮上面を有するスライダとを備えた熱アシスト磁気ヘッドにおいて、
    前記半導体レーザ素子を出射したレーザ光が伝播する第一の光導波路が前記基板上に設けられ、
    前記スライダは、前記第一の光導波路上に設けられるとともに、その端面に第一の光導波路を伝播した前記レーザ光を当該スライダの厚さ方向に伝搬させて前記近接場発生素子に導く第二の光導波路を有し、
    前記第一の光導波路は、前記半導体レーザ素子から発生されたレーザ光を反射させることにより伝播させ、前記第1の光導路の途中に1/2波長板があることを特徴とする熱アシスト磁気記録ヘッド。
JP2008202545A 2008-08-06 2008-08-06 熱アシスト磁気記録ヘッド Expired - Fee Related JP5150403B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008202545A JP5150403B2 (ja) 2008-08-06 2008-08-06 熱アシスト磁気記録ヘッド
PCT/JP2009/060500 WO2010016329A1 (ja) 2008-08-06 2009-06-09 熱アシスト磁気記録ヘッド
US13/057,585 US8437228B2 (en) 2008-08-06 2009-06-09 Thermally-assisted magnetic recording head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008202545A JP5150403B2 (ja) 2008-08-06 2008-08-06 熱アシスト磁気記録ヘッド

Publications (3)

Publication Number Publication Date
JP2010040112A JP2010040112A (ja) 2010-02-18
JP2010040112A5 JP2010040112A5 (ja) 2011-02-03
JP5150403B2 true JP5150403B2 (ja) 2013-02-20

Family

ID=41663554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008202545A Expired - Fee Related JP5150403B2 (ja) 2008-08-06 2008-08-06 熱アシスト磁気記録ヘッド

Country Status (3)

Country Link
US (1) US8437228B2 (ja)
JP (1) JP5150403B2 (ja)
WO (1) WO2010016329A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010146655A (ja) * 2008-12-19 2010-07-01 Hitachi Global Storage Technologies Netherlands Bv 光アシスト磁気記録用ヘッド及びその製造方法
JP5322898B2 (ja) * 2009-11-25 2013-10-23 株式会社日立製作所 熱アシスト磁気ヘッドスライダ及びヘッドジンバルアセンブリ
US8418353B1 (en) * 2009-12-23 2013-04-16 Western Digital (Fremont), Llc Method for providing a plurality of energy assisted magnetic recording EAMR heads
JP5810492B2 (ja) 2010-09-01 2015-11-11 大日本印刷株式会社 サスペンション用基板、サスペンション、およびサスペンション用基板の製造方法
JP5703697B2 (ja) 2010-11-09 2015-04-22 大日本印刷株式会社 サスペンション用基板、サスペンション、素子付サスペンション、ハードディスクドライブ、およびサスペンション用基板の製造方法
JP5323802B2 (ja) 2010-12-13 2013-10-23 ローム株式会社 半導体レーザ素子
JP5323879B2 (ja) 2011-01-27 2013-10-23 ローム株式会社 半導体レーザ素子
US8755256B2 (en) 2012-11-14 2014-06-17 Headway Technologies, Inc. Plasmon resonator with dual waveguide excitation for TAMR
US9070386B2 (en) 2012-12-04 2015-06-30 Seagate Technology Llc Polarization rotator
US9315008B1 (en) 2013-07-16 2016-04-19 Western Digital Technologies, Inc. Method and apparatus for aligning an illumination unit to a slider for a magnetic recording device
US9099145B1 (en) 2013-12-24 2015-08-04 Western Digital (Fremont), Llc High contrast alignment marker
US9153275B1 (en) 2014-10-15 2015-10-06 HGST Netherlands B.V. Laser-integrated head gimbal assembly having laser contact protection
WO2020162564A1 (ja) * 2019-02-08 2020-08-13 古河電気工業株式会社 光モジュール

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5566157A (en) * 1991-09-27 1996-10-15 Matsushita Electric Industrial Co., Ltd. Optical pickup for information recording/reproducing apparatus having polygon prism, hologram, and grating lens
JP2001319365A (ja) * 2000-05-10 2001-11-16 Fuji Xerox Co Ltd 浮上記録ヘッド、ディスク装置、および浮上記録ヘッドの製造方法
JP2002050073A (ja) * 2000-08-02 2002-02-15 Minolta Co Ltd 浮上ヘッド装置および光記録/再生装置
JP2002237018A (ja) * 2001-02-09 2002-08-23 Tdk Corp サスペンション及びヘッドジンバルアセンブリ
JP3903365B2 (ja) 2001-03-29 2007-04-11 株式会社東芝 光アシスト磁気記録ヘッド及び光アシスト磁気記録装置
JP2003162875A (ja) 2001-11-27 2003-06-06 Alps Electric Co Ltd 磁気ヘッド及びその製造方法
JP2004069743A (ja) * 2002-08-01 2004-03-04 Fuji Xerox Co Ltd 高分子光導波路の製造方法
JP4635607B2 (ja) 2004-12-28 2011-02-23 Tdk株式会社 熱アシスト磁気記録ヘッド及び熱アシスト磁気記録装置
JP2007095167A (ja) 2005-09-28 2007-04-12 Konica Minolta Holdings Inc 熱アシスト磁気記録ヘッド及び磁気記録装置
JP4129031B2 (ja) * 2006-06-12 2008-07-30 株式会社日立製作所 近接場光発生器及び記録再生装置
TW200801513A (en) 2006-06-29 2008-01-01 Fermiscan Australia Pty Ltd Improved process
JP2008016096A (ja) * 2006-07-04 2008-01-24 Tdk Corp 熱アシスト磁気記録用光源ユニット及び該ユニットを備えた薄膜磁気ヘッドの製造方法
JP2008059645A (ja) * 2006-08-30 2008-03-13 Hitachi Ltd 記録用ヘッド
JP2008130106A (ja) * 2006-11-16 2008-06-05 Hitachi Ltd 熱アシスト磁気記録ヘッド支持機構
JP4782660B2 (ja) * 2006-11-21 2011-09-28 株式会社日立製作所 ヘッド,ヘッドジンバルアセンブリ及び情報記録装置
JP4497556B2 (ja) * 2006-12-27 2010-07-07 東芝ストレージデバイス株式会社 ヘッドサスペンションアセンブリ、キャリッジアセンブリ、ヘッドスライダアセンブリの製造方法および記憶媒体駆動装置
JP4836966B2 (ja) * 2008-01-18 2011-12-14 株式会社日立製作所 ヘッドジンバルアセンブリ及び情報記録装置

Also Published As

Publication number Publication date
US8437228B2 (en) 2013-05-07
WO2010016329A1 (ja) 2010-02-11
US20110205865A1 (en) 2011-08-25
JP2010040112A (ja) 2010-02-18

Similar Documents

Publication Publication Date Title
JP5150403B2 (ja) 熱アシスト磁気記録ヘッド
JP5017184B2 (ja) 熱アシスト磁気記録ヘッド
US8406089B2 (en) Heat-assisted magnetic recording head with laser diode fixed to slider
JP5029724B2 (ja) 傾斜した端面を有する導波路を備えた近接場光発生素子
US8395971B2 (en) Heat-assisted magnetic recording head with laser diode fixed to slider
US7957099B2 (en) Thermally assisted magnetic head with optical waveguide and light shield
US8023225B2 (en) Thermally assisted magnetic head with optical waveguide
US8355299B2 (en) Heat-assisted magnetic recording head with convergent lens
US8223597B2 (en) Thermally assisted head having reflection mirror for propagating light
US8107192B2 (en) Heat-assisted magnetic recording head with laser diode fixed to slider
US8395972B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US20080239541A1 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk drive
US8248894B2 (en) Thermally-assisted magnetic recording head having heat radiation layer and interposed layer
CN101329872A (zh) 光元件集成头
JP5441184B2 (ja) ヘッドジンバルアセンブリ及びそれを備えた情報記録再生装置
US20090097364A1 (en) Head slider
US8605387B2 (en) Thermally-assisted magnetic recording head including a magnetic pole and a heating element
US9153267B1 (en) Thermally-assisted magnetic recording head, head gimbals assembly, head arm assembly and magnetic recording unit
JP4853398B2 (ja) 光アシスト磁気記録ヘッド、光アシスト磁気記録装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees