JP5148839B2 - Antireflection film for infrared light - Google Patents

Antireflection film for infrared light Download PDF

Info

Publication number
JP5148839B2
JP5148839B2 JP2006125464A JP2006125464A JP5148839B2 JP 5148839 B2 JP5148839 B2 JP 5148839B2 JP 2006125464 A JP2006125464 A JP 2006125464A JP 2006125464 A JP2006125464 A JP 2006125464A JP 5148839 B2 JP5148839 B2 JP 5148839B2
Authority
JP
Japan
Prior art keywords
layer
infrared light
substrate
antireflection film
zinc sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006125464A
Other languages
Japanese (ja)
Other versions
JP2007298661A (en
Inventor
豊 山岸
聡 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2006125464A priority Critical patent/JP5148839B2/en
Publication of JP2007298661A publication Critical patent/JP2007298661A/en
Application granted granted Critical
Publication of JP5148839B2 publication Critical patent/JP5148839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、例えば非接触放射温度計測や人体検知等の用途に用いられる熱型赤外線センサの窓材や光学フィルタなどのように、6〜12μm波長領域の中赤外光を利用する光学機器の反射防止のために使用される赤外光用反射防止膜に関する。   The present invention relates to an optical device that uses mid-infrared light in the 6 to 12 μm wavelength region, such as a window material or an optical filter of a thermal infrared sensor used for non-contact radiation temperature measurement or human body detection. The present invention relates to an antireflection film for infrared light used for antireflection.

この種の反射防止膜のうち、基板上に単一の膜を形成してなる単層構造の反射防止膜の場合は、基板の屈折率(以下、nで表わす)の平方根(√n)と等しい屈折率を持つ膜を形成することにより、ある波長の一点で反射率を0%にすることが可能である。例えば、基板がシリコン基板である場合、シリコン(Si)の屈折率は、n=3.4であるから、反射率の低減を図るためには、√(3.4)=1.84の屈折率を持つ膜を形成することが必要であり、それに近い屈折率を有する膜材料としては、酸化ケイ素(SiO、その屈折率n=1.8)が相当する。しかし、このSiO単層をSi基板上に形成した反射防止膜は、5μm以下の波長領域で高い透過率が得られるものの、6μm以上の波長領域ではSiO中の不純物による吸収が多く、高い透過率を得ることができず、6〜12μm波長領域の中赤外光を利用する光学機器の反射防止膜としては全く実用に供し得ない。   In this type of antireflection film, in the case of an antireflection film having a single-layer structure formed by forming a single film on the substrate, the square root (√n) of the refractive index of the substrate (hereinafter referred to as n) and By forming a film having an equal refractive index, the reflectance can be reduced to 0% at a certain wavelength. For example, when the substrate is a silicon substrate, the refractive index of silicon (Si) is n = 3.4. Therefore, in order to reduce the reflectance, the refraction of √ (3.4) = 1.84 It is necessary to form a film having a refractive index, and silicon oxide (SiO, its refractive index n = 1.8) corresponds to a film material having a refractive index close to that. However, the antireflection film in which the SiO single layer is formed on the Si substrate can obtain high transmittance in the wavelength region of 5 μm or less, but in the wavelength region of 6 μm or more, there is much absorption due to impurities in SiO, and high transmittance. And cannot be practically used as an antireflection film for an optical device using mid-infrared light in the 6 to 12 μm wavelength region.

また、Si基板を用いる赤外光用反射防止膜として、前記酸化ケイ素(SiO)に代えて、硫化亜鉛(ZnS、n=2.3)を用い、このZnS層上に該硫化亜鉛の屈折率(n=2.3)の平方根、即ち、√(2.3)=1.51に近い屈折率を有する材料層、例えばBaF2 やPbF2 (共に、n=1.4)等の低屈折率材料を積層して多層構造としたものが考えられるが、これら各層を反射防止に必要な厚膜に成膜すると、多結晶性が顕著になり、粒界面での光の散乱によって高い透過率を得ること技術的に難しい。さらに、厚膜多層構造であるために、基板を含む下地との密着性にも問題があり、短期間の使用で剥離が生じるなど実用に供し得ない。 Further, instead of silicon oxide (SiO), zinc sulfide (ZnS, n = 2.3) is used as an antireflection film for infrared light using a Si substrate, and the refractive index of the zinc sulfide is formed on the ZnS layer. Low refraction such as a square root of (n = 2.3), that is, a material layer having a refractive index close to √ (2.3) = 1.51, such as BaF 2 or PbF 2 (both n = 1.4). Multi-layered materials can be used to form a multilayer structure. However, when these layers are formed in a thick film necessary for antireflection, polycrystallinity becomes prominent, and light transmittance at the grain interface causes high transmittance. It is technically difficult to get. Furthermore, since it is a thick film multilayer structure, there is also a problem with the adhesion to the substrate including the substrate, and it cannot be put to practical use because it peels off after a short period of use.

上述のようなSi基板を用いる赤外光用反射防止膜では単層構造、多層構造のいずれの場合も6〜12μm波長領域で実用に十分に供し得るだけの透過特性、反射特性が得られない。この点に鑑みて、従来、基板として6〜12μm波長領域で不純物吸収が少ないゲルマニウム(Ge)基板を用い、このGe基板上に、ZnS層、Ge層、ZnS層及びフッ化イットリウム(YF3 )層を基板側から順に積層して、6〜12μm波長領域で高い透過率が得られるように構成した反射防止膜が提案されている(例えば、特許文献1参照)。 In the antireflection film for infrared light using the Si substrate as described above, transmission characteristics and reflection characteristics sufficient for practical use in the wavelength range of 6 to 12 μm cannot be obtained in either a single layer structure or a multilayer structure. . In view of this point, conventionally, a germanium (Ge) substrate that absorbs less impurities in the 6 to 12 μm wavelength region is used as the substrate, and a ZnS layer, a Ge layer, a ZnS layer, and yttrium fluoride (YF 3 ) are formed on the Ge substrate. An antireflection film has been proposed in which layers are stacked in order from the substrate side so that high transmittance can be obtained in a wavelength range of 6 to 12 μm (see, for example, Patent Document 1).

特開昭64−15703号公報Japanese Unexamined Patent Publication No. 64-15703

上記特許文献1に示した従来の赤外光用反射防止膜は、基板から最も外側の最終層、つまり、光が最初に入射する層に、中赤外光領域での屈折率がn=1.5という低屈折率のYF3 層を用いていることにより、反射防止膜面の3〜15μm波長領域での平均透過率を90%以上と高くすることが可能である。反面、Ge基板はSi基板に比べて、10倍以上もコスト高であり、そのため、全体コストの安価な光学機器への適用は実際問題として困難である。また、最終層に低屈折率のYF3層を用いた従来の赤外光用反射防止膜は、高い平均透過率が得られるものの、図2の点線で示すように、9μm前後の波長領域に透過率が急激かつ局所的に低下する、いわゆる、リップルが発生し、実用範囲において平坦な透過特性が得られないという難点があった。 The conventional anti-reflection film for infrared light shown in Patent Document 1 has a refractive index in the mid-infrared light region of n = 1 on the outermost final layer from the substrate, that is, the layer on which light is first incident. by uses a YF 3 layers of low refractive index as .5, it is possible to increase the average transmittance in 3~15μm wavelength region of the antireflection film surface and 90% or more. On the other hand, the Ge substrate is more than 10 times more expensive than the Si substrate, so that it is difficult to apply to a low-cost optical device as a practical problem. Further, the conventional infrared light reflection preventing film in the final layer with a YF 3 layers of low refractive index, although a high average transmittance is obtained, as shown by the dotted line in FIG. 2, in the wavelength range of about 9μm transparently ratio decreases rapidly and locally, so-called ripple occurs, flatter transmission characteristic in the practical range there is a drawback that can not be obtained.

本発明は上述の実情に鑑みてなされたもので、その目的は、コスト的に安価な割に不純物吸収があるシリコン基板を用いながらも、6〜12μm波長領域の全範囲に亘って高く、かつ、リップルのない平坦な透過特性を得ることができる赤外光用反射防止膜を提供することにある。   The present invention has been made in view of the above-mentioned circumstances, and its purpose is high over the entire range of the 6 to 12 μm wavelength region while using a silicon substrate having impurity absorption for a low cost. Another object of the present invention is to provide an antireflection film for infrared light capable of obtaining flat transmission characteristics free from ripples.

上記目的を達成するために、本発明に係る赤外光用反射防止膜は、シリコン基板に複数の薄膜が積層状態に形成されてなる赤外光用反射防止膜であって、前記シリコン基板の少なくとも一方の面に、ゲルマニウム層、硫化亜鉛層、ゲルマニウム層、硫化亜鉛層及び他の層よりも低屈折率のフッ化イットリウム層を前記シリコン基板側から順に積層し、これら計五つの各層それぞれの光学膜厚を6〜12μm付近の赤外波長領域で90%以上の透過特性となるように設定した多層構造で構成されていることを特徴としている。

In order to achieve the above object, an antireflection film for infrared light according to the present invention is an antireflection film for infrared light in which a plurality of thin films are formed in a laminated state on a silicon substrate. on at least one side, germanium layer, zinc sulfide layer, a germanium layer, laminating a yttrium fluoride layer of lower refractive index than the zinc sulfide layer and other layers in this order from the silicon substrate side, these total five or each layer Each optical film thickness is constituted by a multilayer structure in which transmission characteristics of 90% or more are set in an infrared wavelength region near 6 to 12 μm.

上記構成の本発明によれば、基板として、材料コスト的に非常に安価なSi基板を用いて反射防止膜全体(製品)のコスト低減を図り、経済的な見地から光学機器への適用範囲を広く確保しながら、Si基板中の不純物による吸収が現れない6〜12μm付近の赤外波長領域において重点的に透過率が高くなるように最も外側に低屈折率のフッ化イットリウム層を配した多層構造とすることによって、実用的な中赤外波長領域の全範囲に亘って透過率が90%以上と高く、かつ、リップルのない平坦な透過特性、反射特性を得ることができる。また、反射率が小さくなるので、該反射防止膜をセンサへの導光路に設置して用いることで、迷光の影響を低減できるという効果も奏する。 According to the present invention configured as described above, the cost of the entire antireflection film (product) is reduced by using a Si substrate that is very inexpensive in terms of material cost. Multilayer with a low refractive index yttrium fluoride layer arranged on the outermost side so as to increase the transmittance preferentially in the infrared wavelength region near 6 to 12 μm where absorption by impurities in the Si substrate does not appear while ensuring a wide range by the structure, practical in transmittance over the entire range of the infrared wavelength region as high as 90% or more, and a flat transmission characteristic without ripple, it is possible to obtain a reflection characteristic. In addition, since the reflectance is reduced, the effect of stray light can be reduced by using the antireflection film in a light guide path to the sensor.

特に、本発明に係る赤外光用反射防止膜において、上記のような高い透過特性を得るための前記ゲルマニウム層、硫化亜鉛層、ゲルマニウム層、硫化亜鉛層及びフッ化イットリウム層の各光学膜厚を、請求項2に記載のように、Ge:1.79μm、ZnS:2.50μm、Ge:0.93μm、ZnS:6.00μm及びYF3 :5.38μmに設定することにより、全体を薄膜にして基板との密着性を良好に保ちつつ、図2の実線に示すように、6〜12μm付近の赤外波長領域において、平均透過率が95〜98%でリップルのない平坦な透過特性を確実に得ることができる。 In particular, in the antireflection film for infrared light according to the present invention, the optical film thicknesses of the germanium layer, zinc sulfide layer, germanium layer, zinc sulfide layer, and yttrium fluoride layer for obtaining the high transmission characteristics as described above. Is set to Ge: 1.79 μm, ZnS: 2.50 μm, Ge: 0.93 μm, ZnS: 6.00 μm and YF 3 : 5.38 μm. As shown by the solid line in FIG. 2, while maintaining good adhesion to the substrate, in the infrared wavelength region near 6 to 12 μm, the average transmittance is 95 to 98% and flat transmission characteristics without ripples. You can definitely get it.

また、本発明に係る赤外光用反射防止膜において、前記シリコン基板の他の面には、ロングパスフィルタまたはショートパスフィルタなどのエッジフィルタや、バンドパスフィルタを形成してもよく、また、請求項3に記載のように、前記したと同一のゲルマニウム層、硫化亜鉛層、ゲルマニウム層、硫化亜鉛層及びフッ化イットリウム層を形成して所定波長領域の中赤外光の透過特性を持たせてもよい。   In the antireflection film for infrared light according to the present invention, an edge filter such as a long pass filter or a short pass filter, or a band pass filter may be formed on the other surface of the silicon substrate. As described in Item 3, the same germanium layer, zinc sulfide layer, germanium layer, zinc sulfide layer, and yttrium fluoride layer as those described above are formed to provide the mid-infrared light transmission characteristics in a predetermined wavelength region. Also good.

以下、本発明の実施の形態を、図面を参照しながら説明する。
図1は、本発明に係る赤外光用反射防止膜の多層膜構造を示す概略縦断面図であり、同図において、1はシリコン(Si)基板であり、このSi基板1は1mmの厚さを有し、その一方の面上に、第1ゲルマニウム(Ge)層2、第1硫化亜鉛(ZnS)層3、第2Ge層4、第2ZnS層5及びフッ化イットリウム(YF3 )層6を、前記Si基板1側から順に積層してなる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic longitudinal sectional view showing a multilayer structure of an antireflection film for infrared light according to the present invention. In FIG. 1, 1 is a silicon (Si) substrate, and this Si substrate 1 has a thickness of 1 mm. The first germanium (Ge) layer 2, the first zinc sulfide (ZnS) layer 3, the second Ge layer 4, the second ZnS layer 5, and the yttrium fluoride (YF 3 ) layer 6 are provided on one surface thereof. Are stacked in order from the Si substrate 1 side.

前記第1Ge層2、第1ZnS層3、第2Ge層4、第2ZnS層5及びYF3 層6それぞれの光学膜厚は、Ge:1.79μm、ZnS:2.50μm、Ge:0.93μm、ZnS:6.00μm及びYF3:5.38μmで、6〜12μm付近の赤外波長領域で90%以上の透過特性となるように設定されている。
ここで、実際には、各層の屈折率は成膜条件により多少変化するとともに、屈折率の波長分散によって広い波長範囲で一様な値にならないが、上述したような各層それぞれの光学膜厚は、各層材料の波長10μm付近の屈折率を、Ge=4.25、ZnS=2.3、YF3 =1.5とみなして設定している。
The optical thicknesses of the first Ge layer 2, the first ZnS layer 3, the second Ge layer 4, the second ZnS layer 5 and the YF 3 layer 6 are respectively Ge: 1.79 μm, ZnS: 2.50 μm, Ge: 0.93 μm, ZnS: 6.00 μm and YF 3 : 5.38 μm, and the transmission characteristics are set to be 90% or more in the infrared wavelength region near 6 to 12 μm.
Here, in practice, the refractive index of each layer varies somewhat depending on the film formation conditions, and does not become a uniform value in a wide wavelength range due to the wavelength dispersion of the refractive index. However, the optical film thickness of each layer as described above is The refractive index of each layer material around the wavelength of 10 μm is set assuming that Ge = 4.25, ZnS = 2.3, and YF 3 = 1.5.

なお、各層2〜6の形成手段としては、真空蒸着、イオンプレーティング、スパッタリング等の真空薄膜堆積方法が用いられる。また、最外側のYF3 層6の外側の屈折率は空気の屈折率(n=1.0)とみなしている。 In addition, as a formation means of each layer 2-6, vacuum thin film deposition methods, such as vacuum evaporation, ion plating, and sputtering, are used. The outer refractive index of the outermost YF 3 layer 6 is regarded as the refractive index of air (n = 1.0).

上記のように、Si基板1中の不純物による吸収が現れない6〜12μm付近の赤外波長領域を重点的に透過率が高くなるように、最も外側に低屈折率のYF3 層6を配した多層構造とすることによって、基板として材料コストの非常に安価なSi基板1を用い、かつ、反射防止機能を発揮する各層の膜厚も薄くして膜全体(製品)のコスト低減を図り、光学機器への適用範囲を経済的見地からも広く確保しながら、図2の実線に示すように、6〜15μmの広い赤外波長領域に亘って90%以上の高い透過率で、特に、6〜12μm付近の赤外波長領域においては平均透過率が95〜98%で、かつ、リップルのほとんどない平坦な透過特性、反射特性を得ることができる。 As described above, the YF 3 layer 6 having a low refractive index is arranged on the outermost side so that the transmittance is increased mainly in the infrared wavelength region in the vicinity of 6 to 12 μm where absorption due to impurities in the Si substrate 1 does not appear. By using the multi-layered structure, the Si substrate 1 having a very low material cost is used as the substrate, and the thickness of each layer that exhibits the antireflection function is reduced to reduce the cost of the entire film (product). While ensuring a wide range of application to optical instruments from an economic point of view, as shown by the solid line in FIG. 2, with a high transmittance of 90% or more over a wide infrared wavelength region of 6 to 15 μm, in particular, 6 In the infrared wavelength region in the vicinity of ˜12 μm, it is possible to obtain flat transmission characteristics and reflection characteristics with an average transmittance of 95 to 98% and almost no ripple.

図3は、上記した赤外光用反射防止膜において、最外側のYF3 層6を真空蒸着によりその光学膜厚が5.38μmとなるように比較的厚膜に成膜する場合に用いられる真空蒸着装置の概要構成図である。該真空蒸着装置は、蒸着炉10内の上部に、前記第1Ge層2、第1ZnS層3、第2Ge層4、第2ZnS層5を積層形成したSi基板1(以下、Si基板1等という)を下向き状態に支持するホルダ11と、このホルダ11に支持されたSi基板1等を輻射加熱するヒータ12とが配置されているとともに、蒸着炉10内の下部に、YF3を充填したハース(ルツボ)13に電子銃14から放射される電子ビームを照射させてハース13を加熱しYF3 を蒸発させる電子銃加熱源15とが配置されて構成されている。 FIG. 3 is used when the outermost YF 3 layer 6 in the above-described antireflection film for infrared light is formed into a relatively thick film by vacuum deposition so that its optical film thickness becomes 5.38 μm. It is a schematic block diagram of a vacuum evaporation system. The vacuum deposition apparatus includes an Si substrate 1 (hereinafter referred to as Si substrate 1 or the like) in which the first Ge layer 2, the first ZnS layer 3, the second Ge layer 4, and the second ZnS layer 5 are stacked on the upper portion of the deposition furnace 10. And a heater 12 that radiates and heats the Si substrate 1 and the like supported by the holder 11, and a hearth filled with YF 3 in the lower part of the vapor deposition furnace 10. An electron gun heating source 15 for irradiating the crucible 13 with the electron beam emitted from the electron gun 14 to heat the hearth 13 and evaporate YF 3 is arranged.

次に、上記のような構成の真空蒸着装置を用いてSi基板1等の最外側に、YF3 を真空蒸着して所定の光学膜厚のYF3 層6を成膜する方法について説明する。
まず、Si基板1等をホルダ11にセットした上で、ヒータ12を作動させてSi基板1等を100℃以下、詳しくは、60℃以上100℃以下に加熱し、その加熱温度を維持しつつ、電子銃加熱源15の電子銃14から放射される電子ビームをハース13に照射して該ハース13を加熱することにより、ハース13に充填されているYF3 を蒸発させて1〜15Å/sec.の速度で成膜を開始する。
Next, a method for forming a YF 3 layer 6 having a predetermined optical film thickness by vacuum-depositing YF 3 on the outermost side of the Si substrate 1 or the like using the vacuum evaporation apparatus having the above-described configuration will be described.
First, after setting the Si substrate 1 or the like on the holder 11, the heater 12 is operated to heat the Si substrate 1 or the like to 100 ° C. or lower, specifically 60 ° C. or higher and 100 ° C. or lower, while maintaining the heating temperature. The hearth 13 is irradiated with an electron beam emitted from the electron gun 14 of the electron gun heating source 15 to heat the hearth 13, thereby evaporating YF 3 filled in the hearth 13 to 1 to 15 Å / sec. . The film formation is started at a speed of

このように蒸着温度を100℃以下とすることにより、密着強度が大きく、膜剥離の生じないYF3 層6を確実に成膜することができる。 Thus, by setting the vapor deposition temperature to 100 ° C. or less, the YF 3 layer 6 having high adhesion strength and no film peeling can be reliably formed.

本発明に係る赤外光用反射防止膜の多層膜構造を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows the multilayer film structure of the reflection preventing film for infrared rays which concerns on this invention. 本発明に係る赤外光用反射防止膜及び従来の反射防止膜の透過特性を示すグラフである。It is a graph which shows the permeation | transmission characteristic of the antireflection film for infrared rays which concerns on this invention, and the conventional antireflection film. 本発明に係る赤外光用反射防止膜における最外側YF3 層の成膜に用いられる真空蒸着装置の概要構成図である。It is a schematic diagram of a vacuum evaporation apparatus used for film formation outermost YF 3 layers in the infrared light reflection preventing film according to the present invention.

符号の説明Explanation of symbols

1 Si基板
2 第1ゲルマニウム(Ge)層
3 第1硫化亜鉛(ZnS)層
4 第2Ge層
5 第2ZnS層
6 フッ化イットリウム(YF3 )層
DESCRIPTION OF SYMBOLS 1 Si substrate 2 1st germanium (Ge) layer 3 1st zinc sulfide (ZnS) layer 4 2nd Ge layer 5 2nd ZnS layer 6 Yttrium fluoride (YF 3 ) layer

Claims (3)

シリコン基板に複数の薄膜が積層状態に形成されてなる赤外光用反射防止膜であって、
前記シリコン基板の少なくとも一方の面に、ゲルマニウム層、硫化亜鉛層、ゲルマニウム層、硫化亜鉛層及び他の層よりも低屈折率のフッ化イットリウム層を前記シリコン基板側から順に積層し、これら計五つの各層それぞれの光学膜厚を6〜12μm付近の赤外波長領域で90%以上の透過特性となるように設定した多層構造で構成されていることを特徴とする赤外光用反射防止膜。
An antireflection film for infrared light, in which a plurality of thin films are formed in a laminated state on a silicon substrate,
On at least one surface of the silicon substrate, germanium layer, laminated zinc sulfide layer, a germanium layer, a yttrium fluoride layer having a low refractive index from the silicon substrate side of the zinc sulfide layer and other layers in this order, these Anti-reflection for infrared light, characterized in that it has a multilayer structure in which the optical film thickness of each of the five layers in total is set to have a transmission characteristic of 90% or more in the infrared wavelength region near 6-12 μm film.
前記ゲルマニウム層、硫化亜鉛層、ゲルマニウム層、硫化亜鉛層及びフッ化イットリウム層の光学膜厚が、1.79μm、2.50μm、0.93μm、6.00μm及び5.38μmに設定されている請求項1に記載の赤外光用反射防止膜。   The optical film thickness of the germanium layer, zinc sulfide layer, germanium layer, zinc sulfide layer and yttrium fluoride layer is set to 1.79 μm, 2.50 μm, 0.93 μm, 6.00 μm and 5.38 μm. Item 2. The antireflection film for infrared light according to Item 1. 前記シリコン基板の両面に、前記したと同一のゲルマニウム層、硫化亜鉛層、ゲルマニウム層、硫化亜鉛層及びフッ化イットリウム層が形成されている請求項1または2に記載の赤外光用反射防止膜。   The antireflection film for infrared light according to claim 1 or 2, wherein the same germanium layer, zinc sulfide layer, germanium layer, zinc sulfide layer and yttrium fluoride layer as described above are formed on both surfaces of the silicon substrate. .
JP2006125464A 2006-04-28 2006-04-28 Antireflection film for infrared light Active JP5148839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125464A JP5148839B2 (en) 2006-04-28 2006-04-28 Antireflection film for infrared light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006125464A JP5148839B2 (en) 2006-04-28 2006-04-28 Antireflection film for infrared light

Publications (2)

Publication Number Publication Date
JP2007298661A JP2007298661A (en) 2007-11-15
JP5148839B2 true JP5148839B2 (en) 2013-02-20

Family

ID=38768218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125464A Active JP5148839B2 (en) 2006-04-28 2006-04-28 Antireflection film for infrared light

Country Status (1)

Country Link
JP (1) JP5148839B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101863152B (en) * 2010-05-07 2012-04-25 中国人民解放军63983部队 Infrared radiation inhibiting material with nano periodic structure and method for preparing same
CN106443841B (en) * 2016-11-14 2018-10-26 天津津航技术物理研究所 A kind of ultralow residual reflectance ZnS substrates long wave antireflection film
WO2018180221A1 (en) 2017-03-28 2018-10-04 富士フイルム株式会社 High refractive index film and optical interference film
KR102342322B1 (en) * 2017-07-21 2021-12-23 한국광기술원 Infrared optical lens equipped with ta-C and yttrium oxide thin film
CN110146948B (en) * 2018-11-26 2021-05-11 上海欧菲尔光电技术有限公司 Silicon substrate long-wave pass infrared filter and preparation method thereof
CN112859208B (en) * 2021-02-20 2022-05-17 无锡奥夫特光学技术有限公司 Infrared window anti-reflection protective film
CN114774847B (en) * 2022-04-20 2024-01-23 湖北久之洋红外***股份有限公司 Preparation method of low-stress protection anti-reflection film of large-size infrared optical element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1010303A (en) * 1996-06-24 1998-01-16 Topcon Corp Infrared antireflection film
JP2000147205A (en) * 1998-11-06 2000-05-26 Minolta Co Ltd Infrared antireflection film

Also Published As

Publication number Publication date
JP2007298661A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP5148839B2 (en) Antireflection film for infrared light
US10502878B2 (en) Systems, methods, and apparatus for production coatings of low-emissivity glass
US8559094B2 (en) Thermochromic smart window and method of manufacturing the same
EP2577368B1 (en) Solar control glazing with low solar factor
JP6821098B2 (en) Radiative cooling device
JP2011221048A (en) Anti-reflection coating and optical element for infrared ray
JP6320389B2 (en) Substrate with stack with thermal properties and absorption layer
WO2003073055A1 (en) Temperature measuring system, heating device using it and production method for semiconductor wafer, heat ray insulating translucent member, visible light reflection membner, exposure system-use reflection mirror and exposure system, and semiconductor device produced by using them and vetical heat treating device
JPS5890604A (en) Infrared-ray shielding laminate
EA025255B1 (en) Method for obtaining a substrate provided with a coating
JP6821084B2 (en) Radiative cooling device
US9309149B2 (en) Systems, methods, and apparatus for production coatings of low-emissivity glass
JP6821063B2 (en) Radiative cooling device
RU2019124552A (en) A HEAT-TREATABLE COATED PRODUCT WITH REFLECTING IR RADIATION LAYERS BASED ON TITANIUM NITRIDE AND NICKEL-CHROME
CN107614451B (en) Film laminate and laminated glass
JP2003302520A (en) Reflection mirror for infrared laser and method for manufacturing the same
WO2022244686A1 (en) Method for producing far-infrared transmission member, and far-infrared transmission member
JP2000352612A (en) Multilayered film filter
EP3201152A1 (en) Substrate provided with a stack having thermal properties and an intermediate layer of stoichiometric compounds
JP7004597B2 (en) Radiative cooling device
JP6622798B2 (en) Substrates with laminates with thermal properties and substoichiometric interlayers
WO2020089545A1 (en) Material comprising a substrate provided with a stack of thin layers with thermal properties
JP2007240790A (en) Absorption type multilayered nd filter and manufacturing method therefor
EP3807225B1 (en) Material comprising a stack with thermal and aesthetic properties
JP6982951B2 (en) Silicon substrate with functional film for infrared rays

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120206

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120330

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20120906

RD17 Notification of extinguishment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7437

Effective date: 20120913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5148839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250