JP5148342B2 - Composite microporous membrane - Google Patents

Composite microporous membrane Download PDF

Info

Publication number
JP5148342B2
JP5148342B2 JP2008095809A JP2008095809A JP5148342B2 JP 5148342 B2 JP5148342 B2 JP 5148342B2 JP 2008095809 A JP2008095809 A JP 2008095809A JP 2008095809 A JP2008095809 A JP 2008095809A JP 5148342 B2 JP5148342 B2 JP 5148342B2
Authority
JP
Japan
Prior art keywords
woven fabric
organic fiber
fiber woven
microporous membrane
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008095809A
Other languages
Japanese (ja)
Other versions
JP2009248357A (en
Inventor
陽子 妻藤
真士 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2008095809A priority Critical patent/JP5148342B2/en
Publication of JP2009248357A publication Critical patent/JP2009248357A/en
Application granted granted Critical
Publication of JP5148342B2 publication Critical patent/JP5148342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、複合微多孔膜に関する。   The present invention relates to a composite microporous membrane.

高い耐熱性と高温での不透過性を発現する目的で、ガラス繊維織布と熱可塑性樹脂との複合透過膜が提案されているが、ガラス繊維は折れ曲がりや突起物による圧迫により破損し易い、素材の比重が2を越えるために重い、スリットが困難である、などといった実用上の問題が懸念される。   For the purpose of expressing high heat resistance and impermeability at high temperature, a composite permeable membrane of glass fiber woven fabric and thermoplastic resin has been proposed, but glass fiber is easily damaged by bending or pressure by projections, There are concerns about practical problems such as the fact that the specific gravity of the material exceeds 2 and the material is heavy and slitting is difficult.

一方、特許文献1、2には、折れ曲がりや突起物による圧迫によっても破損し難い電池用セパレータとして、有機繊維集合体を含有するポリオレフィン複合膜が開示されている。   On the other hand, Patent Documents 1 and 2 disclose a polyolefin composite film containing an organic fiber aggregate as a battery separator that is not easily damaged by bending or pressing by projections.

特開2002−190291号公報JP 2002-190291 A 特開2006-59717号公報JP 2006-59717 A

しかしながら、上記特許文献1,2に記載されたポリオレフィン複合膜についてはいずれも、充放電が繰り返される二次電池用のセパレータとして用いた場合には、サイクル特性の点でなお改善の余地を有するものであった。
本発明は、例えば150℃以上といった高温下においては膜形状を維持しながら不透過性フィルムに変化するのみならず、二次電池用セパレータとして用いた場合に良好なサイクル特性を実現し得る複合微多孔膜を提供する。
However, the polyolefin composite films described in Patent Documents 1 and 2 still have room for improvement in terms of cycle characteristics when used as a separator for a secondary battery that is repeatedly charged and discharged. Met.
The present invention is not limited to changing to an impermeable film while maintaining the film shape at a high temperature of, for example, 150 ° C. or higher, and is a composite microscopic material that can realize good cycle characteristics when used as a separator for a secondary battery. A porous membrane is provided.

本発明者らは、上記課題を解決するために、有機繊維織布の織物形態に着目して鋭意研究した結果、織り交点の隙間が電池のサイクル特性に寄与し得ること、更には、物理加工等によって有機繊維織布を構成する糸又は糸束(以下、「フィラメント」と略記することがある。)の形態を制御することにより、電池のサイクル特性をより向上させ得ることを見出し、本発明の完成するに至った。   In order to solve the above-mentioned problems, the present inventors have intensively studied paying attention to the woven form of the organic fiber woven fabric. As a result, the gap between the woven intersections can contribute to the cycle characteristics of the battery. It has been found that the cycle characteristics of a battery can be further improved by controlling the form of a yarn or yarn bundle (hereinafter sometimes abbreviated as “filament”) constituting an organic fiber woven fabric by means of the present invention. It came to be completed.

すなわち、本発明は、以下の複合微多孔膜等を提供する。
[1] ポリエチレン樹脂以外の樹脂成分からなる有機繊維織布と、当該有機繊維織布に積層されるポリエチレン樹脂とを含む複合微多孔膜において、
前記ポリエチレン樹脂は、当該ポリエチレン樹脂の溶融により前記有機繊維織布の空隙を閉塞するように積層されると共に、
前記有機繊維織布の隙間比が0.2以下であり、
前記有機繊維織布を構成するモノフィラメントの、当該有機繊維織布の厚さ方向を基準とした扁平率が、0.6〜0.9であり、
前記有機繊維織布の有機繊維が溶融していないことを特徴とする複合微多孔膜。
[2] 前記ポリエチレン樹脂以外の樹脂成分が、ポリエチレン樹脂が溶融する温度では溶融しない樹脂であることを特徴とする[1]に記載の複合微多孔膜。
[3] 目付けが10g/m2以下である[1]又は[2]に記載の複合微多孔膜。
[4][1]〜[3]のいずれかに記載の複合微多孔膜からなるリチウムイオン二次電池用セパレータ。
[5][4]に記載のリチウムイオン二次電池用セパレータ、正極、負極、及び電解液にて形成されるリチウムイオン二次電池。
That is, the present invention provides the following composite microporous membrane and the like.
[1] In a composite microporous membrane comprising an organic fiber woven fabric composed of a resin component other than a polyethylene resin, and a polyethylene resin laminated on the organic fiber woven fabric,
The polyethylene resin is laminated so as to close the voids of the organic fiber woven fabric by melting the polyethylene resin,
The gap ratio of the organic fiber woven fabric is 0.2 or less ,
The flatness of the monofilament constituting the organic fiber woven fabric based on the thickness direction of the organic fiber woven fabric is 0.6 to 0.9,
A composite microporous membrane, wherein organic fibers of the organic fiber woven fabric are not melted .
[2] The composite microporous membrane according to [1], wherein the resin component other than the polyethylene resin is a resin that does not melt at a temperature at which the polyethylene resin melts.
[3] The composite microporous membrane according to [1] or [2], wherein the basis weight is 10 g / m 2 or less.
[4] A lithium ion secondary battery separator comprising the composite microporous membrane according to any one of [1] to [3].
[5] A lithium ion secondary battery formed of the separator for a lithium ion secondary battery according to [4], a positive electrode, a negative electrode, and an electrolytic solution.

本発明によれば、例えば150℃以上といった高温下においては膜形状を維持しながら不透過性フィルムに変化するのみならず、二次電池用セパレータとして用いた場合に良好なサイクル特性を実現し得る複合微多孔膜が提供される。   According to the present invention, not only changes to an impermeable film while maintaining the film shape at a high temperature of, for example, 150 ° C. or higher, but also good cycle characteristics can be realized when used as a secondary battery separator. A composite microporous membrane is provided.

以下、本発明を実施するための最良の形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施の形態の複合微多孔膜は、ポリエチレン樹脂以外の樹脂成分からなる有機繊維織布と、当該有機繊維織布に積層されるポリエチレン樹脂とを含む複合微多孔膜である。
The best mode for carrying out the present invention (hereinafter abbreviated as “embodiment”) will be described in detail below. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
The composite microporous membrane of the present embodiment is a composite microporous membrane including an organic fiber woven fabric made of a resin component other than polyethylene resin and a polyethylene resin laminated on the organic fiber woven fabric.

(1)有機繊維織布
有機繊維織布を構成する有機繊維は、ポリエチレン樹脂以外の樹脂成分にて形成され、ポリエチレンが溶融する温度では溶融しない必要がある。
このような樹脂成分としては、例えば、ポリプロピレン、PTX(ポリ4−メチル−ペンテン重合体)、コポリパラフェニレン・3,4’オキシジフェニレン・テレフタラミド、パラフェニレンテレフタラミド、ポリケトン、ポリパラフェニレンベンズビスオキサゾール、ポリアリレート、メタ系アラミド、ポリフェニレンサルファイド、ポリイミド、ポリテトラフルオロエチレン、等が挙げられる。これらは1種を単独で、または2種以上を併用することができる。
中でも、ポリアリレートやポリテトラフルオロエチレン等の樹脂は、ガラス転移温度が100℃以上であることから高温領域での寸法安定性に優れる傾向にあり、150℃熱収縮率を低く維持する観点でより好ましい。
(1) Organic fiber woven fabric The organic fiber which comprises an organic fiber woven fabric is formed with resin components other than polyethylene resin, and it is necessary not to melt | melt at the temperature which polyethylene fuse | melts.
Examples of such resin components include polypropylene, PTX (poly-4-methyl-pentene polymer), copolyparaphenylene 3,4′oxydiphenylene terephthalamide, paraphenylene terephthalamide, polyketone, polyparaphenylene benz. Bisoxazole, polyarylate, meta-aramid, polyphenylene sulfide, polyimide, polytetrafluoroethylene and the like can be mentioned. These can be used alone or in combination of two or more.
Among them, resins such as polyarylate and polytetrafluoroethylene tend to have excellent dimensional stability in a high temperature region because the glass transition temperature is 100 ° C. or higher, and from the viewpoint of maintaining a low 150 ° C. heat shrinkage rate. preferable.

前記有機繊維織布のたて糸とよこ糸とは、同じ糸種であることがより好ましいが、異なる糸種であってもよい。
また、前記有機繊維織布のたて糸とよこ糸は、1本の糸(モノフィラメント)又は糸束(複数のモノフィラメントが束になったマルチフィラメント)にて形成される。モノフィラメントの直径としては、織布を薄く形成する観点から好ましくは0.1〜20μm、より好ましくは1〜10μmである。なお、モノフィラメント断面形状は真円に限らず、異型や楕円であってもかまわないが、ここでいう「直径」とは、モノフィラメントの断面積を基準として、当該断面が円形状であると仮定した場合に断面積から算出される円の直径を意味する。
なお、前記マルチフィラメントを構成するモノフィラメントの本数としては、10〜200本が好ましい。
The warp yarn and weft yarn of the organic fiber woven fabric are more preferably the same yarn type, but they may be different yarn types.
Further, the warp yarn and the weft yarn of the organic fiber woven fabric are formed by one yarn (monofilament) or yarn bundle (multifilament in which a plurality of monofilaments are bundled). The diameter of the monofilament is preferably 0.1 to 20 μm, more preferably 1 to 10 μm from the viewpoint of forming a thin woven fabric. The monofilament cross-sectional shape is not limited to a perfect circle, but may be an irregular shape or an ellipse, but the “diameter” here is assumed to be a circular shape based on the cross-sectional area of the monofilament. In some cases, it means the diameter of a circle calculated from the cross-sectional area.
The number of monofilaments constituting the multifilament is preferably 10 to 200.

前記有機繊維織布を構成するフィラメントの、当該有機繊維織布の厚さ方向を基準とした扁平率としては、好ましくは0.1〜0.95、より好ましくは0.6〜0.9である。扁平率を当該範囲に設定することは、織布厚み方向のフィラメントの分布、及び面方向のフィラメントの分布を均一にし得、均一性を高めながらより薄膜化する観点や、突刺し強度を向上させる観点から好ましい。0.6以上であると、電解液の含浸にかかる時間を短縮できる傾向があるので好ましい。特に、0.7〜0.85とすることは、電池のサイクル特性をより向上さる観点から好ましい。
なお、ここでいう「有機繊維織布の厚さ方向を基準とした扁平率」とは、フィラメントの断面について、有機繊維織布の厚さ方向の最長長さをa、当該厚さ方向と直交する方向(面方向)の最長の長さをbとした場合に、a/bにて算出される値である。また、当該扁平率は、後述する物理加工の加工条件を選定する等により調節可能である。
The flatness of the filament constituting the organic fiber woven fabric, based on the thickness direction of the organic fiber woven fabric, is preferably 0.1 to 0.95, more preferably 0.6 to 0.9. is there. Setting the flatness within this range can make the distribution of filaments in the thickness direction of the woven fabric and the distribution of filaments in the plane direction uniform, and improve the puncture strength from the viewpoint of making the film thinner while improving the uniformity. It is preferable from the viewpoint. When it is 0.6 or more, the time required for impregnation with the electrolyte tends to be shortened, which is preferable. In particular, 0.7 to 0.85 is preferable from the viewpoint of further improving the cycle characteristics of the battery.
The “flatness based on the thickness direction of the organic fiber woven fabric” as used herein means that the longest length in the thickness direction of the organic fiber woven fabric is a and perpendicular to the thickness direction of the filament cross section. This is a value calculated as a / b, where b is the longest length in the direction (surface direction). The flatness ratio can be adjusted by selecting processing conditions for physical processing described later.

前記有機繊維織布の隙間比(織密度(糸束本数/25mm)で決まる糸束1本あたりの巾(25/織密度)に対する隙間の巾の比率)としては、好ましくは0.2以下、より好ましくは0.17以下であり、下限として好ましくは0.05以上、より好ましくは0.1以上である。織り交点の隙間を上記範囲に設定することは、その詳細は詳らかではないが、電池用セパレータとして用いた場合のサイクル特性を向上させる観点から好適である。
なお、「隙間」とは、前記有機繊維織布を、その厚さ方向から平面視した場合に観察される、織り交点で囲まれる領域の面積を基準とし、当該領域の形状が正方形状であると仮定した場合に算出される一辺の長さを意味する。
The gap ratio of the organic fiber woven fabric (ratio of the width of the gap to the width per yarn bundle (25 / weave density) determined by the weave density (number of yarn bundles / 25 mm)) is preferably 0.2 or less, More preferably, it is 0.17 or less, and it is 0.05 or more as a minimum, More preferably, it is 0.1 or more. Although the details are not detailed, it is preferable to set the gap between the weave intersections in the above range from the viewpoint of improving cycle characteristics when used as a battery separator.
The “gap” refers to the area of the region surrounded by the woven intersection observed when the organic fiber woven fabric is viewed in plan from the thickness direction, and the shape of the region is a square shape. This means the length of one side calculated on the assumption that

前記有機繊維織布の織構造は、平織り構造が好適に用いられるが、これに限定されるものではない。例えば、表組織と裏組織から構成される二重織り構造や、朱子織、綾織、斜文織、ななこ織りなど、公知の織構造であってもよい。   The woven structure of the organic fiber woven fabric is preferably a plain weave structure, but is not limited thereto. For example, a known woven structure such as a double weave structure composed of a front structure and a back structure, a satin weave, a twill weave, an oblique weave, a nanako weave, or the like may be used.

前記有機繊維織布の製織方法としては、公知の方法、例えば、エアージェット織機やウォータージェット織機等のジェット織機、レピヤ織機等を用いた製織方法が挙げられる。
また、上述の製織方法により得られた有機繊維織布に対し、更に織布の厚みを低減する観点、織布断面の繊維充填密度を高くする観点、又はフィラメントを扁平にする観点から、物理加工を施すことが好ましい。織布断面の繊維充填密度を高くすることや、フィラメントを扁平にすることは、織布の均一性を向上しながら薄膜化を達成し、同時に局部的に突刺強度が低い部分のない複合膜を達成する観点から好適である。
Examples of the method for weaving the organic fiber woven fabric include known methods, for example, a weaving method using a jet loom such as an air jet loom or a water jet loom, a lepier loom, or the like.
In addition, from the viewpoint of further reducing the thickness of the woven fabric, the fiber filling density of the cross section of the woven fabric, or the viewpoint of flattening the filament with respect to the organic fiber woven fabric obtained by the above-described weaving method, physical processing It is preferable to apply. Increasing the fiber packing density of the cross-section of the woven fabric and flattening the filament achieves a thin film while improving the uniformity of the woven fabric, and at the same time, forms a composite membrane that does not have a portion with low local puncture strength. It is preferable from the viewpoint of achieving.

前記物理加工としては、例えば、加圧加工(例えば、水流による圧力による加工、液体を媒体とした高周波の振動による加工、及び面圧を有する流体の圧力による加工)や、加圧加熱加工(例えば、熱ロールによる加圧での加工)等が挙げられる。特に熱ロールによる加圧での加工が好適に用いられる。また、水流による圧力による加工や、面圧を有する流体の圧力による加工を施した後に、熱ロールによる加圧での加工を施すという組合せを用いることがより好ましい。   Examples of the physical processing include pressure processing (for example, processing by pressure by water flow, processing by high-frequency vibration using liquid as a medium, processing by pressure of fluid having surface pressure), and pressure heating processing (for example, And processing by pressurization with a hot roll). In particular, processing by pressurization with a hot roll is preferably used. Further, it is more preferable to use a combination of processing by pressure by a hot roll after processing by pressure by a water flow or processing by pressure of a fluid having surface pressure.

加圧加熱加工を行なう際の熱ロール温度としては、有機繊維の素材の融点等にもよるが、好ましくは100〜500℃、より好ましくは300〜400℃である。また、加圧加熱加工を行なう際の圧力としては、好ましくは800N/cm〜5000N/cmである。なお、有機繊維織布を加工する際の温度としては、有機繊維を構成するフィラメントの全部または一部を変形させ、モノフィラメント及び/又はマルチフィラメントを扁平化させることが可能な温度であって、有機繊維が溶融、分解、あるいは炭化しない範囲の温度であることが好ましい。   The hot roll temperature at the time of the pressure heating process is preferably 100 to 500 ° C, more preferably 300 to 400 ° C, although it depends on the melting point of the organic fiber material. Moreover, as a pressure at the time of performing a pressure heating process, Preferably it is 800 N / cm-5000 N / cm. The temperature at which the organic fiber woven fabric is processed is a temperature at which all or part of the filaments constituting the organic fiber can be deformed and the monofilament and / or the multifilament can be flattened. The temperature is preferably within a range where the fiber does not melt, decompose or carbonize.

前記物理加工は、前記有機繊維織布の製造時に実施しても良いし、後述するポリエチレン樹脂が積層された状態で実施しても構わない。物理加工時に応力がポリエチレン樹脂に不均一に吸収され、ポリエチレン樹脂によって物理加工の効果が低減することを防止する観点から、前記物理加工は、ポリエチレン樹脂が積層される前に実施されることが好ましい。   The physical processing may be performed at the time of manufacturing the organic fiber woven fabric, or may be performed in a state where a polyethylene resin described later is laminated. From the viewpoint of preventing stress from being absorbed unevenly by the polyethylene resin during physical processing and reducing the effect of physical processing by the polyethylene resin, the physical processing is preferably performed before the polyethylene resin is laminated. .

また、前記物理加工は、その効果をより高める観点から、有機繊維織布にかかる張力が低減された状態で実施されるのが好ましい。当該張力としては、10〜300N/mであることが好ましく、10〜100N/mであることがより好ましい。
なお、前記物理加工を行った後、更に、公知の表面処理、例えばシランカップリング剤による表面処理を施すことにより、マトリックス樹脂との接着性を高めることも可能である。
Moreover, it is preferable that the said physical processing is implemented in the state from which the tension | tensile_strength concerning an organic fiber woven fabric was reduced from a viewpoint which raises the effect more. The tension is preferably 10 to 300 N / m, and more preferably 10 to 100 N / m.
In addition, after performing the said physical processing, it is also possible to improve adhesiveness with matrix resin by giving well-known surface treatment, for example, surface treatment by a silane coupling agent.

(2)複合微多孔膜
本実施の形態の複合微多孔膜は、上述した有機繊維織布と、当該有機繊維織布に積層されたポリエチレン樹脂とを含む複合微多孔膜である。
ここで、ポリエチレン樹脂としては、例えば、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、等が挙げられる。
(2) Composite microporous membrane The composite microporous membrane of the present embodiment is a composite microporous membrane including the above-described organic fiber woven fabric and a polyethylene resin laminated on the organic fiber woven fabric.
Here, examples of the polyethylene resin include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, and ultrahigh molecular weight polyethylene.

このようなポリエチレン樹脂を前記有機繊維織布に積層する方法としては、例えば、ポリエチレン樹脂のディスパージョンをバーコーターで前記有機繊維織布に塗布する方法や、シート状のポリエチレン樹脂微多孔膜を積層する方法、等が挙げられる。中でも、複合微多孔膜の透過性を確保する観点から、ポリエチレン樹脂微多孔膜を積層する方法が好ましい。
なお、有機繊維織布と熱可塑性樹脂微多幸膜を一体化した製品として取り扱いする上での取り扱い性が良好である観点から、ポリエチレン樹脂微多孔膜を得る前段階で(可塑剤を含有する前駆体フィルムの状態で)、前駆体フィルムを前記有機繊維織布に積層し、加熱加圧一体化した後に、可塑剤を抽出する積層方法を採用することがより好ましい。
As a method of laminating such a polyethylene resin on the organic fiber woven fabric, for example, a method of applying a dispersion of polyethylene resin to the organic fiber woven fabric with a bar coater, or laminating a sheet-like polyethylene resin microporous membrane And the like. Among these, from the viewpoint of ensuring the permeability of the composite microporous membrane, a method of laminating a polyethylene resin microporous membrane is preferable.
In addition, from the viewpoint of good handleability in handling the organic fiber woven fabric and the thermoplastic resin micro-alcohol film as an integrated product, a precursor (containing a plasticizer) is obtained before obtaining a polyethylene resin microporous film. It is more preferable to employ a laminating method in which a plasticizer is extracted after laminating the precursor film on the organic fiber woven fabric and integrating it by heating and pressurization.

前記ポリエチレン樹脂は、当該ポリエチレン樹脂の溶融により前記有機繊維織布の空隙を閉塞する機能を有するものである。従って、本実施の形態における「積層」とは、膜状のポリエチレン樹脂が前記有機繊維織布に対して直接に、又は中間層を介して前記有機繊維織布の前面に亘り積層される態様の他、前記有機繊維織布の一部表面に付設され、溶融時に前記有機繊維織布の空隙を閉塞する機能を発揮するような態様をも含む概念である。
また、上記「溶融時に前記有機繊維織布の空隙を閉塞する機能」とは、ポリエチレン樹脂の溶融により複合微多孔膜の気体透過性能が実質的に無くなることを意味する。より具体的には、例えば、溶融により有機繊維織布の空隙を閉塞する量のポリエチレン樹脂が、有機繊維織布の空隙を閉塞する態様が挙げられる。ここで、前記空隙が閉塞されたか否かの評価指標としては、透気度が閉塞前の10倍となった状態を目安とすることができる。従って、有機繊維織布の空隙全体が必ずしも全てポリエチレン樹脂で充填される必要はない。
なお、ポリエチレン樹脂の上記機能に鑑み、ポリエチレン樹脂の融点としては、有機繊維を形成する樹脂成分の融点や分解温度に対して5℃以上低いことが好ましい。
The polyethylene resin has a function of closing the voids of the organic fiber woven fabric by melting the polyethylene resin. Therefore, “lamination” in the present embodiment is a mode in which a film-like polyethylene resin is laminated over the organic fiber woven fabric directly or over the front surface of the organic fiber woven fabric via an intermediate layer. In addition, it is a concept including an aspect that is attached to a part of the surface of the organic fiber woven fabric and exhibits a function of closing the voids of the organic fiber woven fabric when melted.
Moreover, the above-mentioned “function of closing the voids of the organic fiber woven fabric at the time of melting” means that the gas permeation performance of the composite microporous membrane is substantially lost due to melting of the polyethylene resin. More specifically, for example, a mode in which an amount of polyethylene resin that closes the voids of the organic fiber woven fabric by melting closes the voids of the organic fiber woven fabric can be mentioned. Here, as an evaluation index of whether or not the gap is closed, a state where the air permeability is 10 times that before the closing can be used as a guide. Therefore, it is not always necessary to fill the entire gap of the organic fiber woven fabric with the polyethylene resin.
In view of the above function of the polyethylene resin, the melting point of the polyethylene resin is preferably lower by 5 ° C. or more than the melting point and decomposition temperature of the resin component forming the organic fiber.

複合微多孔膜全体の厚さとしては、5μm〜40μmが好ましい。
また、複合微多孔膜の目付けとしては、好ましくは30g/m2以下、より好ましくは10g/m2以下であり、下限として好ましくは3g/m以上、より好ましくは5g/m以上である。特に、10g/m2以下とすることは、電池のサイクル特性、高容量化、又は低電気抵抗化の観点から好ましい。一方、3g/m以上とすることは、捲回など、成形時の強度及び、常温及び高温下での電極間隔離性を維持する観点からが好ましい。
The total thickness of the composite microporous membrane is preferably 5 μm to 40 μm.
The basis weight of the composite microporous membrane is preferably 30 g / m 2 or less, more preferably 10 g / m 2 or less, and the lower limit is preferably 3 g / m 2 or more, more preferably 5 g / m 2 or more. . In particular, it is preferable to set it to 10 g / m < 2 > or less from the viewpoint of battery cycle characteristics, high capacity, or low electrical resistance. On the other hand, it is preferable to set it as 3 g / m < 2 > or more from a viewpoint of maintaining the intensity | strength at the time of shaping | molding, such as winding, and the isolation between electrodes at normal temperature and high temperature.

複合微多孔膜の透気度としては、電池のイオン透過性の観点から、好ましくは300sec以下、より好ましくは150sec以下であり、下限として好ましくは30sec以上である。
また、有機繊維織布と前記ポリエチレン樹脂の常温での剥離強度としては、ポリエチレン溶融温度近傍での複合膜形状安定性の観点から5g/cm以上であることが好ましく、10g/cmがさらに好ましく、20g以上であることがより好ましい。複合微多孔膜の有機繊維織布とポリエチレン樹脂との接合状態は、スリット工程や、捲回工程においてポリエチレン樹脂が剥離しない程度に一体化していることが好ましく、有機繊維織布を構成する繊維の少なくとも一部のモノフィラメント間にポリエチレン樹脂の一部が入り込んでいることが好ましい。
なお、これらのパラメータは、後述する実施例における測定法に準じて測定される値である。
The air permeability of the composite microporous membrane is preferably 300 sec or less, more preferably 150 sec or less, and the lower limit is preferably 30 sec or more from the viewpoint of ion permeability of the battery.
The peel strength at room temperature between the organic fiber woven fabric and the polyethylene resin is preferably 5 g / cm or more from the viewpoint of composite film shape stability in the vicinity of the polyethylene melting temperature, more preferably 10 g / cm, More preferably, it is 20 g or more. The bonded state between the organic fiber woven fabric of the composite microporous membrane and the polyethylene resin is preferably integrated so that the polyethylene resin does not peel off in the slit process or the winding process. It is preferable that a part of the polyethylene resin enters between at least some of the monofilaments.
These parameters are values measured according to the measurement methods in the examples described later.

次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。   Next, the present embodiment will be described more specifically with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless it exceeds the gist. In addition, the physical property in an Example was measured with the following method.

(1)厚さ(μm)の評価方法
ダイヤルゲージ(尾崎製作所製PEACOCK No.25(商標))にて測定した。MD10mm×TD10mmのサンプルを多孔膜から切り出し、格子状に9箇所(3点×3点)の膜厚を測定した。得られた平均値を厚さ(μm)とした。
(1) Thickness (μm) Evaluation Method The thickness was measured with a dial gauge (PEACOCK No. 25 (trademark) manufactured by Ozaki Seisakusho). A sample of MD 10 mm × TD 10 mm was cut out from the porous film, and the film thickness was measured at nine locations (3 points × 3 points) in a lattice shape. The average value obtained was defined as the thickness (μm).

(2)目付け(g/m2
10cm四方の正方形にサンプルを切り出し、その重さを測定し、1m当りに換算して算出した。
(2) Weight per unit area (g / m 2 )
A sample was cut into a 10 cm square, its weight was measured, and calculated per 1 m 2 .

(3)モノフィラメントの扁平率、隙間比
モノフィラメントの扁平率は、織布の交点部分の断面観察において、モノフィラメント20本を無作為に選び、厚さ方向の最長長さaと、当該厚さ方向と直交する方向(面方向)の最長長さbの、各々の平均値を用いて、扁平率(a/b)を算出した。
隙間比は、織り交点で囲まれる領域の面積を基準として当該領域の形状が正方形状であると仮定した場合に領域面積から算出される一辺の長さ(織り交点の隙間)を、(織密度(糸束本数/25mm)で決まる糸束1本あたりの巾(25/織密度)で除すことにより算出した。
なお、これらの観察は、複合微多孔膜を常温硬化性のエポキシ包埋剤に包埋したのち、切断面を研磨することで電子顕微鏡(SEM)観察試料を作成し、SEM観察することで行なった。
(3) Monofilament flatness and gap ratio The monofilament flatness is determined by randomly selecting 20 monofilaments in the cross-sectional observation of the intersection of the woven fabric, the maximum length a in the thickness direction, and the thickness direction. The flatness ratio (a / b) was calculated using the average value of the longest length b in the orthogonal direction (plane direction).
The gap ratio is the length of one side (gap at the weaving intersection) calculated from the area when the area is assumed to be square based on the area of the area surrounded by the weaving intersection. It was calculated by dividing by the width (25 / weave density) per yarn bundle determined by (number of yarn bundles / 25 mm).
These observations are made by embedding the composite microporous membrane in a room temperature curable epoxy embedding agent, and then polishing the cut surface to prepare an electron microscope (SEM) observation sample and performing SEM observation. It was.

(4)透気度(sec)
JIS P−8117準拠のガーレー式透気度計(東洋精機製G−B2(商標))を用いた。内筒重量は567gで、直径28.6mm、645mmの面積を空気100mlが通過する時間を測定した。
(4) Air permeability (sec)
A Gurley type air permeability meter (G-B2 (trademark) manufactured by Toyo Seiki Co.) conforming to JIS P-8117 was used. The inner cylinder weight was 567 g, and the time required for 100 ml of air to pass through an area of 28.6 mm in diameter and 645 mm 2 was measured.

(5)150℃熱収縮率(%)
複合膜を100mm×100mmの大きさに切りだし、予め150℃に設定したオーブンに、直接温風があたらないように厚さ100μmのコピー用紙に挟んだ状態で1時間放置し、オーブンから取り出した後の機械方向及び幅方向の寸法の減少率を算出した。
(5) 150 ° C. thermal shrinkage (%)
The composite membrane was cut out to a size of 100 mm × 100 mm, left in an oven set in advance at 150 ° C. for 1 hour in a state sandwiched between 100 μm-thick copy paper so as not to be directly exposed to hot air, and then removed from the oven. The reduction rate of the dimension of the subsequent machine direction and the width direction was calculated.

(6)剥離強度(g/cm)
試料を機械方向に巾25mmに切り出し、引っ張り試験機で、試験長60mmを引張り速度200mm/minで引き剥がし、平均荷重を膜巾換算し、10mmあたりの荷重とした値を剥離強度(g/cm)とした。
(6) Peel strength (g / cm)
A sample was cut out to a width of 25 mm in the machine direction, peeled off with a tensile tester at a test length of 60 mm at a pulling speed of 200 mm / min, the average load was converted into a film width, and the value taken as the load per 10 mm was peel strength (g / cm ).

(7)突刺し強度(g)
カトーテック製のハンディー圧縮試験器KES−G5(商標)を用いて、開口部の直径11.3mmの試料ホルダーで微多孔膜を固定した。次に固定された微多孔膜の中央部を、針先端の曲率半径0.5mm、突刺速度2mm/secで、25℃雰囲気下にて突刺試験を行うことにより、最大突刺荷重として生の突刺強度(g)を得た。
(7) Puncture strength (g)
Using a handy compression tester KES-G5 (trademark) manufactured by Kato Tech, the microporous membrane was fixed with a sample holder having a diameter of 11.3 mm at the opening. Next, the center of the fixed microporous membrane is subjected to a piercing test in a 25 ° C. atmosphere at a needle radius of curvature of 0.5 mm and a piercing speed of 2 mm / sec. (G) was obtained.

(8)ヒューズ温度、ショート温度
a.正極の作製
正極活物質としてリチウムコバルト複合酸化物(LiCoO)を92.2質量%、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%をN−メチルピロリドン(NMP)中に分散させてスラリーを調製する。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布し、130℃で3分間乾燥後、ロールプレス機で圧縮成形する。この時、正極の活物質塗布量は250g/m、活物質かさ密度は3.00g/cmになるようにする。
b.負極の作製
負極活物質として人造グラファイト96.6質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン−ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製する。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗布し、120℃で3分間乾燥後、ロールプレス機で圧縮成形する。この時、負極の活物質塗布量は106g/m、活物質かさ密度は1.35g/cmになるようにする。
c.非水電解液
プロピレンカーボネート:エチレンカーボネート:γ−ブチルラクトン=1:1:2(体積比)の混合溶媒に、溶質としてLiBF4を濃度1.0mol/Lとなるように溶解させて調製する。
d.評価
熱電対を繋いだセラミックスプレート上に、65mm×20mmに切り出し非水電解液に1分以上浸漬した負極を載せ、この上に中央部に直径16mmの穴をあけた50mm×50mmに切り出した厚さ9μmのアラミドフィルムを載せ、この上に40mm×40mmに切り出し非水電解液に1時間以上浸漬した試料の多孔膜をアラミドフィルムの穴部を覆うように載せ、この上に65mm×20mmに切り出し非水電解液に1分以上浸漬した正極を負極に接触しないように載せ、その上にカプトンフィルム、更に厚さ約4mmのシリコンゴムを載せる。
これをホットプレート上にセットした後、油圧プレス機にて4.1MPaの圧力をかけた状態で、15℃/minの速度で昇温し、この際の正負極間のインピーダンス変化を交流1V、1kHzの条件下で200℃まで測定した。この測定において、インピーダンスが1000Ωに達した時点の温度をヒューズ温度とし、孔閉塞状態に達した後、再びインピーダンスが1000Ωを下回った時点の温度をショート温度とした。
(8) Fuse temperature, short circuit temperature a. Production of positive electrode 92.2% by mass of lithium cobalt composite oxide (LiCoO 2 ) as a positive electrode active material, 2.3% by mass of flake graphite and acetylene black as a conductive material, and polyvinylidene fluoride (PVDF) 3 as a binder A slurry is prepared by dispersing 2% by mass in N-methylpyrrolidone (NMP). This slurry is applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the positive electrode is 250 g / m 2 , and the bulk density of the active material is 3.00 g / cm 3 .
b. Preparation of negative electrode A slurry was prepared by dispersing 96.6% by mass of artificial graphite as a negative electrode active material, 1.4% by mass of ammonium salt of carboxymethyl cellulose and 1.7% by mass of styrene-butadiene copolymer latex as a binder in purified water. To do. This slurry is applied to one side of a 12 μm-thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the negative electrode is set to 106 g / m 2 , and the active material bulk density is set to 1.35 g / cm 3 .
c. Nonaqueous electrolyte solution Prepared by dissolving LiBF4 as a solute in a mixed solvent of propylene carbonate: ethylene carbonate: γ-butyllactone = 1: 1: 2 (volume ratio) to a concentration of 1.0 mol / L.
d. Evaluation On a ceramic plate connected with a thermocouple, a negative electrode cut into 65 mm × 20 mm and immersed in a non-aqueous electrolyte for 1 minute or more is placed, and a thickness cut into 50 mm × 50 mm with a hole having a diameter of 16 mm is formed on the negative electrode. Place a 9 μm thick aramid film, cut it into 40 mm × 40 mm, place a porous film of the sample soaked in non-aqueous electrolyte for 1 hour or more so as to cover the hole of the aramid film, and cut it into 65 mm × 20 mm A positive electrode immersed in a non-aqueous electrolyte for 1 minute or longer is placed so as not to contact the negative electrode, and a Kapton film and a silicon rubber having a thickness of about 4 mm are placed thereon.
After this was set on a hot plate, the temperature was raised at a rate of 15 ° C./min with a pressure of 4.1 MPa applied by a hydraulic press machine, and the impedance change between the positive and negative electrodes at this time was AC 1V, Measurement was performed up to 200 ° C. under the condition of 1 kHz. In this measurement, the temperature at the time when the impedance reached 1000Ω was defined as the fuse temperature, and the temperature at which the impedance again decreased below 1000Ω after reaching the hole closed state was defined as the short-circuit temperature.

(9)100サイクル容量維持率(%)
a.正極の作製
(8)のaで作製した正極を面積2.00cmの円形に打ち抜いた。
b.負極の作製
(8)のbで作製した負極を面積2.05cmの円形に打ち抜いた。
c.非水電解液
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0ml/Lとなるように溶解させて調製した。
d.電池組立と評価
正極と負極の活物質面が対向するように、下から負極、セパレータ、正極の順に重ね、蓋付きステンレス金属製容器に収納する。容器と蓋とは絶縁されており、容器は負極の銅箔と、蓋は正極のアルミ箔と接している。この容器内に前記した非水電解液を注入して密閉する。
上記のようにして組み立てた簡易電池を25℃雰囲気下、電流値3mA(約0.5C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計約6時間、電池作成後の最初の充電を行い、そして 電流値3mAで電池電圧3.0Vまで放電した。
次に、25℃雰囲気下、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、そして電流値6mAで電池電圧3.0Vまで放電して、その時の放電容量を1C放電容量(mAh)とした。
次に、25℃雰囲気下、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、そして電流値12mA(約2.0C)で電池電圧3.0Vまで放電して、その時の放電容量を2C放電容量(mAh)とした。
1C放電容量に対する2C放電容量の割合を算出し、この値をレート特性とした。
レート特性(%)=2C放電容量/1C放電容量 ×100
さらに、60℃雰囲気下、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、そして電流値6mAで電池電圧3.0Vまで放電するというサイクルを繰り返した。
このサイクルにおける1サイクル目の放電容量に対する所定サイクル後の放電容量の割合を容量維持率(%)として求め、下記基準にて評価した。
×:75%未満
△:75%以上80%未満
○:80%以上90%未満
◎:90%以上
(9) 100 cycle capacity maintenance rate (%)
a. Production of Positive Electrode The positive electrode produced in (8) a was punched into a circle having an area of 2.00 cm 2 .
b. Production of Negative Electrode The negative electrode produced in (8) b was punched into a circle having an area of 2.05 cm 2 .
c. Nonaqueous Electrolytic Solution Prepared by dissolving LiPF6 as a solute at a concentration of 1.0 ml / L in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio).
d. Battery assembly and evaluation The negative electrode, the separator, and the positive electrode are stacked in this order from the bottom so that the active material surfaces of the positive electrode and the negative electrode face each other, and stored in a stainless steel container with a lid. The container and the lid are insulated, the container is in contact with the negative electrode copper foil, and the lid is in contact with the positive electrode aluminum foil. The non-aqueous electrolyte described above is injected into this container and sealed.
The simple battery assembled as described above is charged to a battery voltage of 4.2 V at a current value of 3 mA (about 0.5 C) in a 25 ° C. atmosphere, and the current value is reduced from 3 mA so as to maintain 4.2 V. In the method of starting, the first charge after battery preparation was performed for a total of about 6 hours, and then discharged to a battery voltage of 3.0 V at a current value of 3 mA.
Next, in a 25 ° C. atmosphere, the battery is charged to a battery voltage of 4.2 V at a current value of 6 mA (about 1.0 C), and the current value starts to be reduced from 6 mA so as to hold 4.2 V. The battery was charged for 3 hours and discharged at a current value of 6 mA to a battery voltage of 3.0 V. The discharge capacity at that time was set to 1 C discharge capacity (mAh).
Next, in a 25 ° C. atmosphere, the battery is charged to a battery voltage of 4.2 V at a current value of 6 mA (about 1.0 C), and the current value starts to be reduced from 6 mA so as to hold 4.2 V. The battery was charged for 3 hours, and discharged at a current value of 12 mA (about 2.0 C) to a battery voltage of 3.0 V. The discharge capacity at that time was 2 C discharge capacity (mAh).
The ratio of the 2C discharge capacity to the 1C discharge capacity was calculated, and this value was used as the rate characteristic.
Rate characteristics (%) = 2C discharge capacity / 1C discharge capacity × 100
Furthermore, in a 60 ° C. atmosphere, the battery is charged to a battery voltage of 4.2 V at a current value of 6 mA (about 1.0 C), and further, the current value starts to be reduced from 6 mA so as to maintain 4.2 V. The cycle of charging for a time and discharging to a battery voltage of 3.0 V at a current value of 6 mA was repeated.
The ratio of the discharge capacity after a predetermined cycle to the discharge capacity at the first cycle in this cycle was determined as a capacity retention rate (%) and evaluated according to the following criteria.
×: Less than 75% Δ: 75% or more and less than 80% ○: 80% or more and less than 90% ◎: 90% or more

[実施例1]
有機繊維織布として、たて糸およびよこ糸に、引張弾性率74GPaのポリアリレート繊維、テクノーラ(帝人テクノプロダクツ株式会社製、商品名、61dtex、ガラス転移温度193℃)を使用し、エアジェットルームで、たて糸45本/25mm、よこ糸45本/25mmの織物密度で製織した有機繊維織布の生機を得た。得られた織布の生機に高圧散水流による物理加工(加工圧力300N/cm)、および熱ロールによる加圧加工(加熱温度400℃、加圧力4000N/cm)を2回施し、厚み25μm、目付け24g/m、の有機繊維織布:基材Aを得た。
粘度平均分子量(Mv)200万の超高分子量ポリエチレン12重量部とMv28万の高密度ポリエチレン12重量部とMv15万の直鎖状低密度ポリエチレン16重量部とシリカ(平均粒径8.3μm)17.6重量部と、可塑剤としてフタル酸ジオクチル(DOP)を42.4重量部を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ90μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにてシリカを抽出除去し微多孔膜とした。該微多孔膜を119℃に加熱のもと、縦方向に5.5倍延伸した後、横方向に1.9倍延伸した。膜厚8μm、気孔率48%、(目付け4g/m)のポリオレフィン樹脂多孔膜を得た。該ポリオレフィン樹脂多孔膜にDOPを再び含浸した後、基材Aと積層した状態で加熱加圧処理した後DOPを抽出し、下表1に示す複合微多孔膜を得た。評価結果を表1に併記した。100サイクル容量維持率は89であった。
[Example 1]
As organic fiber woven fabric, warp yarn and weft yarn using polyarylate fiber with a tensile elastic modulus of 74 GPa, Technora (trade name, 61 dtex, glass transition temperature 193 ° C., manufactured by Teijin Techno Products Ltd.), warp yarn in an air jet loom An organic fiber woven fabric machine woven at a fabric density of 45/25 mm and weft 45/25 mm was obtained. The raw fabric of the obtained woven fabric was subjected to physical processing (processing pressure 300 N / cm 2 ) using a high-pressure water sprinkling flow and pressure processing (heating temperature 400 ° C., pressing force 4000 N / cm) using a hot roll twice, with a thickness of 25 μm, Organic fiber woven fabric having a basis weight of 24 g / m 2 : A base material A was obtained.
Viscosity average molecular weight (Mv) 2 million ultra high molecular weight polyethylene 12 parts by weight, Mv 280,000 high density polyethylene 12 parts by weight, Mv 150,000 linear low density polyethylene 16 parts by weight and silica (average particle size 8.3 μm) 17 After mixing and granulating 6 parts by weight and 42.4 parts by weight of dioctyl phthalate (DOP) as a plasticizer, the mixture is kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. Molded. From the molded product, DOP was extracted with methylene chloride and silica was extracted with sodium hydroxide to obtain a microporous membrane. The microporous membrane was heated to 119 ° C., stretched 5.5 times in the longitudinal direction, and then stretched 1.9 times in the transverse direction. A polyolefin resin porous film having a thickness of 8 μm, a porosity of 48%, and a basis weight of 4 g / m 2 was obtained. The polyolefin resin porous membrane was impregnated again with DOP, and then heated and pressurized in a state of being laminated with the substrate A, and then DOP was extracted to obtain composite microporous membranes shown in Table 1 below. The evaluation results are also shown in Table 1. The 100 cycle capacity retention rate was 89.

[実施例2]
有機繊維織布として、たて糸およびよこ糸に、ポリテトラフルオロエチレン製(3デニール、ガラス転移温度126℃)を使用し、エアジェットルームで、たて糸200本/25mm、よこ糸200本/25mmの織物密度で製織した有機繊維織布の生機を得た。得られた織布の生機に高圧散水流による物理加工(加工圧力300N/cm)、および熱ロールによる加圧加工(加熱温度420℃、加圧力4000N/cm)を1回施し、厚み5μm、目付け4.2g/m、の有機繊維織布:基材Bを得た。
粘度平均分子量(Mv)70万のポリエチレン17.5重量部とMv30万のポリエチ
レン17.5重量部、可塑剤として流動パラフィン(LP)を40重量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3重量部添加したものをヘンシェルミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物(100重量部)中に占める流動パラフィン量比が65重量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hでリップ間距離700μmに調整したTダイから溶融混練物を押出し、表面温度25℃に制御された冷却ロール間を通してシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に7.0倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は125℃であった。さらに可塑剤を含有した状態で熱固定を行い、厚さ5μmの可塑剤含有フィルムを得た。
厚さ5μmの可塑剤含有フィルムに基材Bを積層し、加熱加圧一体化した後に、可塑剤を多量の塩化メチレンで抽出し、下表1に示す複合微多孔膜を得た。評価結果を表1に併記した。
[Example 2]
As an organic fiber woven fabric, we used polytetrafluoroethylene (3 denier, glass transition temperature 126 ° C.) for the warp and weft, and in an air jet loom, weaving density was 200 / 25mm for warp and 200 / 25mm for weft. A raw machine for woven organic fiber fabric was obtained. The raw fabric of the obtained woven fabric was subjected to physical processing (processing pressure 300 N / cm 2 ) using a high-pressure water sprinkling flow and pressure processing (heating temperature 420 ° C., pressing force 4000 N / cm) using a hot roll once to obtain a thickness of 5 μm, Organic fiber woven fabric with a basis weight of 4.2 g / m 2 : Base material B was obtained.
17.5 parts by weight of polyethylene having a viscosity average molecular weight (Mv) of 700,000 and 17.5 parts by weight of polyethylene having an Mv of 300,000, 40 parts by weight of liquid paraffin (LP) as a plasticizer, and pentaerythrityl-tetrakis- [ What added 0.3 part by weight of 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] was premixed with a Henschel mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin-screw extruder cylinder so that the liquid paraffin content ratio in the total mixture (100 parts by weight) melt-kneaded and extruded was 65 parts by weight. Melting and kneading conditions were as follows: a melt kneaded product was extruded from a T-die adjusted at a set temperature of 200 ° C., a screw rotation speed of 240 rpm, a discharge rate of 12 kg / h and a lip distance of 700 μm, and passed between cooling rolls controlled to a surface temperature of 25 ° C. A polyolefin composition was obtained. Next, it was continuously led to a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 7.0 times in the TD direction. At this time, the set temperature of the simultaneous biaxial tenter was 125 ° C. Furthermore, heat setting was performed in a state containing a plasticizer to obtain a plasticizer-containing film having a thickness of 5 μm.
After the base material B was laminated on a plasticizer-containing film having a thickness of 5 μm and integrated under heat and pressure, the plasticizer was extracted with a large amount of methylene chloride to obtain composite microporous membranes shown in Table 1 below. The evaluation results are also shown in Table 1.

[実施例3]
粘度平均分子量(Mv)200万の超高分子量ポリエチレン12重量部とMv28万の高密度ポリエチレン12重量部とMv15万の直鎖状低密度ポリエチレン16重量部とシリカ(平均粒径8.3μm)17.6重量部と、可塑剤としてフタル酸ジオクチル(DOP)を42.4重量部を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ90μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにてシリカを抽出除去し微多孔膜とした。該微多孔膜を119℃に加熱のもと、縦方向に5.5倍延伸した後、横方向に1.9倍延伸した。膜厚8μm、気孔率48%、(目付け4g/m)のポリオレフィン樹脂多孔膜を得た。該ポリオレフィン樹脂多孔膜にDOPを再び含浸した後、基材Bと積層した状態で加熱加圧処理した後DOPを抽出し、下表1に示す複合微多孔膜を得た。評価結果を表1に併記した。
[Example 3]
Viscosity average molecular weight (Mv) 2 million ultra high molecular weight polyethylene 12 parts by weight, Mv 280,000 high density polyethylene 12 parts by weight, Mv 150,000 linear low density polyethylene 16 parts by weight and silica (average particle size 8.3 μm) 17 After mixing and granulating 6 parts by weight and 42.4 parts by weight of dioctyl phthalate (DOP) as a plasticizer, the mixture is kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. Molded. From the molded product, DOP was extracted with methylene chloride and silica was extracted with sodium hydroxide to obtain a microporous membrane. The microporous membrane was heated to 119 ° C., stretched 5.5 times in the longitudinal direction, and then stretched 1.9 times in the transverse direction. A polyolefin resin porous film having a thickness of 8 μm, a porosity of 48%, and a basis weight of 4 g / m 2 was obtained. The polyolefin resin porous membrane was impregnated again with DOP, and then heated and pressurized in a state of being laminated with the base material B, and then DOP was extracted to obtain composite microporous membranes shown in Table 1 below. The evaluation results are also shown in Table 1.

[実施例4]
有機繊維織布として、たて糸およびよこ糸に、引張弾性率74GPaのポリアリレート繊維、テクノーラ(帝人テクノプロダクツ株式会社製、商品名、61dtex、ガラス転移温度193℃)を使用し、エアジェットルームで、たて糸45本/25mm、よこ糸45本/25mmの織物密度で製織した有機繊維織布の生機を得た。得られた織布の生機に高圧散水流による物理加工(加工圧力300N/cm)、および熱ロールによる加圧加工(加熱温度400℃、加圧力4000N/cm)を1回施し、厚み30μm、目付け24g/m、の有機繊維織布:基材Cを得た。
粘度平均分子量(Mv)200万の超高分子量ポリエチレン12重量部とMv28万の高密度ポリエチレン12重量部とMv15万の直鎖状低密度ポリエチレン16重量部とシリカ(平均粒径8.3μm)17.6重量部と、可塑剤としてフタル酸ジオクチル(DOP)を42.4重量部を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ90μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにてシリカを抽出除去し微多孔膜とした。該微多孔膜を119℃に加熱のもと、縦方向に5.5倍延伸した後、横方向に1.9倍延伸した。膜厚8μm、気孔率48%、(目付け4g/m)のポリオレフィン樹脂多孔膜を得た。該ポリオレフィン樹脂多孔膜にDOPを再び含浸した後、基材Cと積層した状態で加熱加圧処理した後DOPを抽出し、下表1に示す複合微多孔膜を得た。評価結果を表1に併記した。100サイクル容量維持率は87であった。
[Example 4]
As organic fiber woven fabric, warp yarn and weft yarn using polyarylate fiber with a tensile elastic modulus of 74 GPa, Technora (trade name, 61 dtex, glass transition temperature 193 ° C., manufactured by Teijin Techno Products Ltd.), warp yarn in an air jet loom An organic fiber woven fabric machine woven at a fabric density of 45/25 mm and weft 45/25 mm was obtained. The raw fabric of the obtained woven fabric was subjected to physical processing (processing pressure 300 N / cm 2 ) using a high-pressure water sprinkling flow, and pressure processing (heating temperature 400 ° C., pressing force 4000 N / cm) using a hot roll once, with a thickness of 30 μm, Organic fiber woven fabric having a basis weight of 24 g / m 2 was obtained.
Viscosity average molecular weight (Mv) 2 million ultra high molecular weight polyethylene 12 parts by weight, Mv 280,000 high density polyethylene 12 parts by weight, Mv 150,000 linear low density polyethylene 16 parts by weight and silica (average particle size 8.3 μm) 17 After mixing and granulating 6 parts by weight and 42.4 parts by weight of dioctyl phthalate (DOP) as a plasticizer, the mixture is kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. Molded. From the molded product, DOP was extracted with methylene chloride and silica was extracted with sodium hydroxide to obtain a microporous membrane. The microporous membrane was heated to 119 ° C., stretched 5.5 times in the longitudinal direction, and then stretched 1.9 times in the transverse direction. A polyolefin resin porous film having a thickness of 8 μm, a porosity of 48%, and a basis weight of 4 g / m 2 was obtained. The polyolefin resin porous membrane was impregnated again with DOP, and then heated and pressurized in a state of being laminated with the substrate C, and then DOP was extracted to obtain composite microporous membranes shown in Table 1 below. The evaluation results are also shown in Table 1. The 100 cycle capacity retention rate was 87.

[実施例5]
粘度平均分子量(Mv)200万の超高分子量ポリエチレン12重量部とMv28万の高密度ポリエチレン12重量部とMv15万の直鎖状低密度ポリエチレン16重量部とシリカ(平均粒径8.3μm)17.6重量部と、可塑剤としてフタル酸ジオクチル(DOP)を42.4重量部を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ90μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにてシリカを抽出除去し微多孔膜とした。該微多孔膜を119℃に加熱のもと、縦方向に5.5倍延伸した後、横方向に1.9倍延伸した。膜厚8μm、気孔率48%、(目付け4g/m)のポリオレフィン樹脂多孔膜を得た。該ポリオレフィン樹脂多孔膜にDOPを再び含浸した後、基材Cの両面に配し3層に積層した状態で加熱加圧処理した後DOPを抽出し、下表1に示す複合微多孔膜を得た。評価結果を表1に併記した。
[Example 5]
Viscosity average molecular weight (Mv) 2 million ultra high molecular weight polyethylene 12 parts by weight, Mv 280,000 high density polyethylene 12 parts by weight, Mv 150,000 linear low density polyethylene 16 parts by weight and silica (average particle size 8.3 μm) 17 After mixing and granulating 6 parts by weight and 42.4 parts by weight of dioctyl phthalate (DOP) as a plasticizer, the mixture is kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. Molded. From the molded product, DOP was extracted with methylene chloride and silica was extracted with sodium hydroxide to obtain a microporous membrane. The microporous membrane was heated to 119 ° C., stretched 5.5 times in the longitudinal direction, and then stretched 1.9 times in the transverse direction. A polyolefin resin porous film having a thickness of 8 μm, a porosity of 48%, and a basis weight of 4 g / m 2 was obtained. The polyolefin resin porous membrane was impregnated with DOP again, and then heated and pressurized in a state of being laminated on both sides of the substrate C and laminated in three layers, and then DOP was extracted to obtain composite microporous membranes shown in Table 1 below. It was. The evaluation results are also shown in Table 1.

[実施例6]
粘度平均分子量(Mv)70万のポリエチレン17.5重量部とMv30万のポリエチ
レン17.5重量部、可塑剤として流動パラフィン(LP)を40重量部、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を0.3重量部添加したものをヘンシェルミキサーにて予備混合した。得られた混合物をフィーダーにより二軸同方向スクリュー式押出機フィード口へ供給した。また溶融混練し押し出される全混合物(100重量部)中に占める流動パラフィン量比が65重量部となるように、流動パラフィンを二軸押出機シリンダーへサイドフィードした。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hでリップ間距離700μmに調整したTダイから溶融混練物を押出し、表面温度25℃に制御された冷却ロール間を通してシート状のポリオレフィン組成物を得た。次に連続して同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に7.0倍に同時二軸延伸を行った。この時同時二軸テンターの設定温度は125℃であった。さらに可塑剤を含有した状態で熱固定を行い、厚さ5μmの可塑剤含有フィルムを得た。
厚さ5μmの可塑剤含有フィルムに基材Cを積層し、加熱加圧一体化した後に、可塑剤を多量の塩化メチレンで抽出し、下表1に示す複合微多孔膜を得た。評価結果を表1に併記した。
[Example 6]
17.5 parts by weight of polyethylene having a viscosity average molecular weight (Mv) of 700,000 and 17.5 parts by weight of polyethylene having an Mv of 300,000, 40 parts by weight of liquid paraffin (LP) as a plasticizer, and pentaerythrityl-tetrakis- [ What added 0.3 part by weight of 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] was premixed with a Henschel mixer. The obtained mixture was supplied to the feed port of the twin-screw co-directional screw extruder by a feeder. Further, the liquid paraffin was side-fed to the twin-screw extruder cylinder so that the liquid paraffin content ratio in the total mixture (100 parts by weight) melt-kneaded and extruded was 65 parts by weight. Melting and kneading conditions were as follows: a melt kneaded product was extruded from a T-die adjusted at a set temperature of 200 ° C., a screw rotation speed of 240 rpm, a discharge rate of 12 kg / h and a lip distance of 700 μm, and passed between cooling rolls controlled to a surface temperature of 25 ° C. A polyolefin composition was obtained. Next, it was continuously led to a simultaneous biaxial tenter stretching machine, and simultaneous biaxial stretching was performed 7 times in the MD direction and 7.0 times in the TD direction. At this time, the set temperature of the simultaneous biaxial tenter was 125 ° C. Furthermore, heat setting was performed in a state containing a plasticizer to obtain a plasticizer-containing film having a thickness of 5 μm.
A base material C was laminated on a plasticizer-containing film having a thickness of 5 μm and integrated under heat and pressure, and then the plasticizer was extracted with a large amount of methylene chloride to obtain composite microporous membranes shown in Table 1 below. The evaluation results are also shown in Table 1.

[比較例1]
ポリエチレンテレフタレート(PET)繊維、ガラス転移温度70℃からなる、厚み30μm、目付け24g/mの織布を基材とし、実施例1と同様にポリエチレン層を積層し、下表1に示す複合微多孔膜を得た。評価結果を表1に併記した。評価後の複合膜を確認したところ、織り交点のすき間に、ピンホールがあいていた。
[Comparative Example 1]
A polyethylene terephthalate (PET) fiber, a woven fabric having a glass transition temperature of 70 ° C. and a thickness of 30 μm and a basis weight of 24 g / m 2 was used as a base material, and a polyethylene layer was laminated in the same manner as in Example 1. A porous membrane was obtained. The evaluation results are also shown in Table 1. When the composite film after the evaluation was confirmed, there was a pinhole in the gap of the weaving intersection.

[比較例2]
実施例3で用いた、ポリオレフィン層を可塑剤含有したフィルムを得る工程までは同様に行い、可塑剤を抽出し、下表1に示す微多孔膜を得た。評価結果を表1に併記した。
[Comparative Example 2]
The process up to the step of obtaining a film containing a polyolefin layer containing a plasticizer used in Example 3 was carried out in the same manner, and the plasticizer was extracted to obtain a microporous membrane shown in Table 1 below. The evaluation results are also shown in Table 1.

[比較例3]
有機繊維織布として、たて糸およびよこ糸に、引張弾性率74GPaのポリアリレート繊維、テクノーラ(帝人テクノプロダクツ株式会社製、商品名、61dtex、ガラス転移温度193℃)を使用し、エアジェットルームで、たて糸45本/25mm、よこ糸45本/25mmの織物密度で製織した有機繊維織布の生機を得た。得られた織布の生機を水洗後、熱ロールによる加圧加工(加熱温度400℃、加圧力4000N/cm)を1回施し、厚み40μm、目付け24g/m、の有機繊維織布:基材Dを得た。
粘度平均分子量(Mv)200万の超高分子量ポリエチレン12重量部とMv28万の高密度ポリエチレン12重量部とMv15万の直鎖状低密度ポリエチレン16重量部とシリカ(平均粒径8.3μm)17.6重量部と、可塑剤としてフタル酸ジオクチル(DOP)を42.4重量部を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ90μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにてシリカを抽出除去し微多孔膜とした。該微多孔膜を119℃に加熱のもと、縦方向に5.5倍延伸した後、横方向に1.9倍延伸した。膜厚8μm、気孔率48%、(目付け4g/m)のポリオレフィン樹脂多孔膜を得た。該ポリオレフィン樹脂多孔膜にDOPを再び含浸した後、基材Dと積層した状態で加熱加圧処理した後DOPを抽出し、下表1に示す複合微多孔膜を得た。評価結果を表1に併記した。100サイクル容量維持率は60であった。
[Comparative Example 3]
As organic fiber woven fabric, warp yarn and weft yarn using polyarylate fiber with a tensile elastic modulus of 74 GPa, Technora (trade name, 61 dtex, glass transition temperature 193 ° C., manufactured by Teijin Techno Products Ltd.), warp yarn in an air jet loom An organic fiber woven fabric machine woven at a fabric density of 45/25 mm and weft 45/25 mm was obtained. The obtained woven fabric machine is washed with water and then subjected to pressure processing with a hot roll (heating temperature 400 ° C., pressure force 4000 N / cm) once, and an organic fiber woven fabric having a thickness of 40 μm and a basis weight of 24 g / m 2 : Material D was obtained.
Viscosity average molecular weight (Mv) 2 million ultra high molecular weight polyethylene 12 parts by weight, Mv 280,000 high density polyethylene 12 parts by weight, Mv 150,000 linear low density polyethylene 16 parts by weight and silica (average particle size 8.3 μm) 17 After mixing and granulating 6 parts by weight and 42.4 parts by weight of dioctyl phthalate (DOP) as a plasticizer, the mixture is kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. Molded. From the molded product, DOP was extracted with methylene chloride and silica was extracted with sodium hydroxide to obtain a microporous membrane. The microporous membrane was heated to 119 ° C., stretched 5.5 times in the longitudinal direction, and then stretched 1.9 times in the transverse direction. A polyolefin resin porous film having a thickness of 8 μm, a porosity of 48%, and a basis weight of 4 g / m 2 was obtained. The polyolefin resin porous membrane was impregnated again with DOP, and then heated and pressurized in a state of being laminated with the substrate D, and then DOP was extracted to obtain composite microporous membranes shown in Table 1 below. The evaluation results are also shown in Table 1. The 100 cycle capacity retention rate was 60.

[比較例4]
有機繊維織布として、たて糸およびよこ糸に、引張弾性率74GPaのポリアリレート繊維、テクノーラ(帝人テクノプロダクツ株式会社製、商品名、61dtex、ガラス転移温度193℃)を使用し、エアジェットルームで、たて糸45本/25mm、よこ糸45本/25mmの織物密度で製織した有機繊維織布の生機を得た。水洗し厚み50μm、目付け24g/m、の有機繊維織布:基材Eを得た。
粘度平均分子量(Mv)200万の超高分子量ポリエチレン12重量部とMv28万の高密度ポリエチレン12重量部とMv15万の直鎖状低密度ポリエチレン16重量部とシリカ(平均粒径8.3μm)17.6重量部と、可塑剤としてフタル酸ジオクチル(DOP)を42.4重量部を混合造粒した後、Tダイを装着した二軸押出機にて混練・押出し、厚さ90μmのシート状に成形した。該成形物から塩化メチレンにてDOPを、水酸化ナトリウムにてシリカを抽出除去し微多孔膜とした。該微多孔膜を119℃に加熱のもと、縦方向に5.5倍延伸した後、横方向に1.9倍延伸した。膜厚8μm、気孔率48%、(目付け4g/m)のポリオレフィン樹脂多孔膜を得た。該ポリオレフィン樹脂多孔膜にDOPを再び含浸した後、基材Eと積層した状態で加熱加圧処理した後DOPを抽出し、下表1に示す複合微多孔膜を得た。評価結果を表1に併記した。100サイクル容量維持率は40であった。
[Comparative Example 4]
As organic fiber woven fabric, warp yarn and weft yarn using polyarylate fiber with a tensile elastic modulus of 74 GPa, Technora (trade name, 61 dtex, glass transition temperature 193 ° C., manufactured by Teijin Techno Products Ltd.), warp yarn in an air jet loom An organic fiber woven fabric machine woven at a fabric density of 45/25 mm and weft 45/25 mm was obtained. Organic fiber woven fabric: substrate E having a thickness of 50 μm and a basis weight of 24 g / m 2 was obtained.
Viscosity average molecular weight (Mv) 2 million ultra high molecular weight polyethylene 12 parts by weight, Mv 280,000 high density polyethylene 12 parts by weight, Mv 150,000 linear low density polyethylene 16 parts by weight and silica (average particle size 8.3 μm) 17 After mixing and granulating 6 parts by weight and 42.4 parts by weight of dioctyl phthalate (DOP) as a plasticizer, the mixture is kneaded and extruded by a twin-screw extruder equipped with a T-die to form a sheet having a thickness of 90 μm. Molded. From the molded product, DOP was extracted with methylene chloride and silica was extracted with sodium hydroxide to obtain a microporous membrane. The microporous membrane was heated to 119 ° C., stretched 5.5 times in the longitudinal direction, and then stretched 1.9 times in the transverse direction. A polyolefin resin porous film having a thickness of 8 μm, a porosity of 48%, and a basis weight of 4 g / m 2 was obtained. The polyolefin resin porous membrane was impregnated again with DOP, and then heated and pressurized in a state of being laminated with the substrate E, and then DOP was extracted to obtain composite microporous membranes shown in Table 1 below. The evaluation results are also shown in Table 1. The 100 cycle capacity retention rate was 40.

Figure 0005148342
Figure 0005148342

本発明の複合微多孔膜は、分離膜及び電池用セパレータなどの隔離膜の分野で好適に利用できる。   The composite microporous membrane of the present invention can be suitably used in the field of isolation membranes such as separation membranes and battery separators.

Claims (5)

ポリエチレン樹脂以外の樹脂成分からなる有機繊維織布と、当該有機繊維織布に積層されるポリエチレン樹脂とを含む複合微多孔膜において、
前記ポリエチレン樹脂は、当該ポリエチレン樹脂の溶融により前記有機繊維織布の空隙を閉塞するように積層されると共に、
前記有機繊維織布の隙間比が0.2以下であり、
前記有機繊維織布を構成するモノフィラメントの、当該有機繊維織布の厚さ方向を基準とした扁平率が、0.6〜0.9であり、
前記有機繊維織布の有機繊維が溶融していないことを特徴とする複合微多孔膜。
In a composite microporous membrane comprising an organic fiber woven fabric composed of a resin component other than polyethylene resin, and a polyethylene resin laminated on the organic fiber woven fabric,
The polyethylene resin is laminated so as to close the voids of the organic fiber woven fabric by melting the polyethylene resin,
The gap ratio of the organic fiber woven fabric is 0.2 or less ,
The flatness of the monofilament constituting the organic fiber woven fabric based on the thickness direction of the organic fiber woven fabric is 0.6 to 0.9,
A composite microporous membrane, wherein organic fibers of the organic fiber woven fabric are not melted .
前記ポリエチレン樹脂以外の樹脂成分が、ポリエチレン樹脂が溶融する温度では溶融しない樹脂であることを特徴とする請求項1に記載の複合微多孔膜。  The composite microporous membrane according to claim 1, wherein the resin component other than the polyethylene resin is a resin that does not melt at a temperature at which the polyethylene resin melts. 目付けが10g/m2以下である請求項1又は2に記載の複合微多孔膜。 The composite microporous membrane according to claim 1 or 2, wherein the basis weight is 10 g / m 2 or less. 請求項1〜3のいずれかに記載の複合微多孔膜からなるリチウムイオン二次電池用セパレータ。   The separator for lithium ion secondary batteries which consists of a composite microporous film in any one of Claims 1-3. 請求項4に記載のリチウムイオン二次電池用セパレータ、正極、負極、及び電解液にて形成されるリチウムイオン二次電池。   The lithium ion secondary battery formed with the separator for lithium ion secondary batteries of Claim 4, a positive electrode, a negative electrode, and electrolyte solution.
JP2008095809A 2008-04-02 2008-04-02 Composite microporous membrane Active JP5148342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008095809A JP5148342B2 (en) 2008-04-02 2008-04-02 Composite microporous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008095809A JP5148342B2 (en) 2008-04-02 2008-04-02 Composite microporous membrane

Publications (2)

Publication Number Publication Date
JP2009248357A JP2009248357A (en) 2009-10-29
JP5148342B2 true JP5148342B2 (en) 2013-02-20

Family

ID=41309503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008095809A Active JP5148342B2 (en) 2008-04-02 2008-04-02 Composite microporous membrane

Country Status (1)

Country Link
JP (1) JP5148342B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140094076A1 (en) * 2011-06-16 2014-04-03 James S. Mrozinski Microporous Materials With Fibrillar Mesh Structure and Methods of Making and Using the Same
JP5887737B2 (en) * 2011-07-06 2016-03-16 東レ株式会社 Porous film and method for producing the same
JP6423724B2 (en) * 2015-01-26 2018-11-14 旭化成株式会社 Battery separator and non-aqueous electrolyte battery
WO2017061502A1 (en) 2015-10-07 2017-04-13 ダイセル・エボニック株式会社 Fiber-reinforced resin, process for producing same, and molded article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001319635A (en) * 2000-05-12 2001-11-16 Matsushita Electric Ind Co Ltd Separator and its manufacturing method and nonaqueous battery using the same
JP2004031084A (en) * 2002-06-25 2004-01-29 Oji Paper Co Ltd Separator for lithium ion secondary battery and battery using it
JP2004277953A (en) * 2003-03-18 2004-10-07 Toray Ind Inc Porous sheet and method for producing the same
JP4351858B2 (en) * 2003-04-10 2009-10-28 株式会社東芝 Nonaqueous electrolyte secondary battery
JP4184404B2 (en) * 2005-12-08 2008-11-19 日立マクセル株式会社 Electrochemical element separator and electrochemical element
JP4964463B2 (en) * 2005-12-27 2012-06-27 株式会社クラレ Separator

Also Published As

Publication number Publication date
JP2009248357A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP6662290B2 (en) Polyolefin multilayer microporous membrane, method for producing the same, and battery separator
KR101266607B1 (en) Polyolefin microporous membrane and products of winding
JP5774793B2 (en) PET non-woven fabric for secondary battery separation membrane and separation membrane for secondary battery
CN106575734B (en) Polyolefin microporous film, battery separator, and battery
CA2891345C (en) Single-layer microporous polymeric lithium-ion battery separators
JP6367453B2 (en) Separator for electricity storage device and laminate, wound body, lithium ion secondary battery or electricity storage device using the same
TWI700851B (en) Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN110621731B (en) Polyolefin microporous membrane, separator for electricity storage device, and electricity storage device
JP5601681B2 (en) Polyolefin microporous membrane containing inorganic particles and separator for non-aqueous electrolyte battery
KR20190124199A (en) Polyolefin Microporous Membrane
US20180183028A1 (en) Separator roll and non-aqueous secondary battery
CN116169431A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
CN113574729B (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
CN111244369B (en) Polyolefin microporous membrane
JP5148342B2 (en) Composite microporous membrane
KR20160091917A (en) Laminated porous film, and production method therefor
JP5583998B2 (en) Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery
CN113574732B (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
CN113678313B (en) Separator for nonaqueous secondary battery, method for producing same, and nonaqueous secondary battery
US20210367309A1 (en) Separator for electric storage device
EP3920318B1 (en) Separator for non-aqueous secondary battery, and non-aqueous secondary battery
CN116133838A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2024018418A (en) Separator winding body for power storage devices
US20230207970A1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP6762089B2 (en) Laminated separator for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery member and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Ref document number: 5148342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350