JP5147099B2 - Vertical water meter - Google Patents

Vertical water meter Download PDF

Info

Publication number
JP5147099B2
JP5147099B2 JP2006168974A JP2006168974A JP5147099B2 JP 5147099 B2 JP5147099 B2 JP 5147099B2 JP 2006168974 A JP2006168974 A JP 2006168974A JP 2006168974 A JP2006168974 A JP 2006168974A JP 5147099 B2 JP5147099 B2 JP 5147099B2
Authority
JP
Japan
Prior art keywords
cylindrical wall
rectifier
inlet
water meter
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006168974A
Other languages
Japanese (ja)
Other versions
JP2007333686A (en
Inventor
一生 大嶽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP2006168974A priority Critical patent/JP5147099B2/en
Publication of JP2007333686A publication Critical patent/JP2007333686A/en
Application granted granted Critical
Publication of JP5147099B2 publication Critical patent/JP5147099B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

本発明は、羽根車の下側同軸上に整流器を配置して整流器から羽根車側に流体を流し、その羽根車の回転に基づいて流量を測定する縦型水道メータに関する。   The present invention relates to a vertical water meter in which a rectifier is arranged on the lower coaxial side of an impeller, a fluid flows from the rectifier to the impeller side, and a flow rate is measured based on rotation of the impeller.

従来の縦型水道メータに備えた整流器としては、羽根車に流体を案内する円筒壁と、その円筒壁の中心部に配置されて羽根車を軸支する中心整流体と、中心整流体から円筒壁に向けて放射状に差し渡された複数の整流壁とを備えたものが知られている(例えば、特許文献1参照)。
特開2006−29795号公報([0029]、第4図)
As a rectifier provided in a conventional vertical water meter, a cylindrical wall that guides fluid to the impeller, a central rectifier that is disposed at the center of the cylindrical wall and supports the impeller, and a cylinder from the central rectifier to the cylinder There are known ones including a plurality of rectifying walls extending radially toward a wall (see, for example, Patent Document 1).
JP 2006-29795 A ([0029], FIG. 4)

ところで、水道メータについては、計量法の特定計量器検定検査規則(JIS B 8570−2:2005を引用)に基づいて器差試験が行われており、器差が所定の流量範囲において検定公差を超えないことが合格の基準となっている。しかしながら、近年では、単に検定公差を超えないだけでなく、器差がより小さく抑えられた高精度な縦型水道メータの開発が望まれていた。   By the way, for water meters, the instrumental difference test is conducted based on the specific measuring instrument verification inspection rules (cited in JIS B 8570-2: 2005) of the Measurement Law, and the instrumental error is within the specified flow rate range. The standard for success is not exceeding. However, in recent years, there has been a demand for the development of a high-precision vertical water meter that not only exceeds the test tolerance but also reduces the instrumental error.

本発明は、上記事情に鑑みてなされたもので、従来より測定精度を向上させることが可能な縦型水道メータの提供を目的とする。   This invention is made | formed in view of the said situation, and it aims at provision of the vertical water meter which can improve a measurement precision conventionally.

上記目的を達成するためになされた請求項1の発明に係る縦型水道メータは、円筒壁の内部を放射状に区画してなる整流器を羽根車の下側同軸上に設けると共に、水平方向を向いた流入口から整流器の下面開口までの間を連絡した導入路を設け、その流入口から導入路に流れ込んだ流体が、整流器、羽根車の順番に通過して流出口から排出される縦型水道メータにおいて、整流器には、円筒壁における流入口側に偏在しかつ円筒壁から下方に延設されて導入路内に突出した下向規制壁が備えられたところに特徴を有する。   In order to achieve the above object, the vertical water meter according to the invention of claim 1 is provided with a rectifier formed by radially dividing the inside of the cylindrical wall on the lower coaxial side of the impeller and facing the horizontal direction. A vertical water supply is established in which the fluid that has flowed from the inlet to the inlet passage passes through the inlet and the lower opening of the rectifier and passes through the inlet and the impeller in this order. In the meter, the rectifier is characterized in that it is provided with a downward regulating wall that is unevenly distributed on the inlet side of the cylindrical wall and that extends downward from the cylindrical wall and protrudes into the introduction path.

上記目的を達成するためになされた請求項2の発明に係る縦型水道メータは、円筒壁の内部を放射状に区画してなる整流器を羽根車の下側同軸上に設けると共に、水平方向を向いた流入口から整流器の下面開口までの間を連絡した導入路を設け、流入口から導入路に流れ込んだ流体が、整流器、羽根車の順番に通過して流出口から排出される縦型水道メータにおいて、整流器には、円筒壁から下方に延設されて導入路内に突出しかつ、円筒壁のうち流入口に最も近い位置から円筒壁の周方向に沿った両側方に向かうに従って導入路内への突出量が連続して徐々に小さくなるように形成された下向規制壁が備えられたところに特徴を有する。   In order to achieve the above object, a vertical water meter according to the invention of claim 2 is provided with a rectifier formed by radially dividing the inside of a cylindrical wall on the lower coaxial side of the impeller and facing the horizontal direction. A vertical water meter is provided in which an inlet passage that communicates from the inlet to the lower surface opening of the rectifier is provided, and the fluid that flows into the inlet from the inlet passes in the order of the rectifier and the impeller and is discharged from the outlet. The rectifier extends downward from the cylindrical wall, protrudes into the introduction path, and enters the introduction path from the position closest to the inlet of the cylindrical wall toward both sides along the circumferential direction of the cylindrical wall. It is characterized in that a downward regulating wall is formed so that the amount of protrusion of the wall is gradually reduced gradually.

上記目的を達成するためになされた請求項3の発明に係る縦型水道メータは、円筒壁の内部を放射状に区画してなる整流器を羽根車の下側同軸上に設けると共に、水平方向を向いた流入口から整流器の下面開口までの間を連絡した導入路を設け、流入口から導入路に流れ込んだ流体が、整流器、羽根車の順番に通過して流出口から排出される縦型水道メータにおいて、整流器には、円筒壁から下方に延設されて導入路内に突出しかつ、円筒壁のうち流入口に最も近い位置から円筒壁の周方向に沿った両側方に向かうに従って導入路内への突出量が段階的に小さくなるように形成された下向規制壁が備えられたところに特徴を有する。   In order to achieve the above object, the vertical water meter according to the invention of claim 3 is provided with a rectifier formed by radially dividing the inside of the cylindrical wall on the lower coaxial side of the impeller and facing the horizontal direction. A vertical water meter is provided in which an inlet passage that communicates from the inlet to the lower surface opening of the rectifier is provided, and the fluid that flows into the inlet from the inlet passes in the order of the rectifier and the impeller and is discharged from the outlet. The rectifier extends downward from the cylindrical wall, protrudes into the introduction path, and enters the introduction path from the position closest to the inlet of the cylindrical wall toward both sides along the circumferential direction of the cylindrical wall. It is characterized in that a downward restricting wall formed so that the amount of protrusion of the protrusion becomes smaller in steps is provided.

請求項4の発明は、請求項1乃至3の何れかに記載の縦型水道メータにおいて、整流器には、円筒壁のうち流入口とは反対側に偏在しかつ円筒壁の下端部から円筒壁の中心に向かって水平な板状に張り出し、円筒壁の内側に形成された流体通過領域の一部を下方から覆う内向規制壁が備えられたところに特徴を有する。   According to a fourth aspect of the present invention, in the vertical water meter according to any one of the first to third aspects, the rectifier is unevenly distributed on the opposite side of the cylindrical wall from the inlet and the cylindrical wall extends from the lower end of the cylindrical wall It has a feature in that an inward regulating wall is provided that extends in a horizontal plate shape toward the center of the cylinder and covers a part of the fluid passage region formed inside the cylindrical wall from below.

請求項の発明は、請求項4に記載の縦型水道メータにおいて、内向規制壁は、円筒壁のうち流入口に対して最も遠い位置から円筒壁の周方向に沿った両側方に向かうに従って円筒壁の中心への張り出し量が連続して徐々に小さくなるように形成されたところに特徴を有する。 According to a fifth aspect of the present invention, in the vertical water meter according to the fourth aspect , the inward regulating wall is directed from the position farthest from the inlet of the cylindrical wall toward both sides along the circumferential direction of the cylindrical wall. It is characterized in that it is formed so that the amount of protrusion to the center of the cylindrical wall becomes gradually smaller.

請求項の発明は、請求項4に記載の縦型水道メータにおいて、内向規制壁は、円筒壁のうち流入口に対して最も遠い位置から円筒壁の周方向に沿った両側方に向かうに従って円筒壁の中心への張り出し量が段階的に小さくなるように形成されたところに特徴を有する。 According to a sixth aspect of the present invention, in the vertical water meter according to the fourth aspect , the inward regulating wall is directed from the position farthest from the inlet of the cylindrical wall toward both sides along the circumferential direction of the cylindrical wall. It is characterized in that it is formed so that the amount of protrusion to the center of the cylindrical wall decreases stepwise.

[請求項1の発明]
請求項1の発明によれば、従来のものに比べて測定精度を向上させることができた。
[Invention of Claim 1 ]
According to the invention of claim 1, the measurement accuracy can be improved as compared with the conventional one.

[請求項2及び3の発明]
請求項2及び3の発明によれば、従来のものに比べて測定精度を向上させることができた。
[Inventions of Claims 2 and 3]
According to the inventions of claims 2 and 3, the measurement accuracy can be improved as compared with the conventional one.

[請求項4の発明]
請求項4の発明によれば、整流器に、下向規制壁と内向規制壁との両方を備えたことで、測定精度をさらに向上させることができた。
[Invention of claim 4]
According to the invention of claim 4, the measurement accuracy can be further improved by providing the rectifier with both the downward regulating wall and the inward regulating wall.

[請求項5及び6の発明]
請求項の発明のように、内向規制壁は、円筒壁のうち流入口に対して最も遠い位置から円筒壁の周方向に沿った両側方に向かうに従って円筒壁の中心への張り出し量が連続して徐々に小さくなるように形成すると効果的である。また、請求項の発明のように、内向規制壁は、円筒壁のうち流入口に対して最も遠い位置から円筒壁の周方向に沿った両側方に向かうに従って円筒壁の中心への張り出し量が段階的に小さくなるように形成してもよい。
[Inventions of Claims 5 and 6 ]
As in the fifth aspect of the invention, the inward regulating wall has a continuous projecting amount toward the center of the cylindrical wall from the position farthest from the inlet of the cylindrical wall toward both sides along the circumferential direction of the cylindrical wall. Then, it is effective to form it so that it gradually becomes smaller. Further, as in the sixth aspect of the invention, the inward regulating wall extends from the position farthest from the inlet of the cylindrical wall toward the both sides along the circumferential direction of the cylindrical wall. May be formed so as to decrease stepwise.

[第1実施形態]
以下、本発明の第1実施形態を図1〜図7に基づいて説明する。
本発明の水道メータ10は、所謂、縦型軸流羽根車式の水道メータであって、水道管の途中に取り付けられるメータケース11にメータ本体12を組み付けてなる。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
The water meter 10 of the present invention is a so-called vertical axial flow impeller-type water meter, and has a meter body 12 assembled to a meter case 11 attached in the middle of a water pipe.

メータケース11には、図1における左側方に水平に開放した流入口11Aと、右側方に水平に開放した流出口11Bとが形成され、その流入口11Aから下方に延びた下側部屋13(本発明の「導入路」に相当する)と、下側部屋13の上方に位置した上側部屋14とが備えられている。また、これら上側部屋14と下側部屋13とが、連通口16を介して上下方向で連通している。そして、上側部屋14の上面に形成された上面開口15にメータ本体12が上方から挿入組付され、そのメータ本体12の下端部分が連通口16の周縁部に接合されている。なお、本実施形態では、流入口11A及び流出口11Bの口径が、例えば、50mmとなっている。   In the meter case 11, an inflow port 11A that opens horizontally to the left side in FIG. 1 and an outflow port 11B that opens horizontally to the right side are formed, and a lower chamber 13 (extending downward from the inflow port 11A) Corresponding to the “introduction channel” of the present invention) and an upper room 14 located above the lower room 13. Further, the upper room 14 and the lower room 13 communicate with each other in the vertical direction via the communication port 16. The meter body 12 is inserted and assembled from above into an upper surface opening 15 formed on the upper surface of the upper chamber 14, and the lower end portion of the meter body 12 is joined to the peripheral edge of the communication port 16. In the present embodiment, the diameters of the inlet 11A and the outlet 11B are, for example, 50 mm.

さて、メータ本体12のうち、符号50は筒型ハウジングであって、上下に並べた1対の円筒部50A,50Bの間を複数のリブ52で連結してなる。下側円筒部50Bは上下に開放しており、この下側円筒部50B内には、羽根車40の羽根43が収容されると共に、下側円筒部50Bの下部には、整流器20が接合されている。   Now, in the meter body 12, reference numeral 50 denotes a cylindrical housing, which is formed by connecting a pair of cylindrical portions 50A, 50B arranged one above the other with a plurality of ribs 52. The lower cylindrical portion 50B is opened up and down, and the blade 43 of the impeller 40 is accommodated in the lower cylindrical portion 50B, and the rectifier 20 is joined to the lower portion of the lower cylindrical portion 50B. ing.

そして、図1の太線矢印で示したように、図示しない水道管を通って流入口11Aから略水平方向でメータケース11内に流れ込んだ水は、下側部屋13にて流れの向きが略垂直上方に変わり、整流器20、下側円筒部50Bの順に流れて、下側円筒部50Bの上面からリブ52,52の間を通って上側部屋14に進み、上側部屋14から流出口11Bに向かう。   1, the water flowing into the meter case 11 in the substantially horizontal direction from the inlet 11A through a water pipe (not shown) flows in the lower chamber 13 in a substantially vertical direction. It changes upward, flows in the order of the rectifier 20 and the lower cylindrical portion 50B, proceeds from the upper surface of the lower cylindrical portion 50B to the upper chamber 14 through the ribs 52, 52, and moves from the upper chamber 14 to the outlet 11B.

図1に示すように、上側円筒部50Aの下面には、下側円筒部50Bの中心に向かって先細りとなるように軸収容部53が垂下しており、軸収容部53の内側には、羽根車40から延びたシャフト41が収容されている。   As shown in FIG. 1, a shaft accommodating portion 53 hangs down on the lower surface of the upper cylindrical portion 50A so as to taper toward the center of the lower cylindrical portion 50B. A shaft 41 extending from the impeller 40 is accommodated.

一方、上側円筒部50Aの上面には、メータユニット60が取り付けられ、このメータユニット60は、羽根車40の回転に連動して水道メータ10を通過した水の積算流量を計数して表示する。なお、メータユニット60の上部には図示しない上蓋が備えられており、上蓋を開けるとガラス窓62を通してメータユニット60に備えた積算表示部(図示せず)を見ることができる。   On the other hand, a meter unit 60 is attached to the upper surface of the upper cylindrical portion 50A, and the meter unit 60 counts and displays the integrated flow rate of water that has passed through the water meter 10 in conjunction with the rotation of the impeller 40. Note that an upper lid (not shown) is provided on the upper portion of the meter unit 60, and when the upper lid is opened, an integration display portion (not shown) provided in the meter unit 60 can be seen through the glass window 62.

図2には、羽根車40のみが示されている。同図に示すように羽根車40は、例えば12枚の羽根43を円筒体42の外周面から放射状に張り出して備える。各羽根43は、図2における上方、即ち下流側から見たときに、各羽根43の上端縁43Aに対して下端縁43Bが、反時計回りの方向に先行して、羽根43全体がねじれた形状になっている。これにより、羽根車の下方から羽根43に水圧がかかると、羽根43の下端縁43Bが先行するように羽根車40が回転する。即ち、羽根車40は上方から見たときに反時計回りの方向に回転する。   In FIG. 2, only the impeller 40 is shown. As shown in the figure, the impeller 40 includes, for example, twelve blades 43 projecting radially from the outer peripheral surface of the cylindrical body 42. When viewed from the upper side, that is, the downstream side in FIG. 2, each blade 43 is twisted in its entirety with the lower edge 43 </ b> B preceding the upper edge 43 </ b> A of each blade 43 in the counterclockwise direction. It has a shape. Thereby, when water pressure is applied to the blade 43 from below the impeller, the impeller 40 rotates so that the lower end edge 43B of the blade 43 precedes. That is, the impeller 40 rotates counterclockwise when viewed from above.

羽根車40のうちシャフト41は円筒体42の底面中央部から上方に垂直に立ち上がっており、シャフト41と円筒体42の内側面との間がリブ46で補強されている。   The shaft 41 of the impeller 40 rises vertically upward from the center of the bottom surface of the cylindrical body 42, and the space between the shaft 41 and the inner surface of the cylindrical body 42 is reinforced by ribs 46.

図1に示すように、シャフト41の芯部には、下端開放の空洞が形成され、その空洞内に、後述する整流器20に備えた支持ピン21が挿入されて、支持ピン21の先端が空洞の奥部に備えた軸受け47に突き当てられている。   As shown in FIG. 1, a hollow with an open bottom end is formed in the core of the shaft 41, and a support pin 21 provided in a rectifier 20 described later is inserted into the cavity, and the tip of the support pin 21 is hollow. It is abutted against a bearing 47 provided in the inner part.

シャフト41の上端部とメータユニット60(詳細には、積算表示部)を構成する図示しないギアとの間は、例えば、マグネットカップリング(図示せず)によって連結されており、これにより羽根車40の回転がメータユニット60のギアの回転として伝達される。   The upper end portion of the shaft 41 and a gear (not shown) constituting the meter unit 60 (specifically, an integration display portion) are connected by, for example, a magnet coupling (not shown). Is transmitted as the rotation of the gear of the meter unit 60.

さて、整流器20は、円筒壁27の中心部に中心整流体22を備え、中心整流体22から円筒壁27に向かって例えば6枚の整流壁70が放射状に延びて円筒壁27の内部を6つの通過領域R1に区画した構造をなしている。   The rectifier 20 includes a central rectifier 22 at the center of the cylindrical wall 27, and, for example, six rectifying walls 70 extend radially from the central rectifier 22 toward the cylindrical wall 27. The structure is divided into two passage regions R1.

円筒壁27は上下方向に開放しており、上面開口の内径が下面開口の内径よりも若干大きくなっている。中心整流体22は、円筒壁27の上端寄り位置に配置されている。中心整流体22は、下方に向かって丸みを帯びて先細りとなったドーム状をなす。また、ドームの中心部、即ち中心整流体22の中心部には、上下方向に貫通した支持孔が形成されており、この支持孔に軸芯部22Aが固定されている。そして軸芯部22Aの上端からは垂直に支持ピン21が起立しており、その支持ピン21は、前述の如くシャフト41の空洞内に挿入されて、羽根車40を回転可能に支持している。なお、軸芯部22Aからは、例えば6つのリブ26が放射状に延び、これらリブ26の延長線上に整流壁70が形成されている。   The cylindrical wall 27 is open in the vertical direction, and the inner diameter of the upper surface opening is slightly larger than the inner diameter of the lower surface opening. The central rectifier 22 is disposed at a position near the upper end of the cylindrical wall 27. The central rectifier 22 has a dome shape that is rounded downward and tapered. A support hole penetrating in the vertical direction is formed at the center of the dome, that is, the center of the central rectifier 22, and the shaft core portion 22 </ b> A is fixed to the support hole. A support pin 21 stands vertically from the upper end of the shaft core portion 22A, and the support pin 21 is inserted into the cavity of the shaft 41 as described above to rotatably support the impeller 40. . For example, six ribs 26 extend radially from the shaft core portion 22 </ b> A, and a rectifying wall 70 is formed on an extension line of the ribs 26.

複数の整流壁70は、円筒壁27の周方向で均等配置されており、上下方向に関しては円筒壁27の軸線方向に平行になっている。整流壁70の上端面は、円筒壁27及び中心整流体22の上端面と面一となっている。また、整流壁70の下端縁は、中心整流体22から円筒壁27に向かうに従って次第に下方へ向うように傾斜しており、円筒壁27側の下端縁は、中心整流体22の下端部よりも下側に位置している。これら隣り合った整流壁70,70と、円筒壁27及び中心整流体22とで囲まれた通過領域R1が整流器20(円筒壁27)の周方向に6つ並んで形成され、これら通過領域R1をそれぞれ流体が通過可能となっている。   The plurality of rectifying walls 70 are equally arranged in the circumferential direction of the cylindrical wall 27, and are parallel to the axial direction of the cylindrical wall 27 in the vertical direction. The upper end surface of the rectifying wall 70 is flush with the upper end surfaces of the cylindrical wall 27 and the central rectifying body 22. In addition, the lower end edge of the rectifying wall 70 is inclined so as to gradually go downward from the central rectifying body 22 toward the cylindrical wall 27, and the lower end edge on the cylindrical wall 27 side is more than the lower end portion of the central rectifying body 22. Located on the lower side. Six passing regions R1 surrounded by the adjacent rectifying walls 70, 70, the cylindrical wall 27 and the central rectifying body 22 are formed side by side in the circumferential direction of the rectifier 20 (cylindrical wall 27). Each fluid can pass through.

さて、図4(A)に示すように、整流器20のうち円筒壁27の下端部には下向規制壁80が一体形成されている。図1に示すように下向規制壁80は、円筒壁27から下方に延設されてメータケース11の下側部屋13内に突出しており、その突出量が、流入口11Aに最も近い位置から円筒壁27の周方向に沿った両側方に離れるに従って連続して徐々に小さくなっている。即ち、同図に示すように、下向規制壁80の下端縁がテーパー状に傾斜している。なお、下向規制壁80の下端縁の水平線に対する傾斜角度θ1は約10度となっている。   As shown in FIG. 4A, a downward regulating wall 80 is integrally formed at the lower end portion of the cylindrical wall 27 in the rectifier 20. As shown in FIG. 1, the downward regulating wall 80 extends downward from the cylindrical wall 27 and protrudes into the lower chamber 13 of the meter case 11, and the amount of protrusion is from a position closest to the inflow port 11A. The distance gradually decreases as the distance from the both sides along the circumferential direction of the cylindrical wall 27 increases. That is, as shown in the figure, the lower end edge of the downward regulating wall 80 is inclined in a tapered shape. The inclination angle θ1 with respect to the horizontal line of the lower end edge of the downward regulating wall 80 is about 10 degrees.

また、図4(B)に示すように、整流器20のうち円筒壁27の下面開口の縁部からは円筒壁27の内側水平方向に内向規制壁81が張り出している。内向規制壁81は、各整流壁70の下端部より下側位置でかつ流出口11Bに近い側に偏在して設けられ、所謂、三日月状をなしている。詳細には、内向規制壁81は、円筒壁27のうち流出口11B側の約半周に亘って形成されており、その張り出し量は、流出口11Bに最も近い部分で最大であり、流出口11Bから円筒壁27の周方向に離れる(流入口11Aに近づく)に従って連続して徐々に小さくなっている。この内向規制壁81により、整流器20に形成された6つの通過領域R1のうち、流出口11Bに近い側に配置された3つの通過領域R1の一部がそれぞれ下方から覆われている。   In addition, as shown in FIG. 4B, an inward regulating wall 81 projects from the edge of the lower surface opening of the cylindrical wall 27 in the rectifier 20 in the inner horizontal direction of the cylindrical wall 27. The inward regulating walls 81 are provided so as to be unevenly located on the lower side of the lower end portions of the respective rectifying walls 70 and closer to the outlet 11B, and have a so-called crescent shape. Specifically, the inward regulating wall 81 is formed over approximately half the circumference of the cylindrical wall 27 on the outlet 11B side, and the amount of overhang is the largest in the portion closest to the outlet 11B, and the outlet 11B. From the circumferential direction of the cylindrical wall 27 (closer to the inlet 11A) and gradually decreases. Of the six passage regions R1 formed in the rectifier 20, a part of the three passage regions R1 disposed on the side close to the outlet 11B is covered from below by the inward regulating wall 81.

次に上記構成からなる本実施形態の動作を説明する。
図1の太線矢印で示したように、メータケース11の流入口11Aより下側部屋13に流入した水は、下側部屋13にて流れの向きが略垂直上方に変わり、整流器20の内側に形成された各通過領域R1を通って羽根車40へと向かう。そして羽根車40は、整流器20を通過した水を各羽根43で受けて回転する。羽根車40を通過した水は、筒型ハウジング50のリブ52,52の間からメータ本体12の側方に流出し、メータケース11の上側部屋14を経て流出口11Bへと向かう。また、羽根車40の回転は図示しないマグネットカップリングを介してメータユニット60に伝達され水の流量が計測表示される。
Next, the operation of this embodiment configured as described above will be described.
As shown by the thick arrows in FIG. 1, the water flowing into the lower chamber 13 from the inlet 11 </ b> A of the meter case 11 changes in the direction of the flow in the lower chamber 13 to be substantially vertically upward, inside the rectifier 20. It goes to the impeller 40 through each formed passing region R1. And the impeller 40 receives the water which passed the rectifier 20 by each blade | wing 43, and rotates. The water that has passed through the impeller 40 flows to the side of the meter body 12 from between the ribs 52, 52 of the cylindrical housing 50, and travels to the outlet 11B through the upper chamber 14 of the meter case 11. The rotation of the impeller 40 is transmitted to the meter unit 60 via a magnet coupling (not shown), and the flow rate of water is measured and displayed.

[実施例1]
本発明に係る下向規制壁80及び内向規制壁81の効果を調べるべく以下の実験を行った。実験の手順は以下の通りである。
まず、上記第1実施形態と同一構造を有した本発明の実施品としての水道メータ10(以下、適宜「実施品1」という)と、整流器20に下向規制壁80及び内向規制壁81の何れも設けられていない点のみが実施品1と異なる従来の水道メータ(以下、適宜「従来品」という)とを製作した。
[Example 1]
The following experiment was conducted to examine the effects of the downward regulating wall 80 and the inward regulating wall 81 according to the present invention. The experimental procedure is as follows.
First, a water meter 10 (hereinafter referred to as “implemented product 1” as appropriate) having the same structure as that of the first embodiment, and a rectifier 20 provided with a downward regulating wall 80 and an inward regulating wall 81. A conventional water meter (hereinafter referred to as “conventional product” as appropriate) that differs from the product 1 only in that none is provided.

次に、これら各水道メータ(実施品1、従来品)に対して、計量法の特定計量器検定検査規則に規定されている試験方法(JIS B 8570−2:2005の「7.2 器差試験」)で器差試験を行った。即ち、予め設定した流量で通水して、そのときの計量値(水道メータの表示値)を求めた。なお、本実施例では、定格最大流量Q3を40m3/h、限界流量Q4を50m3/h、定格最小流量Q1を0.4m3/h、転移流量Q2を0.64m3/hに設定した。   Next, for each of these water meters (implemented product 1, conventional product), the test method (JIS B 8570-2: 2005 “7.2 Instrument difference” specified in the specific measuring instrument certification inspection rules of the Measurement Law) The instrument difference test was conducted in “Test”. That is, water was passed at a preset flow rate, and the measured value (display value of the water meter) at that time was obtained. In this embodiment, the rated maximum flow rate Q3 is set to 40 m3 / h, the limit flow rate Q4 is set to 50 m3 / h, the rated minimum flow rate Q1 is set to 0.4 m3 / h, and the transition flow rate Q2 is set to 0.64 m3 / h.

設定流量毎に各水道メータ(実施品1、従来品)の器差を算出して図5に示すようにグラフ(器差曲線)化した。なお、同グラフには検定公差(器差の許容値)が太線で示されている。   The instrumental difference of each water meter (implemented product 1, conventional product) was calculated for each set flow rate, and was converted into a graph (instrumental difference curve) as shown in FIG. In this graph, the test tolerance (allowable value of instrumental error) is indicated by a thick line.

さらに、解析ソフトを使って各水道メータ(実施品1、従来品)に同一流量で通水した状態のシミュレーションを行い、メータケース11内における流速分布を解析した。なお、図6及び図7には、各水道メータのメータケース11内における流速分布が色の濃淡で示されている。   Furthermore, the simulation was performed in a state where water was passed through each water meter (implemented product 1, conventional product) at the same flow rate using analysis software, and the flow velocity distribution in the meter case 11 was analyzed. In addition, in FIG.6 and FIG.7, the flow velocity distribution in the meter case 11 of each water meter is shown by the shading of the color.

[実験結果]
図5のグラフに基づき実施品1と従来品とを比較すると、従来品では、定格最小流量Q1から限界流量Q4までの全域に亘って、器差を検定公差以内とすることができたものの、1〜50m3/hの流量範囲で、器差が+0.7%〜−2%の間で変動し、器差曲線の直線性が低かった。これは、水の流れが整流器20の流出口11Bに近い側の通過領域R1に集中した結果、図6の流速分布図に示すように整流器20の周方向に並んだ各通過領域R1における流速にばらつきが生じ、羽根車40の回転が不安定になった為と推測される。
[Experimental result]
Comparing the product 1 and the conventional product based on the graph of FIG. 5, in the conventional product, the instrumental error could be within the verification tolerance over the entire range from the rated minimum flow rate Q1 to the limit flow rate Q4. In the flow rate range of 1-50 m3 / h, the instrumental error varied between + 0.7% and -2%, and the linearity of the instrumental error curve was low. This is because the flow of water is concentrated in the passage region R1 on the side close to the outlet 11B of the rectifier 20, and as a result, the flow velocity in each passage region R1 aligned in the circumferential direction of the rectifier 20 as shown in the flow velocity distribution diagram of FIG. It is presumed that the variation occurred and the rotation of the impeller 40 became unstable.

これに対し、実施品1では、定格最小流量Q1から限界流量Q4までの全域に亘って器差を検定公差以内とすることができ、しかも、1〜50m3/hの流量範囲では、器差をほぼ0%とすることができた。即ち、器差曲線の直線性が従来品よりも向上することが分かった。これは、図7(B)に示すように、整流器20に下向規制壁80を設けたことで、整流器20の流入口11Aに近い側の通過領域R1に水が誘導されかつ、内向規制壁81を設けたことで、流出口11Bに近い側の通過領域R1において水が整流器20の中心(中心整流体22)側に誘導され、その結果、図7(A)に示すように、各通過領域R1における流速のばらつきが改善されて、羽根車40の回転が安定したからであると推測される。   On the other hand, in the product 1, the instrumental error can be within the verification tolerance over the entire range from the rated minimum flow rate Q1 to the limit flow rate Q4, and the instrumental error is reduced in the flow range of 1 to 50 m3 / h. It could be almost 0%. That is, it was found that the linearity of the instrumental difference curve is improved as compared with the conventional product. This is because, as shown in FIG. 7B, by providing the rectifier 20 with the downward regulating wall 80, water is guided to the passage region R1 of the rectifier 20 on the side close to the inflow port 11A, and the inward regulating wall. By providing 81, water is guided to the center (central rectifier 22) side of the rectifier 20 in the passage region R1 on the side close to the outlet 11B. As a result, as shown in FIG. It is presumed that the variation in the flow velocity in the region R1 is improved and the rotation of the impeller 40 is stabilized.

このことから、上述した下向規制壁80及び内向規制壁81を備えることで、水道メータ10の測定精度を従来よりも向上させることが可能であることが分かった。また、本実施形態の構成によれば、羽根車40の回転が安定するので、支持ピン21が突き当たった軸受け47の偏摩耗を防止して耐久性を向上させることが可能であると共に、圧力損失を低減することが可能である。   From this, it was found that the measurement accuracy of the water meter 10 can be improved as compared with the conventional one by providing the above-described downward regulating wall 80 and inward regulating wall 81. Further, according to the configuration of the present embodiment, since the rotation of the impeller 40 is stabilized, it is possible to prevent uneven wear of the bearing 47 against which the support pin 21 abuts and improve durability, and pressure loss. Can be reduced.

[第2実施形態]
第2実施形態の水道メータ90は、図8に示されており、整流器20に内向規制壁81が設けられていない点のみが、上記第1実施形態とは異なる。その他の構成については上記第1実施形態と同じであるため、同じ構成については、同一符号を付し、重複する説明は省略する。
[Second Embodiment]
The water meter 90 of the second embodiment is shown in FIG. 8 and differs from the first embodiment only in that the rectifier 20 is not provided with the inward regulating wall 81. Since other configurations are the same as those in the first embodiment, the same reference numerals are given to the same configurations, and duplicate descriptions are omitted.

[実施例2]
本発明に係る下向規制壁80の効果を調べるべく、上記実施例1と同様の実験を行った。即ち、上記第2実施形態と同一形状とした本発明の実施品としての水道メータ90(以下、適宜「実施品2」という)に対して、上記実施例1と同様な方法で器差試験を行い、設定流量毎に器差を算出して図9に示すようにグラフ(器差曲線)化した。なお、図9には、実施品2と従来品の器差曲線が対比して示されている。
[Example 2]
In order to investigate the effect of the downward regulating wall 80 according to the present invention, an experiment similar to that in Example 1 was performed. That is, the instrumental difference test is performed on the water meter 90 (hereinafter referred to as “implementation product 2” as appropriate) having the same shape as the second embodiment in the same manner as in the first embodiment. The instrumental error was calculated for each set flow rate, and a graph (instrumental difference curve) was formed as shown in FIG. In FIG. 9, the instrumental difference curves of the product 2 and the conventional product are shown in comparison.

また、解析ソフトを使って、実施品2に所定流量で通水した状態のシミュレーションを行い、メータケース11内における流速分布を解析した。なお、図10には、実施品2のメータケース11内における流速分布が色の濃淡で示されている。   In addition, using the analysis software, a simulation was performed in a state where water was passed through the product 2 at a predetermined flow rate, and the flow velocity distribution in the meter case 11 was analyzed. In FIG. 10, the flow velocity distribution in the meter case 11 of the product 2 is shown in shades of color.

[実験結果]
図9のグラフに示すように、本実施品2によっても、流量1〜50m3/hの範囲で、器差を±0.5%以内とすることができ、器差曲線の直線性が従来品よりも向上することが分かった。これは、図10(B)に示すように整流器20に下向規制壁80を設けたことで、整流器20の流入口11Aに近い側の通過領域R1に水が誘導され、その結果、図10(A)に示すように整流器20の各通過領域R1における流速のばらつきが改善されて、羽根車40の回転が安定したからであると推測される。
[Experimental result]
As shown in the graph of FIG. 9, even with the present product 2, the instrumental error can be within ± 0.5% in the flow rate range of 1 to 50 m3 / h, and the linearity of the instrumental difference curve is the conventional product It turns out that it improves. This is because, as shown in FIG. 10B, by providing the rectifier 20 with the downward regulating wall 80, water is guided to the passage region R1 on the side close to the inflow port 11A of the rectifier 20, and as a result, FIG. As shown to (A), the dispersion | variation in the flow velocity in each passage area | region R1 of the rectifier 20 is improved, and it is estimated that it is because rotation of the impeller 40 was stabilized.

このことから、整流器20の下端部に下向規制壁80のみを設けた構成でも、水道メータ90の測定精度を従来よりも向上させることが可能であることが分かった。   From this, it was found that the measurement accuracy of the water meter 90 can be improved as compared with the conventional case even in the configuration in which only the downward regulating wall 80 is provided at the lower end of the rectifier 20.

[他の実施形態]
本発明は、前記実施形態に限定されるものではなく、例えば、以下に説明するような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
[Other Embodiments]
The present invention is not limited to the above-described embodiment. For example, the embodiments described below are also included in the technical scope of the present invention, and various other than the following can be made without departing from the scope of the invention. It can be changed and implemented.

(1)上記第1及び第2実施形態では、下向規制壁80の下端縁がテーパー状をなしていたが、図11に示す水道メータ100のように、下向規制壁85は、円筒壁27のうち流入口11Aに最も近い位置から円筒壁27の周方向に沿った両側方に向かうに従って下側部屋13への突出量が段階的に小さくなるように形成してもよい。 (1) In the first and second embodiments, the lower end edge of the downward regulating wall 80 is tapered . However, as in the water meter 100 shown in FIG. 11 , the downward regulating wall 85 is a cylindrical wall. 27 may be formed such that the amount of protrusion to the lower chamber 13 gradually decreases from the position closest to the inflow port 11 </ b> A to the both sides along the circumferential direction of the cylindrical wall 27.

解析ソフトを使って、この水道メータ100に所定流量で通水した状態のシミュレーションを行い、メータケース11内における流速分布を解析した結果、図12(B)に示すように、本実施形態の構成であっても、整流器20の流入口11Aに近い側の通過領域R1に水が誘導され、その結果、図12(A)に示すように、各通過領域R1における流速のばらつきが改善されることが分かった。従って、本実施形態の構成であっても羽根車40の回転を安定させることが可能であり、測定精度の向上を図ることが可能である。 As a result of analyzing the flow velocity distribution in the meter case 11 by performing a simulation of the state where water is passed through the water meter 100 at a predetermined flow rate using analysis software, as shown in FIG. Even so, water is guided to the passing region R1 of the rectifier 20 on the side close to the inlet 11A, and as a result, as shown in FIG. 12 (A) , the variation in the flow velocity in each passing region R1 is improved. I understood. Therefore, even with the configuration of the present embodiment, the rotation of the impeller 40 can be stabilized, and the measurement accuracy can be improved.

(2)図13に示すように、内向規制壁81は、円筒壁27のうち流出口11Bに最も近い位置から円筒壁27の周方向に沿った両側方に向かうに従って内側水平方向への張り出し量が段階的に小さくなるように構成してもよい。 (2) As shown in FIG. 13 , the inward regulating wall 81 projects from the position closest to the outflow port 11 </ b> B in the cylindrical wall 27 toward both sides along the circumferential direction of the cylindrical wall 27. You may comprise so that may become small in steps.

(3)下向規制壁80及び内向規制壁81を整流器20とは別部品で構成して、整流器20の下端部に嵌合可能な構造としてもよい。このようにすれば、従来の整流器を流用し、その整流器に下向規制壁80及び内向規制壁81を嵌合するという容易な変更により、水道メータの測定精度を向上させることが可能になる。 (3) The downward restricting wall 80 and the inward restricting wall 81 may be configured separately from the rectifier 20 so as to be fitted to the lower end of the rectifier 20. If it does in this way, it will become possible to improve the measurement accuracy of a water meter by the easy change of using the conventional rectifier and fitting down regulation wall 80 and inward regulation wall 81 to the rectifier.

本発明の第1実施形態に係る水道メータの側断面図Side sectional view of a water meter according to the first embodiment of the present invention. 羽根車の斜視図Perspective view of impeller 整流器の斜視図Rectifier perspective view (A)整流器の側面図、(B)整流器の底面図(A) Side view of rectifier, (B) Bottom view of rectifier 実施例に対する実験結果を示したグラフThe graph which showed the experimental result with respect to an Example (A)従来品の水平断面における流速分布図、(B)従来品の垂直断面における流速分布図(A) Flow velocity distribution diagram in horizontal section of conventional product, (B) Flow velocity distribution diagram in vertical section of conventional product (A)実施品1の水平断面における流速分布図、(B)実施品1の垂直断面における流速分布図(A) Flow velocity distribution diagram in the horizontal section of the implemented product 1 (B) Flow velocity distribution diagram in the vertical section of the implemented product 1 第2実施形態に係る水道メータの側断面図Side sectional view of a water meter according to the second embodiment 実施例に対する実験結果を示したグラフThe graph which showed the experimental result with respect to an Example (A)実施品2の水平断面における流速分布図、(B)実施品2の垂直断面における流速分布図(A) Flow velocity distribution diagram in horizontal section of the implementation product 2, (B) Flow velocity distribution diagram in vertical section of the implementation product 2 他の実施形態(1)に係る水道メータの側断面図Side sectional view of a water meter according to another embodiment (1) (A)水平断面における流速分布図、(B)垂直断面における流速分布図(A) Flow velocity distribution diagram in horizontal section, (B) Flow velocity distribution diagram in vertical section 他の実施形態(2)に係る整流器の底面図Bottom view of rectifier according to another embodiment (2)

10,90,100 水道メータ(縦型水道メータ)
11 メータケース
11A 流入口
11B 流出口
13 下側部屋(導入路)
20 整流器
27 円筒壁
40 羽根車
80,85 下向規制壁
81 内向規制壁
10, 90, 100 water meter (vertical water meter)
11 Meter case 11A Inlet 11B Outlet 13 Lower room (introduction path)
20 Rectifier 27 Cylindrical wall 40 Impeller 80, 85 Downward restriction wall 81 Inward restriction wall

Claims (6)

円筒壁の内部を放射状に区画してなる整流器を羽根車の下側同軸上に設けると共に、水平方向を向いた流入口から前記整流器の下面開口までの間を連絡した導入路を設け、前記流入口から前記導入路に流れ込んだ流体が、前記整流器、前記羽根車の順番に通過して流出口から排出される縦型水道メータにおいて、
前記整流器には、前記円筒壁における前記流入口側に偏在しかつ前記円筒壁から下方に延設されて前記導入路内に突出した下向規制壁が備えられたことを特徴とする縦型水道メータ。
A rectifier that radially divides the inside of the cylindrical wall is provided on the lower coaxial side of the impeller, and an introduction path that communicates from a horizontal inlet to the lower surface opening of the rectifier is provided. In the vertical water meter in which the fluid flowing into the introduction path from the inlet passes through the rectifier and the impeller in order and is discharged from the outlet,
The rectifier is provided with a downward regulating wall that is unevenly distributed on the inlet side of the cylindrical wall and that extends downward from the cylindrical wall and protrudes into the introduction path. Meter.
円筒壁の内部を放射状に区画してなる整流器を羽根車の下側同軸上に設けると共に、水平方向を向いた流入口から前記整流器の下面開口までの間を連絡した導入路を設け、前記流入口から前記導入路に流れ込んだ流体が、前記整流器、前記羽根車の順番に通過して流出口から排出される縦型水道メータにおいて、
前記整流器には、前記円筒壁から下方に延設されて前記導入路内に突出しかつ、前記円筒壁のうち前記流入口に最も近い位置から前記円筒壁の周方向に沿った両側方に向かうに従って前記導入路内への突出量が連続して徐々に小さくなるように形成された下向規制壁が備えられたことを特徴とする縦型水道メータ。
A rectifier that radially divides the inside of the cylindrical wall is provided on the lower coaxial side of the impeller, and an introduction path that communicates from a horizontal inlet to the lower surface opening of the rectifier is provided. In the vertical water meter in which the fluid flowing into the introduction path from the inlet passes through the rectifier and the impeller in order and is discharged from the outlet,
The rectifier extends downward from the cylindrical wall and protrudes into the introduction path, and from the position closest to the inlet of the cylindrical wall toward both sides along the circumferential direction of the cylindrical wall. A vertical water meter, comprising a downward regulating wall formed so that a protruding amount into the introduction path is gradually reduced.
円筒壁の内部を放射状に区画してなる整流器を羽根車の下側同軸上に設けると共に、水平方向を向いた流入口から前記整流器の下面開口までの間を連絡した導入路を設け、前記流入口から前記導入路に流れ込んだ流体が、前記整流器、前記羽根車の順番に通過して流出口から排出される縦型水道メータにおいて、
前記整流器には、前記円筒壁から下方に延設されて前記導入路内に突出しかつ、前記円筒壁のうち前記流入口に最も近い位置から前記円筒壁の周方向に沿った両側方に向かうに従って前記導入路内への突出量が段階的に小さくなるように形成された下向規制壁が備えられたことを特徴とする縦型水道メータ。
A rectifier that radially divides the inside of the cylindrical wall is provided on the lower coaxial side of the impeller, and an introduction path that communicates from a horizontal inlet to the lower surface opening of the rectifier is provided. In the vertical water meter in which the fluid flowing into the introduction path from the inlet passes through the rectifier and the impeller in order and is discharged from the outlet,
The rectifier extends downward from the cylindrical wall and protrudes into the introduction path, and from the position closest to the inlet of the cylindrical wall toward both sides along the circumferential direction of the cylindrical wall. A vertical water meter, comprising a downward regulating wall formed so that a protruding amount into the introduction path is reduced stepwise.
前記整流器には、前記円筒壁のうち前記流入口とは反対側に偏在しかつ前記円筒壁の下端部から前記円筒壁の中心に向かって水平な板状に張り出し、前記円筒壁の内側に形成された流体通過領域の一部を下方から覆う内向規制壁が備えられたことを特徴とする請求項1乃至3の何れかに記載の縦型水道メータ。   The rectifier is formed on the inner side of the cylindrical wall, which is unevenly distributed on the opposite side to the inlet of the cylindrical wall and projects horizontally from the lower end of the cylindrical wall toward the center of the cylindrical wall. The vertical water meter according to any one of claims 1 to 3, further comprising an inward regulating wall that covers a part of the fluid passage region formed from below. 前記内向規制壁は、前記円筒壁のうち前記流入口に対して最も遠い位置から前記円筒壁の周方向に沿った両側方に向かうに従って前記円筒壁の中心への張り出し量が連続して徐々に小さくなるように形成されたことを特徴とする請求項4に記載の縦型水道メータ。The inward regulating wall gradually and continuously projects toward the center of the cylindrical wall from the position farthest from the inlet of the cylindrical wall toward both sides along the circumferential direction of the cylindrical wall. The vertical water meter according to claim 4, wherein the vertical water meter is formed to be small. 前記内向規制壁は、前記円筒壁のうち前記流入口に対して最も遠い位置から前記円筒壁の周方向に沿った両側方に向かうに従って前記円筒壁の中心への張り出し量が段階的に小さくなるように形成されたことを特徴とする請求項4に記載の縦型水道メータ。The inward regulating wall gradually decreases in the amount of protrusion toward the center of the cylindrical wall from the position farthest from the inlet of the cylindrical wall toward both sides along the circumferential direction of the cylindrical wall. The vertical water meter according to claim 4, wherein the vertical water meter is formed as described above.
JP2006168974A 2006-06-19 2006-06-19 Vertical water meter Active JP5147099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006168974A JP5147099B2 (en) 2006-06-19 2006-06-19 Vertical water meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168974A JP5147099B2 (en) 2006-06-19 2006-06-19 Vertical water meter

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012235561A Division JP5454982B2 (en) 2012-10-25 2012-10-25 Vertical water meter

Publications (2)

Publication Number Publication Date
JP2007333686A JP2007333686A (en) 2007-12-27
JP5147099B2 true JP5147099B2 (en) 2013-02-20

Family

ID=38933287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168974A Active JP5147099B2 (en) 2006-06-19 2006-06-19 Vertical water meter

Country Status (1)

Country Link
JP (1) JP5147099B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320614B1 (en) * 2017-12-01 2018-05-09 株式会社西部水道機器製作所 Water meter

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5224981B2 (en) * 2008-09-09 2013-07-03 東洋計器株式会社 Flow meter case and flow meter
CN106643921B (en) * 2016-01-26 2024-04-19 宁波时代仪表有限公司 Water control machine
CN107255495A (en) * 2017-07-06 2017-10-17 福州金泽科技有限公司 Large diameter helical vane type water meter impeller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0166025U (en) * 1987-07-03 1989-04-27
JP4571416B2 (en) * 2004-02-16 2010-10-27 リコーエレメックス株式会社 Flowmeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6320614B1 (en) * 2017-12-01 2018-05-09 株式会社西部水道機器製作所 Water meter

Also Published As

Publication number Publication date
JP2007333686A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP5147099B2 (en) Vertical water meter
KR890002320B1 (en) Flow volumeter for liquids
JP5454982B2 (en) Vertical water meter
JP2013024770A (en) Tangential flow impeller type water meter
JP3199788U (en) Double box water meter
JP4662236B2 (en) Flow meter
JP5579948B1 (en) Double box water meter
KR101248796B1 (en) Water meter for preventing flowing backward
JP4363622B2 (en) Rectifier and impeller flow meter
JP5022511B1 (en) Inner case for impeller-type water meter, measuring device for impeller-type water meter, and impeller-type water meter
JP4929507B2 (en) Membrane gas meter
JP3907473B2 (en) Flowmeter
JP2003302263A (en) Impeller type flowmeter
JP4148452B2 (en) Single box tangential flow impeller water meter
JP2003207377A (en) Water meter, inner case therefor, mold for inner case, and inner unit
JP2006029795A (en) Flowmeter
JP3943393B2 (en) Flowmeter
JP4540360B2 (en) Flowmeter
JP4571416B2 (en) Flowmeter
JP4641764B2 (en) Impeller type flow meter
JP5062841B2 (en) Water meter and inner case for water meter
JP5088850B2 (en) Flowmeter
JP2003083781A (en) Impeller type water meter
JP4503034B2 (en) Flowmeter
JP5224981B2 (en) Flow meter case and flow meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Ref document number: 5147099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250