JP5147040B2 - Method for producing copper alloy conductor - Google Patents

Method for producing copper alloy conductor Download PDF

Info

Publication number
JP5147040B2
JP5147040B2 JP2006171464A JP2006171464A JP5147040B2 JP 5147040 B2 JP5147040 B2 JP 5147040B2 JP 2006171464 A JP2006171464 A JP 2006171464A JP 2006171464 A JP2006171464 A JP 2006171464A JP 5147040 B2 JP5147040 B2 JP 5147040B2
Authority
JP
Japan
Prior art keywords
copper alloy
mass
temperature
alloy conductor
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006171464A
Other languages
Japanese (ja)
Other versions
JP2008001933A (en
Inventor
洋光 黒田
浩義 蛭田
正義 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006171464A priority Critical patent/JP5147040B2/en
Publication of JP2008001933A publication Critical patent/JP2008001933A/en
Application granted granted Critical
Publication of JP5147040B2 publication Critical patent/JP5147040B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、パンタグラフ等を介して電車に給電を行う電車線用トロリ線、あるいは機器用ケーブル導体等に用いられる、高導電性、高強度の銅合金材を用いた銅合金導体の製造方法に関するものである。 The present invention relates to a method for producing a copper alloy conductor using a high conductivity, high strength copper alloy material, which is used for a trolley wire for a train line that supplies power to a train via a pantograph or the like, or a cable conductor for equipment. Is.

電車線用トロリ線、あるいは機器用ケーブル導体には、導電率が高い硬銅線又は耐摩耗性、耐熱性を有する銅合金材(銅合金線)が使用されている。銅合金材としては、銅母材にSnを0.25〜0.35質量%含有させたものが知られており(特許文献1参照)、新幹線、在来線のトロリ線や機器用ケーブル導体として使用されている。 For the trolley wire for train lines or the cable conductor for equipment, a hard copper wire having high conductivity or a copper alloy material (copper alloy wire) having wear resistance and heat resistance is used. As a copper alloy material, a copper base material containing 0.25 to 0.35 mass % of Sn is known (see Patent Document 1), and a trolley wire of a Shinkansen or a conventional line or a cable conductor for equipment. It is used as

近年、電車の高速化が進められており、それに対応すべく、トロリ線の架線張力を高めることが求められており、電車線の架線張力は、1.5tから2.0t以上に変更される傾向にある。そこで、これらの高張力に耐えうる高強度の銅合金導体が求められてきている。高強度の銅合金導体は、主に、(1)固溶強化型合金、(2)析出強化型合金の2つに分類される。   In recent years, the speed of trains has been increased, and in order to cope with this, it is required to increase the overhead wire tension of the trolley wire, and the overhead wire tension of the train wire is changed from 1.5 t to 2.0 t or more. There is a tendency. Therefore, a high-strength copper alloy conductor that can withstand these high tensions has been demanded. High-strength copper alloy conductors are mainly classified into two types: (1) solid solution strengthened alloys and (2) precipitation strengthened alloys.

(1)の固溶強化型合金としては、Cu−Ag合金(高濃度銀)、Cu−Sn合金、Cu−Sn−In合金、Cu−Mg合金、Cu−Sn−Mg合金などが挙げられる。
固溶強化型合金は、いずれも酸素含有量が10質量ppm(0.001質量%)以下であり、強度と共に伸び特性に優れていることから、トロリ線の母材となる銅合金荒引線を、連続鋳造圧延により、銅合金溶湯から直接製造することができる。
Examples of the solid solution strengthening type alloy (1) include a Cu—Ag alloy (high concentration silver), a Cu—Sn alloy, a Cu—Sn—In alloy, a Cu—Mg alloy, and a Cu—Sn—Mg alloy.
All of the solid solution strengthened alloys have an oxygen content of 10 ppm by mass (0.001% by mass ) or less and are excellent in elongation characteristics as well as strength. It can be directly produced from a molten copper alloy by continuous casting and rolling.

固溶強化型合金を使用した従来のトロリ線の製造方法としては、例えば、Snを0.4〜0.7質量%含有した銅合金の鋳造材を、700℃以上の温度で熱間圧延して圧延材とする。この圧延材を再度500℃以下の温度で加熱し、仕上げ圧延して荒引線とし、この荒引線を伸線加工してトロリ線を製造する方法がある(特許文献2参照)。 As a conventional method for producing a trolley wire using a solid solution strengthened alloy, for example, a copper alloy casting material containing 0.4 to 0.7 mass % of Sn is hot-rolled at a temperature of 700 ° C. or higher. And rolled material. There is a method in which this rolled material is heated again at a temperature of 500 ° C. or less, finish-rolled to form a rough drawn wire, and this rough drawn wire is drawn to produce a trolley wire (see Patent Document 2).

また、他の連続鋳造圧延可能な銅合金として、Cu−O−Sn合金がある。この合金は、その内部にSnが2〜3μm以上の晶出物(SnO2)として存在しており、強度と伸び特性は、酸素含有量が10質量ppm以下のCu−Sn合金と同等であることが知られている。この合金も、析出強化作用や分散強化作用よりも、固溶強化作用の方が強い合金である。 Moreover, there exists a Cu-O-Sn alloy as another copper alloy which can be continuously cast-rolled. This alloy is present inside as a crystallized substance (SnO 2 ) with Sn of 2 to 3 μm or more, and the strength and elongation characteristics are equivalent to those of a Cu—Sn alloy having an oxygen content of 10 mass ppm or less. It is known. This alloy is also an alloy having stronger solid solution strengthening action than precipitation strengthening action and dispersion strengthening action.

ところで、これらの固溶強化型合金は、固溶強化元素の含有量を多くすればするほど強度向上を図ることができるが、それに伴って極端に導電率が低下してしまうので電流容量を大きくすることができず、電車線として適さなくなってしまう。例えば、特許文献2記載の製造方法は、Snの含有量が0.4〜0.7質量%と多いので、導電率が低くなってしまう。よって、現状のCu−Sn系合金では、高張力架線として必要な強度を有し、かつ、良好な導電率を有する銅合金導体を製造することは困難である。ここで、高強度かつ高導電率の電車線を得るためには、Snと共にさらに別の元素を添加することが考えられる。この場合、仕上げ圧延(最終圧延)を500℃以下の温度で行うと、圧延時に圧延材の割れが多くなるので、荒引線の外観品質が極端に低下してしまい、延いては電車線の強度が極端に低下するという問題があった。 By the way, these solid solution strengthened alloys can be improved in strength as the content of the solid solution strengthening element is increased. However, since the conductivity is extremely lowered with this, the current capacity is increased. I can't do it and it's not suitable as a train line. For example, the manufacturing method described in Patent Document 2 has a high Sn content of 0.4 to 0.7% by mass , resulting in low electrical conductivity. Therefore, it is difficult to produce a copper alloy conductor having the necessary strength as a high-strength overhead wire and good conductivity with the current Cu—Sn alloy. Here, in order to obtain a high-strength and high-conductivity train line, it is conceivable to add another element together with Sn. In this case, if finish rolling (final rolling) is performed at a temperature of 500 ° C. or less, cracks of the rolled material increase at the time of rolling, so that the appearance quality of the rough drawn wire is extremely deteriorated, and thus the strength of the train line. There has been a problem that is extremely lowered.

他方、(2)の析出強化型合金としては、Cu−Zr合金、Cu−Cr合金、Cu−Cr−Zr合金などが挙げられる。しかし、これらの析出強化型合金は、硬度及び引張強度は非常に高いものの、硬度が高い分連続鋳造圧延における圧延ロールに過大な負荷がかかってしまい、連続鋳造圧延による製造ができない。このため、押出しなどの方法によるバッチ式でしか製造できない。加えて、析出強化型合金は、中間工程において析出強化物を析出させるための熱処理が必要である。よって、析出強化型合金は、連続鋳造圧延で製造可能な固溶強化型合金と比較して、生産性が低く、製造コストが高くなるという問題があった。   On the other hand, examples of the precipitation strengthening type alloy (2) include a Cu—Zr alloy, a Cu—Cr alloy, and a Cu—Cr—Zr alloy. However, although these precipitation strengthened alloys have very high hardness and tensile strength, an excessive load is applied to the rolling roll in continuous casting and rolling due to the high hardness, and it is impossible to manufacture by continuous casting and rolling. For this reason, it can manufacture only by the batch type by methods, such as extrusion. In addition, the precipitation-strengthened alloy requires heat treatment for precipitating the precipitation strengthened material in an intermediate step. Therefore, the precipitation-strengthened alloy has a problem that the productivity is low and the manufacturing cost is high as compared with a solid solution strengthened alloy that can be manufactured by continuous casting and rolling.

さらに、これらの問題を解決するために、Sn添加合金に別な元素を添加するとともに、製造方法に工夫を施して高強度化と高導電率化を両立するものが知られている(特許文献3参照)。
特公昭59−43332号公報 特開平6−240426号公報 特開2005−126790号公報
Furthermore, in order to solve these problems, it is known that another element is added to the Sn-added alloy and the manufacturing method is devised to achieve both high strength and high conductivity (Patent Document) 3).
Japanese Patent Publication No.59-43332 JP-A-6-240426 JP 2005-126790 A

最近の電車線路はさらなる高速化が進められており、それに対応すべく、トロリ線の架線張力を高めることが求められている。さらに、電車通過密度の高い線路ではトロリ線の大電流容量化の要求も一段と強い。   Recent train tracks have been further increased in speed, and in order to cope with this, it is required to increase the tension of the trolley wire. In addition, the demand for higher current capacity of the trolley line is even stronger on lines with high train passage density.

また、機器用ケーブル導体においても、使用環境の面から耐屈曲性の高い、つまり高強度の導体が求められており、さらに、軽量化、小型化の要求から導体の高導電性化が必要とされている。   Also, cable conductors for equipment are required to have high bending resistance, that is, high-strength conductors from the viewpoint of the use environment, and further, it is necessary to increase the conductivity of the conductors in order to reduce weight and size. Has been.

しかしながら、特許文献3記載の銅合金導体においても、このような最近の電車線用トロリ線、あるいは機器用ケーブル導体として要求される特性を十分にバランス良く満足しているとは言い難く、更なる高強度化と高導電率化を両立した銅合金導体を、生産性に優れた連続鋳造圧延法を用いて製造することが要望されている。   However, even in the copper alloy conductor described in Patent Document 3, it is difficult to say that the characteristics required for such a recent trolley wire for train lines or cable conductors for equipment are sufficiently satisfied, and further. There is a demand for producing a copper alloy conductor that achieves both high strength and high electrical conductivity by using a continuous casting and rolling method with excellent productivity.

従って、本発明の目的は、近年の電車線用トロリ線、あるいは機器用ケーブル導体等に要求される高強度及び高導電性を両立した銅合金材を用いた銅合金導体の製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing a copper alloy conductor using a copper alloy material having both high strength and high conductivity required for a recent trolley wire for train lines or cable conductors for equipment. There is.

上記目的を達成すべく本発明に係る銅合金導体の製造方法は、酸素を0.001〜0.1質量%(10〜1000質量ppm)含む銅母材に第1の添加元素としてSnを0.4(0.4を除く)〜0.7質量%、及び第2の添加元素としてInを0.01〜0.4質量%、かつ前記第1の添加元素と前記第2の添加元素の合計を0.41(0.41を除く)〜0.8質量%の割合として添加して溶解を行い、残部が銅と不可避的不純物からなる銅合金溶湯を形成する溶解工程と、前記銅合金溶湯を用いて1100〜1150℃の温度で鋳造を行うと共に、鋳造材の温度を銅合金溶湯の融点より少なくとも15℃以上低い温度まで急速冷却して鋳造材とする鋳造工程と、前記鋳造材の温度を900℃以下に調整した状態で、前記鋳造材に、最終圧延温度が500〜600℃となるように調整した複数段の熱間圧延加工を行って、圧延材を形成する熱間圧延工程と前記圧延材に、−193〜100℃の温度で、加工度50%以上の冷間加工を行って、銅合金導体を形成する冷間圧延工程を備えることを特徴とする。 In order to achieve the above object, the method for producing a copper alloy conductor according to the present invention includes a copper base material containing 0.001 to 0.1 mass % (10 to 1000 ppm by mass ) of oxygen with Sn as the first additive element. .4 (excluding 0.4) 0.7 wt%, and 0.01 to 0.4 wt% in as second additive element, and said first additive element of the second additional element A total of 0.41 (excluding 0.41) to 0.8% by mass is added and dissolved, and a melting step for forming a copper alloy melt comprising the copper and inevitable impurities as the balance, and the copper alloy A casting process using the molten metal at a temperature of 1100 to 1150 ° C., and rapidly cooling the cast material to a temperature at least 15 ° C. lower than the melting point of the copper alloy molten metal to obtain a cast material; In a state where the temperature is adjusted to 900 ° C. or lower, What hot rolling line of a plurality of stages of extension temperature was adjusted to 500 to 600 ° C., the rolled material and hot rolling step of forming a rolled material, at a temperature of -193~100 ° C., processed A cold rolling step of forming a copper alloy conductor by performing cold working at a degree of 50% or more is provided.

更に、前記銅合金導体を用いて電車線用トロリ線としたり、前記銅合金導体で構成される単線材又は撚線材の周りに絶縁層を設けてケーブルとしたりすることができる。   Furthermore, the copper alloy conductor can be used as a trolley wire for a train line, or a cable can be provided by providing an insulating layer around a single wire or a stranded wire made of the copper alloy conductor.

本発明によれば、近年の電車線用トロリ線、あるいは機器用ケーブル導体等に要求される高強度及び高導電性を両立した銅合金材を用いた銅合金導体を良好な生産性で製造可能な製造方法を提供することができる。 According to the present invention, a copper alloy conductor using a copper alloy material having both high strength and high conductivity required for a trolley wire for a train line or a cable conductor for equipment in recent years can be manufactured with good productivity. A simple manufacturing method can be provided.

以下、本発明の好適な実施形態について添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings.

図1に、本発明の好適な一実施形態に係る銅合金導体の製造工程を説明するフローチャートを示す。   In FIG. 1, the flowchart explaining the manufacturing process of the copper alloy conductor which concerns on suitable one Embodiment of this invention is shown.

図1に示すように、本実施の形態に係る銅合金導体18の製造方法は、銅母材11にSn12及び添加元素13を添加して溶解し、銅合金溶湯14を形成する溶解工程(F1)と、その銅合金溶湯14を鋳造して鋳造材15を形成する鋳造工程(F2)と、その鋳造材15に複数段(多段)の熱間圧延加工を施して圧延材16を形成する熱間圧延工程(F3)と、その圧延材16を洗浄し、巻取って荒引線17とする洗浄・巻取り工程(F4)と、その巻取った荒引線17を送り出し、その荒引線17に冷間加工を施して銅合金導体18を形成する冷間圧延工程(F5)と、を含むものである。以下、各工程について詳細に説明する。   As shown in FIG. 1, the manufacturing method of the copper alloy conductor 18 which concerns on this Embodiment adds and melt | dissolves Sn12 and the additional element 13 in the copper base material 11, and melt | dissolves (F1) which forms the copper alloy molten metal 14 ), A casting step (F2) for casting the molten copper alloy 14 to form a cast material 15, and heat for forming a rolled material 16 by subjecting the cast material 15 to multiple stages (multi-stage) hot rolling. The intermediate rolling step (F3), the rolling material 16 is washed, wound and wound into a rough drawn wire 17 (F4), and the wound rough drawn wire 17 is sent out, and the rough drawn wire 17 is cooled. And a cold rolling step (F5) for forming the copper alloy conductor 18 by performing a hot work. Hereinafter, each step will be described in detail.

(溶解工程:F1)
先ず、酸素を0.001〜0.1質量%(10〜1000質量ppm)含む銅母材11に、Sn12を0.4(0.4は含まない)〜0.7質量%、好ましくは0.5〜0.6質量%、添加元素13としてInを0.01〜0.4質量%、好ましくは0.01〜0.2質量%、かつSn12及び添加元素13を合計0.41(0.41を除く)〜0.8質量%、好ましくは0.51〜0.7質量%の割合で添加して溶解を行うことで、銅合金溶湯14が形成される。添加元素13は、Sn12よりも酸素との親和力が大きな元素であるため、Snよりも優先的に酸化され、最終的に得られる銅合金導体18の結晶組織に生成、分散している酸化物は、その大半(80%以上)が添加元素の酸化物となり、Sn酸化物は殆ど生成、分散しない。よって、添加したSn12の大部分は、銅と合金化され、銅合金導体18のマトリックスを形成する。
(Dissolution process: F1)
First, the copper base material 11 containing 0.001 to 0.1% by mass (10 to 1000 ppm by mass ) of oxygen is added to Sn12 in the range of 0.4 (not including 0.4) to 0.7% by mass , preferably 0. .5~0.6 mass%, 0.01 to 0.4 mass% of in as an additive element 13, preferably 0.01 to 0.2 wt%, and the sum of Sn12 and additive elements 13 0.41 (0 The molten copper alloy 14 is formed by adding and melting at a ratio of 0.8 to 0.8% by mass , preferably 0.51 to 0.7% by mass . Since the additive element 13 is an element having an affinity for oxygen larger than that of Sn12, the oxide that is preferentially oxidized over Sn and formed and dispersed in the crystal structure of the finally obtained copper alloy conductor 18 is Most of them (80% or more) become oxides of additive elements, and Sn oxides are hardly generated or dispersed. Therefore, most of the added Sn 12 is alloyed with copper to form a matrix of the copper alloy conductor 18.

Sn12及び添加元素13の総含有量が0.41質量%未満では、本実施の形態に係る製造方法を適用しても、銅合金導体18の強度向上効果は認められない。また、総含有量が0.8質量%を超えると、鋳造材15の硬度が高くなり、圧延加工時の変形抵抗が高くなるので、圧延ロールに対する負荷が極端に大きくなってしまい、製品化が困難となってしまう。 When the total content of Sn12 and additive element 13 is less than 0.41% by mass, the effect of improving the strength of the copper alloy conductor 18 is not recognized even when the manufacturing method according to the present embodiment is applied. Further, if the total content exceeds 0.8% by mass, the hardness of the cast material 15 is increased, and the deformation resistance during the rolling process is increased, so that the load on the rolling roll is extremely increased, and the product is commercialized. It becomes difficult.

したがって、本実施の形態では、Sn12及び添加元素13の総含有量を
0.41〜0.8質量%の範囲で適切に調整することにより、[実施例]において後述するように、銅合金導体18の引張強度を450MPa以上に向上させると共に導電率を60%IACS以上に調整することが可能である。
Accordingly, in the present embodiment, by appropriately adjusting the total content of Sn12 and additive element 13 in the range of 0.41 to 0.8 mass %, as described later in [Example], a copper alloy conductor It is possible to improve the tensile strength of 18 to 450 MPa or higher and to adjust the conductivity to 60% IACS or higher.

Sn12及び添加元素13の総含有量が多くなると、熱間圧延工程(F3)における熱間圧延加工時に、圧延材16の表面傷が多くなる傾向にある。よって、Sn12及び添加元素13の総含有量が多い場合(例えば0.6質量%以上の場合)には、圧延材16の表面傷を減少させるべく、銅母材11に、Sn12及び添加元素13と共に、さらにPを添加してもよい。Pは好ましくは2ppm以上0.01質量%(100質量ppm)以下の割合で含有させる。Pの含有量が2ppm未満だと、銅線表面傷を低減させる効果はあまり認められず、Pの含有量が100質量ppmを超えると、銅合金導体18の導電率が低
下してしまう。
When the total content of Sn12 and additive element 13 increases, the surface scratches of the rolled material 16 tend to increase during hot rolling in the hot rolling step (F3). Therefore, when the total content of Sn12 and additive element 13 is large (for example, 0.6% by mass or more), Sn 12 and additive element 13 are added to copper base material 11 in order to reduce surface scratches on rolled material 16. In addition, P may be further added. P is preferably contained in a proportion of 2 ppm to 0.01 mass % (100 mass ppm). If the P content is less than 2 ppm, the effect of reducing the surface scratches on the copper wire is not recognized so much. If the P content exceeds 100 ppm by mass , the conductivity of the copper alloy conductor 18 is lowered.

また、Sn12及び添加元素13の総含有量が多くなると、鋳造工程(F2)後における鋳造材15の結晶粒がやや大きくなる傾向(延いては銅合金導体18の強度がやや低下する傾向)にある。よって、Sn12及び添加元素13の総含有量が多い場合(例えば0.5質量%以上の場合)には、鋳造材15の結晶粒を微細にするべく、銅母材11に、Sn12及び添加元素13と共に、さらにBを添加してもよい。Bは好ましくは2ppm以上0.01質量%(100質量ppm)以下の割合で含有させる。Bの含有量が2ppm未満だと、結晶粒を微細にする効果(延いては銅合金導体18の強度向上効果)はあまり認められず、Bの含有量が100質量ppmを超えると、銅合金導体18の導電率が低下してしまう。 Moreover, when the total content of Sn12 and the additive element 13 increases, the crystal grains of the cast material 15 after the casting step (F2) tend to become slightly larger (and thus the strength of the copper alloy conductor 18 tends to decrease slightly). is there. Therefore, when the total content of Sn12 and additive element 13 is large (for example, 0.5% by mass or more), Sn12 and additive element are added to the copper base material 11 in order to make the crystal grains of the cast material 15 fine. In addition to 13, B may be added. B is preferably contained in a proportion of 2 ppm to 0.01 mass % (100 mass ppm). If the content of B is less than 2 ppm, the effect of making the crystal grains fine (and hence the effect of improving the strength of the copper alloy conductor 18) is not so much observed. If the content of B exceeds 100 mass ppm, the copper alloy The electrical conductivity of the conductor 18 will fall.

さらに、P及びBの両方を、合計0.02質量%(200質量ppm)以下の割合で含ませてもよい。 Furthermore, you may contain both P and B in the ratio of a total of 0.02 mass % (200 mass ppm) or less.

(鋳造工程:F2)
次に、前工程で得られた銅合金溶湯14は、SCR方式の連続鋳造圧延に供される。具体的には、SCR連続鋳造の通常の鋳造温度 (1120〜1200℃)よりも低い温度(1100〜1150℃)で鋳造を行うと共に、鋳型(銅鋳型)を強制水冷し、銅合金溶湯14の凝固温度より少なくとも15℃以上低い温度まで、鋳造材15が急速冷却される。
(Casting process: F2)
Next, the molten copper alloy 14 obtained in the previous step is subjected to SCR continuous casting and rolling. Specifically, casting is performed at a temperature (1100 to 1150 ° C.) lower than the normal casting temperature (1120 to 1200 ° C.) of SCR continuous casting, and the mold (copper mold) is forcibly water-cooled, The cast material 15 is rapidly cooled to a temperature that is at least 15 ° C. lower than the solidification temperature.

これらの鋳造処理及び急冷処理によって鋳造材15中に晶出(又は析出)する酸化物のサイズ、及び鋳造材15の結晶粒サイズが、通常の鋳造温度で鋳造を行う場合又は鋳造材15を[銅合金溶湯14の凝固温度−15℃]を超える温度までしか冷却しない場合と比較して、それぞれ小さくなる。   The size of the oxide crystallized (or precipitated) in the cast material 15 by the casting process and the quenching process, and the crystal grain size of the cast material 15 are determined when the casting material 15 is cast at a normal casting temperature or [ Compared with the case where it cools only to the temperature exceeding the solidification temperature of the copper alloy molten metal -15 ° C.], each becomes smaller.

(熱間圧延工程:F3)
次に、連続鋳造圧延における通常の熱間圧延温度よりも50〜100℃低い温度、すなわち鋳造材15の温度を900℃以下、好ましくは750℃〜900℃に調整した状態で、鋳造材15に、熱間圧延が多段に施される。最終圧延時において、500〜600℃の圧延温度で熱間圧延加工を施し、圧延材16が形成される。最終圧延温度が、500℃未満だと、圧延加工時に表面傷が多く発生してしまい、表面品質の低下を招き、また、600℃を超えると、結晶組織が従来と同レベルの粗大組織となってしまう。
(Hot rolling process: F3)
Next, in a state where the temperature of the casting material 15 is 50 to 100 ° C. lower than the normal hot rolling temperature in continuous casting rolling, that is, the temperature of the casting material 15 is adjusted to 900 ° C. or less, preferably 750 ° C. to 900 ° C. The hot rolling is performed in multiple stages. At the time of final rolling, hot rolling is performed at a rolling temperature of 500 to 600 ° C., and the rolled material 16 is formed. If the final rolling temperature is less than 500 ° C., many surface scratches occur during the rolling process, resulting in deterioration of the surface quality, and if it exceeds 600 ° C., the crystal structure becomes a coarse structure of the same level as before. End up.

この熱間圧延により、前工程で晶出(又は析出)した比較的小サイズの酸化物が分断され、酸化物のサイズが更に小さくなる。また、本実施の形態に係る製造方法における熱間圧延は、通常の熱間圧延よりも低温で行うものであるため、圧延時に導入された転位が再配列し、結晶粒内に微小な亜粒界が形成される。なお、亜粒界は、結晶粒内に存在する方位が少し異なる複数の結晶間の境界である。   By this hot rolling, a relatively small size oxide crystallized (or precipitated) in the previous step is divided, and the size of the oxide is further reduced. In addition, since the hot rolling in the manufacturing method according to the present embodiment is performed at a lower temperature than normal hot rolling, the dislocations introduced during rolling are rearranged, and small subgrains are formed in the crystal grains. A field is formed. The subgrain boundary is a boundary between a plurality of crystals having slightly different orientations existing in the crystal grains.

(洗浄・巻取り工程:F4)
次に、圧延材16を洗浄し、巻取りを行い、荒引線17とされる。巻取った荒引線17の線径は、例えば、8〜40mm、好ましくは30mm以下とされる。例えば、トロリ線における荒引線17の線径は、20〜30mmとされる。
(Washing and winding process: F4)
Next, the rolled material 16 is washed and wound to be a rough drawn wire 17. The wire diameter of the wound rough drawing wire 17 is, for example, 8 to 40 mm, preferably 30 mm or less. For example, the wire diameter of the rough drawn wire 17 in the trolley wire is 20 to 30 mm.

(冷間圧延工程:F5)
最後に、巻取った荒引線17を送り出し、その荒引線17に、−193℃(液体窒素温度)〜100℃、好ましくは−193〜25℃以下の温度で冷間加工(伸線加工)を行う。これによって、銅合金導体18が形成される。ここで、連続伸線時の加工熱が、銅合金導体18に及ぼす影響(強度低下など)を少なくするため、引抜きダイスなどの冷間加工装置の冷却を行い、線材温度が100℃以下、好ましくは25℃以下となるように調整を行う。また、銅合金導体18の強度を向上させるためには、熱間圧延加工における加工度を高めて圧延材16、つまり荒引線17の強度を十分に向上させておくことが必要である他に、冷間加工における加工度を50%以上とすることが必要である。ここで、加工度が50%未満だと450MPaを超える引張強度が得られない。
(Cold rolling process: F5)
Finally, the drawn rough wire 17 is sent out, and cold working (drawing) is performed on the rough wire 17 at a temperature of −193 ° C. (liquid nitrogen temperature) to 100 ° C., preferably −193 to 25 ° C. or less. Do. Thereby, the copper alloy conductor 18 is formed. Here, in order to reduce the influence (strength reduction, etc.) on the copper alloy conductor 18 due to the processing heat at the time of continuous wire drawing, a cold working apparatus such as a drawing die is cooled, and the wire temperature is preferably 100 ° C. or less. Is adjusted to 25 ° C. or lower. Moreover, in order to improve the strength of the copper alloy conductor 18, it is necessary to increase the workability in the hot rolling process and sufficiently improve the strength of the rolled material 16, that is, the rough drawn wire 17, It is necessary to set the degree of processing in cold working to 50% or more. Here, if the degree of work is less than 50%, a tensile strength exceeding 450 MPa cannot be obtained.

銅合金導体18は、その後、用途に応じた所望形状の線材、条材(板材)などに加工される。例えば、電車線用トロリ線では、断面積を110〜170mm2とされる。 Thereafter, the copper alloy conductor 18 is processed into a wire, strip (plate), or the like having a desired shape according to the application. For example, a trolley wire for a train line has a cross-sectional area of 110 to 170 mm 2 .

以上、説明した各工程において、溶解工程(F1)から洗浄・巻取り工程(F4)までは、既存又は慣用の連続鋳造圧延設備(SCR連続鋳造機)を適用することができる。また、冷間加工工程(F5)は、既存又は慣用の冷間加工装置を適用することができる。   As described above, in each of the steps described above, existing or conventional continuous casting and rolling equipment (SCR continuous casting machine) can be applied from the melting step (F1) to the cleaning / winding step (F4). In addition, an existing or conventional cold working apparatus can be applied to the cold working step (F5).

(本実施形態の作用)
従来の銅合金導体は、結晶組織が粗大であった。またSnなどの酸化物は、平均粒径(又は長さ)が1μmを超える粗大酸化物であり、これらの結果、従来の銅合金導体は、引張強度があまり十分ではなかった。
(Operation of this embodiment)
Conventional copper alloy conductors have a coarse crystal structure. Further, the oxide such as Sn is a coarse oxide having an average particle size (or length) exceeding 1 μm, and as a result, the conventional copper alloy conductor has not been sufficiently high in tensile strength.

これに対して、本実施の形態に係る銅合金導体18の製造方法においては、銅母材11に、Sn12を0.4(0.4は含まない)〜0.7質量%、Inからなる添加元素13を0.01〜0.4質量%かつ、Sn12及び添加元素13を合計0.41(0.41を除く)〜0.8質量%の割合で添加して銅合金溶湯14を形成し、その銅合金溶湯14を用い、低温で連続鋳造(鋳造温度が1100〜1150℃)、低温圧延加工(最終圧延温度が500〜600℃)、及び加工熱が作用しないように100℃以下に温度調節した冷間加工を行い、銅合金導体18を製造している。 On the other hand, in the manufacturing method of the copper alloy conductor 18 according to the present embodiment, the copper base material 11 is made of Sn12 from 0.4 (not including 0.4) to 0.7 mass % and In. Additive element 13 is added in an amount of 0.01 to 0.4 mass %, and Sn12 and additive element 13 are added in a ratio of 0.41 (excluding 0.41) to 0.8 mass % to form molten copper alloy 14. Then, using the molten copper alloy 14, continuous casting at a low temperature (casting temperature is 1100 to 1150 ° C.), low-temperature rolling (final rolling temperature is 500 to 600 ° C.), and 100 ° C. or less so that processing heat does not act. The cold-working which adjusted the temperature is performed and the copper alloy conductor 18 is manufactured.

これらによって本実施の形態に係る銅合金導体18は、従来の銅合金導体と比較して結晶組織が微細、つまり銅合金導体18の結晶粒の平均粒径が小さくなり、100μm以下となる。また、銅合金導体18のマトリックスには、添加元素13の酸化物の80%以上が、平均粒径が1μm以下の微小酸化物として、各結晶粒の結晶粒界に分散する。さらに、結晶粒内には、微小な亜粒界(亜境界)が形成される。この亜粒界と、結晶粒界に分散した微小酸化物とによって、鋳造材15が有する熱(顕熱)により、結晶粒内に存在する方位が少し異なる結晶や結晶粒界が移動するのが抑制される。その結果、熱間圧延時における各結晶及び各結晶粒の成長が抑制されるため、圧延材16の結晶組織が微細となる。   As a result, the copper alloy conductor 18 according to the present embodiment has a finer crystal structure than the conventional copper alloy conductor, that is, the average grain size of the crystal grains of the copper alloy conductor 18 is reduced to 100 μm or less. In the matrix of the copper alloy conductor 18, 80% or more of the oxide of the additive element 13 is dispersed as fine oxide having an average particle diameter of 1 μm or less at the crystal grain boundaries of each crystal grain. Furthermore, minute subgrain boundaries (subboundaries) are formed in the crystal grains. Due to the sub-grain boundaries and the minute oxides dispersed in the crystal grain boundaries, the crystals and grain boundaries that have slightly different orientations in the crystal grains move due to the heat (sensible heat) of the cast material 15. It is suppressed. As a result, since the growth of each crystal and each crystal grain during hot rolling is suppressed, the crystal structure of the rolled material 16 becomes fine.

(本実施形態の効果)
以上より、本実施の形態に係る銅合金導体18の強化は、結晶粒の微細化による銅合金導体マトリックスの強度向上と、マトリックスに微小酸化物を分散させたことによる分散強化とによるものであり、特許文献2等に記載されたSnの固溶強化だけによる強化と比較して、導電率低下の割合も低く抑えることができる。よって、本実施の形態に係る製造方法によれば、導電率の大幅な低下を招くことなく、高い引張強度を有する銅合金導体18を得ることができる。つまり後述の[実施例]で述べるように、60%IACS以上の高い導電率を有し、かつ、高張力架線で必要とされる450MPa以上の高い強度(引張
強度)を有する銅合金導体18を得ることができる。
(Effect of this embodiment)
As described above, the strengthening of the copper alloy conductor 18 according to the present embodiment is due to the improvement in strength of the copper alloy conductor matrix by refining crystal grains and the dispersion strengthening by dispersing fine oxides in the matrix. Compared with the strengthening only by solid solution strengthening of Sn described in Patent Document 2 and the like, the rate of decrease in conductivity can be suppressed to a low level. Therefore, according to the manufacturing method according to the present embodiment, the copper alloy conductor 18 having a high tensile strength can be obtained without causing a significant decrease in conductivity. That is, as described in [Example] described later, the copper alloy conductor 18 having a high conductivity of 60% IACS or more and a high strength (tensile strength) of 450 MPa or more required for a high-tensile overhead wire. Can be obtained.

また、本実施の形態に係る製造方法は、既存あるいは慣用の連続鋳造圧延設備や冷間加工装置を使用することができるので、新規の設備投資を必要とせず、高導電率、高強度の銅合金導体18を低コストで製造することができる。   In addition, since the manufacturing method according to the present embodiment can use existing or conventional continuous casting and rolling equipment and cold working equipment, it does not require new equipment investment, and has high conductivity and high strength copper. The alloy conductor 18 can be manufactured at low cost.

また、本実施の形態に係る製造方法により得られた銅合金導体18を用いて、単線材又は撚線材を形成し、その単線材又は撚線材の周りに、絶縁層を設けることで、高導電率、高強度のケーブル(配線材、給電材)を得ることもできる。   Further, by using the copper alloy conductor 18 obtained by the manufacturing method according to the present embodiment, a single wire material or a stranded wire material is formed, and an insulating layer is provided around the single wire material or the stranded wire material. High-strength cables (wiring materials, power supply materials) can also be obtained.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明について、実施例に基づいて説明するが、本発明はこれらの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to these Examples.

銅母材に添加する添加元素の種類及び量、熱間圧延加工の最終圧延温度などを変え、直径が23mmの銅合金導体(電車線用銅合金荒引線)を作製した。銅合金導体は、本発明に係る銅合金導体の製造方法を用いて製造した。   A copper alloy conductor (copper alloy wire for train wire) having a diameter of 23 mm was prepared by changing the kind and amount of the additive element added to the copper base material, the final rolling temperature of the hot rolling process, and the like. The copper alloy conductor was manufactured using the method for manufacturing a copper alloy conductor according to the present invention.

(実施例1〜3)
酸素を10質量ppm含む各銅母材に、Snを0.5質量%、Inをそれぞれ0.1、0.2、0.3質量%の割合で含有させた銅合金材を用い、銅合金導体を作製した。最終圧延温度はいずれも560℃とした。
(Examples 1-3)
Oxygen to each copper base material containing 10 mass ppm, 0.5 wt% of Sn, a copper alloy material which contains In at a rate of respectively 0.1, 0.2, 0.3 mass%, a copper alloy A conductor was produced. The final rolling temperature was 560 ° C. for all.

(実施例4〜6)
酸素を350質量ppm含む各銅母材を使用した以外は、実施例1〜3同様に銅合金導体を作製した。
(Examples 4 to 6)
A copper alloy conductor was produced in the same manner as in Examples 1 to 3, except that each copper base material containing 350 mass ppm of oxygen was used.

(実施例7〜9)
酸素を500質量ppm含む各銅母材を使用した以外は、実施例1〜3同様に銅合金導体を作製した。
(Examples 7 to 9)
A copper alloy conductor was produced in the same manner as in Examples 1 to 3, except that each copper base material containing 500 mass ppm of oxygen was used.

(実施例10、11)
酸素を350質量ppm含む各銅母材にSnを0.5質量%、Inをそれぞれ0.3質量%の割合で含有させた銅合金材を用い、銅合金導体を作製した。最終圧延温度はいずれも560℃とした。また、実施例10については、Pを0.0050質量%の割合で更に含め、実施例11については、Bを0.0050質量%の割合で更に含めた。
(Examples 10 and 11)
Oxygen 350 mass ppm 0.5 wt% of Sn on each of copper base material containing, a copper alloy material which contains In at a rate of respectively 0.3 wt%, to prepare a copper alloy conductor. The final rolling temperature was 560 ° C. for all. Moreover, about Example 10, P was further included in the ratio of 0.0050 mass %, and about Example 11, B was further included in the ratio of 0.0050 mass %.

(比較例1〜3)
酸素を350質量ppm含む各銅母材に、Snを0.2質量%ずつの割合で含有させた以外は、実施例4〜6と同様に銅合金導体を作製した。
(Comparative Examples 1-3)
Copper alloy conductors were produced in the same manner as in Examples 4 to 6 except that each copper base material containing 350 mass ppm of oxygen contained Sn in a proportion of 0.2 mass %.

(比較例4〜6)
最終圧延温度を650℃とした以外は、実施例4〜6と同様に銅合金導体を作製した。
(比較例7〜9)
最終圧延温度を450℃とした以外は、実施例4〜6と同様に銅合金導体を作製した。
(Comparative Examples 4-6)
Copper alloy conductors were produced in the same manner as in Examples 4 to 6 except that the final rolling temperature was 650 ° C.
(Comparative Examples 7-9)
Copper alloy conductors were produced in the same manner as in Examples 4 to 6 except that the final rolling temperature was 450 ° C.

実施例1〜11及び比較例1〜6の銅合金導体の製造条件(酸素含有量、添加元素の種類及び含有量、最終圧延温度)を表1に示す。   Table 1 shows the production conditions (oxygen content, type and content of additive element, final rolling temperature) of the copper alloy conductors of Examples 1 to 11 and Comparative Examples 1 to 6.

Figure 0005147040
Figure 0005147040

次に、実施例1〜11及び比較例1〜6の銅合金導体を用い、断面積が130mm2のトロリ線をそれぞれ作製した。各トロリ線の引張強度(MPa)、導電率(%IACS)、酸化物の割合、結晶粒サイズ、表面品質、熱間圧延性を表2に示す。 Next, using the copper alloy conductors of Examples 1 to 11 and Comparative Examples 1 to 6, trolley wires having a cross-sectional area of 130 mm 2 were prepared. Table 2 shows the tensile strength (MPa), electrical conductivity (% IACS), oxide ratio, crystal grain size, surface quality, and hot rollability of each trolley wire.

酸化物の割合については、平均粒径が1μm以下の酸化物の割合が80%以上のものを○、80%未満のものを×とした。   Regarding the ratio of oxides, the ratio of oxides having an average particle diameter of 1 μm or less is 80% or more, and the case of less than 80% is ×.

結晶粒サイズについては、比較例4の銅合金導体を用いたトロリ線における結晶粒の平均粒径を1とした時、結晶粒のサイズが0.5未満のものを○、0.5〜1のものを×とした。   As for the crystal grain size, when the average grain size of the crystal grains in the trolley wire using the copper alloy conductor of Comparative Example 4 is 1, the crystal grain size is less than 0.5, and 0.5-1 Was marked with x.

表面品質については、熱間圧延後の表面傷が、少ないものを○、やや多いものを△、多いものを×とした。   As for the surface quality, the surface scratches after hot rolling were evaluated as ◯ when the surface scratches were small, Δ when the surface scratches were slightly, and × when the surface scratches were large.

熱間圧延性については、熱間圧延性が良好なものを○、悪いものを×とした。   Regarding the hot rollability, the case where the hot rollability was good was evaluated as ◯, and the case where the hot rollability was poor as x.

Figure 0005147040
Figure 0005147040

表2に示すように、実施例1〜11の各銅合金導体を用いて作製した各トロリ線は、いずれも450MPa以上の引張強度及び60%IACS以上の導電率を有していた。また、各トロリ線は、いずれも平均粒径が1μm以下の酸化物の割合は80%以上であり、結晶粒のサイズは0.5未満であった。さらに、各トロリ線は、いずれも表面品質は良好であり、熱間圧延性も良好であった。   As shown in Table 2, each trolley wire produced using each copper alloy conductor of Examples 1 to 11 had a tensile strength of 450 MPa or more and a conductivity of 60% IACS or more. In each trolley wire, the ratio of the oxide having an average particle diameter of 1 μm or less was 80% or more, and the crystal grain size was less than 0.5. Furthermore, each trolley wire had good surface quality and good hot rollability.

これに対して、比較例1〜3の各銅合金導体を用いて作製した各トロリ線は、微小酸化物の割合、結晶粒径は良好なものの、Sn添加量が少ないため強度が小さくなった。比較例4〜6の各銅合金導体を用いて作製した各トロリ線は、微小酸化物の割合は少なく、かつ、大きな結晶粒しか得られなかった。また、導電性は良好であるものの、引張強度は実施例よりも小さい値であった。
さらに、比較例7〜9の各銅合金導体は、表面傷が多いとともに熱間圧延性が著しく悪く導体の製造が困難であった。
On the other hand, although each trolley wire produced using the copper alloy conductors of Comparative Examples 1 to 3 had a good ratio of fine oxides and a crystal grain size, the strength was small because the Sn addition amount was small. . Each trolley wire produced using the copper alloy conductors of Comparative Examples 4 to 6 had a small proportion of fine oxides and only large crystal grains. Moreover, although electroconductivity was favorable, tensile strength was a value smaller than an Example.
Further, each of the copper alloy conductors of Comparative Examples 7 to 9 had many surface flaws and remarkably poor hot rollability, making it difficult to produce the conductor.

本発明の好適な一実施形態に係る銅合金導体の製造工程を説明するフローチャートである。It is a flowchart explaining the manufacturing process of the copper alloy conductor which concerns on suitable one Embodiment of this invention.

11 銅母材
12 Sn
13 添加元素
14 銅合金溶湯
15 鋳造材
16 圧延材
17 荒引き線
18 銅合金導体
11 Copper base material 12 Sn
13 Additive element 14 Copper alloy molten metal 15 Cast material 16 Rolled material 17 Rough drawing wire 18 Copper alloy conductor

Claims (2)

酸素を0.001〜0.1質量%含む銅母材に第1の添加元素としてSnを0.4(0.4を除く)〜0.7質量%、及び第2の添加元素としてInを0.01〜0.4質量%、かつ前記第1の添加元素と前記第2の添加元素の合計を0.41(0.41を除く)〜0.8質量%の割合として添加して溶解を行い、残部が銅と不可避的不純物からなる銅合金溶湯を形成する溶解工程と、前記銅合金溶湯を用いて1100〜1150℃の温度で鋳造を行うと共に、鋳造材の温度を銅合金溶湯の融点より少なくとも15℃以上低い温度まで急速冷却して鋳造材とする鋳造工程と、前記鋳造材の温度を900℃以下に調整した状態で、前記鋳造材に、最終圧延温度が500〜600℃となるように調整した複数段の熱間圧延加工を行って圧延材を形成する熱間圧延工程と、前記圧延材に、−193〜100℃の温度で、加工度50%以上の冷間加工を行って銅合金導体を形成する冷間圧延工程を備えることを特徴とする銅合金導体の製造方法。 In a copper base material containing 0.001 to 0.1% by mass of oxygen, Sn as a first additive element is 0.4 (excluding 0.4) to 0.7% by mass , and In is used as a second additive element. 0.01 to 0.4% by mass , and the total of the first additive element and the second additive element is added and dissolved in a ratio of 0.41 (excluding 0.41) to 0.8% by mass And performing a casting process at a temperature of 1100 to 1150 ° C. using the molten copper alloy, and the temperature of the cast material of the molten copper alloy. In a state where the casting material is rapidly cooled to a temperature that is at least 15 ° C. lower than the melting point, and the temperature of the casting material is adjusted to 900 ° C. or less, the final rolling temperature of the casting material is 500 to 600 ° C. form a rolled material by performing becomes so hot rolling of the adjusted multiple stages A hot rolling step of, in the rolled material at a temperature of -193~100 ° C., characterized in that it comprises a cold rolling step of forming a copper alloy conductor performs machining between working ratio of 50% or more of cold A method for producing a copper alloy conductor. 第3の添加元素としてPとBの少なくとも一方を0.01質量%以下の割合で添加して銅合金溶湯を形成することを特徴とする請求項1記載の銅合金導体の製造方法The method for producing a copper alloy conductor according to claim 1 , wherein at least one of P and B is added as a third additive element at a ratio of 0.01% by mass or less to form a molten copper alloy.
JP2006171464A 2006-06-21 2006-06-21 Method for producing copper alloy conductor Active JP5147040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171464A JP5147040B2 (en) 2006-06-21 2006-06-21 Method for producing copper alloy conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171464A JP5147040B2 (en) 2006-06-21 2006-06-21 Method for producing copper alloy conductor

Publications (2)

Publication Number Publication Date
JP2008001933A JP2008001933A (en) 2008-01-10
JP5147040B2 true JP5147040B2 (en) 2013-02-20

Family

ID=39006562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171464A Active JP5147040B2 (en) 2006-06-21 2006-06-21 Method for producing copper alloy conductor

Country Status (1)

Country Link
JP (1) JP5147040B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709296B2 (en) 2009-04-17 2011-06-22 日立電線株式会社 Method for manufacturing diluted copper alloy material
JP5077416B2 (en) 2010-02-08 2012-11-21 日立電線株式会社 Soft dilute copper alloy material, soft dilute copper alloy wire, soft dilute copper alloy plate, soft dilute copper alloy twisted wire and cables, coaxial cables and composite cables using these
JP2012087366A (en) * 2010-10-20 2012-05-10 Hitachi Cable Ltd Rolled copper foil and method for manufacturing the same
JP5589754B2 (en) * 2010-10-20 2014-09-17 日立金属株式会社 Dilute copper alloy material and method for producing diluted copper alloy material excellent in hydrogen embrittlement resistance
JP5589756B2 (en) * 2010-10-20 2014-09-17 日立金属株式会社 Flexible flat cable and manufacturing method thereof
JP5732809B2 (en) * 2010-10-20 2015-06-10 日立金属株式会社 Extruded product and manufacturing method thereof
JP5601146B2 (en) * 2010-10-20 2014-10-08 日立金属株式会社 Winding for speaker voice coil and manufacturing method thereof
JP5652369B2 (en) * 2010-10-20 2015-01-14 日立金属株式会社 Solar cell conductor
JP5637435B2 (en) * 2010-10-20 2014-12-10 日立金属株式会社 Coaxial cable and manufacturing method thereof
JP5601147B2 (en) * 2010-10-20 2014-10-08 日立金属株式会社 Micro speaker voice coil winding and method of manufacturing the same
JP5686084B2 (en) * 2010-10-20 2015-03-18 日立金属株式会社 Insulated wire manufacturing method and cable manufacturing method
JP5499330B2 (en) * 2010-10-20 2014-05-21 日立金属株式会社 Solar cell bus bar
JP5589753B2 (en) 2010-10-20 2014-09-17 日立金属株式会社 Welded member and manufacturing method thereof
JP5760544B2 (en) 2011-03-17 2015-08-12 日立金属株式会社 Soft dilute copper alloy wire, soft dilute copper alloy stranded wire, insulated wire, coaxial cable and composite cable using them
JP6019547B2 (en) * 2011-07-21 2016-11-02 日立金属株式会社 Copper bonding wire
CN102945689A (en) * 2012-10-09 2013-02-27 安徽联硕实业有限公司 Copper aluminum alloy wire
CN103515024B (en) * 2013-09-27 2015-07-22 露笑科技股份有限公司 Varnished wire product technology
CN104046831A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Making method of copper alloy wire for automobiles
CN104046832A (en) * 2014-06-05 2014-09-17 锐展(铜陵)科技有限公司 Making method of highly conductive copper alloy wire or automobile generator
CN106001467B (en) * 2016-07-13 2018-08-24 江苏藤仓亨通光电有限公司 A kind of preparation method of ultralow tin Cu-Sn contact wire
CN107719188B (en) * 2017-11-06 2023-07-07 成都金和工贸有限公司 Copper-aluminum composite contact wire and manufacturing method thereof
JP7022320B2 (en) * 2018-02-16 2022-02-18 日立金属株式会社 Copper alloy wire
CN109637741A (en) * 2018-11-06 2019-04-16 通鼎互联信息股份有限公司 A kind of seamless Through ground wire production technology of railway
KR102214230B1 (en) * 2020-08-07 2021-02-08 엘에스메탈 주식회사 Copper Alloy Tube For Heat Exchanger Excellent in Thermal Conductivity Fracture Strength and Method for Manufacturing the Same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3903899B2 (en) * 2002-10-17 2007-04-11 日立電線株式会社 Method for producing copper alloy conductor for train line and copper alloy conductor for train line
JP4214394B2 (en) * 2003-06-20 2009-01-28 住友電気工業株式会社 Abrasion-resistant trolley wire and its manufacturing method
JP3948451B2 (en) * 2003-10-24 2007-07-25 日立電線株式会社 Copper alloy material, method for producing copper alloy conductor using the same, copper alloy conductor obtained by the method, and cable using the same
JP4380441B2 (en) * 2004-07-20 2009-12-09 日立電線株式会社 Trolley wire manufacturing method
JP4171907B2 (en) * 2003-10-28 2008-10-29 住友電気工業株式会社 Trolley wire and its manufacturing method

Also Published As

Publication number Publication date
JP2008001933A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP5147040B2 (en) Method for producing copper alloy conductor
JP4479510B2 (en) Copper alloy conductor, trolley wire / cable using the same, and method for producing copper alloy conductor
JP2006193807A5 (en)
JP4311277B2 (en) Manufacturing method of extra fine copper alloy wire
CN101381823B (en) Cu alloy material, cu alloy conductor and method of manufacturing cu alloy conductor using the same, cable or trolley wire using the cu alloy conductor
JP2007023305A (en) Conductor element wire for electric wire for automobile, and its manufacturing method
JP4497164B2 (en) Copper alloy conductor and cable using the same
CN111809079B (en) High-strength high-conductivity copper alloy wire material and preparation method thereof
JP3948451B2 (en) Copper alloy material, method for producing copper alloy conductor using the same, copper alloy conductor obtained by the method, and cable using the same
JP2006307307A (en) Wiring cable for moving part in robot
JP2018003154A (en) Copper alloy, copper alloy ingot, and copper alloy solution material
JP3903899B2 (en) Method for producing copper alloy conductor for train line and copper alloy conductor for train line
JP6027807B2 (en) Copper alloy trolley wire and method for producing copper alloy trolley wire
JP2006283181A (en) Contact wire made from abrasion-resistant copper alloy and manufacturing method therefor
JP4214394B2 (en) Abrasion-resistant trolley wire and its manufacturing method
JP3768899B2 (en) Precipitation strengthened copper alloy trolley wire and manufacturing method thereof
JP2004188429A (en) Method for producing copper rough-drawn wire and copper wire
JP3749492B2 (en) Precipitation strengthened copper alloy trolley wire and manufacturing method thereof
JP4171907B2 (en) Trolley wire and its manufacturing method
JP2008264823A (en) Method for manufacturing copper rough-drawing wire and copper wire
JP6853872B2 (en) Manufacturing method of aluminum alloy conductive wire, aluminum alloy conductive wire, electric wire and wire harness using this
JP2010095777A (en) Copper alloy conductor, trolley wire and cable using the same and method for manufacturing the copper alloy conductor
JPH06240426A (en) Production of high strength copper alloy trolley wire
JP4525653B2 (en) Method for producing copper alloy conductor for train line and copper alloy conductor for train line
JPH068759A (en) Manufacture of copper alloy conductor for electric car electric wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

R150 Certificate of patent or registration of utility model

Ref document number: 5147040

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350