JP5146928B2 - Method for producing Claisen rearrangement compound and synthesis apparatus thereof - Google Patents

Method for producing Claisen rearrangement compound and synthesis apparatus thereof Download PDF

Info

Publication number
JP5146928B2
JP5146928B2 JP2007095644A JP2007095644A JP5146928B2 JP 5146928 B2 JP5146928 B2 JP 5146928B2 JP 2007095644 A JP2007095644 A JP 2007095644A JP 2007095644 A JP2007095644 A JP 2007095644A JP 5146928 B2 JP5146928 B2 JP 5146928B2
Authority
JP
Japan
Prior art keywords
water
temperature
pressure
claisen rearrangement
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007095644A
Other languages
Japanese (ja)
Other versions
JP2008255015A (en
Inventor
正大 佐藤
豊 生島
肇 川波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007095644A priority Critical patent/JP5146928B2/en
Publication of JP2008255015A publication Critical patent/JP2008255015A/en
Application granted granted Critical
Publication of JP5146928B2 publication Critical patent/JP5146928B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Description

本発明は、クライゼン転位生成物の製造方法と装置に関するものであり、更に詳しくは、高温高圧状態の亜臨界水を反応溶媒とし、無触媒かつ一段階でクライゼン転位化合物を製造する方法及びその合成装置に関するものである。本発明は、温度100℃以上、圧力0.1MPa以上亜臨界水を反応溶媒として、触媒無添加でクライゼン転位化合物を一段階の合成反応で、短時間、かつ連続的に合成する方法及びその装置を提供するものである。ここで、クライゼン転位におけるヘテロ原子としては、酸素、窒素、硫黄が挙げられ、それぞれアリルエーテル、アリルアミン、アリルチオエーテルに対応し、更に複数のヘテロ原子が組合わされたアリル化合物も含む。 The present invention relates to an apparatus and method for manufacturing the Claisen rearrangement product, more particularly, to a subcritical water of high temperature and high pressure conditions and reaction solvent, Claisen rearrangement compound producing method and catalyst-free and one step It relates to the device. The present invention, temperature of 10 0 ° C. or higher, pressure 0. The present invention provides a method and an apparatus for continuously synthesizing a Claisen rearrangement compound in a one-step synthesis reaction without adding a catalyst using subcritical water of 1 MPa or more as a reaction solvent. Here, examples of the hetero atom in the Claisen rearrangement include oxygen, nitrogen, and sulfur, which correspond to allyl ether, allylamine, and allyl thioether, respectively, and also include allyl compounds in which a plurality of heteroatoms are combined.

クライゼン転位は、基質・原料に対して生成物の機能性と同時に付加価値をも向上するため、香料、医薬品、食品分野において有用である。通常、クライゼン転位化合物を合成する場合、従来法では、非プロトン性有機溶媒に加えて、酸・塩基触媒が必要であり、食品、医薬品に利用される場合、残存する有機溶媒、触媒の除去は、大きな労力とエネルギーを必要とし、環境に影響を与えるのみならず生体に有害である等の問題点を有していた。本発明は、アリルエーテル類から、無触媒で、水を用いるプロセスのみでクライゼン転位化合物を合成する方法とその反応組成物及びその合成装置を提供するものであり、香料、医薬品や食品のみならず、化成品合成にも応用可能であり、クライゼン転位化合物を良好な収率で、短時間に、良好なエネルギー効率で、環境に影響を与えることなく、大量に生産し、提供することを可能にするものである。   The Claisen rearrangement is useful in the perfumery, pharmaceutical and food fields because it improves the functionality of the product as well as the added value of the product relative to the substrate / raw material. In general, when synthesizing a Claisen rearrangement compound, the conventional method requires an acid / base catalyst in addition to an aprotic organic solvent. When used in foods and pharmaceuticals, removal of the remaining organic solvent and catalyst is not necessary. However, it requires a lot of labor and energy, and has problems such as being harmful to the living body as well as affecting the environment. The present invention provides a method for synthesizing a Claisen rearrangement compound from allyl ethers without using a catalyst and using only water, a reaction composition thereof, and an apparatus for the synthesis thereof. It can also be applied to the synthesis of chemical products, making it possible to produce and provide the Claisen rearrangement compound in good yield, in a short time, with good energy efficiency, and without affecting the environment. To do.

従来、クライゼン転位を利用し、アリルエーテル類からアリルフェノール類を合成する方法が種々報告されている(例えば、非特許文献1参照)。ここで、アリルエーテル類からのアリルフェノール類を合成するクライゼン転位合成技術を完成すれば、通常は、他のヘテロ原子を有するクライゼン転位は可能となるため、特に酸素を含有する置換アリルエーテルから置換アリルフェノールを合成する技術の報告例は非常に多い(図1、図2)。   Conventionally, various methods for synthesizing allylphenols from allyl ethers using Claisen rearrangement have been reported (see, for example, Non-Patent Document 1). Here, if the Claisen rearrangement synthesis technology for synthesizing allylphenols from allyl ethers is completed, usually Claisen rearrangement having other heteroatoms becomes possible. There are numerous reports of techniques for synthesizing allylphenol (FIGS. 1 and 2).

図1のように、オルト位にクライゼン転位する場合、R,R,R,R,R,R,R,Rは、水素又はアルキル基及びヘテロ原子を含む置換基、Xはヘテロ原子又は置換ヘテロ原子であり、具体的には酸素(O)、硫黄(S)、窒化水素(NH)、アルキル置換窒素(NR’)である。また、図2のように、芳香環のオルト位のR,R10がアルキル基及びヘテロ原子を含む置換基の場合、パラ位にクライゼン転位が起こる。ここで、R,R,R,R,R,R,Rは水素又はアルキル基及びヘテロ原子を含む置換基、Xはヘテロ原子又は置換ヘテロ原子であり、具体的には酸素(O)、硫黄(S)、窒化水素(NH)、アルキル置換窒素(NR’)である。 In the case of Claisen rearrangement to the ortho position as shown in FIG. 1, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are hydrogen or an alkyl group and a substituent containing a hetero atom. , X is a heteroatom or a substituted heteroatom, specifically oxygen (O), sulfur (S), hydrogen nitride (NH), or alkyl-substituted nitrogen (NR ′). Further, as shown in FIG. 2, when R 9 and R 10 at the ortho position of the aromatic ring are substituents containing an alkyl group and a hetero atom, Claisen rearrangement occurs at the para position. Here, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 are hydrogen or an alkyl group and a substituent containing a hetero atom, X is a hetero atom or a substituted hetero atom, specifically Are oxygen (O), sulfur (S), hydrogen nitride (NH), and alkyl-substituted nitrogen (NR ′).

先行技術文献によれば、無溶媒条件での加熱(非特許文献2)、無溶媒又は非プロトン性有機溶媒中でのマイクロ波加熱(非特許文献3)、あるいは有機溶媒中、BCl(非特許文献4、5)、RAlCl(非特許文献6)、PdCl(MeCN)(非特許文献7)等のルイス酸が使用されてきた。 According to prior art documents, heating in a solvent-free condition (Non-Patent Document 2), microwave heating in a solvent-free or aprotic organic solvent (Non-Patent Document 3), or BCl 3 (Non-Patent Document 3) in an organic solvent. Lewis acids such as Patent Documents 4 and 5), R 2 AlCl (Non-Patent Document 6), and PdCl 2 (MeCN) 2 (Non-Patent Document 7) have been used.

ここで、上記の先行技術文献では、無溶媒条件での加熱では、フェニルアリルエーテルから温度220℃、反応時間6時間で収率85%でクライゼン転位化合物であるo−アリルフェノールが得られる。また、マイクロ波を利用した場合には、フェニルアリルエーテルからのo−アリルフェノール合成は、無溶媒条件で、温度325−361℃、反応時間10分で21%と低収率であるが、DMFを溶媒とし、温度300−315℃、反応時間6分とすることで92%の高収率で得られる。   Here, in the above-mentioned prior art documents, o-allylphenol, which is a Claisen rearrangement compound, is obtained from phenylallyl ether in a yield of 85% at a temperature of 220 ° C. and a reaction time of 6 hours by heating under solvent-free conditions. When microwaves are used, the synthesis of o-allylphenol from phenylallyl ether is a low yield of 21% at a temperature of 325-361 ° C. and a reaction time of 10 minutes under solvent-free conditions. And a temperature of 300 to 315 ° C. and a reaction time of 6 minutes, a high yield of 92% can be obtained.

ルイス酸を用いた場合には、熱エネルギー利用の場合よりも常温でも反応が1010倍もの反応加速があるが、p−体が増加する。例えば、通常加熱でo−トルイルアリルエーテルを基質とした場合、o−メチルフェノールとp−メチルフェノールがそれぞれ収率85%、15%で得られるが、BClのルイス酸を用いた場合、o−メチルフェノールとp−メチルフェノールがそれぞれ60%、31%で得られ、結局、反応の加速がある反面、選択性が低下することが報告されている(非特許文献1)。 When a Lewis acid is used, the reaction is accelerated 10 to 10 times at room temperature as compared with the case of using thermal energy, but the p-form increases. For example, when o-toluyl allyl ether is used as a substrate by normal heating, o-methylphenol and p-methylphenol are obtained in yields of 85% and 15%, respectively, but when BCl 3 Lewis acid is used, o -Methylphenol and p-methylphenol can be obtained at 60% and 31%, respectively, and it has been reported that the selectivity is lowered while the reaction is accelerated (Non-patent Document 1).

したがって、無溶媒で熱エネルギーを利用するか、あるいはマイクロ波のような外場と有機溶媒、ルイス酸、金属錯体のような触媒に加えて、有機溶媒が、クライゼン転位にとって必要不可欠である。   Therefore, an organic solvent is indispensable for Claisen rearrangement in addition to an external field such as microwave and a catalyst such as an organic solvent, a Lewis acid, and a metal complex, utilizing heat energy without a solvent.

一方、クライゼン転位における溶媒としての水の可能性に関しては、水とクロロナフチルエーテルを常温付近23℃で120時間激しく攪拌するOn water反応(非特許文献8)で収率100%で得られることが報告されている。しかし、多数のクライゼン転位に対する適用可能性については言及されていない(非特許文献9)。   On the other hand, regarding the possibility of water as a solvent in the Claisen rearrangement, it can be obtained in a yield of 100% by an On water reaction (Non-patent Document 8) in which water and chloronaphthyl ether are vigorously stirred at 23 ° C. for about 120 hours. It has been reported. However, no mention is made of the applicability to many Claisen rearrangements (Non-Patent Document 9).

反応後における後処理は、通常、触媒・有機溶媒中クライゼン転位では、反応混合物に中和剤を添加して中和後、抽出溶媒と水あるいは飽和食塩水を加え、分液し、溶媒層はその後、乾燥、溶媒除去、蒸留あるいは精留のプロセスを得て目的物を得るが、水層には水の他に、触媒、有機溶媒、酢酸、基質、生成物、副生成物、無機物の複雑な混合物が含有される。ここで、水層からの触媒の分離が容易である場合には、回収再生され、再使用されるが、分離が困難である場合には、そのまま廃棄・処分される(図3)。無触媒・高温高圧水中クライゼン転位のように、水層に触媒、有機溶媒が含有されず、水、生成物のみが含有されるならば、生成物をデカンテーションだけで分離が可能である。このことは、水の再生を可能にし、通常法に比べて、環境低減型のプロセスであることを意味する(図4)。   In the post-reaction after the reaction, usually, in Claisen rearrangement in a catalyst / organic solvent, a neutralizing agent is added to the reaction mixture to neutralize, and then an extraction solvent and water or a saturated saline solution are added, followed by liquid separation. After that, the desired product is obtained by the process of drying, solvent removal, distillation or rectification. In addition to water, the water layer is a complex of catalyst, organic solvent, acetic acid, substrate, product, by-product, inorganic matter. Such a mixture. Here, when the separation of the catalyst from the aqueous layer is easy, the catalyst is recovered and regenerated and reused. However, when the separation is difficult, the catalyst is discarded and disposed as it is (FIG. 3). As in the case of the Claisen rearrangement without catalyst / high temperature and high pressure water, if the water layer contains no catalyst and organic solvent but only water and product, the product can be separated only by decantation. This means that the water can be regenerated and is an environment-reducing process compared to the normal method (FIG. 4).

なお、あるプロセスが環境低減型であるかどうかは、E−ファクターで判断可能である。これは、あるプロセスにおける製品単位重量あたりの廃棄物重量の比率であり、あるプロセスのE−ファクターの値が小さいほど、生産に対しての廃棄物割合が少ないことから、環境低減型プロセスであると言える(非特許文献10、11)。   Whether or not a certain process is an environment reduction type can be determined by an E-factor. This is the ratio of the waste weight per unit weight of a product in a certain process, and the smaller the value of the E-factor of a certain process, the smaller the ratio of waste to production. (Non-Patent Documents 10 and 11).

このように、従来法では、クライゼン転位の場合、外場又は触媒及び有機溶媒が必要であるため、製品の品質上、反応後の分離操作において、触媒、有機溶媒やカルボン酸の除去が必要であり、分離操作後の水層は廃棄物となりやすく廃液の問題を生じる。更に、環境に対する影響や生体への有害性への配慮から、また、ヒトが経口する食品・医薬品の安全性から、触媒・有機溶媒のより高度分離が要求される。高度分離に必要なコストは、合成操作と同程度であり、望ましくは触媒と有機溶媒を使用しない方が良い。   As described above, in the case of Claisen rearrangement, the conventional method requires an external field or a catalyst and an organic solvent. Therefore, removal of the catalyst, organic solvent and carboxylic acid is necessary in the separation operation after the reaction in terms of product quality. In addition, the aqueous layer after the separation operation tends to become waste, causing a problem of waste liquid. Furthermore, in consideration of the influence on the environment and harmfulness to living organisms, and the safety of foods and pharmaceuticals that are orally administered by humans, higher separation of catalysts and organic solvents is required. The cost required for advanced separation is comparable to that of the synthesis operation, and preferably no catalyst and organic solvent are used.

以上のことから、当該技術分野においては、簡単、低コスト、環境低減型の合成プロセスで、分離操作が容易かつ高度分離が可能で、触媒や有機溶媒の残存しないクライゼン転位の連続的合成を可能とする合成手法が強く要請されていた。   Based on the above, in this technical field, a simple, low-cost, environmentally-reduced synthesis process allows easy separation and high-level separation, and allows continuous synthesis of Claisen rearrangement without remaining catalyst or organic solvent. There was a strong demand for a synthesis method.

A.M.M.Castro,Chem.Rev.,2004,104,2939A. M.M. M.M. Castro, Chem. Rev. , 2004, 104, 2939 W.N.White,D.Gwynn,R.Schlitts,C.Giraed and W.Fifea,J.Amer.Chem.Soc,1958,80,3271W. N. White, D.C. Gwynn, R.A. Schlitts, C.I. Giraed and W. Fiefa, J .; Amer. Chem. Soc, 1958, 80, 3271 C.Raymond,J.Giguere,T.L.Bray, and S.M.Duncan,Tetrahedron Lett.,1986,27,41,4945C. Raymond, J. et al. Giguere, T .; L. Bray, and S.B. M.M. Duncan, Tetrahedron Lett. , 1986, 27, 41, 4945 Lutz,R.P.Chem.Rev.1984,84,205Lutz, R.A. P. Chem. Rev. 1984, 84, 205 Borgulya,J.;Madeja,R.;Fahrni,P.;Hansen,H.−J.;Schmid,H.;Barner,R.Helv.Chim.Acta 1973,56,14Borgulya, J .; Madeja, R .; Fahrni, P .; Hansen, H .; -J. Schmid, H .; Barner, R .; Helv. Chim. Acta 1973, 56, 14 Sonnenberg,F.M.J.Org.Chem.1970,35,3166Sonnenberg, F.M. M.M. J. et al. Org. Chem. 1970, 35, 3166 Baan,J.L.;Bickelhaupt,F.Tetrahedron Lett.1986,27,6267Baan, J .; L. Bickelhaupt, F .; Tetrahedron Lett. 1986, 27, 6267 J.E.Clijin and B.F.N.Engbert,Nature,2005,435(9),746J. et al. E. Clijin and B.M. F. N. Engbert, Nature, 2005, 435 (9), 746. S.N.J.Muldoon,M.G.Finn,V.V.Fokin,H.C.Kolb and K.B Sharpless,Angew.Chem.Int.Ed.Engl.,2005,44,3275S. N. J. et al. Muldon, M.M. G. Finn, V .; V. Fokin, H .; C. Kolb and K.K. B Sharpless, Angew. Chem. Int. Ed. Engl. 2005, 44, 3275 R.A.Sherdon,Chem.Ind.(London),1997,12−15:1992,903−906R. A. Sherdon, Chem. Ind. (London), 1997, 12-15: 1992, 903-906. R.A.Sherdon,Pure Appl.Chem.,2000,72,1233−1246R. A. Sherdon, Pure Appl. Chem. 2000, 72, 1233-1246.

このような状況の中で、本発明者らは、上記従来技術に鑑みて、低コストで、環境に優しい簡単な高速合成プロセスで、上記クライゼン転位化合物を連続的かつ選択的に合成することができる新しい合成方法を開発することを目標として鋭意研究を積み重ねた結果、亜臨界水を反応溶媒とすることで、無触媒でアリルエーテル類からクライゼン転位化合物を選択的に合成できることを見出し、本発明を完成するに至った。本発明は、アリルエーテル類からクライゼン転位化合物を無触媒で、短時間の反応条件下で連続的に合成する方法、及びその合成装置を提供することを目的とするものである。 Under such circumstances, in view of the above prior art, the present inventors can synthesize the Claisen rearrangement compound continuously and selectively by a simple high-speed synthesis process at low cost and environmentally friendly. results stacked intensive research with the goal of developing a new synthetic method that can, by the subcritical water as a reaction solvent, found to be able to selectively synthesize the Claisen rearrangement compound allyl ethers in the absence of a catalyst, the present invention It came to complete. The present invention is a non-catalytic Claisen rearrangement compound allyl ethers, process for continuously synthesized under the reaction conditions of a short time, it is an object to provide a synthesis device benefactor.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)高温高圧状態の亜臨界水を反応溶媒として使用し、触媒を用いることなく、アリルエーテル類から一段階の合成反応でアリルフェノール類を選択的に合成し、生成物のクライゼン転位化合物を回収することを特徴とするクライゼン転位化合物の製造方法。
(2)温度100℃以上、圧力0.1MPa以上の亜臨界水を反応溶媒として使用する、前記(1)記載の方法。
(3)亜臨界水に加えて、無機溶媒、又は有機溶媒を用いる、前記(1)記載の方法。
(4)流通式高温高圧装置に、基質及び反応溶媒を導入し、反応時間を3〜180秒の範囲で変化させることで合成反応を実施する、前記(1)記載の方法。
(5)エネルギー消費量、廃棄物排出量(E−ファクター)を低減しつつ高効率で一段階の合成反応で目的化合物を選択的に合成する、前記(1)記載の方法。
(6)クライゼン転位後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、クライゼン転位化合物を含む油層を分液回収する簡易な連続分離工程を含む、前記(1)記載の方法。
(7)前記(1)から(5)のいずれかに記載のクライゼン転位化合物の製造方法に使用する合成装置であって、
水を送液する水送液ポンプ、水加熱用コイル、高温高圧フローセル、基質を送液する反応物送液ポンプ、炉体、反応物を炉体に導入する反応物導入管、反応溶液を排出する排出液ライン、冷却フランジ及び圧力を設定する背圧弁を具備し、水送液ポンプから水が送液され、冷却フランジを通過後、炉体へ送液され、水加熱用コイルを通過後、高温高圧フローセルに導入され、一方、反応物が反応物送液ポンプから送液され、冷却フランジを通過後、炉体へ送液され、反応物導入管を通過後、高温高圧フローセルに導入され、該高温高圧フローセルにおいて所定の温度及び圧力条件の亜臨界水により合成反応を実施するようにしたことを特徴とするクライゼン転位化合物の合成装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) Using subcritical water in a high-temperature and high-pressure state as a reaction solvent, without using a catalyst, allylphenols are selectively synthesized from allyl ethers in a one-step synthesis reaction, and the resulting Claisen rearrangement compound is obtained. A method for producing a Claisen rearrangement compound, which is recovered.
(2) The method according to (1), wherein subcritical water having a temperature of 100 ° C. or higher and a pressure of 0.1 MPa or higher is used as a reaction solvent.
(3) In addition to the sub-critical water, inorganic solvent, or an organic solvent medium, wherein (1) the method described.
(4) The method according to (1) above, wherein the synthesis reaction is carried out by introducing a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus and changing the reaction time in the range of 3 to 180 seconds.
(5) The method according to (1) above, wherein the target compound is selectively synthesized by a one-step synthesis reaction with high efficiency while reducing energy consumption and waste emission (E-factor).
(6) After the Claisen rearrangement, including a simple continuous separation step of injecting water into the recovered aqueous solution, decanting, separating into an oil / water bilayer solution, and separating and recovering the oil layer containing the Claisen rearrangement compound, 1) The method described.
(7) A synthesis apparatus used in the method for producing a Claisen rearrangement compound according to any one of (1) to (5),
Water feed pump for feeding water, coil for water heating, high-temperature and high-pressure flow cell, reactant feed pump for feeding substrate, furnace body, reactant introduction pipe for introducing reactant into the furnace body, discharging reaction solution A drain line, a cooling flange and a back pressure valve for setting the pressure, water is sent from the water feed pump, passed through the cooling flange, sent to the furnace body, passed through the water heating coil, Introduced into the high-temperature and high-pressure flow cell, while the reactant is fed from the reactant feed pump, passes through the cooling flange, is sent to the furnace body, passes through the reactant introduction pipe, and is introduced into the high-temperature and high-pressure flow cell, An apparatus for synthesizing a Claisen rearrangement compound, wherein the synthesis reaction is carried out with subcritical water at a predetermined temperature and pressure in the high-temperature and high-pressure flow cell.

次に、本発明について更に詳細に説明する。
本発明は、化1のアリルエーテル類から化2又は化3のクライゼン転位化合物を、一段階の反応プロセスで、触媒無添加、短時間の反応条件下で、選択的かつ連続的に合成することを特徴とするものである。本発明では、上記反応溶媒として、温度100℃以上、圧力0.1MPa以上の亜臨界水が用いられる。また、反応条件として、好適には、温度265℃、圧力5MPa、反応時間は3〜180秒の範囲、好適には反応時間が142秒程度に調整される。ここで、化1、化2、化3の式中、R,R,R,R,R,R,R,Rは、水素又はアルキル基及びヘテロ原子を含む置換基、Xはヘテロ原子又は置換ヘテロ原子であり、具体的には酸素(O)、硫黄(S)、窒化水素(NH)、アルキル置換窒素(NR’)である。
Next, the present invention will be described in more detail.
In the present invention, a Claisen rearrangement compound of Chemical Formula 2 or Chemical Formula 3 is selectively and continuously synthesized from allyl ethers of Chemical Formula 1 in a one-step reaction process without adding a catalyst and in a short reaction time. It is characterized by. In the present invention, the reaction solvent is a temperature of 100 ° C. or higher and a pressure of 0.8. Subcritical water of 1 MPa or more is used. The reaction conditions are preferably adjusted to a temperature of 265 ° C., a pressure of 5 MPa, a reaction time of 3 to 180 seconds, and preferably a reaction time of about 142 seconds. Here, in the formulas of Chemical Formula 1, Chemical Formula 2, and Chemical Formula 3, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are substituted with hydrogen or an alkyl group and a hetero atom The group X is a heteroatom or a substituted heteroatom, specifically oxygen (O), sulfur (S), hydrogen nitride (NH), or alkyl-substituted nitrogen (NR ′).

また、本発明により、化4のアリルエーテル類の場合は、化5のクライゼン転位化合物を一段階の反応プロセスで、触媒無添加、短時間の反応条件下で、選択的かつ連続的に合成することも可能とするものである。R,R,R,R,R,R,Rは水素又はアルキル基及びヘテロ原子を含む置換基、Xはヘテロ原子又は置換ヘテロ原子であり、具体的には酸素(O)、硫黄(S)、窒化水素(NH)、アルキル置換窒素(NR’)である。 Further, according to the present invention, in the case of the allyl ethers of the chemical formula 4, the Claisen rearrangement compound of the chemical formula 5 is selectively and continuously synthesized in a one-step reaction process without adding a catalyst and in a short reaction condition. It is also possible. R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are hydrogen or a substituent containing an alkyl group and a hetero atom, X is a hetero atom or a substituted hetero atom, specifically oxygen ( O), sulfur (S), hydrogen nitride (NH), and alkyl-substituted nitrogen (NR ′).

本発明においては、上記基質及び反応溶媒を反応容器に導入して所定の反応時間で合成反応を実施するものである。したがって、上記反応器としては、例えば、バッチ式の高温高圧反応容器、及び連続型の流通式高温高圧反応装置を使用することができるが、本発明は、これらの反応装置型式に特に制限されるものでない。 In the present invention, the substrate and the reaction solvent are introduced into a reaction vessel and a synthesis reaction is carried out in a predetermined reaction time. Thus, as the reactor, for example, high-temperature high-pressure reactor batch, and the continuous flow through type high-temperature high-pressure reactor can be used, the present invention is especially in these reactors type restrictions It is not what is done.

本発明の方法では、反応溶媒として、高温高圧状態にある亜臨界が用いられるが、具体的には、亜臨界水(100℃以上、0.1MPa以上)、同じ状態の混合溶媒が例示され、好適には、亜臨界水(200−250℃、5MPa以上)が用いられる。反応溶媒としては、上記以外の有機溶媒や無機溶媒を任意の割合で含むことができ、具体的には、有機溶媒として、アセトン、アセトニトリル、テトラヒドロフラン等、無機溶媒として酢酸、アンモニア等を含む反応溶液に代替することも可能である。 In the method of the present invention, as the reaction solvent, although sub-critical water is used in the Atsushi Ko high pressure, specifically, subcritical water (100 ° C. or higher, 0.1 MPa), a mixed solvent of the same state It is illustrated and subcritical water (200-250 degreeC, 5 Mpa or more) is used suitably. As a reaction solvent, an organic solvent or an inorganic solvent other than those described above can be contained in any ratio. Specifically, a reaction solution containing acetone, acetonitrile, tetrahydrofuran, etc. as an organic solvent, and acetic acid, ammonia, etc. as an inorganic solvent. It is also possible to substitute.

本発明では、上記亜臨界の反応溶媒の組成、温度及び圧力条件、基質の種類及びその使用量、反応時間を調整することにより、短時間で、効率良く、反応生成物を合成することができる。また、本発明では、例えば、基質及び反応溶媒を流通式高温高圧装置に導入し、それらの反応時間を3〜180秒の範囲で変えることにより、所定の反応生成物を合成することができる。上記反応条件は、使用する出発原料、目的とする反応生成物の種類等により適宜設定することができる。 In the present invention, the composition of the reaction solvent of the upper Kia critical water, the temperature and pressure conditions, the type and amount of the substrate, by adjusting the reaction time, the short time, efficiently, to synthesize a reaction product Can do. In the present invention, for example, a predetermined reaction product can be synthesized by introducing a substrate and a reaction solvent into a flow-type high temperature and high pressure apparatus and changing the reaction time within a range of 3 to 180 seconds. The reaction conditions can be appropriately set depending on the starting material used, the type of the desired reaction product, and the like.

本発明の方法では、従来、触媒存在下で行われていた、クライゼン転位化合物の合成を、高速で連続的に、しかも、無触媒で実施できるため、長時間を要するプロセスを効率化することができる。また、本発明の方法では、従来用いられた触媒を全く使用しないので、反応後の溶液の中和処理、無害化処理等の後処理・処分の必要がなく、環境負荷低減を達成可能である。更に、反応後は静置分離操作のみであるため、触媒や有機溶媒の分離回収の必要性はなく、生成物分離が容易になる。本発明によれば、触媒無添加で、142秒程度の短時間で、転化率98%以上、選択率100%以上で合成反応を行い、対応するクライゼン転位化合物を合成可能である。本発明の合成方法は、香料、医薬品、食品に利用可能な、クライゼン転位化合物を効率良く、大量に高速で連続的に生産することを可能にするものとして有用である。   In the method of the present invention, the synthesis of the Claisen rearrangement compound, which has been conventionally carried out in the presence of a catalyst, can be carried out continuously at high speed and without a catalyst, so that a process requiring a long time can be made efficient. it can. Further, in the method of the present invention, since a conventionally used catalyst is not used at all, there is no need for post-treatment / disposal such as neutralization treatment and detoxification treatment of the solution after the reaction, and environmental load reduction can be achieved. . Furthermore, since only the static separation operation is performed after the reaction, there is no need to separate and recover the catalyst and the organic solvent, and the product separation becomes easy. According to the present invention, a corresponding Claisen rearrangement compound can be synthesized by adding a catalyst and performing a synthesis reaction at a conversion rate of 98% or more and a selectivity of 100% or more in a short time of about 142 seconds. The synthesis method of the present invention is useful as one that enables efficient and continuous production of a Claisen rearrangement compound that can be used in perfumery, pharmaceuticals, and foods in a large amount at high speed.

従来、クライゼン転位化合物をエネルギー消費量、廃棄物量(E−ファクター)を低減しつつ選択的に合成することを実証した例はなく、本発明の対象とするクライゼン転位化合物の省エネ、環境負荷低減型選択的合成反応法は、本発明者らによって初めてその有効性が実証されたものである。しかも、従来法ではアリルエーテル類から合成されるクライゼン転位化合物は、触媒及び有機溶媒の残存が問題とされていたが、本発明でアリルエーテル類から合成される反応組成物は、触媒及び有機溶媒の残存がなく、本発明のクライゼン転位化合物組成物は、従来製品にない利点を有している。   Conventionally, there has been no example of demonstrating selective synthesis of Claisen rearrangement compounds while reducing energy consumption and waste amount (E-factor). The selective synthesis reaction method has been demonstrated for the first time by the present inventors. Moreover, in the conventional method, the Claisen rearrangement compound synthesized from allyl ethers had a problem of remaining catalyst and organic solvent, but the reaction composition synthesized from allyl ethers in the present invention is a catalyst and organic solvent. The Claisen rearrangement compound composition of the present invention has advantages that are not found in conventional products.

本発明では、無触媒条件で無水カルボン酸とポリヘテロ水素化物の合成反応を実現するために、例えば、基質をあらかじめ溶媒に溶解した溶液を送液し、亜臨界中の反応経過を高温高圧赤外フローセル(図5)により赤外分光分析によって観察する流通型高温高圧赤外分光その場測定装置(図6)を用いることも可能である。しかしながら、高温高圧赤外フローセルを窓なし高温高圧フローセル(図7)に交換し、臨界の流れに対して直接反応物の流れを接触反応するように配管配置した方が、高温高圧赤外フローセルにおけるセル窓付近におけるリーク等の問題が発生せず、より高流量で短時間に合成を実施することが可能である。これらのことから、この窓なし高温高圧フローセルを装着した装置を後述する実施例で用いた。 In the present invention, in order to realize a synthesis reaction of a carboxylic anhydride and polyheteroaromatic hydride uncatalyzed conditions, for example, a solution of a substrate beforehand solvent was fed, high-temperature high-pressure red reaction course of subcritical water It is also possible to use a flow-type high-temperature high-pressure infrared spectroscopic in-situ measuring device (FIG. 6) that is observed by infrared spectroscopic analysis with an outer flow cell (FIG. 5). However, the high temperature and high pressure infrared flow cell and replaced with no window high temperature and high pressure flow cell (Fig. 7), who piping placed in contact reactions flow directly reactant to the flow of the sub-critical water, high temperature and high pressure infrared There is no problem such as leakage near the cell window in the flow cell, and the synthesis can be performed in a short time at a higher flow rate. For these reasons, an apparatus equipped with this windowless high-temperature and high-pressure flow cell was used in Examples described later.

ここで、窓なし高温高圧フローセル本体(図7)は、例えば、市販のSUS316製のクロス1にネジを切り、次に説明する温度センサーシース(図7の12)に固定できるようにする。炉体雰囲気の温度を測定せずに、セル温度を示すように温度センサー位置を調節し、シース固定ネジとオネジ3でネジ止めする。SUS316の配管4はクロス1にワンリングフェラル付きのテーパーネジ2でクロス1に接続される。もちろん、クロス1は、エンドネジで一つの流路を塞ぐことによってティーとしても使用可能である。   Here, the windowless high-temperature and high-pressure flow cell main body (FIG. 7) can be fixed to a temperature sensor sheath (12 in FIG. 7) to be described next by, for example, threading a commercially available SUS316 cloth 1. Without measuring the temperature of the furnace body atmosphere, the position of the temperature sensor is adjusted so as to indicate the cell temperature, and screwed with the sheath fixing screw and the male screw 3. The pipe 4 of SUS316 is connected to the cross 1 with a taper screw 2 with a one-ring ferrule on the cross 1. Of course, the cloth 1 can also be used as a tee by closing one flow path with an end screw.

図8は、窓なし高温高圧フローセルを装着した流通式高温高圧反応装置の炉体部分であり、反応装置本体である。これを、図6の流通型高温高圧流体その場赤外分光測定装置の斜線位置に設置すれば、赤外分光は測定できないものの、温度、圧力、流量が可変な亜臨界流体接触型の合成反応装置として利用可能となる。なお、この場合における反応観察は、排出後の水溶液を採取し、GC−FIDにより、生成物の純品を用いた検量線から定量を実施し、GC/MSにより定性分析を実施した。また、NMRにより定量・定性分析を実施した。 FIG. 8 shows a reactor body portion of a flow-type high temperature / high pressure reactor equipped with a windowless high temperature / high pressure flow cell, which is a reactor main body. This, if placed in the hatched position of the flow-through high-temperature high-pressure fluid in situ infrared spectrometry device of Figure 6, although infrared spectroscopy can not be measured, the temperature, pressure, flow rate variable A臨Sakairyu body contact type It can be used as a synthesis reactor. In this case, the observation of the reaction was performed by collecting the aqueous solution after discharge, quantifying from a calibration curve using a pure product by GC-FID, and qualitatively analyzing by GC / MS. In addition, quantitative and qualitative analysis was performed by NMR.

以下、図8について説明すると、水送液ポンプ5から水が送液され、冷却フランジ8を通過後、炉体13へ送液される。水加熱コイル(管コイル)9を通過後、高温高圧状態で温度センサー11が挿入された温度センサーシース12に支持固定された高温高圧フローセル14に導入される。一方、反応物が反応物送液ポンプ6から送液され、冷却フランジ8を通過後、炉体13へ送液される。コイル状の反応物導入管10を通過後、温度センサーシース12に固定された高温高圧フローセル14に導入される。また、洗浄水が洗浄水送液ポンプ7により送液され、溶媒導入管16を通過後、ティー18に導入され、洗浄用に用いられる。   Hereinafter, with reference to FIG. 8, water is fed from the water feed pump 5, passes through the cooling flange 8, and then sent to the furnace body 13. After passing through the water heating coil (tube coil) 9, it is introduced into a high temperature / high pressure flow cell 14 supported and fixed to a temperature sensor sheath 12 in which a temperature sensor 11 is inserted in a high temperature / high pressure state. On the other hand, the reactant is fed from the reactant feed pump 6, passes through the cooling flange 8, and then sent to the furnace body 13. After passing through the coiled reactant introduction tube 10, it is introduced into a high-temperature and high-pressure flow cell 14 fixed to the temperature sensor sheath 12. Further, the washing water is fed by the washing water feeding pump 7, passes through the solvent introduction pipe 16, is introduced into the tee 18, and is used for washing.

高温高圧フローセルを通過した溶液は、排出配管17を通過後、冷却フランジ8を通過して、炉体外を空冷されながら通過する。その後、圧力を設定している背圧弁19からの排出液を採取し、サンプルとする。ここで、反応物や生成物を含む排出液の加熱による影響を排除する場合には、急速昇温を実施し、反応物導入管10と排出配管17の配管をできるだけ短く、水加熱コイル9をできるだけ長くすることが望ましい。本発明は、これらに限らず、これらと同効の反応装置であれば同様に使用することができる。   The solution that has passed through the high-temperature and high-pressure flow cell passes through the discharge pipe 17, passes through the cooling flange 8, and passes outside the furnace body while being air-cooled. Thereafter, the discharged liquid from the back pressure valve 19 that has set the pressure is collected and used as a sample. Here, in order to eliminate the influence of heating of the effluent containing the reactants and products, rapid heating is performed, the pipes of the reactant introduction pipe 10 and the discharge pipe 17 are made as short as possible, and the water heating coil 9 is installed. It is desirable to make it as long as possible. The present invention is not limited to these, and any reaction apparatus having the same effect as these can be used in the same manner.

本発明により、次のような効果が奏される。
(1)アリルエーテル類から高速で連続的にクライゼン転位化合物を合成することができる。
(2)クライゼン転位化合物をエネルギー消費量、廃棄物量(E−ファクター)を低減しつつ高効率で選択的に合成することができる。
(3)触媒及び有機溶媒を用いない合成プロセスを実現できる。
(4)そのため、触媒及び有機溶媒の残存がなく、生体に対して有害性のない安全性の高いクライゼン転位反応組成物を提供できる。
(5)生成物が水に溶解しない場合には、排出された油水分散水溶液に対して更に水を注入することで、洗浄しつつ油水二層に分液し、高純度の生成物を容易に回収できる。
(6)香料、医薬品、食品として有用なクライゼン転位反応組成物の新しい大量生産プロセスとして、既存の生産プロセスに代替し得る新しい生産技術を提供できる。
The present invention has the following effects.
(1) A Claisen rearrangement compound can be synthesized from allyl ethers continuously at high speed.
(2) The Claisen rearrangement compound can be selectively synthesized with high efficiency while reducing energy consumption and waste amount (E-factor).
(3) A synthesis process without using a catalyst and an organic solvent can be realized.
(4) Therefore, it is possible to provide a Claisen rearrangement reaction composition that does not have a catalyst and an organic solvent and that is not harmful to a living body and has high safety.
(5) When the product does not dissolve in water, water is injected into the discharged oil-water dispersion aqueous solution to separate the oil and water into two layers while washing, and a high-purity product can be easily obtained. Can be recovered.
(6) As a new mass production process of the Claisen rearrangement reaction composition useful as a fragrance, a medicine, and a food, a new production technique that can replace the existing production process can be provided.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

まず、本発明の実施方法を示した後、実施例を示す。
(実施方法)
本実施例では、図8の流通式高温高圧反応装置を用いて、合成条件を、無触媒、温度200〜300℃、圧力5MPa、滞留時間36〜142秒で実施した。図8の流通式高温高圧反応装置の本体(主要部分)を、図6の流通型高温高圧流体その場赤外分光測定装置に設置した装置に、まず、温度265℃、圧力5MPaに設定し、窓なしセル(ティー1)の水加熱コイル(配管コイル)9との接続穴をエンドで塞ぎ、水送液ポンプ5により配管コイル9への流路を塞ぎ、純水は、流量5.0ml/minで、炉体外のティー18へ送液した。
First, after showing the implementation method of this invention, an Example is shown.
(Implementation method)
In this example, using the flow-type high temperature and high pressure reactor of FIG. 8, the synthesis conditions were as follows: no catalyst, temperature 200 to 300 ° C., pressure 5 MPa, residence time 36 to 142 seconds. The main body (main part) of the flow-type high-temperature and high-pressure reactor shown in FIG. 8 is first set to a temperature of 265 ° C. and a pressure of 5 MPa in the apparatus installed in the flow-type high-temperature and high-pressure fluid in-situ infrared spectrometer shown in FIG. The connection hole with the water heating coil (piping coil) 9 of the windowless cell (tee 1) is closed at the end, the flow path to the piping coil 9 is closed by the water feed pump 5, and the pure water has a flow rate of 5.0 ml / In min, the liquid was fed to the tee 18 outside the furnace body.

その後、トルエンを内標準として添加した(基質の5mol%)、アリルフェノール混合溶液0.5ml/minをポンプで送液した(混合後の水溶液濃度:0.28mol/kg)。基質送液後、40分後の背圧弁からの排出水溶液を1ml採取した。加熱炉から背圧弁出口までの配管内容積を反応体積とした場合、反応時間は72秒であった。   Thereafter, toluene was added as an internal standard (5 mol% of the substrate), and 0.5 ml / min of the allylphenol mixed solution was pumped (concentration of aqueous solution after mixing: 0.28 mol / kg). 1 ml of the aqueous solution discharged from the back pressure valve 40 minutes after the substrate feeding was collected. When the internal volume of the pipe from the heating furnace to the back pressure valve outlet was the reaction volume, the reaction time was 72 seconds.

回収された1mlの水溶液に1mlのアセトンを加え、振とうし、組成をGC/MS分析計(Hewlett Packard社製HP6890、カラムHP−5、注入口温度150℃、初期カラム温度60℃(保持時間2分)、昇温速度10℃/分、最終カラム温度250℃(保持時間2分))で実施し、得られたマススペクトルは、Willey データベースで一致度90%以上で確認した。また、定量及び市販試薬がある場合の定性は、トルエンを内標準としてGC−FID(Agilent社製GC6890,カラムDB−WAX、注入口温度230℃、スプリット比5.61、初期カラム温度50℃(保持時間0.5分)、昇温速度20℃/分、最終カラム温度230℃(保持時間3分))で実施した。   1 ml of acetone was added to 1 ml of the collected aqueous solution, shaken, and the composition was determined by GC / MS analyzer (HP 6890, Hewlett Packard, column HP-5, inlet temperature 150 ° C., initial column temperature 60 ° C. (retention time) 2 minutes), the heating rate was 10 ° C./min, and the final column temperature was 250 ° C. (holding time 2 minutes)), and the obtained mass spectrum was confirmed by the Willy database with a coincidence of 90% or more. In addition, quantification and qualitativeness in the presence of commercially available reagents are GC-FID (GC 6890, Agilent DB DB-WAX, inlet temperature 230 ° C., split ratio 5.61, initial column temperature 50 ° C. with toluene as an internal standard ( Holding time 0.5 minutes), temperature rising rate 20 ° C./min, final column temperature 230 ° C. (holding time 3 minutes)).

また、得られた生成物水溶液が油水分散状態で白濁している場合には、水を20ml/minで3分注入し、デカンテーションすると油水2層溶液となり、下(上)層の油層にクライゼン転位化合物を、上(下)層の水相に水を得た(GCにより確認)。このことは、生成物が水に溶解しない場合、反応終了後の油水分散水溶液に、水を更に注入することで、油水二層に変化してクライゼン転位化合物と酢酸水溶液を分液することができる。したがって、分離精製に高度な手法や膨大なエネルギーを必要とする精留は必要ない。   In addition, when the obtained aqueous product solution is clouded in an oil-water dispersion state, water is injected at 20 ml / min for 3 minutes and decanted to form an oil-water two-layer solution. Water was obtained from the rearrangement compound in the upper (lower) aqueous phase (confirmed by GC). This means that when the product does not dissolve in water, water can be further injected into the aqueous oil-dispersed aqueous solution after completion of the reaction to change the oil-water bilayer to separate the Claisen rearrangement compound and the aqueous acetic acid solution. . Therefore, an advanced technique for separation and purification and rectification that requires enormous energy are not required.

(実施例)
実施例1〜6
アリルフェノール(化1の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を圧力5MPa、滞留時間72秒で温度を200℃〜300℃で温度依存性を検討したところ、図9のようになり、アリルフェノール(化2の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を温度265℃で、転化率99%、選択率74%、収率73%で得た。このことから、265℃を最適温度とした。
(Example)
Examples 1-6
Allylphenol (wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are hydrogen and X is an oxygen atom), pressure is 5 MPa, residence time is 72 seconds When the temperature dependence was examined at 200 ° C. to 300 ° C., as shown in FIG. 9, allylphenol (R 1 , R 2 , R 3 , R 4 , R 5 , R 6 in the formula 2) was obtained . , R 7 and R 8 are hydrogen and X is an oxygen atom) at a temperature of 265 ° C., a conversion of 99%, a selectivity of 74%, and a yield of 73%. For this reason, 265 ° C. was set as the optimum temperature.

実施例7〜13
アリルフェノール(化1の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を温度265℃、滞留時間72秒で、圧力を0.1〜20MPaで圧力依存性を検討したところ、図10のようになり、アリルフェノール(化2の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を圧力5MPaで、転化率99%、選択率74%、収率73%で得、圧力10MPaで、転化率99.6%、選択率76%、収率76%で得た。圧力5MPaと10MPaの結果は誤差範囲と考え、圧力5MPaを採用した。
Examples 7-13
Allylphenol (wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are hydrogen and X is an oxygen atom) at a temperature of 265 ° C. and a residence time of 72 When the pressure dependence was examined at a pressure of 0.1 to 20 MPa in seconds, as shown in FIG. 10, allylphenol (R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen, and X is an oxygen atom) at a pressure of 5 MPa, a conversion rate of 99%, a selectivity of 74%, and a yield of 73%, and a pressure of 10 MPa and a conversion rate of 99.6%. The selectivity was 76% and the yield was 76%. The results of the pressures of 5 MPa and 10 MPa were considered as error ranges, and the pressure of 5 MPa was adopted.

実施例14〜17
アリルフェノール(化1の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を温度265℃、圧力5MPa、基質流量を変化させ、滞留時間を0〜143秒で滞留時間依存性を検討したところ、図11のようになり、アリルフェノール(化2の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を滞留時間143秒で、転化率99.4%、選択率85%、収率84%で得た。このことから、滞留時間143秒を最適滞留時間とした。
Examples 14-17
Allylphenol (wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are hydrogen and X is an oxygen atom) at a temperature of 265 ° C., a pressure of 5 MPa, When the substrate flow rate was changed and the residence time dependency was examined at 0 to 143 seconds, the dependence on residence time was as shown in FIG. 11. As shown in FIG. 11, allylphenol (R 1 , R 2 , R 3 , R 4 in the formula 2) , R 5 , R 6 , R 7 , R 8 are hydrogen and X is an oxygen atom) at a residence time of 143 seconds, a conversion of 99.4%, a selectivity of 85%, and a yield of 84%. Therefore, the residence time of 143 seconds was set as the optimum residence time.

実施例18〜20
アリルフェノール(化1の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を温度265℃、圧力5MPa、水流量を変化させ、滞留時間を0〜72.8秒で滞留時間依存性を検討したところ、図12のようになり、アリルフェノール(化2の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を滞留時間71.6秒で、転化率99.6%、選択率93%、収率92%で得た。このことから、滞留時間143秒を最適滞留時間とした。
Examples 18-20
Allylphenol (wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are hydrogen and X is an oxygen atom) at a temperature of 265 ° C., a pressure of 5 MPa, When the water flow rate was changed and the residence time was examined at a residence time of 0 to 72.8 seconds, the dependence on residence time was as shown in FIG. 12, and allylphenol (R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are hydrogen and X is an oxygen atom) with a residence time of 71.6 seconds, a conversion of 99.6%, a selectivity of 93% and a yield of 92%. Obtained. Therefore, the residence time of 143 seconds was set as the optimum residence time.

実施例21
実施例20までの結果から、総合的に判断して、アリルフェノール(化1の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を温度265℃、圧力5MPa、滞留時間142秒(水流量7ml/min、基質流量0.25ml/min、基質濃度0.11mol/kg)で反応させたところ、アリルフェノール(化2の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を転化率99.8%、選択率98%、収率98%で得た。
Example 21
From the results up to Example 20, it was judged comprehensively that allylphenol (wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are hydrogens) Yes, X is an oxygen atom) at a temperature of 265 ° C., a pressure of 5 MPa, a residence time of 142 seconds (water flow rate 7 ml / min, substrate flow rate 0.25 ml / min, substrate concentration 0.11 mol / kg). (Wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , and R 8 are hydrogen and X is an oxygen atom), the conversion is 99.8% and the selectivity 98%, yield 98%.

参考実施例22(参考例)
他方、亜臨界水の効果を調べるために、水を流さない無溶媒条件で同じ装置を用いて行った。アリルフェノール(化1の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を温度265℃、圧力5MPa、滞留時間165秒(水流量0ml/min、基質流量0.25ml/min、基質濃度0.38mol/kg)で反応させたところ、アリルフェノール(化2の式中、R,R,R,R,R,R,R,Rは水素であり、Xは酸素原子)を転化率55%、選択率68%、収率37%で得られ、亜臨界水により反応が促進することが明らかとなった。
Reference Example 22 (Reference Example)
On the other hand, in order to investigate the effect of subcritical water, the same apparatus was used in a solvent-free condition where no water was allowed to flow. Allylphenol (wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are hydrogen and X is an oxygen atom) at a temperature of 265 ° C., a pressure of 5 MPa, When the reaction was carried out at a residence time of 165 seconds (water flow rate 0 ml / min, substrate flow rate 0.25 ml / min, substrate concentration 0.38 mol / kg), allylphenol (in the formula of R 2 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 are hydrogen and X is an oxygen atom) with a conversion of 55%, a selectivity of 68%, and a yield of 37%. It became clear to promote.

以上の本発明の実施例21(μ亜臨界水と略記),参考実施例22(μ無溶媒と略記)の結果と、無溶媒マイクロ波加熱(マイクロ波−無溶媒と略記、非特許文献3)、DMF添加マイクロ波加熱(マイクロ波−DMFと略記、非特許文献3)、通常加熱無溶媒(通常加熱−無溶媒と略記、非特許文献2)の結果を、収率、エネルギー原単位、E−ファクターで比較した結果が、図13、図14、図15である。良好な収率を示し、高効率であるのが、μ亜臨界水(98%)、マイクロ波−DMF(92%)、通常加熱−無溶媒(85%)であり、その中で、エネルギー原単位とE−ファクターを同時に低い値を有するのが、本発明のμ亜臨界水である。したがって、本発明は、エネルギー消費量と廃棄物量(E−ファクター)を低減しつつ高効率を達成していることが分かる。 The results of Example 21 (abbreviated as μ subcritical water) and Reference Example 22 (abbreviated as μ solvent-free) and solvent-free microwave heating (abbreviated as microwave-solvent-free, Non-Patent Document 3) ), DMF-added microwave heating (abbreviated as microwave-DMF, non-patent document 3), and normal heating without solvent (abbreviated as normal heating-no solvent, non-patent document 2), yield, energy intensity, The results of comparison by E-factor are FIG. 13, FIG. 14, and FIG. It is μ subcritical water (98%), microwave-DMF (92%), usually heating-solvent-free (85%), which shows a good yield and high efficiency. It is the mu subcritical water of the present invention that has a low unit and E-factor simultaneously. Therefore, it can be seen that the present invention achieves high efficiency while reducing energy consumption and waste amount (E-factor).

以上の実施例及び参考例から、高温高圧水を反応溶媒として、無触媒でクライゼン転位化合物がエネルギー消費量、廃棄物量を低減しつつ高収率で合成可能であることが明らかとなった。また、クライゼン転位化後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、クライゼン転位化合物を含む油層を分液回収する一方、水層からは水を分離し、回収する簡易な連続分離法も明らかとなった。 From the above Examples and Reference Examples , it has been clarified that the Claisen rearrangement compound can be synthesized in a high yield while reducing the energy consumption and the amount of waste without using a catalyst with high-temperature and high-pressure water as a reaction solvent. After the Claisen rearrangement, water is injected into the recovered aqueous solution and decanted, and after separation into an oil / water bilayer solution, the oil layer containing the Claisen rearrangement compound is separated and recovered, while water is separated from the aqueous layer. A simple continuous separation method for recovery was also revealed.

以上詳述したように、本発明は、アリルフェノール類から有機溶媒を用いることなく、高温高圧流体を反応溶媒として、無触媒でクライゼン転位化合物を合成する方法及びその装置に係るものであり、従来法では、アリルフェノール類からクライゼン転位化合物の合成は、無溶媒の加熱では省エネ・高効率合成が達成不可能であり、有機溶媒中のマイクロ波加熱では、有機溶媒を除去した環境低減プロセスの実現ができず、有機溶媒に触媒を添加した数時間の反応でも、有機溶媒・触媒を除去した環境低減型プロセスが実現できなかったが、本発明で示した亜臨界を用いることにより、触媒無添加で、有機溶媒を使用することなく、エネルギー消費量及び廃棄物量を低減しつつ高速で連続的に選択的にクライゼン転位化合物を合成することが可能となった。 As described above in detail, the present invention relates to a method and an apparatus for synthesizing a Claisen rearrangement compound without catalyst using a high-temperature and high-pressure fluid as a reaction solvent without using an organic solvent from allylphenols. According to the method, the synthesis of Claisen rearrangement compounds from allylphenols cannot achieve energy-saving and high-efficiency synthesis by solvent-free heating, and microwave heating in organic solvents realizes an environmental reduction process that removes organic solvents can not, even in the reaction for several hours with the addition of catalyst to organic solvents, although environmental-reducing process to remove the organic solvent-catalyst can not be achieved, by using a subcritical water described in the present invention, the catalyst Mu Addition to synthesize Claisen rearrangement compounds selectively and continuously at high speed while reducing energy consumption and waste without using organic solvents It has become possible.

このことは、香料、医薬品、食品として有用なクライゼン転位化合物を短時間で、大量に連続的に生産できるというメリットをもたらす。また、クライゼン転位後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、クライゼン転位化合物を含む油層を分液回収する一方、水層からは水を回収し、水をリサイクルすることが可能である。これらのことから、合成・分離プロセスを単純化させることで、プロセスの初期コスト及びランニングコストを圧縮することが可能である。更に、中和処理の後処理も不必要であり、環境調和型生産が可能となる。本発明は、香料、医薬品、食品として有用なクライゼン転位化合物の新しい大量生産プロセスとして、既存の生産プロセスに代替し得るものである。   This brings about the merit that the Claisen rearrangement compound useful as a fragrance, a medicine and a food can be produced continuously in a large amount in a short time. After the Claisen rearrangement, water is injected into the recovered aqueous solution and decanted, and after separation into an oil / water bilayer solution, the oil layer containing the Claisen rearrangement compound is separated and recovered, while water is recovered from the aqueous layer, It is possible to recycle water. From these facts, it is possible to compress the initial cost and running cost of the process by simplifying the synthesis / separation process. Furthermore, post-treatment of the neutralization treatment is unnecessary, and environmentally conscious production becomes possible. INDUSTRIAL APPLICABILITY The present invention can replace existing production processes as a new mass production process for Claisen rearrangement compounds useful as perfumes, pharmaceuticals and foods.

o−置換フェノール類を生成するクライゼン転位を示す。Figure 2 shows a Claisen rearrangement producing o-substituted phenols. p−置換フェノール類を生成するクライゼン転位を示す。The Claisen rearrangement producing p-substituted phenols is shown. 触媒・有機溶媒を用いるクライゼン転位の後処理フローチャートを示す。The flowchart of post-processing of Claisen rearrangement using a catalyst and an organic solvent is shown. 無触媒・水溶媒を用いるクライゼン転位の後処理フローチャートを示す。The post-process flowchart of the Claisen rearrangement using a non-catalyst and a water solvent is shown. 高温高圧赤外フローセルを示す。1 shows a high temperature high pressure infrared flow cell. 実施例で用いた流通型高温高圧流体その場赤外分光測定装置を示す。1 shows a flow-type high-temperature and high-pressure fluid in-situ infrared spectrometer used in the examples. 窓なし高温高圧フローセルを示す。1 shows a high temperature and high pressure flow cell without a window. 実施例で用いた流通式高温高圧反応装置の主要部分を示す。The main part of the flow-type high temperature / high pressure reactor used in the examples is shown. アリルエーテルのクライゼン転位における温度依存性を示す。The temperature dependence in the Claisen rearrangement of allyl ether is shown. アリルエーテルのクライゼン転位における圧力依存性を示す。The pressure dependence in the Claisen rearrangement of allyl ether is shown. アリルエーテルのクライゼン転位における基質流量を変化させた場合の滞留時間依存性を示す。The residence time dependence when the substrate flow rate in the Claisen rearrangement of allyl ether is changed is shown. アリルエーテルのクライゼン転位における水流量を変化させた場合の滞留時間依存性を示す。The residence time dependence when the water flow rate in the Claisen rearrangement of allyl ether is changed is shown. 本発明と他の方法との収率比較を示す。The yield comparison of this invention and another method is shown. 本発明と他の方法とのエネルギー原単位比較を示す。The energy intensity comparison of this invention and another method is shown. 本発明と他の方法とのE−ファクター比較を示す。3 shows an E-factor comparison between the present invention and other methods.

符号の説明Explanation of symbols

1 ティー又はクロス(片側口φ4mmネジ切り)
2 φ4mm×5.0mmL六角ネジ
3 ワンリングフェラル付オネジ
4 SUS316チューブ
5 水送液ポンプ
6 反応物送液ポンプ
7 洗浄水送液ポンプ
8 冷却フランジ(冷却水が循環する)
9 水加熱コイル
10 反応物導入管
11 温度センサー
12 温度センサーシース
13 炉体
14 高温高圧フローセル(通常昇温ではティー型、急速昇温ではクロス型)
15 ZnSe窓
16 溶媒導入管
17 排出配管
18 ティー
19 背圧弁
21 水溶液
22 洗浄水
23 水溶液ポンプ
24 洗浄用純水送液ポンプ
25 炉体加熱システム
26 炉体
27 高温高圧赤外フローセル
28 冷却水(入口)
29 冷却水(出口)
30 背圧弁
31 排出水溶液受器
32 可動鏡
33 可動鏡
34 干渉計
35 光源
36 赤外レーザー
37 MCT受光器
38 TGS受光器
39 解析モニター
40 反応物送液ポンプ
41 基質送液ポンプ
42 水送液ポンプ
43 反応ティー
44 配管
45 混合ティー
46 排出配管
47 冷却器
48 背圧弁
49 回収容器
50 温度センサー
51 温度センサー
1 Tee or cloth (one side opening φ4mm threaded)
2 φ4mm × 5.0mmL hexagon screw 3 Male screw with one ring ferrule 4 SUS316 tube 5 Water feed pump 6 Reactant feed pump 7 Washing water feed pump 8 Cooling flange (cooling water circulates)
9 Water heating coil 10 Reactant introduction pipe 11 Temperature sensor 12 Temperature sensor sheath 13 Furnace body 14 High-temperature high-pressure flow cell (Tee type for normal temperature rise, cross-type for rapid temperature rise)
15 ZnSe window 16 Solvent introduction pipe 17 Discharge pipe 18 Tee 19 Back pressure valve 21 Aqueous solution 22 Washing water 23 Aqueous solution pump 24 Cleaning pure water feed pump 25 Furnace heating system 26 Furnace 27 High-temperature high-pressure infrared flow cell 28 Cooling water (inlet) )
29 Cooling water (exit)
30 Back pressure valve 31 Discharged aqueous solution receiver 32 Movable mirror 33 Movable mirror 34 Interferometer 35 Light source 36 Infrared laser 37 MCT light receiver 38 TGS light receiver 39 Analysis monitor 40 Reactant liquid feed pump 41 Substrate liquid feed pump 42 Water liquid feed pump 43 Reaction tee 44 Piping 45 Mixing tee 46 Discharge piping 47 Cooler 48 Back pressure valve 49 Collection container 50 Temperature sensor 51 Temperature sensor

Claims (7)

高温高圧状態の亜臨界水を反応溶媒として使用し、触媒を用いることなく、アリルエーテル類から一段階の合成反応でアリルフェノール類を選択的に合成し、生成物のクライゼン転位化合物を回収することを特徴とするクライゼン転位化合物の製造方法。   Uses subcritical water at high temperature and high pressure as a reaction solvent, and selectively synthesizes allylphenols from allyl ethers in a one-step synthesis reaction without using a catalyst, and recovers the Claisen rearrangement compound as a product. A process for producing a Claisen rearrangement compound characterized by 温度100℃以上、圧力0.1MPa以上の亜臨界水を反応溶媒として使用する、請求項1記載の方法。   The method according to claim 1, wherein subcritical water having a temperature of 100 ° C or higher and a pressure of 0.1 MPa or higher is used as a reaction solvent. 亜臨界水に加えて、無機溶媒、又は有機溶媒を用いる、請求項1記載の方法。 In addition to the sub-critical water, inorganic solvent, or an organic solvent medium, the method of claim 1. 流通式高温高圧装置に、基質及び反応溶媒を導入し、反応時間を3〜180秒の範囲で変化させることで合成反応を実施する、請求項1記載の方法。   The method according to claim 1, wherein the synthesis reaction is carried out by introducing a substrate and a reaction solvent into a flow-type high-temperature and high-pressure apparatus and changing the reaction time in the range of 3 to 180 seconds. エネルギー消費量、廃棄物排出量(E−ファクター)を低減しつつ高効率で一段階の合成反応で目的化合物を選択的に合成する、請求項1記載の方法。   The method according to claim 1, wherein the target compound is selectively synthesized by a one-step synthesis reaction with high efficiency while reducing energy consumption and waste emission (E-factor). クライゼン転位後、回収水溶液に水を注入してデカンテーションし、油/水二層溶液に分離後、クライゼン転位化合物を含む油層を分液回収する簡易な連続分離工程を含む、請求項1記載の方法。   2. The method according to claim 1, further comprising a simple continuous separation step in which water is injected into the recovered aqueous solution after the Claisen rearrangement, followed by decantation, separation into an oil / water bilayer solution, and separation and recovery of the oil layer containing the Claisen rearrangement compound. Method. 請求項1から5のいずれかに記載の亜臨界水によるクライゼン転位化合物の製造方法に使用する合成装置であって、
水を送液する水送液ポンプ、水加熱用コイル、高温高圧フローセル、基質を送液する反応物送液ポンプ、炉体、反応物を炉体に導入する反応物導入管、反応溶液を排出する排出液ライン、冷却フランジ及び圧力を設定する背圧弁を具備し、水送液ポンプから水が送液され、冷却フランジを通過後、炉体へ送液され、水加熱用コイルを通過後、高温高圧フローセルに導入され、一方、反応物が反応物送液ポンプから送液され、冷却フランジを通過後、炉体へ送液され、反応物導入管を通過後、高温高圧フローセルに導入され、該高温高圧フローセルにおいて所定の温度及び圧力条件の亜臨界水により合成反応を実施するようにしたことを特徴とするクライゼン転位化合物の合成装置。
A synthesizer used in the method for producing a Claisen rearrangement compound using subcritical water according to any one of claims 1 to 5,
Water feed pump for feeding water, coil for water heating, high-temperature and high-pressure flow cell, reactant feed pump for feeding substrate, furnace body, reactant introduction pipe for introducing reactant into the furnace body, discharging reaction solution A drain line, a cooling flange and a back pressure valve for setting the pressure, water is sent from the water feed pump, passed through the cooling flange, sent to the furnace body, passed through the water heating coil, Introduced into the high-temperature and high-pressure flow cell, while the reactant is fed from the reactant feed pump, passes through the cooling flange, is sent to the furnace body, passes through the reactant introduction pipe, and is introduced into the high-temperature and high-pressure flow cell, An apparatus for synthesizing a Claisen rearrangement compound, wherein the synthesis reaction is carried out with subcritical water at a predetermined temperature and pressure in the high-temperature and high-pressure flow cell.
JP2007095644A 2007-03-30 2007-03-30 Method for producing Claisen rearrangement compound and synthesis apparatus thereof Active JP5146928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007095644A JP5146928B2 (en) 2007-03-30 2007-03-30 Method for producing Claisen rearrangement compound and synthesis apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007095644A JP5146928B2 (en) 2007-03-30 2007-03-30 Method for producing Claisen rearrangement compound and synthesis apparatus thereof

Publications (2)

Publication Number Publication Date
JP2008255015A JP2008255015A (en) 2008-10-23
JP5146928B2 true JP5146928B2 (en) 2013-02-20

Family

ID=39978955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007095644A Active JP5146928B2 (en) 2007-03-30 2007-03-30 Method for producing Claisen rearrangement compound and synthesis apparatus thereof

Country Status (1)

Country Link
JP (1) JP5146928B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5678437B2 (en) * 2010-03-05 2015-03-04 国立大学法人東北大学 Synthesis method of nanocrystalline alloys
JP5962929B2 (en) * 2012-01-30 2016-08-03 小西化学工業株式会社 Integrated production method of diallyl bisphenols
JP6494444B2 (en) * 2014-07-08 2019-04-03 昭和電工株式会社 Method for producing polyalkenylphenol compound

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230732A (en) * 1985-08-02 1987-02-09 Mitsui Toatsu Chem Inc Production of beta,gamma-unsaturated alkenyl-substituted phenol
JPH02282343A (en) * 1989-04-25 1990-11-19 Mitsubishi Petrochem Co Ltd Production of allyl-substituted phenols
JP3174849B2 (en) * 1998-10-30 2001-06-11 経済産業省産業技術総合研究所長 Non-catalytic organic synthesis reaction method
JP2000191571A (en) * 1998-12-25 2000-07-11 Kanegafuchi Chem Ind Co Ltd Production of beta, gamma-unsaturated alkenyl group- substituted phenol
JP4320402B2 (en) * 2004-03-30 2009-08-26 独立行政法人産業技術総合研究所 Synthetic reaction method and apparatus of diallyl ether compound

Also Published As

Publication number Publication date
JP2008255015A (en) 2008-10-23

Similar Documents

Publication Publication Date Title
EP2399897B1 (en) Method for producing oxygen-containing compound
CN107474003B (en) Method for continuously synthesizing N-methyl pyrrolidone and N-ethyl pyrrolidone
JP2009132663A (en) Method for producing acroleins and apparatus producing the same
JP5146928B2 (en) Method for producing Claisen rearrangement compound and synthesis apparatus thereof
Venardou et al. On-line monitoring of the hydrolysis of acetonitrile in near-critical water using Raman spectroscopy
CN106045834A (en) Method for preparing ambrotone
Hornung et al. Diels–Alder reactions of myrcene using intensified continuous-flow reactors
Nagy et al. N‐Hydroxyphthalimide Catalyzed Aerobic Oxidation of Aldehydes under Continuous Flow Conditions
JP4836181B2 (en) Acyl compound production method and apparatus
Schotten et al. Protected diazonium salts: A continuous-flow preparation of triazenes including the anticancer compounds dacarbazine and mitozolomide
JP5369349B2 (en) Process for producing 5-hydroxymethyl-2-furfurylaldehyde and apparatus therefor
Wang et al. Influence of metal particle size on the hydrogenation of maleic anhydride over Pd/C catalysts in scCO2
JP4953341B2 (en) Process for producing polyacyl compound and apparatus therefor
Ding et al. Synthesis of 1, 5-dinitroaryl-1, 4-pentadien-3-ones under ultrasound irradiation
JP5077908B2 (en) Method for producing acylated tocopherol
JP4784913B2 (en) Citral synthesis method and equipment
CN113149896A (en) Preparation method of 3-aminopyridine
JP4310436B2 (en) Terpene hydrocarbon synthesis reaction method
JP2007291096A (en) Selective sequential polyacylation and device therefor
JP5494904B2 (en) Mononitration method and production reactor
JP2002003426A (en) Method for producing 2,5-xylenol and 2,3,6-trimethylphenol
JP2005281270A (en) Isomerization of allyl alcohol and apparatus for the same
JP2007269766A (en) Method for producing 5-methylhydroxy-2-furfural and apparatus therefor
JP4320402B2 (en) Synthetic reaction method and apparatus of diallyl ether compound
JP5344293B2 (en) Method for producing 1,3,5-tribenzoylbenzene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

R150 Certificate of patent or registration of utility model

Ref document number: 5146928

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250