JP5146002B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP5146002B2
JP5146002B2 JP2008038109A JP2008038109A JP5146002B2 JP 5146002 B2 JP5146002 B2 JP 5146002B2 JP 2008038109 A JP2008038109 A JP 2008038109A JP 2008038109 A JP2008038109 A JP 2008038109A JP 5146002 B2 JP5146002 B2 JP 5146002B2
Authority
JP
Japan
Prior art keywords
magnetic field
slab
mold
width
discharge hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008038109A
Other languages
Japanese (ja)
Other versions
JP2009195924A (en
Inventor
祐司 三木
剛 村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008038109A priority Critical patent/JP5146002B2/en
Publication of JP2009195924A publication Critical patent/JP2009195924A/en
Application granted granted Critical
Publication of JP5146002B2 publication Critical patent/JP5146002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、電磁力によって鋳型内の溶鋼流動を制御しながら溶鋼を鋳造する鋼の連続鋳造方法に関し、詳しくは、電磁力によって鋳型内の偏流を抑制し、表層部の非金属介在物の少ない高品質の鋳片を鋳造するための連続鋳造方法に関するものである。   The present invention relates to a continuous casting method of steel in which molten steel is cast while controlling the flow of molten steel in the mold by electromagnetic force, and more specifically, the drift in the mold is suppressed by electromagnetic force and the amount of non-metallic inclusions in the surface layer portion is small. The present invention relates to a continuous casting method for casting a high quality slab.

鋼の連続鋳造では、タンディッシュ内の溶鋼を、タンディッシュ底部に設置した浸漬ノズルを介して鋳型内に注入している。この場合、特にスラブ鋳片の連続鋳造のように、2つの吐出孔を有する浸漬ノズルを用い、溶鋼の吐出流を鋳型短辺に向けて注入する連続鋳造においては、鋳型内に注入された溶鋼の吐出流は、短辺凝固シェルに衝突して下降流と上昇流(「反転流」ともいう)とに分かれ、下降流は鋳片未凝固層深部に進入し、また、上昇流は鋳型内溶鋼表面(以下、「メニスカス」という)で鋳型短辺から浸漬ノズルに向かう流れとなって、メニスカスに「渦」や、「盛り上がり」などの流れの乱れを生成させる。   In continuous casting of steel, molten steel in a tundish is injected into a mold through an immersion nozzle installed at the bottom of the tundish. In this case, particularly in continuous casting in which a discharge flow of molten steel is injected toward the short side of the mold using an immersion nozzle having two discharge holes, as in continuous casting of a slab slab, the molten steel injected into the mold The discharged flow collides with the short-side solidified shell and is divided into a downward flow and an upward flow (also called “reversal flow”). The downward flow enters the deep part of the unsolidified layer of the slab, and the upward flow flows into the mold. On the surface of the molten steel (hereinafter referred to as “meniscus”), it becomes a flow from the short side of the mold to the immersion nozzle, and the turbulence such as “vortex” and “swell” is generated in the meniscus.

脱酸生成物であるアルミナ(Al23)を主体とする非金属介在物は、前記下降流により鋳片未凝固層深くまで侵入して凝固シェルに捕捉され、また、メニスカス上に添加されたモールドパウダーは、メニスカスでの渦や盛り上がりにより溶鋼中に巻き込まれ、凝固シェルに補捉される。更に、アルミナを主体とする非金属介在物や、アルミナ付着防止のために浸漬ノズル内に吹き込まれるArガス気泡が、メニスカス近傍の溶鋼流の乱れなどに起因して、溶鋼中を浮上する過程で凝固シェルに捕捉される。特に、アルミナの付着などに起因して2つの吐出孔から吐出される吐出流の流量に差が生じた場合には、鋳型内の溶鋼流動が不均一且つ不安定となり、非金属介在物及び気泡の凝固シェルへの捕捉が増大する。鋳片に捕捉された、これら非金属介在物及び気泡が、薄鋼板において表面疵欠陥を発生させる。尚、2つの吐出孔から吐出される吐出流の流量に差が生じ、鋳型内の溶鋼流動が浸漬ノズルを挟んで左右で異なった状態を、「偏流」或いは「偏流の発生した状態」と呼んでいる。 Non-metallic inclusions mainly composed of alumina (Al 2 O 3 ), which is a deoxidation product, penetrates deep into the unsolidified layer of the slab by the downward flow and is captured by the solidified shell, and is added onto the meniscus. The mold powder is entrained in the molten steel by the vortex and rise of the meniscus and is captured by the solidified shell. Furthermore, non-metallic inclusions mainly composed of alumina and Ar gas bubbles blown into the immersion nozzle to prevent the adhesion of alumina float in the molten steel due to the turbulence of the molten steel flow near the meniscus. Captured by the solidified shell. In particular, when there is a difference in the flow rate of the discharge flow discharged from the two discharge holes due to adhesion of alumina or the like, the molten steel flow in the mold becomes uneven and unstable, and non-metallic inclusions and bubbles The trapping of the solidified shell is increased. These non-metallic inclusions and bubbles trapped in the slab generate surface flaw defects in the thin steel plate. The state where the flow rate of the discharge flow discharged from the two discharge holes is different and the molten steel flow in the mold is different on the left and right with the immersion nozzle in between is called “diffusion” or “diffused state”. It is out.

そこで、近年では、モールドパウダー、非金属介在物及び気泡の凝固シェルへの捕捉を防止するために、鋳型内の溶鋼流動を電磁力により制御することが広く実施されている(例えば、特許文献1を参照)。   Therefore, in recent years, in order to prevent mold powder, non-metallic inclusions and bubbles from being trapped in the solidified shell, it is widely practiced to control the molten steel flow in the mold by electromagnetic force (for example, Patent Document 1). See).

電磁力の利用方法としては、特許文献1のように、定常状態における溶鋼流動を電磁力によって最適な状態とすることが主体であるが、電磁力によって最適な状態に制御していても、浸漬ノズル吐出孔のアルミナ付着などに起因する突発的な鋳型内の偏流には的確な対処ができず、偏流が発生した場合には鋳片に欠陥が多発する。   As a method of using electromagnetic force, as in Patent Document 1, the molten steel flow in a steady state is mainly made to be in an optimum state by electromagnetic force, but even if it is controlled to the optimum state by electromagnetic force, The sudden drift in the mold due to the alumina adhesion of the nozzle discharge hole cannot be dealt with accurately, and when the drift occurs, defects in the slab frequently occur.

そこで、突発的な鋳型内の偏流或いは非定常流れを解消するために、積極的に電磁力を利用する方法も提案されている。例えば、特許文献2には、鋳型内のメニスカス部分に交流移動磁場発生装置を設置するとともに、鋳型内浸漬ノズル下方の溶鋼存在部に静磁場発生装置を設置した連続鋳造方法において、(1)浸漬ノズルから吹込むArガスの背圧変化、(2)鋳型内溶鋼の湯面変動、(3)鋳型短辺側の溶鋼の湯面レベル差のうちの少なくとも1つが異常と判断された時には、交流移動磁場発生装置か静磁場発生装置の何れか一方の装置を作動させる連続鋳造方法が提案されている。   Therefore, a method of positively using electromagnetic force has been proposed in order to eliminate sudden drift or unsteady flow in the mold. For example, Patent Document 2 discloses a continuous casting method in which an AC moving magnetic field generator is installed at a meniscus portion in a mold, and a static magnetic field generator is installed in a molten steel existing part below the immersion nozzle in the mold. When it is determined that at least one of the back pressure change of Ar gas blown from the nozzle, (2) molten metal level fluctuation of molten steel in the mold, and (3) molten metal level difference of molten steel on the short side of the mold is abnormal, alternating current There has been proposed a continuous casting method in which either a moving magnetic field generator or a static magnetic field generator is operated.

また、特許文献3には、鋳型長辺外側の上段、中段及び下段に静磁場を印加しながら溶融金属を連続鋳造する場合に、鋳型内の溶融金属に非定常流れが発生したとき、これを検出し、上段及び中段に、印加方向が等しく磁場強度を1500〜3000ガウスの静磁場を印加し、且つ下段には、上段及び中段の磁場強度の小さい方の0.3〜0.7倍までの静磁場を印加し、非定常流れを抑制した連続鋳造方法が提案されている。   Further, in Patent Document 3, when a molten metal is continuously cast while applying a static magnetic field to the upper stage, middle stage and lower stage outside the long side of the mold, when an unsteady flow occurs in the molten metal in the mold, Detect and apply a static magnetic field of 1500 to 3000 gauss with the same direction of application in the upper and middle stages, and from 0.3 to 0.7 times the smaller of the upper and middle stages. A continuous casting method in which an unsteady flow is suppressed by applying a static magnetic field is proposed.

また更に、非特許文献1には、湯面レベルを検知して、偏流が検知されたときには、相対する鋳型長辺の背面に設置された交流移動磁場発生装置から印加する磁場強度を、互いに異なるように変更することが提案されている。
特開平10−305353号公報 特開平11−285795号公報 特開平11−10295号公報 材料とプロセス CAMP-ISIJ 20(2007)p.867
Further, in Non-Patent Document 1, when the molten metal surface level is detected and a drift is detected, the magnetic field strengths applied from the AC moving magnetic field generators installed on the back surfaces of the opposing long mold sides are different from each other. It has been proposed to change as follows.
JP-A-10-305353 Japanese Patent Application Laid-Open No. 11-285795 Japanese Patent Laid-Open No. 11-10295 Materials and Processes CAMP-ISIJ 20 (2007) p.867

このように、鋳型内の偏流を電磁力によって防止する方法が提案されているが、一旦偏流が発生すると、2つの吐出孔から吐出される溶鋼流量が異なるためにバランスを元に戻すことは容易ではなく、上記従来技術であっても不十分であった。偏流が発生してから、元に戻すまでの時間が長引くと、その間に鋳造した鋳片には欠陥が多発するため、鋳片の表面溶削を必要としたり、薄鋼板で表面疵欠陥が発生して歩留りを低下させたりするなどの問題があった。また、一旦偏流が発生してしまうと、その鋳造が修了するまで偏流を解消できないこともあった。   As described above, a method for preventing the drift in the mold by electromagnetic force has been proposed, but once the drift occurs, it is easy to restore the balance because the flow rate of the molten steel discharged from the two discharge holes is different. However, even the above prior art is insufficient. If the time from the occurrence of the drift to the return to it is prolonged, defects will occur frequently in the slab cast during that time, so surface slabs of the slab are required or surface flaw defects occur in the thin steel plate. There was a problem such as lowering the yield. In addition, once a drift occurs, the drift may not be resolved until the casting is completed.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋼の連続鋳造中に鋳型内に偏流が発生した場合、電磁力を利用することによって、短時間で効率的に前記偏流を解消し、非金属介在物の少ない高清浄性の鋼鋳片を得ることのできる連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances, and its object is to efficiently use the electromagnetic force in a short time when a drift occurs in the mold during continuous casting of steel. It is an object of the present invention to provide a continuous casting method capable of eliminating a drift and obtaining a highly clean steel slab with less non-metallic inclusions.

本発明者等は、上記課題を解決すべく、鋭意研究・検討を行った。その結果、電磁力を利用して、非金属介在物の少ない高清浄性の鋳片を安定的に鋳造すると同時に、発生した鋳型内の偏流を電磁力により解消するには、鋳型内に、浸漬ノズルの吐出孔よりも上方側と、浸漬ノズルの吐出孔よりも下方側との上下2段の磁場発生装置を設置する必要があることが分かった。何れかの1段のみでは、電磁力を利用するとはいえ、鋳片の清浄化と偏流防止とを同時に満足させることは十分にできないからである。   The inventors of the present invention have intensively studied and studied to solve the above problems. As a result, it is possible to stably cast highly clean slabs with few non-metallic inclusions using electromagnetic force, and at the same time to eliminate the generated drift in the mold by electromagnetic force, It has been found that it is necessary to install two upper and lower magnetic field generators above the nozzle discharge hole and below the immersion nozzle discharge hole. This is because, in any one stage, although electromagnetic force is used, it is not possible to satisfy both the cleaning of the cast slab and the prevention of drift at the same time.

この場合、吐出孔よりも下方側の磁場発生装置は、非金属介在物の鋳片未凝固層深くまでの侵入を防止するために、溶鋼流動を制動する、つまり流動する溶鋼にブレーキ力を発現する静磁場とする必要があることが分かった。一方、吐出孔よりも上方側の磁場発生装置は、流動を制動する静磁場であっても、移動する磁場の方向に溶鋼の流れを発生させる交流移動磁場であっても、また交流移動磁場と静磁場との双方であってもよいことが分かった。交流移動磁場を発生する交流移動磁場発生装置は、所謂「電磁攪拌装置」であり、交流移動磁場を印加することにより、鋳型内の溶鋼を水平方向に回転させる装置である。   In this case, the magnetic field generator below the discharge hole brakes the molten steel flow in order to prevent the penetration of nonmetallic inclusions into the unsolidified layer of the slab, that is, exerts a braking force on the flowing molten steel. It was found that it was necessary to use a static magnetic field. On the other hand, the magnetic field generator above the discharge hole is a static magnetic field that brakes the flow, an AC moving magnetic field that generates a flow of molten steel in the direction of the moving magnetic field, and an AC moving magnetic field. It was found that both the static magnetic field and the static magnetic field may be used. An AC moving magnetic field generator that generates an AC moving magnetic field is a so-called “electromagnetic stirrer” that rotates the molten steel in a mold in the horizontal direction by applying an AC moving magnetic field.

このような上下2段の磁場を印加して溶鋼を連続鋳造している場合に、浸漬ノズルの吐出孔にアルミナが付着するなどして鋳型内溶鋼に偏流が発生した際には、吐出孔よりも上方側の磁場発生装置の磁場強度を変更することで、偏流が改善されることが分かった。これは、浸漬ノズルからの吐出流は、吐出孔よりも下方側に設置された静磁場によって制動され、吐出孔の下方側に設置された静磁場よりも下方側の溶鋼流動は緩やかであり、鋳型内の溶鋼流動は、主に、メニスカスと、吐出孔の下方側に設置された静磁場発生装置との範囲内で起こり、この範囲内の溶鋼流動は、主に、吐出孔よりも上方側に設置された磁場発生装置によって制御されるからである。   When the molten steel is continuously cast by applying such a two-stage magnetic field, when a drift occurs in the molten steel in the mold due to alumina adhering to the discharge hole of the immersion nozzle, the discharge hole It was also found that drift was improved by changing the magnetic field strength of the upper magnetic field generator. This is because the discharge flow from the immersion nozzle is braked by a static magnetic field installed below the discharge hole, and the molten steel flow below the static magnetic field installed below the discharge hole is gentle, Molten steel flow in the mold mainly occurs within the range of the meniscus and the static magnetic field generator installed below the discharge hole, and the molten steel flow within this range is mainly above the discharge hole. It is because it is controlled by the magnetic field generator installed in the.

鋳型内に偏流が発生した場合、この偏流を解消するには、吐出孔よりも上方側に設置された磁場発生装置の磁場強度を、鋳造している鋳片の幅に応じて、変更することが効果的であることが分かった。即ち、浸漬ノズルからの吐出流が鋳型短辺側の凝固シェルに衝突して反転する際に発生する反転流(上昇流)が、鋳片幅が相対的に狭いときには強くなるので、この反転流の流速を減速させるために、吐出孔よりも上方側で印加する静磁場の磁場強度を高めるか、吐出孔よりも上方側で印加する交流移動磁場の磁場強度を弱めることが効果的であり、一方、鋳片幅が相対的に広いときには反転流が弱くなるので、流速が遅い側の流速を増速させるために、吐出孔よりも上方側で印加する静磁場の磁場強度を弱めるか、吐出孔よりも上方側で印加する交流移動磁場の磁場強度を強めることが効果的である、との知見を得た。   In order to eliminate this drift when a drift occurs in the mold, the magnetic field intensity of the magnetic field generator installed above the discharge hole is changed according to the width of the cast slab. Was found to be effective. That is, the reverse flow (upflow) generated when the discharge flow from the immersion nozzle collides with the solidified shell on the short side of the mold and reverses becomes stronger when the slab width is relatively narrow. In order to reduce the flow velocity of the gas, it is effective to increase the magnetic field strength of the static magnetic field applied above the discharge hole or to weaken the magnetic field strength of the AC moving magnetic field applied above the discharge hole, On the other hand, when the slab width is relatively wide, the reversal flow becomes weak. Therefore, in order to increase the flow velocity on the slow flow rate side, the magnetic field strength of the static magnetic field applied above the discharge hole is weakened or discharged. It was found that it is effective to increase the magnetic field strength of the AC moving magnetic field applied above the hole.

この場合に、吐出孔よりも上方側に設置された磁場発生装置に同調して、上方側の静磁場の磁場強度を増加するか、或いは交流移動磁場の磁場強度を低下するときには、上記反転流を弱くするために、吐出孔よりも下方側に設置された静磁場の磁場強度を高くし、一方、上方側の静磁場の磁場強度を低下するか、或いは交流移動磁場の磁場強度を増加するときには、上記反転流を強くするために、吐出孔よりも下方側に設置された静磁場の磁場強度を低くすることで、より一層偏流が解消されるとの知見が得られた。   In this case, when the magnetic field intensity of the static magnetic field on the upper side is increased or the magnetic field intensity of the AC moving magnetic field is decreased in synchronism with the magnetic field generator installed above the discharge hole, In order to weaken the magnetic field strength, the magnetic field strength of the static magnetic field installed below the discharge hole is increased, while the magnetic field strength of the upper static magnetic field is decreased or the magnetic field strength of the AC moving magnetic field is increased. At times, in order to strengthen the reversal flow, it has been found that the drift is further eliminated by lowering the magnetic field strength of the static magnetic field installed below the discharge hole.

本発明は、上記知見に基づいてなされたものであり、上記課題を解決するための第1の発明に係る鋼の連続鋳造方法は、その下部に鋳型短辺方向を向いた2つの吐出孔を有する浸漬ノズルを用い、該浸漬ノズルの吐出孔よりも上方位置に鋳片幅全域にわたる交流移動磁場を印加するとともに、前記吐出孔よりも下方位置に鋳片幅全域にわたる静磁場を印加しながら溶鋼を連続鋳造するにあたり、鋳型内溶鋼に偏流が発生したとき、該偏流を検知し、鋳造される鋳片の幅に応じて、鋳片幅が相対的に小さいときは、前記交流移動磁場の磁場強度を減少させ、鋳片幅が相対的に大きいときは、前記交流移動磁場の磁場強度を増加させることを特徴とするものである。   The present invention has been made on the basis of the above knowledge, and the continuous casting method of steel according to the first invention for solving the above-mentioned problem is provided with two discharge holes facing the short side of the mold at the bottom. A submerged nozzle is used to apply an AC moving magnetic field across the entire width of the slab at a position above the discharge hole of the immersion nozzle, while applying a static magnetic field over the entire width of the slab at a position below the discharge hole. In the continuous casting, when the drift occurs in the molten steel in the mold, the drift is detected, and when the slab width is relatively small according to the width of the cast slab, the magnetic field of the AC moving magnetic field When the strength is decreased and the slab width is relatively large, the magnetic field strength of the AC moving magnetic field is increased.

第2の発明に係る鋼の連続鋳造方法は、その下部に鋳型短辺方向を向いた2つの吐出孔を有する浸漬ノズルを用い、該浸漬ノズルの吐出孔よりも上方位置に鋳片幅全域にわたる静磁場を印加するとともに、前記吐出孔よりも下方位置に鋳片幅全域にわたる静磁場を印加しながら溶鋼を連続鋳造するにあたり、鋳型内溶鋼に偏流が発生したとき、該偏流を検知し、鋳造される鋳片の幅に応じて、鋳片幅が相対的に小さいときは、前記吐出孔よりも上方位置の静磁場の磁場強度を増加させ、鋳片幅が相対的に大きいときは、前記吐出孔よりも上方位置の静磁場の磁場強度を減少させることを特徴とするものである。   The continuous casting method for steel according to the second invention uses an immersion nozzle having two discharge holes facing the short side of the mold at the lower part thereof, and covers the entire width of the slab at a position above the discharge hole of the immersion nozzle. When a molten steel is continuously cast while applying a static magnetic field and applying a static magnetic field over the entire width of the slab at a position below the discharge hole, when the drift occurs in the molten steel in the mold, the drift is detected and cast. Depending on the width of the cast slab, when the slab width is relatively small, increase the magnetic field strength of the static magnetic field above the discharge hole, and when the slab width is relatively large, The magnetic field strength of the static magnetic field above the discharge hole is reduced.

第3の発明に係る鋼の連続鋳造方法は、その下部に鋳型短辺方向を向いた2つの吐出孔を有する浸漬ノズルを用い、該浸漬ノズルの吐出孔よりも上方位置に鋳片幅全域にわたる交流移動磁場及び静磁場を印加するとともに、前記吐出孔よりも下方位置に鋳片幅全域にわたる静磁場を印加しながら溶鋼を連続鋳造するにあたり、鋳型内溶鋼に偏流が発生したとき、該偏流を検知し、鋳造される鋳片の幅に応じて、鋳片幅が相対的に小さいときは、前記交流移動磁場の磁場強度を減少させるとともに前記吐出孔よりも上方位置の静磁場の磁場強度を増加させ、鋳片幅が相対的に大きいときは、前記交流移動磁場の磁場強度を増加させるとともに前記吐出孔よりも上方位置の静磁場の磁場強度を減少させることを特徴とするものである。   The continuous casting method for steel according to the third invention uses an immersion nozzle having two discharge holes facing the short side of the mold at the lower part thereof, and covers the entire width of the slab at a position above the discharge hole of the immersion nozzle. In the continuous casting of molten steel while applying an AC moving magnetic field and a static magnetic field and applying a static magnetic field over the entire width of the slab at a position below the discharge hole, when the drift occurs in the molten steel in the mold, the drift is When the width of the cast slab is relatively small according to the width of the slab to be detected and cast, the magnetic field strength of the alternating magnetic field is decreased and the magnetic field strength of the static magnetic field above the discharge hole is reduced. When the slab width is increased and the slab width is relatively large, the magnetic field strength of the AC moving magnetic field is increased and the magnetic field strength of the static magnetic field at a position above the discharge hole is decreased.

第4の発明に係る鋼の連続鋳造方法は、第1ないし第3の発明の何れかにおいて、前記偏流を検知したとき、前記吐出孔よりも下方位置の静磁場の磁場強度を、鋳造される鋳片の幅に応じて、鋳片幅が相対的に小さいときは増加させ、鋳片幅が相対的に大きいときは減少させることを特徴とするものである。   According to a fourth aspect of the present invention, there is provided a continuous casting method of steel according to any one of the first to third aspects, wherein the magnetic field strength of the static magnetic field at a position below the discharge hole is cast when the drift is detected. According to the width of the slab, it is increased when the slab width is relatively small, and is decreased when the slab width is relatively large.

第5の発明に係る鋼の連続鋳造方法は、第1ないし第4の発明の何れかにおいて、前記偏流を検知する手段が、鋳型背面に配置した熱電対か、または、鋳型幅方向に設置した2つ以上の湯面レベル計の何れかであることを特徴とするものである。   According to a fifth aspect of the present invention, there is provided the continuous casting method of steel according to any one of the first to fourth aspects, wherein the means for detecting the drift is a thermocouple disposed on the back surface of the mold or installed in the mold width direction. It is any one of two or more hot water level meters.

本発明によれば、鋳型内に偏流が発生したことを検知したときには、浸漬ノズルの吐出孔よりも上方位置に印加する交流移動磁場及び/または静磁場の強度を、鋳造している鋳片の幅に応じて、相対的に鋳片幅が狭いときには、鋳型短辺側からの反転流が弱くなるように、前記交流移動磁場を弱めるか、または前記静磁場を強めるか、若しくは交流移動磁場を弱め且つ静磁場を強め、一方、相対的に鋳片幅が広いときには、鋳型短辺側からの反転流が強くなるように、前記交流移動磁場を強めるか、または前記静磁場を弱めるか、若しくは交流移動磁場を強め且つ静磁場を弱めるので、鋳型内の偏流を迅速且つ効果的に解消することができ、その結果、非金属介在物の少ない、清浄性に優れた鋳片の製造が可能となる。   According to the present invention, when it is detected that a drift has occurred in the mold, the strength of the AC moving magnetic field and / or the static magnetic field applied to a position above the discharge hole of the immersion nozzle is set to be equal to that of the cast slab. Depending on the width, when the slab width is relatively narrow, the AC moving magnetic field is weakened, the static magnetic field is strengthened, or the AC moving magnetic field is set so that the reversal flow from the mold short side becomes weak. While weakening and strengthening the static magnetic field, on the other hand, when the slab width is relatively wide, the AC moving magnetic field is strengthened or the static magnetic field is weakened so that the reversal flow from the mold short side becomes strong, or Since the AC moving magnetic field is strengthened and the static magnetic field is weakened, the drift in the mold can be eliminated quickly and effectively, and as a result, it is possible to produce a slab with less non-metallic inclusions and excellent cleanliness. Become.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明に係る連続鋳造方法を実施する際に用いたスラブ連続鋳造機の鋳型部の概略図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic view of a mold part of a slab continuous casting machine used in carrying out a continuous casting method according to the present invention.

図1において、相対する鋳型長辺13と、この鋳型長辺13の内側に挟持された、相対する鋳型短辺14と、により構成される鋳型2の上方所定位置に、外殻を鉄皮15で覆われ、内部を耐火物16で施行されたタンディッシュ1が配置されている。このタンディッシュ1の底部には、耐火物16に嵌合する上ノズル3が設置され、そして、上ノズル3の下面に接して、上部固定板5、摺動板6、下部固定板7及び整流ノズル8からなるスライディングノズル4が配置され、更に、スライディングノズル4の下面に接して、その下部に、それぞれ鋳型短辺14の方向を向いた2つの吐出孔10を有する浸漬ノズル9が配置され、タンディッシュ1から鋳型2への溶鋼流出孔11が形成されている。浸漬ノズル9は、下部に設置される吐出孔10が鋳型内の溶鋼17に埋没するようにその先端が浸漬されて使用される。   In FIG. 1, the outer shell is placed at a predetermined position above the mold 2 constituted by the opposed mold long side 13 and the opposed mold short side 14 sandwiched inside the mold long side 13. The tundish 1 covered with the refractory 16 inside is arranged. At the bottom of the tundish 1, an upper nozzle 3 that fits the refractory 16 is installed, and in contact with the lower surface of the upper nozzle 3, the upper fixing plate 5, the sliding plate 6, the lower fixing plate 7, and the rectification A sliding nozzle 4 comprising a nozzle 8 is disposed, and further, an immersion nozzle 9 having two discharge holes 10 respectively facing the bottom surface of the sliding nozzle 4 and facing the mold short side 14 is disposed below the sliding nozzle 4. A molten steel outflow hole 11 from the tundish 1 to the mold 2 is formed. The immersion nozzle 9 is used with its tip immersed so that the discharge hole 10 installed in the lower part is buried in the molten steel 17 in the mold.

また、摺動板6は、往復型アクチュエーター12と接続されており、往復型アクチュエーター12の作動により、上部固定板5と下部固定板7との間をこれらの固定板と接触したまま移動し、摺動板6と上部固定板5及び下部固定板7とで形成する開口部面積を調整することにより溶鋼流出孔11を通過する溶鋼量が制御される。上ノズル3には、ポーラス煉瓦(図示せず)が配置され、このポーラス煉瓦の部分から、溶鋼流出孔11を流下する溶鋼17にArガスを吹き込むように構成されている。   Further, the sliding plate 6 is connected to the reciprocating actuator 12, and the reciprocating actuator 12 is operated to move between the upper fixing plate 5 and the lower fixing plate 7 while being in contact with these fixing plates, The amount of molten steel passing through the molten steel outflow hole 11 is controlled by adjusting the opening area formed by the sliding plate 6, the upper fixing plate 5 and the lower fixing plate 7. Porous brick (not shown) is disposed on the upper nozzle 3, and Ar gas is blown into the molten steel 17 flowing down the molten steel outflow hole 11 from the porous brick portion.

鋳型長辺13の背面には、吐出孔10よりも上方側に、鋳型長辺13を挟んで相対する上部磁場発生装置22が配置され、且つ、吐出孔10よりも下方側に、鋳型長辺13を挟んで相対する下部磁場発生装置23が配置されている。上部磁場発生装置22は、交流移動磁場を印加する交流移動磁場発生装置であっても、また、静磁場を印加する直流静磁場発生装置であっても、更には、交流移動磁場と静磁場とを重畳して印加する交流直流重畳磁場発生装置の何れであっても構わない。一方、下部磁場発生装置23としては、静磁場を発生する直流静磁場発生装置を配置する。   On the back side of the mold long side 13, an upper magnetic field generator 22 is disposed on the upper side of the ejection hole 10 and is opposed to the mold long side 13. The mold long side is disposed on the lower side of the ejection hole 10. A lower magnetic field generator 23 facing each other across 13 is disposed. The upper magnetic field generator 22 may be an AC moving magnetic field generator that applies an AC moving magnetic field or a DC static magnetic field generator that applies a static magnetic field. Any one of the AC / DC superimposed magnetic field generators that apply and superimpose may be used. On the other hand, as the lower magnetic field generator 23, a DC static magnetic field generator that generates a static magnetic field is arranged.

この場合、交流移動磁場の印加方法は、鋳型内の溶鋼17がメニスカス19で水平方向に回転するように、相対する交流移動磁場発生装置の磁場移動方向を逆向きとする。静磁場は、磁束が相対する鋳型長辺13を貫通すように印加される限り、その方向はどちらでも構わない。静磁場は、永久磁石でも印加できるが、本発明では静磁場の強度を変更する必要があることから、直流静磁場発生装置を使用する。また、上部磁場発生装置22は、鋳造方向の磁場強度分布において、メニスカス19の近傍位置が最も磁場強度が高くなるように、設置位置を調整する。下部磁場発生装置23は、吐出孔10よりも下方側の鋳型背面である限り、設置位置は特に規定する必要はない。交流移動磁場の周波数は、0.1Hz〜100Hz程度とする。   In this case, the application method of the AC moving magnetic field is such that the magnetic field moving directions of the opposing AC moving magnetic field generators are reversed so that the molten steel 17 in the mold rotates in the horizontal direction at the meniscus 19. The direction of the static magnetic field may be any as long as it is applied so that the magnetic flux penetrates the opposite mold long sides 13. Although a static magnetic field can be applied even with a permanent magnet, in the present invention, since the strength of the static magnetic field needs to be changed, a DC static magnetic field generator is used. Further, the upper magnetic field generator 22 adjusts the installation position so that the magnetic field strength is highest in the vicinity of the meniscus 19 in the magnetic field strength distribution in the casting direction. As long as the lower magnetic field generator 23 is on the lower surface of the mold below the discharge hole 10, the installation position is not particularly required. The frequency of the AC moving magnetic field is about 0.1 Hz to 100 Hz.

このように構成されるスラブ連続鋳造機を用い、以下のようにして本発明に係る連続鋳造方法を実施する。   Using the slab continuous casting machine configured as described above, the continuous casting method according to the present invention is carried out as follows.

転炉または電気炉などの一次精錬炉若しくはRH真空脱ガス装置などの二次精錬炉で溶製された溶鋼17を、取鍋(図示せず)からタンディッシュ1に注入し、タンディッシュ内の溶鋼量が所定量になったなら、摺動板6を開き、溶鋼流出孔11を介して溶鋼17を鋳型2に注入する。溶鋼17は、吐出孔10から、鋳型短辺14に向かう吐出流18となって鋳型内に注入される。鋳型内に注入された溶鋼17は鋳型2により冷却され、凝固シェル21を形成する。そして、鋳型内に所定量の溶鋼17が注入されたなら、吐出孔10を鋳型内の溶鋼17に浸漬した状態で、鋳型2の下方に設置したピンチロール(図示せず)を駆動して、外殻を凝固シェル21とし、内部に未凝固の溶鋼17を有する鋳片の引き抜きを開始する。   Molten steel 17 melted in a primary refining furnace such as a converter or electric furnace or a secondary refining furnace such as an RH vacuum degassing apparatus is poured into the tundish 1 from a ladle (not shown), When the amount of molten steel reaches a predetermined amount, the sliding plate 6 is opened, and molten steel 17 is injected into the mold 2 through the molten steel outflow hole 11. The molten steel 17 is injected into the mold as a discharge flow 18 from the discharge hole 10 toward the mold short side 14. The molten steel 17 injected into the mold is cooled by the mold 2 to form a solidified shell 21. When a predetermined amount of molten steel 17 is injected into the mold, a pinch roll (not shown) installed below the mold 2 is driven in a state where the discharge hole 10 is immersed in the molten steel 17 in the mold, The outer shell is the solidified shell 21 and the drawing of the slab having the unsolidified molten steel 17 inside is started.

引き抜き開始後はメニスカス19の位置を鋳型内の略一定位置に制御しながら、鋳片引き抜き速度を増速し、所定の速度に達したならば、その速度で維持する。鋳型内のメニスカス19の上にはモールドパウダー20を添加する。モールドパウダー20は溶融して、溶鋼17の酸化防止や凝固シェル21と鋳型2との間に流れ込み潤滑剤として機能する。上ノズル3からは、所定量(5〜15NL/min程度)のArガスを溶鋼流出孔11の内部に吹き込む。   After the start of drawing, the slab drawing speed is increased while controlling the position of the meniscus 19 to a substantially constant position in the mold, and when it reaches a predetermined speed, it is maintained at that speed. Mold powder 20 is added on the meniscus 19 in the mold. The mold powder 20 melts and prevents the molten steel 17 from being oxidized and flows between the solidified shell 21 and the mold 2 to function as a lubricant. A predetermined amount (about 5 to 15 NL / min) of Ar gas is blown into the molten steel outflow hole 11 from the upper nozzle 3.

また、鋳片引き抜き速度が所定速度に達したならば、上部磁場発生装置22及び下部磁場発生装置23から所定強度の磁場を印加する。磁場の磁束密度は、特に規定するものではなく、鋳造条件に応じて設定すればよいが、例えば、交流移動磁場の場合は、0.05〜0.15テスラ程度、静磁場の場合は、0.1〜0.3テスラ程度とすればよい。   Further, when the slab drawing speed reaches a predetermined speed, a magnetic field having a predetermined strength is applied from the upper magnetic field generator 22 and the lower magnetic field generator 23. The magnetic flux density of the magnetic field is not particularly specified and may be set according to the casting conditions. For example, in the case of an AC moving magnetic field, about 0.05 to 0.15 Tesla, and in the case of a static magnetic field, 0. It may be about 1 to 0.3 Tesla.

この鋳造中に、鋳型内溶鋼に偏流の発生したことが検知されたなら、上部磁場発生装置22から印加する磁場の磁束密度を、鋳造している鋳片の幅に応じて変更する。つまり、鋳片の幅が相対的に狭い場合には、交流移動磁場の磁束密度を減少させるか、または、静磁場の磁束密度を増加させるか、若しくは、交流移動磁場の磁束密度を減少させ且つ静磁場の磁束密度を増加させて、吐出流18が鋳型短辺側の凝固シェル21に衝突した後に上下に分岐して形成される、上方のメニスカス19に向かう流れである反転流を減速させる。鋳片の幅が相対的に広い場合には、交流移動磁場の磁束密度を増加させるか、または、静磁場の磁束密度を減少させるか、若しくは、交流移動磁場の磁束密度を増加させ且つ静磁場の磁束密度を減少させて、吐出流18が鋳型短辺側の凝固シェル21に衝突した後に上下に分岐して形成される、上方のメニスカス19に向かう流れである反転流を増速させる。   If it is detected that drift has occurred in the molten steel in the mold during casting, the magnetic flux density of the magnetic field applied from the upper magnetic field generator 22 is changed according to the width of the cast slab. That is, when the width of the slab is relatively narrow, the magnetic flux density of the AC moving magnetic field is decreased, the magnetic flux density of the static magnetic field is increased, or the magnetic flux density of the AC moving magnetic field is decreased and By increasing the magnetic flux density of the static magnetic field, the reverse flow, which is a flow toward the upper meniscus 19 formed by branching up and down after the discharge flow 18 collides with the solidified shell 21 on the short side of the mold, is decelerated. When the width of the slab is relatively wide, the magnetic flux density of the AC moving magnetic field is increased, or the magnetic flux density of the static magnetic field is decreased, or the magnetic flux density of the AC moving magnetic field is increased and the static magnetic field is increased. Thus, the reverse flow, which is formed by branching up and down after the discharge flow 18 collides with the solidified shell 21 on the short side of the mold, is accelerated.

この場合、上部磁場発生装置22の磁束密度の変更に同調させて、下部磁場発生装置23から印加する静磁場の磁束密度を変更することが好ましい。鋳片幅が相対的に狭く、前記反転流を減速させる場合には、下部磁場発生装置23から印加する静磁場の磁束密度を増加させ、一方、鋳片幅が相対的に広く、前記反転流を増速させる場合には、下部磁場発生装置23から印加する静磁場の磁束密度を減少させる。下部磁場発生装置23は、本来、吐出流18に制動力を与えるための装置であり、下部磁場発生装置23の磁束密度を増加させれば吐出流18を減速させる効果が大きくなり、それに応じて反転流が弱くなり、下部磁場発生装置23の磁束密度を減少させれば吐出流18を減速させる効果が小さくなり、それに応じて反転流が強くなる。   In this case, it is preferable to change the magnetic flux density of the static magnetic field applied from the lower magnetic field generator 23 in synchronization with the change of the magnetic flux density of the upper magnetic field generator 22. When the slab width is relatively narrow and the reverse flow is decelerated, the magnetic flux density of the static magnetic field applied from the lower magnetic field generator 23 is increased, while the slab width is relatively wide and the reverse flow is increased. Is increased, the magnetic flux density of the static magnetic field applied from the lower magnetic field generator 23 is decreased. The lower magnetic field generation device 23 is originally a device for applying a braking force to the discharge flow 18, and if the magnetic flux density of the lower magnetic field generation device 23 is increased, the effect of decelerating the discharge flow 18 increases. If the reversal flow becomes weaker and the magnetic flux density of the lower magnetic field generator 23 is reduced, the effect of decelerating the discharge flow 18 becomes smaller, and the reversal flow becomes stronger accordingly.

鋳型内溶鋼の偏流は、メニスカス19の変化を検知する湯面レベル計(図示せず)や、鋳型長辺13の背面に埋設して熱電対(図示せず)で検知する。偏流が発生すると、浸漬ノズル9を境として、前記反転流が強くなった側のメニスカス19が全体的に盛り上がるので、湯面レベル計で浸漬ノズル9の左右でのメニスカス19の位置を測定し、測定値を比較・対比することで、偏流の発生を検知することができる。また、偏流が発生すると、前記反転流が強くなった側の溶鋼温度が、新たに供給される高温の溶鋼量が相対的に多くなることから上昇するので、鋳型長辺13の背面に埋設した熱電対で鋳型銅板温度を測定し、浸漬ノズル9の左右で測定値を比較・対比することで、偏流の発生を検知することができる。   The drift of molten steel in the mold is detected by a hot water level meter (not shown) that detects a change in the meniscus 19 or a thermocouple (not shown) embedded in the back of the mold long side 13. When the uneven flow occurs, the meniscus 19 on the side where the reverse flow becomes strong rises as a whole with the immersion nozzle 9 as a boundary, so the position of the meniscus 19 on the left and right of the immersion nozzle 9 is measured with a hot water level meter, By comparing and comparing the measured values, the occurrence of drift can be detected. Further, when the drift occurs, the molten steel temperature on the side where the reverse flow becomes strong rises because the amount of the hot molten steel to be newly supplied is relatively increased, so that it is embedded in the back surface of the mold long side 13. By measuring the mold copper plate temperature with a thermocouple and comparing and comparing the measured values on the left and right of the immersion nozzle 9, the occurrence of drift can be detected.

偏流が発生した場合の磁場の制御例を表1に示す。表1では、鋳片幅1200mmを境とし、幅が1200mm以上の鋳片を相対的に広い幅の鋳片とし、幅が1200mm未満の鋳片を相対的に狭い幅の鋳片として、磁束密度を変更している。   Table 1 shows an example of magnetic field control in the case where drift occurs. In Table 1, with a slab width of 1200 mm as a boundary, a slab having a width of 1200 mm or more is a relatively wide slab, and a slab having a width of less than 1200 mm is a relatively narrow slab, the magnetic flux density Has changed.

Figure 0005146002
Figure 0005146002

以上説明したように、本発明によれば、鋳型内に偏流が発生したことを検知したときには、浸漬ノズルの吐出孔よりも上方位置に印加する交流移動磁場及び/または静磁場の強度を、鋳造している鋳片の幅に応じて、相対的に鋳片幅が狭いときには、鋳型短辺側からの反転流が弱くなるように、前記交流移動磁場を弱めるか、または前記静磁場を強めるか、若しくは交流移動磁場を弱め且つ静磁場を強め、一方、相対的に鋳片幅が広いときには、鋳型短辺側からの反転流が強くなるように、前記交流移動磁場を強めるか、または前記静磁場を弱めるか、若しくは交流移動磁場を強め且つ静磁場を弱めるので、鋳型内の偏流を迅速且つ効果的に解消することができる。   As described above, according to the present invention, when it is detected that a drift has occurred in the mold, the strength of the AC moving magnetic field and / or the static magnetic field applied to a position above the discharge hole of the immersion nozzle is reduced. Depending on the width of the slab, if the slab width is relatively narrow, whether the AC moving magnetic field is weakened or the static magnetic field is strengthened so that the reverse flow from the mold short side is weakened Alternatively, when the AC moving magnetic field is weakened and the static magnetic field is strengthened, while the slab width is relatively wide, the AC moving magnetic field is increased or the static moving magnetic field is increased so that the reversal flow from the mold short side becomes stronger. Since the magnetic field is weakened or the alternating moving magnetic field is strengthened and the static magnetic field is weakened, the drift in the mold can be quickly and effectively eliminated.

図1に示す連続鋳造設備において、上部磁場発生装置として交流直流重畳磁場発生装置を配置し、本発明を適用した。磁場強度の範囲は、交流移動磁場が0.03〜0.10テスラ、直流静磁場は0.1〜0.35テスラの範囲で変化させた。幅が900〜1850mm、厚みが250mmの鋳片を、4.5〜6.0トン/minの注湯速度(「スループット」ともいう)で鋳造した。   In the continuous casting facility shown in FIG. 1, an AC / DC superimposed magnetic field generator is disposed as the upper magnetic field generator, and the present invention is applied. The range of the magnetic field intensity was changed in the range of 0.03-0.10 Tesla for AC moving magnetic field and 0.1-0.35 Tesla for DC static magnetic field. A slab having a width of 900 to 1850 mm and a thickness of 250 mm was cast at a pouring rate (also referred to as “throughput”) of 4.5 to 6.0 ton / min.

偏流の検知は、浸漬ノズルの左右の幅/4位置に配置した2つの湯面レベル計によるメニスカス位置の測定値、並びに、鋳型長辺背面の幅方向に設置した10点の熱電対による鋳型銅板温度の測定値に基づき実施した。   The drift is detected by measuring the meniscus position with two hot water level meters placed at the left and right width / 4 positions of the immersion nozzle, and the mold copper plate by 10 thermocouples installed in the width direction on the back side of the mold long side. The measurement was carried out based on the measured temperature value.

偏流が発生したとき、即ち、2つの湯面レベル計による測定値に20mm以上の差が生じたとき、(1)交流直流重畳磁場発生装置の交流移動磁場のみで制御する、(2)交流直流重畳磁場発生装置の直流静磁場のみで制御する、(3)交流直流重畳磁場発生装置の交流移動磁場と直流静磁場とで同時に制御する、の3水準の試験を実施した。この場合、前述した表1と同様に、鋳片幅1200mmを境とし、幅が1200mm以上の鋳片を相対的に広い幅の鋳片とし、幅が1200mm未満の鋳片を相対的に狭い幅の鋳片として、磁束密度を変更した。また比較のために、偏流が発生した以降も、磁束密度を変更しないまま鋳造する試験も実施した。尚、全ての試験で、下部磁場発生装置からの磁束密度(0.2テスラ)は変更せずに行った。   When drift occurs, that is, when a difference of 20 mm or more occurs between the measured values of the two molten metal level meters, (1) control is performed only by the AC moving magnetic field of the AC / DC superimposed magnetic field generator, (2) AC / DC A three-level test was carried out, in which the control was performed only with the DC static magnetic field of the superimposed magnetic field generator, and (3) the AC moving magnetic field and the DC static magnetic field of the AC DC superimposed magnetic field generator were controlled simultaneously. In this case, as in Table 1 described above, the slab width is 1200 mm, a slab having a width of 1200 mm or more is a relatively wide slab, and a slab having a width of less than 1200 mm is a relatively narrow width. As a slab, the magnetic flux density was changed. For comparison, a test for casting without changing the magnetic flux density after the occurrence of drift was also conducted. In all tests, the magnetic flux density (0.2 Tesla) from the lower magnetic field generator was not changed.

鋳造後の鋳片のおよそ300μm以上の気泡及び非金属介在物の個数を、鋳造後の鋳片表層2〜3mmの位置について、超音波探傷方法を用いて測定した。欠陥個数は、偏流が発生したときの2〜3鋳片の一部を切り出し、その最大値を測定値とした。表2に、磁場の印加条件及び鋳片の欠陥個数の測定値を示す。   The number of bubbles and non-metallic inclusions of about 300 μm or more in the cast slab was measured at a position of the cast slab surface layer of 2 to 3 mm using an ultrasonic flaw detection method. As for the number of defects, a part of 2-3 slabs when drifting occurred was cut out, and the maximum value was taken as a measured value. Table 2 shows the measured values of the application conditions of the magnetic field and the number of defects in the slab.

Figure 0005146002
Figure 0005146002

表2に示すように、本発明を適用することで、偏流発生時での、鋳片に捕捉される気泡及び非金属介在物が削減することが分かった。つまり、偏流が抑制されることが分かった。特に、交流直流重畳磁場発生装置の交流移動磁場及び直流静磁場の双方を変更して偏流を制御することで、気泡及び非金属介在物の個数は大幅に低減することが確認できた。   As shown in Table 2, it was found that by applying the present invention, bubbles and non-metallic inclusions captured by the slab at the time of occurrence of drift were reduced. That is, it has been found that drift is suppressed. In particular, it was confirmed that the number of bubbles and non-metallic inclusions was greatly reduced by controlling the drift by changing both the AC moving magnetic field and the DC static magnetic field of the AC / DC superimposed magnetic field generator.

本発明を実施する際に用いたスラブ連続鋳造機の鋳型部の概略図である。It is the schematic of the casting_mold | template part of the slab continuous casting machine used when implementing this invention.

符号の説明Explanation of symbols

1 タンディッシュ
2 鋳型
3 上ノズル
4 スライディングノズル
5 上部固定板
6 摺動板
7 下部固定板
8 整流ノズル
9 浸漬ノズル
10 吐出孔
11 溶鋼流出孔
12 往復型アクチュエーター
13 鋳型長辺
14 鋳型短辺
15 鉄皮
16 耐火物
17 溶鋼
18 吐出流
19 メニスカス
20 モールドパウダー
21 凝固シェル
22 上部磁場発生装置
23 下部磁場発生装置
DESCRIPTION OF SYMBOLS 1 Tundish 2 Mold 3 Upper nozzle 4 Sliding nozzle 5 Upper fixed plate 6 Sliding plate 7 Lower fixed plate 8 Lower flow nozzle 9 Immersion nozzle 10 Discharge hole 11 Molten steel outflow hole 12 Reciprocating actuator 13 Mold long side 14 Mold short side 15 Iron Skin 16 Refractory 17 Molten steel 18 Discharge flow 19 Meniscus 20 Mold powder 21 Solidified shell 22 Upper magnetic field generator 23 Lower magnetic field generator

Claims (5)

その下部に鋳型短辺方向を向いた2つの吐出孔を有する浸漬ノズルを用い、該浸漬ノズルの吐出孔よりも上方位置に鋳片幅全域にわたる交流移動磁場を印加するとともに、前記吐出孔よりも下方位置に鋳片幅全域にわたる静磁場を印加しながら溶鋼を連続鋳造するにあたり、鋳型内溶鋼に偏流が発生したとき、該偏流を検知し、鋳造される鋳片の幅に応じて、鋳片幅が1200mm未満のときは、前記交流移動磁場の磁場強度を減少させ、鋳片幅が1200mm以上のときは、前記交流移動磁場の磁場強度を増加させることを特徴とする、鋼の連続鋳造方法。 Using an immersion nozzle having two discharge holes facing the short side of the mold at the bottom, an AC moving magnetic field is applied across the entire width of the slab at a position above the discharge hole of the immersion nozzle, and more than the discharge hole. In the continuous casting of molten steel while applying a static magnetic field across the entire width of the slab at the lower position, when a drift occurs in the molten steel in the mold, the drift is detected, and the slab is detected according to the width of the cast slab. When the width is less than 1200 mm, the magnetic field strength of the AC moving magnetic field is decreased, and when the slab width is 1200 mm or more, the magnetic field strength of the AC moving magnetic field is increased. . その下部に鋳型短辺方向を向いた2つの吐出孔を有する浸漬ノズルを用い、該浸漬ノズルの吐出孔よりも上方位置に鋳片幅全域にわたる静磁場を印加するとともに、前記吐出孔よりも下方位置に鋳片幅全域にわたる静磁場を印加しながら溶鋼を連続鋳造するにあたり、鋳型内溶鋼に偏流が発生したとき、該偏流を検知し、鋳造される鋳片の幅に応じて、鋳片幅が1200mm未満のときは、前記吐出孔よりも上方位置の静磁場の磁場強度を増加させ、鋳片幅が1200mm以上のときは、前記吐出孔よりも上方位置の静磁場の磁場強度を減少させることを特徴とする、鋼の連続鋳造方法。 Using a submerged nozzle having two discharge holes facing the short side of the mold at the lower part, a static magnetic field is applied across the entire width of the slab at a position above the discharge hole of the submerged nozzle and below the discharge hole. In the continuous casting of molten steel while applying a static magnetic field over the entire slab width at the position, when a drift occurs in the molten steel in the mold, the drift is detected, and the slab width is determined according to the width of the cast slab. Is less than 1200 mm, the magnetic field strength of the static magnetic field above the discharge hole is increased, and when the slab width is 1200 mm or more, the magnetic field strength of the static magnetic field above the discharge hole is decreased. A method for continuous casting of steel, characterized in that その下部に鋳型短辺方向を向いた2つの吐出孔を有する浸漬ノズルを用い、該浸漬ノズルの吐出孔よりも上方位置に鋳片幅全域にわたる交流移動磁場及び静磁場を印加するとともに、前記吐出孔よりも下方位置に鋳片幅全域にわたる静磁場を印加しながら溶鋼を連続鋳造するにあたり、鋳型内溶鋼に偏流が発生したとき、該偏流を検知し、鋳造される鋳片の幅に応じて、鋳片幅が1200mm未満のときは、前記交流移動磁場の磁場強度を減少させるとともに前記吐出孔よりも上方位置の静磁場の磁場強度を増加させ、鋳片幅が1200mm以上のときは、前記交流移動磁場の磁場強度を増加させるとともに前記吐出孔よりも上方位置の静磁場の磁場強度を減少させることを特徴とする、鋼の連続鋳造方法。 Using an immersion nozzle having two discharge holes facing the mold short side at the bottom, an AC moving magnetic field and a static magnetic field over the entire width of the slab are applied above the discharge hole of the immersion nozzle, and the discharge When the molten steel is continuously cast while applying a static magnetic field across the entire width of the slab at a position below the hole, when the drift occurs in the molten steel in the mold, the drift is detected, and according to the width of the cast slab. When the slab width is less than 1200 mm, the magnetic field strength of the AC moving magnetic field is decreased and the magnetic field strength of the static magnetic field above the discharge hole is increased. When the slab width is 1200 mm or more , A continuous casting method for steel, characterized by increasing the magnetic field strength of an AC moving magnetic field and decreasing the magnetic field strength of a static magnetic field above the discharge hole. 前記偏流を検知したとき、前記吐出孔よりも下方位置の静磁場の磁場強度を、鋳造される鋳片の幅に応じて、鋳片幅が1200mm未満のときは増加させ、鋳片幅が1200mm以上のときは減少させることを特徴とする、請求項1ないし請求項3の何れか1つに記載の鋼の連続鋳造方法。 When the drift is detected, the magnetic field strength of the static magnetic field below the discharge hole is increased according to the width of the cast slab when the slab width is less than 1200 mm , and the slab width is 1200 mm. and wherein the reducing when the above continuous casting method of steel according to any one of claims 1 to 3. 前記偏流を検知する手段が、鋳型背面に配置した熱電対か、または、鋳型幅方向に設置した2つ以上の湯面レベル計の何れかであることを特徴とする、請求項1ないし請求項4の何れか1つに記載の鋼の連続鋳造方法。   The means for detecting the drift is either a thermocouple arranged on the back of the mold, or two or more hot water level meters installed in the mold width direction. 5. The continuous casting method for steel according to any one of 4 above.
JP2008038109A 2008-02-20 2008-02-20 Steel continuous casting method Active JP5146002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038109A JP5146002B2 (en) 2008-02-20 2008-02-20 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038109A JP5146002B2 (en) 2008-02-20 2008-02-20 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2009195924A JP2009195924A (en) 2009-09-03
JP5146002B2 true JP5146002B2 (en) 2013-02-20

Family

ID=41140046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038109A Active JP5146002B2 (en) 2008-02-20 2008-02-20 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP5146002B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428424B2 (en) * 2015-03-20 2018-11-28 新日鐵住金株式会社 Method, apparatus and program for measuring level profile in continuous casting mold, and control method for continuous casting

Also Published As

Publication number Publication date
JP2009195924A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP2001514078A (en) Method and apparatus for controlling metal flow in continuous casting using an electromagnetic field
JP5348406B2 (en) Steel continuous casting method
JP5146002B2 (en) Steel continuous casting method
JP5151462B2 (en) Continuous casting method of aluminum killed steel
KR101302526B1 (en) Method for controlling flow of moltensteen in mold and method for producing continuous castings
JP2008055431A (en) Method of continuous casting for steel
JP6278168B1 (en) Steel continuous casting method
JP4972776B2 (en) Flow control method for molten steel in mold and surface quality judgment method for continuous cast slab
JP5125663B2 (en) Continuous casting method of slab slab
JP3252769B2 (en) Flow control method of molten steel in continuous casting mold
JP5369808B2 (en) Continuous casting apparatus and continuous casting method
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JP5413277B2 (en) Continuous casting method for steel slabs
JP4714624B2 (en) Method of electromagnetic stirring of molten steel in mold
JPH10193047A (en) Method for controlling flow of molten steel in continuous casting mold
JP5791234B2 (en) Continuous casting method for steel slabs
JP4910357B2 (en) Steel continuous casting method
JP7200722B2 (en) In-mold flow control method in curved continuous casting equipment
JP2010221275A (en) Apparatus and method of continuous casting
JP4492333B2 (en) Steel continuous casting method
JP6287901B2 (en) Steel continuous casting method
JP2006255759A (en) Method for continuously casting steel
JPH10193056A (en) Method for removing inclusion in continuous casting tundish
JP5359653B2 (en) Steel continuous casting method
JP2010000518A (en) Method and apparatus for controlling flow of molten steel in continuous casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R150 Certificate of patent or registration of utility model

Ref document number: 5146002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250