JP5145685B2 - Fluid separation membrane element - Google Patents

Fluid separation membrane element Download PDF

Info

Publication number
JP5145685B2
JP5145685B2 JP2006282384A JP2006282384A JP5145685B2 JP 5145685 B2 JP5145685 B2 JP 5145685B2 JP 2006282384 A JP2006282384 A JP 2006282384A JP 2006282384 A JP2006282384 A JP 2006282384A JP 5145685 B2 JP5145685 B2 JP 5145685B2
Authority
JP
Japan
Prior art keywords
membrane element
fiber
hollow fiber
fluid
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006282384A
Other languages
Japanese (ja)
Other versions
JP2008100127A (en
Inventor
秀人 小寺
一成 丸井
淳夫 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2006282384A priority Critical patent/JP5145685B2/en
Publication of JP2008100127A publication Critical patent/JP2008100127A/en
Application granted granted Critical
Publication of JP5145685B2 publication Critical patent/JP5145685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は選択透過性を有する選択透過性膜からなる流体分離膜エレメントに関する。流体の膜分離処理に用いられ、例えば、海水の淡水化、かん水の脱塩、廃水の浄化、無菌水の製造、超純水の製造のような逆浸透法や、高度浄水処理や農薬、臭気物質、消毒副生成物前駆物質などの低分子有害物質の除去、硬度成分除去による軟水化処理などのナノろ過法や、電着塗装廃水からの塗料の回収、食品関係の有用物の濃縮・回収、凝集沈殿・砂ろ過代替の浄水処理などのような限外ろ過法や、天然ガスからのヘリウムの回収、アンモニアプラントのパージガスからの水素の分離・回収、石油の3次回収での炭酸ガスの分離、酸素富化、窒素富化などの気体分離法などに用いることが可能な選択透過性膜からなる流体分離膜エレメントに関するものである。特に気体の分離用のガス分離膜エレメントや海水の淡水化などの水処理に有効な逆浸透膜エレメント等の高温・高圧等の過酷な条件で運転される流体分離膜エレメントに好適なものである。   The present invention relates to a fluid separation membrane element comprising a selectively permeable membrane having selective permeability. Used in fluid membrane separation treatment, for example, reverse osmosis methods such as seawater desalination, brine desalination, wastewater purification, aseptic water production, ultrapure water production, advanced water purification treatment, agricultural chemicals, odor Removal of low-molecular hazardous substances such as substances and disinfection by-product precursors, nanofiltration methods such as water softening treatment by removing hardness components, collection of paint from electrodeposition coating wastewater, concentration and collection of useful food-related substances , Ultrafiltration methods such as coagulation sedimentation and sand filtration alternative water purification, recovery of helium from natural gas, separation and recovery of hydrogen from purge gas of ammonia plant, carbon dioxide in the third recovery of oil The present invention relates to a fluid separation membrane element comprising a selectively permeable membrane that can be used for gas separation methods such as separation, oxygen enrichment, and nitrogen enrichment. It is particularly suitable for fluid separation membrane elements operated under severe conditions such as high temperature and high pressure, such as gas separation membrane elements for gas separation and reverse osmosis membrane elements effective for water treatment such as seawater desalination. .

流体分離膜エレメントを用いて流体分離を行う場合、流体分離膜エレメントを圧力容器内に組み込んだ流体分離膜モジュールの形態で使用する。供給流体と透過流体の流路の分離や、供給流体と濃縮流体の流路の分離のために、流体分離膜エレメントの端部を樹脂で封止固定しその外周部に外周リングを固定する構造が汎用されている。   When fluid separation is performed using a fluid separation membrane element, it is used in the form of a fluid separation membrane module in which the fluid separation membrane element is incorporated in a pressure vessel. A structure in which the end of the fluid separation membrane element is sealed and fixed with resin and the outer ring is fixed to the outer periphery to separate the supply fluid and permeate fluid flow paths and the supply fluid and concentrated fluid flow paths. Is widely used.

外周リングを金属材料または合成重合体で構成する技術が、特許文献1に開示されている。特許文献1においては外周リングはカラーと記されている。外周リングを金属材料で構成する場合、高温・高塩濃度等の過酷な使用環境下においては耐蝕性に劣るため流体分離膜エレメントの長期間に渡る使用に耐えないこと、外周リングと封止樹脂の接着性が悪く接着界面の剥離による分離性能の低下が生じやすいこと、という問題がある。また外周リングの素材として合成重合体を用いる場合は、引張弾性率が低いため外周リングを厚くしてもなお寸法安定性が悪く、高温・高圧等の過酷な使用環境下においては、外周リングの膨張・収縮あるいは変形により、流体分離膜エレメントの圧力容器への装脱着性の低下、流体分離膜エレメントと圧力容器とのシール性の低下といった問題が生じやすく、問題であった。
特開昭50−99972号公報
Patent Document 1 discloses a technique for forming the outer ring with a metal material or a synthetic polymer. In Patent Document 1, the outer ring is described as a collar. When the outer ring is made of a metal material, it cannot withstand long-term use of the fluid separation membrane element under severe usage environments such as high temperatures and high salt concentrations, and the outer ring and sealing resin. There is a problem in that the adhesiveness of the adhesive is poor and the separation performance is likely to deteriorate due to peeling of the adhesive interface. In addition, when a synthetic polymer is used as the material for the outer ring, the tensile modulus is low, so even if the outer ring is thickened, the dimensional stability is still poor. Due to the expansion, contraction, or deformation, problems such as a decrease in the attachment / detachment property of the fluid separation membrane element to the pressure vessel and a decrease in the sealing property between the fluid separation membrane element and the pressure vessel are likely to occur.
JP 50-99972 A

外周リングをガラスロービングエポキシ樹脂で構成する技術が特許文献2に開示されている。特許文献2においては、外周リングは筒体と記されている。強化繊維がガラスロービングであると引張弾性率が十分に高くないため、外周リングを厚くしなければならず、このため、圧力容器と流体分離膜エレメントの間に無駄な空間が形成され、流体分離膜モジュール体積あたりの有効膜面積および流体処理容量の向上に対する障害となっていた。
実開昭52−121447号公報
Japanese Patent Application Laid-Open No. 2004-151867 discloses a technique for forming the outer ring with a glass roving epoxy resin. In Patent Document 2, the outer ring is described as a cylinder. If the reinforcing fiber is glass roving, the tensile elastic modulus is not sufficiently high, so the outer ring must be thickened. This creates a useless space between the pressure vessel and the fluid separation membrane element, and fluid separation. This has been an obstacle to the improvement of the effective membrane area per volume of the membrane module and the fluid processing capacity.
Japanese Utility Model Publication No. 52-121447

特許文献3にも、中空糸束外周部に外周リングを配し円筒容器の内面と液シールしている外周リングの技術が開示されている。この文献では外周リングの材質や引張弾性率については記述されていない。
特開昭57−102202号公報
Patent Document 3 also discloses a technique of an outer peripheral ring in which an outer peripheral ring is arranged on the outer peripheral portion of the hollow fiber bundle and liquid-sealed with the inner surface of the cylindrical container. In this document, the material of the outer ring and the tensile elastic modulus are not described.
JP-A-57-102202

図5に流体分離膜エレメントが海水淡水化に用いられる外圧型中空糸膜モジュールに装填されたものである場合の一例を示す。選択透過性膜である中空糸膜層2の両端部は外周リング4a,4bの内側に挿入され、エポキシ樹脂で中空糸膜相互間および中空糸膜と外周リングの間を封止固定している。流体分離膜エレメントの一方側の外周リング4aに設けた溝にOリング15を挿入したものによって流体分離膜エレメントの外周面と圧力容器の内面をシールし、これによって濃縮水室と透過水室が液密に区画されている。左記のOリング15の両側には、典型的には5MPa程度、運転条件によっては8MPa以上の非常に大きな圧力差がかかり、濃縮水室の方が高圧となる。透過水に濃縮水が混入すると分離効率が如実に低下し分離機能が十分に果たせなくなるので、そのようなことが生じないように濃縮水質と透過水室の区画は厳密にシールされていなければならない。厳密なシール性を維持した上で、できる限り大きな有効膜面積をとれるようにするためには、膜エレメントの装脱着に支障をきたさない範囲で、外周リングはできる限り薄く、圧力容器の内面と外周リング4aの外周面のクリアランスはできるだけ小さくすることが合理的である。例えば圧力容器内径280mmの場合には、外周リングの外径279mm、圧力容器内面と外周リング外周面とクリアランスは片側0.5mmであれば、外周リングの変形を考慮した上で充分なシール性を維持出来、且つ膜エレメントの装脱着に支障を来たさない。左記クリアランスは外周リング直径のわずか0.18%に相当し、非常に高いレベルの寸法安定性が求められる。また、この例では、分離膜エレメントの他方側の外周リング4bの外径は274mmであり、外周リングの外周面と圧力容器の内面のクリアランスは比較的大きいが、外周リング4bの外周部にはスナップ17が設置されており、スナップと圧力容器の内面のクリアランスの最小部はやはり0.5mmしかない。したがって、他方側の外周リング4bにも外周リング4aと同等の寸法安定性が求められる。しかも、外周リング4a,4bの内径は充填する中空糸膜層2の外径以上でなければないので、外周リング4bは外周リング4aより薄肉とせざるをえず、寸法安定性の確保はさらに困難な課題となる。   FIG. 5 shows an example in which the fluid separation membrane element is loaded in an external pressure hollow fiber membrane module used for seawater desalination. Both ends of the hollow fiber membrane layer 2 which is a permselective membrane are inserted inside the outer ring 4a, 4b, and are sealed and fixed between the hollow fiber membranes and between the hollow fiber membrane and the outer ring with an epoxy resin. . The outer peripheral surface of the fluid separation membrane element and the inner surface of the pressure vessel are sealed by inserting an O-ring 15 in a groove provided on the outer peripheral ring 4a on one side of the fluid separation membrane element, whereby the concentrated water chamber and the permeated water chamber are separated. Liquid-tight compartment. A very large pressure difference of typically about 5 MPa and 8 MPa or more is applied to both sides of the left O-ring 15 depending on the operating conditions, and the concentrated water chamber has a higher pressure. If concentrated water is mixed into the permeated water, the separation efficiency will be lowered and the separation function will not be performed sufficiently, so the concentrated water quality and the permeated water compartment must be strictly sealed to prevent this from happening. . In order to maintain the strict sealing performance and to take as large an effective membrane area as possible, the outer ring is as thin as possible and does not interfere with the attachment / detachment of the membrane element. It is reasonable to make the clearance of the outer peripheral surface of the outer peripheral ring 4a as small as possible. For example, when the inner diameter of the pressure vessel is 280 mm, if the outer diameter of the outer peripheral ring is 279 mm, the inner surface of the pressure vessel and the outer peripheral surface of the outer ring and the clearance are 0.5 mm on one side, sufficient sealing performance can be obtained in consideration of deformation of the outer peripheral ring. It can be maintained and does not interfere with the loading / unloading of the membrane element. The clearance on the left corresponds to only 0.18% of the outer ring diameter, and a very high level of dimensional stability is required. In this example, the outer diameter of the outer peripheral ring 4b on the other side of the separation membrane element is 274 mm, and the clearance between the outer peripheral surface of the outer peripheral ring and the inner surface of the pressure vessel is relatively large. A snap 17 is installed, and the minimum clearance between the snap and the inner surface of the pressure vessel is still only 0.5 mm. Accordingly, the other outer ring 4b is also required to have the same dimensional stability as the outer ring 4a. Moreover, since the inner diameter of the outer ring 4a, 4b must be equal to or greater than the outer diameter of the hollow fiber membrane layer 2 to be filled, the outer ring 4b must be thinner than the outer ring 4a, and it is more difficult to ensure dimensional stability. It becomes a difficult task.

本発明は、流体分離膜モジュールの大きさを維持したままで流体分離膜エレメントの膜面積を従来よりも大きくし、流体分離膜モジュール体積あたりの有効膜面積を向上させ、これにより流体分離膜エレメントの流体処理容量を向上させることを目的とする。   The present invention increases the effective membrane area per volume of the fluid separation membrane module by increasing the membrane area of the fluid separation membrane element while maintaining the size of the fluid separation membrane module, thereby improving the fluid separation membrane element. The purpose of this is to improve the fluid processing capacity.

膜エレメントが供給流体と接触することや膜エレメントに加わる温度変化、圧力変化等により、外周リングには収縮応力または膨張応力が作用する。これらの応力にさらされても外周リングは高い寸法安定性を確保しなければならない。外周リングの寸法安定性を確保するには、外周リングの弾性強力を高くすればよい。外周リングの弾性強度を高くするには、外周リングの厚みを大きくするか、または、外周リングを構成する部材の弾性率を高くすればよいと考えられる。外周リングの厚みを大きくする場合、外周リングの外径は圧力容器の内径で制限されるため、外周リングの内径を小さくするほかなく、このため外周リングの内側に装填される中空糸膜層の量が減少し有効膜面積が低下し、結果として流体分離膜モジュール体積あたりの有効膜面積は減少し、流体分離膜モジュールの流体処理容量の低下を引き起こすので、この考え方を採用することは適切でない。一方、外周リングを構成する部材の弾性率を高くすれば、外周リングの弾性強力を維持したまま外周リングを薄くすることができ、外周リングの内径を大きくすることが可能となる。この考え方によれば、流体分離膜モジュールの大きさを維持したまま有効膜面積を増やすことができ、流体分離膜モジュール体積あたりの有効膜面積は増加し、流体処理容量を高くすることが可能となる。   Shrinkage stress or expansion stress acts on the outer ring due to contact of the membrane element with the supply fluid, temperature change, pressure change, or the like applied to the membrane element. Even when exposed to these stresses, the outer ring must ensure high dimensional stability. In order to ensure the dimensional stability of the outer ring, the elastic strength of the outer ring may be increased. In order to increase the elastic strength of the outer ring, it is considered that the thickness of the outer ring is increased, or the elastic modulus of the member constituting the outer ring is increased. When increasing the thickness of the outer ring, the outer diameter of the outer ring is limited by the inner diameter of the pressure vessel. Therefore, the inner diameter of the outer ring cannot be reduced. It is not appropriate to adopt this concept because the volume decreases and the effective membrane area decreases, and as a result, the effective membrane area per volume of the fluid separation membrane module decreases, causing a decrease in the fluid treatment capacity of the fluid separation membrane module. . On the other hand, if the elastic modulus of the member constituting the outer ring is increased, the outer ring can be made thin while maintaining the elastic strength of the outer ring, and the inner diameter of the outer ring can be increased. According to this concept, the effective membrane area can be increased while maintaining the size of the fluid separation membrane module, the effective membrane area per volume of the fluid separation membrane module can be increased, and the fluid treatment capacity can be increased. Become.

本発明者らは、以上のような考え方に基づき、外周リングを薄くしても外周リングの寸法安定性が確保され、よって流体分離膜モジュールの大きさを維持したままでも流体分離膜エレメントの有効膜面積を大きくし流体処理容量を高めることのできる流体分離膜エレメントについて鋭意検討した結果、本発明に至った。すなわち、本発明は下記の構成を含む。
(1)複数の選択透過性膜の両端部が樹脂で固定された流体分離膜エレメントにおいて、少なくとも一方の樹脂部の外周に引張弾性率が1,800〜5,000kg/mmの繊維強化樹脂からなる外周リングが固定されており、前記繊維強化樹脂が主としてガラス繊維と高強度繊維と樹脂からなり、該樹脂の体積分率が前記繊維強化樹脂に対して20〜50%を占め、該高強度繊維が体積分率で該ガラス繊維と該高強度繊維の体積分率の和の5〜95%を占めることを特徴とする流体分離膜エレメント。
(2)選択透過性膜が外圧型中空糸膜で構成されていることを特徴とする(1)に記載の流体分離膜エレメント。
Based on the above-described concept, the present inventors can ensure the dimensional stability of the outer ring even if the outer ring is thinned. Therefore, the fluid separation membrane element is effective even when the size of the fluid separation module is maintained. As a result of intensive investigations on a fluid separation membrane element that can increase the membrane area and increase the fluid treatment capacity, the present invention has been achieved. That is, the present invention includes the following configuration.
(1) In a fluid separation membrane element in which both ends of a plurality of selectively permeable membranes are fixed with a resin, a fiber reinforced resin having a tensile elastic modulus of 1,800 to 5,000 kg / mm 2 on the outer periphery of at least one resin portion The fiber reinforced resin is mainly composed of glass fiber, high-strength fiber, and resin, and the volume fraction of the resin occupies 20 to 50% with respect to the fiber reinforced resin. A fluid separation membrane element characterized in that the strength fiber accounts for 5 to 95% of the sum of the volume fraction of the glass fiber and the high strength fiber in terms of volume fraction .
(2) The fluid separation membrane element according to (1), wherein the permselective membrane is composed of an external pressure type hollow fiber membrane.

本発明においては、外周リングの引張弾性率を従来よりも高くしたことにより、外周リングを薄くすることができ、これによって流体分離膜モジュールの大きさを変えることなく有効膜面積を拡大させ、流体処理能力を向上させることができる。また、外周リングを薄くしたにもかかわらず弾性強度は低下していないため、外周リングの寸法安定性は確保されており、従って流体分離膜エレメントの装脱着性の低下や圧力容器とのシール性の低下といった問題も生じない。さらに、外周リングの構成部材として金属材料を使用していないため、耐蝕性の不足による破損の恐れも生じない。このため、水の精製装置、および海水またはかん水の淡水化や脱塩をするための装置、気体分離装置等に使用される流体分離膜エレメントとして、有効に使用することが可能である。   In the present invention, since the tensile elastic modulus of the outer peripheral ring is made higher than before, the outer peripheral ring can be made thinner, thereby increasing the effective membrane area without changing the size of the fluid separation membrane module. The processing capacity can be improved. In addition, since the elastic strength has not decreased despite the thinner outer ring, the dimensional stability of the outer ring is ensured. Therefore, the attachment / detachment performance of the fluid separation membrane element is reduced and the sealing performance with the pressure vessel is reduced. There will be no problem of lowering. Furthermore, since no metal material is used as a constituent member of the outer ring, there is no risk of damage due to insufficient corrosion resistance. For this reason, it can be effectively used as a fluid separation membrane element used in a water purification device, a device for desalinating or desalinating seawater or brine, a gas separation device, and the like.

本発明における選択透過性膜としては、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜およびガス分離膜が挙げられ、また膜形状として、平膜(スパイラル膜)、中空糸膜、管状膜が挙げられるが、いずれの選択透過性膜であっても、本発明の流体分離膜エレメントが適用可能である。特に、逆浸透膜、外圧型中空糸膜は、本発明が好適である一例である。外圧型中空糸膜とは、中空糸膜の外側に被処理流体を供給し、中空糸膜の内側に向けて流体を透過させるものである。また、本発明における逆浸透膜とは、数十ダルトンの分子量の分離特性を有する領域の分離膜であり、具体的には、0.5MPa以上の操作圧力で、食塩を90%以上、除去可能であるものである。   Examples of the permselective membrane in the present invention include microfiltration membranes, ultrafiltration membranes, nanofiltration membranes, reverse osmosis membranes and gas separation membranes, and membrane shapes include flat membranes (spiral membranes), hollow fiber membranes, Although a tubular membrane is mentioned, the fluid separation membrane element of the present invention can be applied to any selectively permeable membrane. In particular, reverse osmosis membranes and external pressure type hollow fiber membranes are examples in which the present invention is suitable. The external pressure type hollow fiber membrane supplies fluid to be treated to the outside of the hollow fiber membrane and allows the fluid to permeate toward the inside of the hollow fiber membrane. The reverse osmosis membrane in the present invention is a separation membrane in a region having a molecular weight separation characteristic of several tens of daltons. Specifically, 90% or more of salt can be removed at an operating pressure of 0.5 MPa or more. It is what is.

本発明における流体分離膜エレメントとは、選択透過性を有する流体分離膜を集合して構成される素子であり、圧力容器に流体分離膜エレメントを装填した流体分離膜モジュールとして、流体分離処理び供される。   The fluid separation membrane element in the present invention is an element configured by assembling fluid separation membranes having permselectivity, and is used as a fluid separation membrane module in which a fluid separation membrane element is loaded in a pressure vessel. Is done.

本発明における外周リングとは、流体分離膜エレメントの端部の外周部に構成される環状の部材であり、内部には選択透過性膜が封止固定されている。図1は外周リングの一例を示す模式図である。図1に示すように内周面はテーパーになっていることが好ましい。流体分離膜エレメントを圧力容器に装填した流体分離膜モジュールとして流体分離の処理に用いる場合、この外周リングは、流体分離膜エレメントの外周面側と圧力容器の内面側をシール部材でシールし、供給流体及び濃縮流体と透過流体が混合しないようにしたり、圧力容器の内面と流体分離膜エレメントの外表面との空間を確保し、供給流体及び濃縮流体の排出流路を確保する役割を有している。そのために、供給流体及び濃縮流体と接して処理した場合でも、高い寸法安定性を保持されることが求められる。   The outer peripheral ring in the present invention is an annular member formed on the outer peripheral portion of the end portion of the fluid separation membrane element, and a selectively permeable membrane is sealed and fixed therein. FIG. 1 is a schematic diagram showing an example of an outer peripheral ring. As shown in FIG. 1, the inner peripheral surface is preferably tapered. When the fluid separation membrane module is used as a fluid separation membrane module with a fluid separation membrane element loaded in a pressure vessel, this outer ring is supplied by sealing the outer peripheral surface side of the fluid separation membrane element and the inner surface side of the pressure vessel with a sealing member. It has the role of preventing mixing of the fluid and the concentrated fluid and the permeating fluid, ensuring the space between the inner surface of the pressure vessel and the outer surface of the fluid separation membrane element, and ensuring the discharge flow path of the supply fluid and the concentrated fluid. Yes. Therefore, high dimensional stability is required to be maintained even when processing is performed in contact with the supply fluid and the concentrated fluid.

本発明における外周リングの引張弾性率とは、外周リングの形態で測定した、引張応力に対する弾性率である。その値は1,800kg/mm以上5,000kg/mm以下が好ましく、より好ましくは2,000kg/mm以上3,300kg/mm以下である。引張弾性率が低いと寸法安定性を確保するために外周リングを厚くする必要があり、その結果、挿入可能な選択透過性膜の有効膜面積が小さくなり、流体処理容量が小さくなるため好ましくない。引張弾性率が高すぎると、温度低下等によりポッティング部の収縮が生じた際に外周リングの収縮が追従できず、その結果、ポッティング部と外周リングの界面で剥離を生じる場合があり、好ましくない。 The tensile elastic modulus of the outer peripheral ring in the present invention is an elastic modulus against tensile stress measured in the form of the outer peripheral ring. Its value is preferably 1,800kg / mm 2 or more 5,000 kg / mm 2 or less, more preferably 2,000 kg / mm 2 or more 3,300kg / mm 2 or less. If the tensile modulus is low, it is necessary to increase the thickness of the outer ring in order to ensure dimensional stability. As a result, the effective membrane area of the selectively permeable membrane that can be inserted is reduced, and the fluid processing capacity is reduced. . If the tensile modulus is too high, the shrinkage of the outer ring can not follow when the potting shrinks due to a temperature drop or the like. As a result, peeling may occur at the interface between the potting and the outer ring, which is not preferable. .

本発明における繊維強化樹脂とは、ガラス繊維に代表される強化繊維を包含した複合素材であり、その強化繊維には短繊維或いは粒子などからなるフィラータイプと長繊維からなるストランドタイプがあるが、ストランドタイプの方が引張強度に優れより好ましい。繊維強化樹脂に用いられる強化繊維は一般的に樹脂とのなじみや結合性を良くする為に、結合剤(バインダー)等によって繊維の外周を表面処理されているが、本発明においてもそのような処理がなされていることが好ましい。また、ストランドをさらに所定の番手になるように数10本引き揃えて束にしたものをロービングと言う。本発明において、強化繊維はロービングの形態で用いられることにより外周リングの生産性を高める効果がありより好ましい。   The fiber reinforced resin in the present invention is a composite material including reinforcing fibers represented by glass fibers, and the reinforcing fibers include a filler type composed of short fibers or particles and a strand type composed of long fibers, The strand type is more preferable because of excellent tensile strength. Reinforcing fibers used for fiber reinforced resins are generally surface-treated with a binder (binder) or the like in order to improve compatibility and bonding with the resin. It is preferable that the treatment is performed. Moreover, what bundled several dozen strands so that it may become a predetermined count further is called roving. In the present invention, the reinforcing fiber is preferably used in the form of roving because it has the effect of increasing the productivity of the outer ring.

本発明における高強度繊維とは、引張弾性率が10,000kg/mm以上のもののことである。これに対し、繊維強化樹脂に汎用されるEガラス繊維の引張弾性率は7,000kg/mm程度である。引張弾性率が10,000kg/mm未満の繊維では、ではガラス繊維の引張弾性率との差が小さいので外周リングの引張弾性率向上効果が小さく、好ましくない。高強度繊維の好ましい例としてはパラ系アラミド繊維、PBO(ポリパラフェニレンベンゾビスオキサザール)繊維、超高分子量ポリエチレン繊維、金属繊維などが挙げられる。その中でも引張弾性率が15,000kg/mmから60,000kg/mmである炭素繊維はガラス繊維に対して引張弾性率が大きく耐蝕性にも優れ、また比較的入手しやすく、経済性にも優れることから特に好ましい。なお、本発明における高強度繊維の引張強度の測定方法はJIS L1013−1999「化学繊維フィラメント糸試験方法」に従うものとする。 High-strength fibers in the present invention are those having a tensile elastic modulus of 10,000 kg / mm 2 or more. On the other hand, the tensile elastic modulus of E glass fiber widely used for fiber-reinforced resin is about 7,000 kg / mm 2 . In a fiber having a tensile modulus of less than 10,000 kg / mm 2 , the difference from the tensile modulus of the glass fiber is small, so that the effect of improving the tensile modulus of the outer ring is small, which is not preferable. Preferable examples of the high-strength fiber include para-aramid fiber, PBO (polyparaphenylene benzobisoxazal) fiber, ultrahigh molecular weight polyethylene fiber, and metal fiber. Carbon fiber, even a tensile modulus of 15,000 kg / mm 2 from 60,000 / mm 2 therein excellent in greater corrosion resistance tensile modulus with respect to glass fibers, also relatively easily available, economical Is also particularly preferred. In addition, the measuring method of the tensile strength of the high strength fiber in this invention shall follow JIS L1013-1999 "chemical fiber filament yarn test method".

本発明における繊維強化樹脂とは、ガラス繊維に代表される強化繊維またはそのロービングを包含した複合素材であり、強化繊維またはそのロービングは図2に示すように完全に樹脂で包埋されていることが好ましい。また、ロービングを構成する繊維の間隙にも樹脂が浸透していることが好ましい。
繊維強化樹脂に占める樹脂の体積分率は20〜50%が好ましく、25〜45%がより好ましく、32〜38%がさらに好ましい。繊維強化樹脂に占める樹脂の体積分率が低すぎると成形加工が困難となり、また液密性、気密性にも問題を生じる。逆に繊維強化樹脂に占める樹脂の体積分率が高すぎると、繊維による強化効果が小さいので引張弾性率が低くなり、外周リングを薄くすることができず不適切である。
高強度繊維の体積分率は、該ガラス繊維と該高強度繊維の体積分率の和の5〜95%であることが好ましく、5〜50%であることがより好ましく、10〜40%であることがさらに好ましい。高強度繊維の割合が小さすぎると引張弾性率の向上効果が小さく好ましくない。また、高強度繊維の割合が大きすぎると、引張弾性率の向上効果は大きいものの、一般に高強度繊維は高価であるため、コストが過大となり実用上問題である。
The fiber reinforced resin in the present invention is a composite material including a reinforcing fiber represented by glass fiber or a roving thereof, and the reinforcing fiber or the roving is completely embedded in a resin as shown in FIG. Is preferred. Further, it is preferable that the resin penetrates into the gaps between the fibers constituting the roving.
The resin volume fraction in the fiber reinforced resin is preferably 20 to 50%, more preferably 25 to 45%, and still more preferably 32 to 38%. If the volume fraction of the resin occupying the fiber reinforced resin is too low, the molding process becomes difficult, and there is also a problem with liquid tightness and air tightness. Conversely, if the volume fraction of the resin occupying the fiber reinforced resin is too high, the reinforcing effect by the fiber is small, so the tensile elastic modulus is low, and the outer peripheral ring cannot be made thin, which is inappropriate.
The volume fraction of the high-strength fiber is preferably 5 to 95%, more preferably 5 to 50%, more preferably 10 to 40% of the sum of the volume fraction of the glass fiber and the high-strength fiber. More preferably it is. If the proportion of the high-strength fiber is too small, the effect of improving the tensile elastic modulus is small and not preferable. On the other hand, if the proportion of the high-strength fibers is too large, the effect of improving the tensile modulus is large, but generally the high-strength fibers are expensive, so that the cost is excessive and this is a practical problem.

本発明における繊維強化樹脂とは、強化繊維またはそのロービングに樹脂を含浸させながら捲き上げたものであり、その捲上角度は軸方向に対し10°から80°であり、40°から80°が好ましく、70°から80°がより好ましい。捲上角度が小さすぎると径方向への引張強度が小さくなる欠点があり、捲上角度が大きすぎると捲上作業性が著しく低下する。   The fiber reinforced resin in the present invention is a fiber reinforced resin or a roving thereof that is rolled up while being impregnated with the resin, and the ridge angle is 10 ° to 80 ° with respect to the axial direction, and 40 ° to 80 °. 70 ° to 80 ° is more preferable. If the hoisting angle is too small, the tensile strength in the radial direction is reduced. If the hoisting angle is too large, the hoisting workability is significantly reduced.

本発明における繊維強化樹脂において、樹脂の種類としては、エポキシ系、不飽和ポリエステル系、ビニルエステル系などがあるが、熱硬化性であるエポキシ系が、流体分離膜エレメントの端部の外周部との接着力が大きく、収縮が少なく、強度及び耐熱性に優れ、より好ましい。   In the fiber reinforced resin in the present invention, there are epoxy type, unsaturated polyester type, vinyl ester type, and the like, but the thermosetting epoxy type is the outer peripheral portion of the end portion of the fluid separation membrane element. The adhesive strength is large, the shrinkage is small, the strength and heat resistance are excellent, and this is more preferable.

本発明における選択性透過膜の形状は特に限定されるものではないが、好適な例としては中空糸膜があげられる。この中空糸膜型の流体分離膜エレメントでの好適な一例としては両端開口型膜モジュールがあげられる。これは、両端部で中空糸膜が開口しており両端部に外周リングが存在するため本発明の効果が顕著に発揮される。   The shape of the selective permeable membrane in the present invention is not particularly limited, but a preferable example is a hollow fiber membrane. A suitable example of this hollow fiber membrane type fluid separation membrane element is a double-end open membrane module. This is because the hollow fiber membranes are open at both ends and the outer ring is present at both ends, so that the effects of the present invention are remarkably exhibited.

本発明における選択性透過膜の素材は特に限定されるものではないが、中空糸膜の逆浸透膜の場合の好ましい一例としては三酢酸セルロースがあげられる。この他、選択性透過膜としてはポリアミドやポリビニルアルコールなど親水性素材が好適である。選択性透過膜がこのような親水性素材で構成されている場合は、供給流体が水であれば膜が膨潤して流体分離膜エレメントの端部の外周リングに過大な引張応力がかかるため、本発明の効果が顕著に発揮される。   The material of the selective permeable membrane in the present invention is not particularly limited, but a preferable example in the case of a reverse osmosis membrane of a hollow fiber membrane is cellulose triacetate. In addition, hydrophilic materials such as polyamide and polyvinyl alcohol are suitable for the selective permeable membrane. When the selective permeable membrane is composed of such a hydrophilic material, if the supply fluid is water, the membrane will swell and excessive tensile stress will be applied to the outer peripheral ring at the end of the fluid separation membrane element. The effect of the present invention is remarkably exhibited.

以下本発明の実施例を記載するが、本発明はこれら実施例に限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

(中空糸膜の作製例)
酢化度61.5%のセルローストリアセテート(ダイセル化学工業社製)40重量%、溶媒、非溶媒からなる紡糸原液を用いて、公知の乾湿式法により外径140μm、膜厚40μmの選択透過性中空糸膜を得た。
(Production example of hollow fiber membrane)
Selective permeability with an outer diameter of 140 μm and a film thickness of 40 μm by a known dry-wet method using a spinning stock solution consisting of 40% by weight of cellulose triacetate (produced by Daicel Chemical Industries, Ltd.) having a acetylation degree of 61.5%, a solvent and a non-solvent. A hollow fiber membrane was obtained.

(引張強度、引張弾性率の測定例)
外周リングの引張試験方法を以下に示す。本引張試験は、下記に特記することのほか、JIS K7054−1995「ガラス繊維強化プラスチックの引張試験方法」に準拠している。本試験方法の概略を以下に示す。
図3のように外周リングの内側に均等に力が加わるように内側押さえプレート204を取り付け、固定ボルト203で固定した治具201を介して、試験片である外周リング202を汎用の引張試験装置にセットし、試験速度10mm/min、試験室温度24℃で試験片が破壊するまで荷重を加え、破壊に至るまでの荷重Wと変位dの関係の推移を測定した。変位dを以下の式で表されるひずみεに変換し、ひずみεと荷重Wの関係から引張弾性率を算出した。なお、試験片の断面積Aと引張破壊強度Pは以下で表される。また、外周リングの内周側にはテーパーをつけてある場合には、ここで用いる外周リングの内径DIには、外周リング両端の内径の平均値((DIa+DIb)/2)を用いた。
ε=ΔDO/DO=(DO+d)/DO
A=((DO−DI)×L−(DO−DL)×H) (単位:mm
P=Wp/A (単位:kg/mm
DO:外周リング外径(単位:mm)、DI:外周リング内径(単位:mm)、DL:Oリング溝内径(単位:mm)、H:Oリング溝幅(単位:mm)、L:外周リング高さ(単位:mm)、Wp:破壊荷重(単位:kg)
(Measurement example of tensile strength and tensile modulus)
The tensile test method for the outer ring is shown below. The tensile test conforms to JIS K7054-1995 “Tensile test method for glass fiber reinforced plastic” in addition to the following special mention. The outline of this test method is shown below.
As shown in FIG. 3, the inner holding plate 204 is attached so that force is evenly applied to the inner side of the outer ring, and the outer ring 202 as a test piece is attached to the general-purpose tensile testing device via the jig 201 fixed with the fixing bolt 203. And a load was applied until the test piece broke at a test speed of 10 mm / min and a test room temperature of 24 ° C., and the transition of the relationship between the load W and the displacement d until the breakage was measured. The displacement d was converted into a strain ε represented by the following equation, and the tensile elastic modulus was calculated from the relationship between the strain ε and the load W. In addition, the cross-sectional area A and tensile fracture strength P of a test piece are represented by the following. Further, when the inner peripheral side of the outer peripheral ring is tapered, the average value ((DIa + DIb) / 2) of the inner diameters at both ends of the outer peripheral ring was used as the inner diameter DI of the outer peripheral ring used here.
ε = ΔDO / DO = (DO + d) / DO
A = ((DO−DI) × L− (DO−DL) × H) (unit: mm 2 )
P = Wp / A (unit: kg / mm 2 )
DO: outer ring outer diameter (unit: mm), DI: outer ring inner diameter (unit: mm), DL: O-ring groove inner diameter (unit: mm), H: O-ring groove width (unit: mm), L: outer ring Ring height (unit: mm), Wp: breaking load (unit: kg)

(実施例1)
(中空糸膜の作製例)に示した方法により得た中空糸膜を多孔管からなる供給流体分配管3の周りに交差状に配置させ、長さが1,600mm、外径が254mmの中空糸膜の集合体を形成させた。供給流体分配管3をその軸を中心に回転させながら、中空糸膜の束をトラバースさせ、供給流体分配管3の周りに捲きつけることにより中空糸膜が交差状に配置される。最外層における中空糸膜は軸方向に対して47度であった。この中空糸膜の集合体の両端部を外周リング4a、4bの内部に挿入した状態でエポキシ樹脂でポッティングし固定させた後、温湯に浸漬(キュアリング)を行った。キュアリング工程後、両端を切断して中空糸膜の中空孔を開口させた。その後、供給流体分配管3の内部に内部管7を通し、両端の中空糸膜開口部5a、5bを透過流体収集部材6a、6bで固定した。一方側(1側)の端部は供給流体入口を構成するコネクター9を中心にして透過流体収集部材6aを保持した。他方側(2側)の端部の透過流体収集部材6bは8個のスナップ17を嵌め合い状態で固定することにより、中空糸膜エレメント端部と固定し、図4に示す中空糸膜エレメント1を作製した。他方側端部付近について、モジュール軸に対して垂直な断面の模式図を図6に、モジュール軸を含む断面の模式図を図7に示した。スナップ17は中空糸膜エレメント1および透過流体収集部材6bの円周形状に沿った円弧状の形状をなしている。透過流体収集部材の外径は274mmであり、圧力容器8の内径280mmに対して、半径で3mmの隙間を形成している。スナップ17の円周方向の幅は50mm、スナップ17の厚みは2.5mmであり、スナップ17装着時の外径は279mm、圧力容器8の内面とのクリアランスはわずかに0.5mmしかなく、高度な寸法安定性が求められる。スナップの個数は8ケで、円周状で対称配置に設置しており、スナップ17装着時の外周長876mmに対して46%を占めている。主に残りの54%を占める空隙の部分で濃縮流体の流路を形成している。左記濃縮流体の流路を確保するため、他方側の外周リング4bの外径は、一方側の外周リング4aの外径よりも小さくする必要がある。一方側の外周リング4aは、繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%であり、外径279mm、内径254mmであり、捲き角度は80°、引張弾性率は1,500kg/mmであった。外周リング4aと圧力容器8の内面のクリアランスはわずか0.5mmしかなく、高度な寸法安定性が求められる。ガラス繊維は引張弾性率が約7,100kg/mmのEガラスを用いた。他方側の外周リング4bは、繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=58%/7%/35%であり、外径274mm、内径254mmであり、捲き角度は80°、引張弾性率は2,100kg/mmであった。ガラス繊維は上述のEガラスを、炭素繊維は引張弾性率が約24,400kg/mmの繊維を用いた。この中空糸膜エレメントの有効膜面積は900mであった。この中空糸膜エレメント1を内径が280mmの圧力容器8に1本装着して図5に示すシングルタイプのモジュールとし、このモジュールに温度25℃、食塩3.5重量%の食塩水溶液を供給流体入口に操作圧力5.4MPaで供給して、回収率、すなわち、膜モジュールへの供給水流量に対する透過水流量の割合は30%で逆浸透処理を行った。運転後の圧力容器からの膜エレメントの装脱着に問題なく、また外周リングの破損も認められなかった。
Example 1
A hollow fiber membrane obtained by the method shown in (Example of production of hollow fiber membrane) is arranged in a cross shape around a supply fluid distribution pipe 3 made of a porous tube, and has a length of 1,600 mm and an outer diameter of 254 mm. An assembly of yarn membranes was formed. While rotating the supply fluid distribution pipe 3 about its axis, the bundle of hollow fiber membranes is traversed and wound around the supply fluid distribution pipe 3 so that the hollow fiber membranes are arranged in an intersecting manner. The hollow fiber membrane in the outermost layer was 47 degrees with respect to the axial direction. The hollow fiber membrane aggregate was potted and fixed with an epoxy resin with both ends inserted into the outer rings 4a and 4b, and then immersed (cured) in hot water. After the curing step, both ends were cut to open a hollow hole of the hollow fiber membrane. Thereafter, the inner pipe 7 was passed through the supply fluid distribution pipe 3, and the hollow fiber membrane openings 5a and 5b at both ends were fixed by the permeated fluid collection members 6a and 6b. The end portion on one side (one side) held the permeated fluid collecting member 6a around the connector 9 constituting the supply fluid inlet. The permeated fluid collecting member 6b at the other end (2 side) is fixed to the end of the hollow fiber membrane element by fixing the eight snaps 17 in a fitted state, and the hollow fiber membrane element 1 shown in FIG. Was made. About the other side edge part, the schematic diagram of a cross section perpendicular | vertical with respect to a module axis | shaft was shown in FIG. 6, and the schematic diagram of the cross section containing a module axis | shaft was shown in FIG. The snap 17 has an arc shape along the circumferential shape of the hollow fiber membrane element 1 and the permeated fluid collecting member 6b. The outer diameter of the permeating fluid collecting member is 274 mm, and a gap of 3 mm in radius is formed with respect to the inner diameter of 280 mm of the pressure vessel 8. The circumferential width of the snap 17 is 50 mm, the thickness of the snap 17 is 2.5 mm, the outer diameter when the snap 17 is mounted is 279 mm, and the clearance from the inner surface of the pressure vessel 8 is only 0.5 mm, Dimensional stability is required. The number of snaps is 8 and they are circumferentially arranged symmetrically, accounting for 46% of the outer peripheral length of 876 mm when the snaps 17 are mounted. The flow path for the concentrated fluid is formed mainly by the void portion that occupies the remaining 54%. In order to secure the flow path of the concentrated fluid described on the left, the outer diameter of the outer ring 4b on the other side needs to be smaller than the outer diameter of the outer ring 4a on the one side. The outer ring 4a on one side has a mixing amount of fiber and resin of glass fiber / high-strength fiber / resin = 65% / 0% / 35% by volume%, an outer diameter of 279 mm, an inner diameter of 254 mm, and a winding angle is The tensile modulus was 80 ° and 1,500 kg / mm 2 . The clearance between the outer ring 4a and the inner surface of the pressure vessel 8 is only 0.5 mm, and a high degree of dimensional stability is required. As the glass fiber, E glass having a tensile modulus of about 7,100 kg / mm 2 was used. The outer peripheral ring 4b on the other side has a mixing amount of fiber and resin of glass fiber / high-strength fiber / resin = 58% / 7% / 35% by volume%, an outer diameter of 274 mm, and an inner diameter of 254 mm. The tensile elastic modulus was 80 ° and 2,100 kg / mm 2 . As the glass fiber, the above-mentioned E glass was used, and as the carbon fiber, a fiber having a tensile modulus of about 24,400 kg / mm 2 was used. The effective membrane area of this hollow fiber membrane element was 900 m 2 . One hollow fiber membrane element 1 is attached to a pressure vessel 8 having an inner diameter of 280 mm to form a single type module shown in FIG. 5, and a saline solution having a temperature of 25 ° C. and a salt weight of 3.5% by weight is supplied to this module. Was supplied at an operating pressure of 5.4 MPa, and the reverse osmosis treatment was performed at a recovery rate, that is, a ratio of the permeate flow rate to the feed water flow rate to the membrane module was 30%. There was no problem in attaching and detaching the membrane element from the pressure vessel after operation, and no damage to the outer ring was observed.

(比較例1)
他方側の外周リング4bが繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%である以外は実施例1と同様に中空糸膜エレメントを作製した。外周リング4bの引張弾性率は1,500kg/mmであった。有効膜面積は900mと比較例と同様であったものの、実施例1と同様に圧力容器に装填し逆浸透処理を行ったところ、外周リング4bの外径が大きくなって圧力容器8の内面に接触して膜エレメントの装脱着が困難となり、実用に耐えないことが判明した。
(Comparative Example 1)
A hollow fiber membrane element is produced in the same manner as in Example 1 except that the outer peripheral ring 4b on the other side is such that the mixing amount of fiber and resin is glass fiber / high-strength fiber / resin = 65% / 0% / 35%. did. The tensile elastic modulus of the outer peripheral ring 4b was 1,500 kg / mm 2 . Although the effective membrane area was 900 m 2 , which was the same as that of the comparative example, when the pressure vessel was loaded and reverse osmosis treatment was performed in the same manner as in Example 1, the outer diameter of the outer peripheral ring 4b increased and the inner surface of the pressure vessel 8 It was found that it was difficult to put the membrane element in and out of contact with the surface and to put it into practical use.

(比較例2)
比較例1と同様に中空糸膜エレメント1を作製した。但し、中空糸膜集合体の外径は249mm、一方側の外周リング4aの厚みを15mm、内径を249mm、他方側の外周リング4bの厚みを12.5mm、内径を249mmと、外周リングの厚みを厚くして外周リングの引張強力を比較例1の場合よりも向上させた。有効膜面積は865mとなり、実施例1および比較例1の場合よりも減少した。実施例1と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、運転後の圧力容器8からの膜エレメント1の装脱着に問題なく、また外周リング4a,4bの破損も認められなかったが、有効膜面積が減少したため、流体処理容量は実施例1の場合よりも減少した。
(Comparative Example 2)
A hollow fiber membrane element 1 was produced in the same manner as in Comparative Example 1. However, the outer diameter of the hollow fiber membrane assembly is 249 mm, the thickness of the outer ring 4a on one side is 15 mm, the inner diameter is 249 mm, the thickness of the outer ring 4b on the other side is 12.5 mm, and the inner diameter is 249 mm. The tensile strength of the outer peripheral ring was improved as compared with the case of Comparative Example 1. The effective membrane area was 865 m 2 , which was smaller than in the case of Example 1 and Comparative Example 1. When the hollow fiber membrane element 1 was loaded into the pressure vessel 8 and the reverse osmosis treatment was performed in the same manner as in Example 1, there was no problem in loading and unloading of the membrane element 1 from the pressure vessel 8 after operation, and the outer peripheral rings 4a and 4b. However, since the effective membrane area was reduced, the fluid treatment capacity was reduced as compared with Example 1.

(実施例2)
実施例1と同様に中空糸膜エレメント1を作製した。但し、中空糸膜集合体の外径は258mmであり、一方側の外周リング4aの繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=58%/7%/35%、引張弾性率が2,100kg/mmと、実施例1の場合よりも引張弾性率を高くし、外周リングの外径は279mmのまま厚みは10.5mmと薄くし、内径は258mmとした。他方側の外周リング4bの繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=52%/13%/35%、引張弾性率が2,400kg/mmとこちらも実施例1の場合よりも引弾性率を高くし、外周リングの外径は実施例1と同様、274mm、厚みは8mmと薄くし、内径を258mmとした。外周リングを薄くしたことにより中空糸集合体の外径を大きくすることができ、有効膜面積は930mと大きくすることができた。実施例1と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、実施例1の場合よりも流体処理容量が大きくできたうえ、運転後の圧力容器8からの膜エレメント1の装脱着も問題なく、また外周リング4a,4bの破損も認められなかった。
(Example 2)
A hollow fiber membrane element 1 was produced in the same manner as in Example 1. However, the outer diameter of the hollow fiber membrane assembly is 258 mm, and the mixing amount of the fiber and resin of the outer peripheral ring 4a on one side is volume%, and the glass fiber / high strength fiber / resin = 58% / 7% / 35%, The tensile elastic modulus was 2,100 kg / mm 2, which was higher than that in Example 1. The outer ring had an outer diameter of 279 mm, a thickness of 10.5 mm, and an inner diameter of 258 mm. This is also an example in which the mixing amount of fiber and resin of the outer peripheral ring 4b on the other side is volume%, glass fiber / high-strength fiber / resin = 52% / 13% / 35%, and tensile modulus is 2,400 kg / mm 2 The outer modulus of the outer peripheral ring was 274 mm, the thickness was 8 mm, and the inner diameter was 258 mm. By thinning the outer ring, the outer diameter of the hollow fiber assembly could be increased, and the effective membrane area could be increased to 930 m 2 . When the hollow fiber membrane element 1 was loaded into the pressure vessel 8 and the reverse osmosis treatment was performed in the same manner as in Example 1, the fluid treatment capacity was larger than in the case of Example 1, and the pressure vessel 8 after the operation There was no problem in attaching and detaching the membrane element 1, and no damage to the outer peripheral rings 4a and 4b was observed.

(比較例3)
実施例2と同様に中空糸膜エレメント1を作製した。但し、一方側、他方側共に外周リング4a、4bの繊維と樹脂の混合量を体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%としたところ、外周リングの引張弾性率は1,500kg/mmであった。有効膜面積は実施例同様930mと大きくすることができた。実施例1と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、外周リング4a,4bの外径が大きくなって圧力容器8の内面に接触して膜エレメントの装脱着が困難となり、実用に耐えないことが判明した。
(Comparative Example 3)
A hollow fiber membrane element 1 was produced in the same manner as in Example 2. However, when the mixing amount of the fibers and the resin of the outer ring 4a, 4b on both the one side and the other side is set to glass fiber / high-strength fiber / resin = 65% / 0% / 35%, the tensile elasticity of the outer ring. The rate was 1,500 kg / mm 2 . The effective membrane area could be increased to 930 m 2 as in the example. When the hollow fiber membrane element 1 was loaded into the pressure vessel 8 and the reverse osmosis treatment was performed in the same manner as in Example 1, the outer diameters of the outer peripheral rings 4a and 4b were increased and contacted with the inner surface of the pressure vessel 8 to It became difficult to put on and take off, and it was found that it was not practical.

(実施例3)
実施例1と同様に中空糸膜エレメント1、1’を作製した。図8に示すように、1ケの圧力容器8に2本の中空糸膜エレメント1、1’を中間コネクター16で連結させて装填し、中空糸膜モジュールとした。実施例1と同様の逆浸透処理を実施したところ、運転後の圧力容器からの膜エレメントの装脱着に問題なく、また外周リング4a、4b、4a’、4b’の破損も認められなかった。
(Example 3)
In the same manner as in Example 1, hollow fiber membrane elements 1, 1 ′ were produced. As shown in FIG. 8, two hollow fiber membrane elements 1 and 1 ′ were connected to one pressure vessel 8 through an intermediate connector 16 and loaded into a hollow fiber membrane module. When the reverse osmosis treatment similar to that of Example 1 was performed, there was no problem in the attachment / detachment of the membrane element from the pressure vessel after operation, and the outer ring 4a, 4b, 4a ′, 4b ′ was not damaged.

Figure 0005145685
Figure 0005145685

(実施例4)
実施例1と同様の中空糸膜を多孔管からなる供給流体分配管3の周りに交差状に配置させ、中空糸膜の集合体を形成させた。中空糸膜の集合体の長さは1,900mm、外径は218mmであった。供給流体分配管3をその軸を中心に回転させながら、中空糸膜の束をトラバースさせ、供給流体分配管3の周りに捲きつけることにより中空糸膜が交差状に配置される。最外層における中空糸膜は軸方向に対して42度であった。この中空糸膜の集合体の一方側(1側)、他方側(2側)の両方の端部を外周リング4a,4bの内部に入れた状態でエポキシ樹脂をポッティングし固定させた後、両側の端を切断して中空糸膜の中空孔を開口させ、その後、供給流体分配管3の内部に内部管7を通し、両端の中空糸膜開口部5a、5bを透過流体収集部材6a、6bで固定した。一方側(1側)の端部は供給流体入口を構成するコネクター9を中心にして透過流体収集部材6aを保持した。他方側(2側)の端部の透過流体収集部材6bは8個のスナップ17を嵌め合い状態で固定することにより、中空糸膜エレメメント端部と固定し、中空糸膜エレメント1を作製した。一方側の外周リング4aは繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=58%/7%/35%である。ガラス繊維は上述のEガラスを、炭素繊維は引張弾性率が約24,400kg/mmの繊維を用いた。この外周リングの円周方向の引張弾性率は2,100kg/mmであった。外径は239mm、内径は218mm、厚みは10.5mmであった。他方側の外周リング4bは繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=52%/13%/35%である。使用したガラス繊維、炭素繊維は上述のものと同等である。この外周リングの円周方向の引張弾性率は2,400kg/mmであった。外径は234mm、内径は218mm、厚みは8mmであった。この中空糸膜エレメント1の有効膜面積は870mであった。
この中空糸膜エレメント1を内径が240mmの圧力容器8に1本装着して図9に示すシングルタイプのモジュールとし、このモジュールに温度25℃、食塩3.5重量%の食塩水溶液を供給流体入口に操作圧力5.4MPaで供給して、回収率、すなわち、膜モジュールへの供給水流量に対する透過水流量の割合は30%で逆浸透処理を行った。運転後の圧力容器8からの膜エレメント1の装脱着に問題なく、また外周リング4a,4bの破損も認められなかった。
Example 4
A hollow fiber membrane similar to that in Example 1 was arranged in a crossing manner around the supply fluid distribution pipe 3 made of a porous tube to form an aggregate of hollow fiber membranes. The length of the assembly of hollow fiber membranes was 1,900 mm, and the outer diameter was 218 mm. While rotating the supply fluid distribution pipe 3 about its axis, the bundle of hollow fiber membranes is traversed and wound around the supply fluid distribution pipe 3 so that the hollow fiber membranes are arranged in an intersecting manner. The hollow fiber membrane in the outermost layer was 42 degrees with respect to the axial direction. After potting the epoxy resin and fixing both ends of one side (1 side) and the other side (2 side) of this hollow fiber membrane assembly inside the outer ring 4a, 4b, both sides The end of the hollow fiber membrane is cut to open the hollow hole of the hollow fiber membrane, and then the inner pipe 7 is passed through the supply fluid distribution pipe 3, and the hollow fiber membrane openings 5a and 5b at both ends are passed through the permeated fluid collection members 6a and 6b. Fixed with. The end portion on one side (one side) held the permeated fluid collecting member 6a around the connector 9 constituting the supply fluid inlet. The permeated fluid collecting member 6b at the other end (2 side) was fixed to the end portion of the hollow fiber membrane element by fixing the eight snaps 17 in a fitted state, and the hollow fiber membrane element 1 was produced. In the outer peripheral ring 4a on one side, the mixing amount of the fiber and the resin is volume%, and glass fiber / high-strength fiber / resin = 58% / 7% / 35%. As the glass fiber, the above-mentioned E glass was used, and as the carbon fiber, a fiber having a tensile modulus of about 24,400 kg / mm 2 was used. The tensile modulus in the circumferential direction of this outer peripheral ring was 2,100 kg / mm 2 . The outer diameter was 239 mm, the inner diameter was 218 mm, and the thickness was 10.5 mm. In the outer peripheral ring 4b on the other side, the mixing amount of the fiber and the resin is volume%, and glass fiber / high strength fiber / resin = 52% / 13% / 35%. The glass fiber and carbon fiber used are the same as those described above. The tensile elastic modulus in the circumferential direction of the outer ring was 2,400 kg / mm 2 . The outer diameter was 234 mm, the inner diameter was 218 mm, and the thickness was 8 mm. The effective membrane area of this hollow fiber membrane element 1 was 870 m 2 .
One hollow fiber membrane element 1 is attached to a pressure vessel 8 having an inner diameter of 240 mm to form a single type module as shown in FIG. 9. Was supplied at an operating pressure of 5.4 MPa, and the reverse osmosis treatment was carried out at a recovery rate, that is, the ratio of the permeate flow rate to the feed water flow rate to the membrane module was 30%. There was no problem in loading and unloading the membrane element 1 from the pressure vessel 8 after operation, and no damage to the outer peripheral rings 4a and 4b was observed.

(比較例4)
一方側、他方側共に、外周リング4a,4bの繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%である以外は実施例4と同様に中空糸膜エレメントを作製した。外周リングの引張弾性率は1,500kg/mmと実施例4に比べて低下した。有効膜面積は実施例4同様、870mであったものの、実施例1と同様に圧力容器8に装填し逆浸透処理を行ったところ、外周リング4a,4bの外径が大きくなって圧力容器8の内面に接触して膜エレメントの装脱着が困難となり、実用に耐えないことが判明した。
(Comparative Example 4)
Both the one side and the other side are the same as in Example 4 except that the mixing amount of the fibers and the resin of the outer peripheral rings 4a and 4b is glass fiber / high-strength fiber / resin = 65% / 0% / 35% in volume%. A hollow fiber membrane element was produced. The tensile elastic modulus of the outer ring was 1,500 kg / mm 2 , which was lower than that of Example 4. Although the effective membrane area was 870 m 2 as in Example 4, when the reverse osmosis treatment was performed by loading the pressure vessel 8 in the same manner as in Example 1, the outer diameters of the outer peripheral rings 4a and 4b were increased, and the pressure vessel It was found that the membrane element was in contact with the inner surface of 8, and it was difficult to attach and detach the membrane element, so that it was not practical.

(実施例5)
実施例4と同様に中空糸膜エレメント1を作製した。但し、高強度繊維の混入比率を実施例4の場合よりも高くして外周リングの引張弾性率高め、外周リング4a,4bを薄くした。すなわち、中空糸膜集合体の外径は223mmであり、一方側の外周リング4aの繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=52%/13%/35%、引張弾性率が2,400kg/mmであり、外周リングの厚みは8mmで、内径は223mmであり、他方側の外周リング4bの繊維と樹脂の混合量が体積%でガラス繊維/高強度繊維/樹脂=41%/24%/35%で、引張弾性率が3,100kg/mmであり、外周リングの厚みは5.5mm、内径が223mmである。有効膜面積は910mと実施例4よりも大きいものであった。実施例4と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、運転後の圧力容器8からの膜エレメントの装脱着1は問題なく、また外周リング4a、4bの破損も認められなかった。
(Example 5)
A hollow fiber membrane element 1 was produced in the same manner as in Example 4. However, the mixing ratio of the high-strength fibers was made higher than that in Example 4 to increase the tensile elastic modulus of the outer ring, and the outer rings 4a and 4b were made thinner. That is, the outer diameter of the hollow fiber membrane assembly is 223 mm, and the mixing amount of the fiber and resin of the outer peripheral ring 4a on one side is volume%, and the glass fiber / high strength fiber / resin = 52% / 13% / 35%, Glass fiber / high-strength fiber with a tensile modulus of 2,400 kg / mm 2 , an outer peripheral ring thickness of 8 mm, an inner diameter of 223 mm, and a mixed amount of fiber and resin in the outer peripheral ring 4b on the other side / Resin = 41% / 24% / 35%, the tensile elastic modulus is 3,100 kg / mm 2 , the thickness of the outer ring is 5.5 mm, and the inner diameter is 223 mm. The effective membrane area was 910 m 2 , which was larger than Example 4. When the hollow fiber membrane element 1 was loaded into the pressure vessel 8 and the reverse osmosis treatment was performed in the same manner as in Example 4, there was no problem with the loading / desorption 1 of the membrane element from the pressure vessel 8 after operation, and the outer ring 4a, 4b. No damage was observed.

(比較例5)
実施例5と同様に中空糸膜エレメント1を作製した。但し、一方側、他方側共に外周リング4a、4bの繊維と樹脂の混合量を体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%とした。外周リングの引張弾性率は1,500kg/mmと実施例5に比べて低下した。実施例5と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、外周リング4a,4bの外径が大きくなって圧力容器8の内面に接触して膜エレメントの装脱着が困難となり、実用に耐えないことが判明した。
(Comparative Example 5)
A hollow fiber membrane element 1 was produced in the same manner as in Example 5. However, the mixing amount of the fibers and the resin of the outer peripheral rings 4a and 4b on both the one side and the other side was set to glass fiber / high-strength fiber / resin = 65% / 0% / 35% in volume%. The tensile elastic modulus of the outer ring was 1,500 kg / mm 2 , which was lower than that of Example 5. When the hollow fiber membrane element 1 was loaded into the pressure vessel 8 and the reverse osmosis treatment was performed in the same manner as in Example 5, the outer diameters of the outer peripheral rings 4a and 4b increased and contacted the inner surface of the pressure vessel 8 to It became difficult to put on and take off, and it was found that it was not practical.

(比較例6)
実施例4と同様に中空糸膜エレメント1を作製した。但し、一方側、他方側共に、外周リング4a、4bの繊維と樹脂の混合量を体積%でガラス繊維/高強度繊維/樹脂=65%/0%/35%とし、引張弾性率は1,500kg/mmであった。一方側の外周リング4aの外径は239mm、厚み12.5mm、内径214mmとし、また他方側の外周リング4bの外径は234mm、厚み10mm、内径214mmとして、実施例4および実施例5と比べて外周リングの外径を変えずに厚みを増して、外周リングの引張強力を実施例4および実施例5の場合よりも向上させた。また、中空糸膜集合体が外周リングに挿入できるように、中空糸膜の本数を減らして中空糸膜集合体の外径を214mmとしたところ、有効膜面積は800mと実施例4および実施例5の場合よりも減少した。実施例4と同様に圧力容器8に中空糸膜エレメント1を装填し逆浸透処理を行ったところ、運転後の圧力容器8からの膜エレメント1の装脱着に問題なく、また外周リング4a、4bの破損も認められなかったが、流体処理容量は実施例4および実施例5の場合よりも減少した。
(Comparative Example 6)
A hollow fiber membrane element 1 was produced in the same manner as in Example 4. However, on one side and the other side, the mixing amount of the fibers and the resin of the outer peripheral rings 4a and 4b is set to glass fiber / high-strength fiber / resin = 65% / 0% / 35% in volume%, and the tensile elastic modulus is 1, It was 500 kg / mm 2 . The outer diameter of the outer ring 4a on one side is 239 mm, the thickness is 12.5 mm, the inner diameter is 214 mm, and the outer diameter of the outer ring 4b on the other side is 234 mm, the thickness is 10 mm, and the inner diameter is 214 mm. Thus, the thickness was increased without changing the outer diameter of the outer ring, and the tensile strength of the outer ring was improved as compared with the cases of Example 4 and Example 5. Further, when the outer diameter of the hollow fiber membrane assembly was reduced to 214 mm by reducing the number of hollow fiber membranes so that the hollow fiber membrane assembly could be inserted into the outer ring, the effective membrane area was 800 m 2 and Examples 4 and It was less than in the case of Example 5. When the hollow fiber membrane element 1 was loaded into the pressure vessel 8 and the reverse osmosis treatment was performed in the same manner as in Example 4, there was no problem in loading and unloading of the membrane element 1 from the pressure vessel 8 after operation, and the outer ring 4a, 4b. No fluid damage was observed, but the fluid treatment capacity was reduced as compared with Examples 4 and 5.

Figure 0005145685
Figure 0005145685

以上の結果より、外周リングの補強繊維材としてガラス繊維に加え、炭素繊維に代表される高強度繊維を混合使用することにより、外周リングの引張弾性率を大きくすることができ、これにより従来よりも薄い外周リングを採用することが可能となり、よって、流体分離膜モジュールの大きさを変えることなく流体分離膜エレメントの有効膜面積を大きくして流体処理容量を大きくすることができることが明らかになった。   From the above results, the tensile elastic modulus of the outer ring can be increased by using a mixture of high-strength fibers represented by carbon fiber in addition to glass fiber as the reinforcing fiber material of the outer ring. As a result, it is possible to increase the effective membrane area of the fluid separation membrane element and increase the fluid treatment capacity without changing the size of the fluid separation membrane module. It was.

本発明の流体分離膜エレメントは、従来の流体分離膜エレメントと比べて膜エレメントあたりの有効膜面積を大きくでき、そのため流体処理容量を大きくできるため、従来よりも高効率の流体分離膜エレメントとすることができ、よって産業界に寄与することができる。逆浸透膜を用いた海水淡水化、純水製造、排水処理や、ナノろ過膜を用いた高度浄水処理、その他、限外ろ過膜または精密ろ過膜による浄水処理やガス分離等の幅広い用途分野に適用することができる。   The fluid separation membrane element of the present invention can have a larger effective membrane area per membrane element than a conventional fluid separation membrane element, and thus can increase the fluid processing capacity, so that the fluid separation membrane element is more efficient than the conventional one. Can thus contribute to the industry. For a wide range of applications such as seawater desalination using reverse osmosis membranes, pure water production, wastewater treatment, advanced water purification treatment using nanofiltration membranes, water purification treatment using ultrafiltration membranes or microfiltration membranes, and gas separation Can be applied.

外周リングの一例を示す模式図である。It is a schematic diagram which shows an example of an outer periphery ring. ガラス繊維と高強度繊維と樹脂の混合状態の一例を示す模式図である。It is a schematic diagram which shows an example of the mixed state of glass fiber, high strength fiber, and resin. 外周リングの引張試験の際に外周リングを引張試験機に取り付けるための治具の一例を示す模式図である。It is a schematic diagram which shows an example of the jig | tool for attaching an outer periphery ring to a tensile testing machine in the case of the tension test of an outer periphery ring. 本発明の中空糸膜エレメントの一例を示す模式図である。中空糸膜エレメントの両端に透過流体収集部材を設置している場合である。It is a schematic diagram which shows an example of the hollow fiber membrane element of this invention. This is a case where permeate fluid collecting members are installed at both ends of the hollow fiber membrane element. 本発明の中空糸膜エレメントの使用状態の一例を示す模式図である。中空糸膜エレメントの両端に透過流体収集部材を設置し、これを圧力容器に1本装着して中空糸膜モジュールを構成した場合である。It is a schematic diagram which shows an example of the use condition of the hollow fiber membrane element of this invention. This is a case where a permeated fluid collecting member is installed at both ends of the hollow fiber membrane element, and this is attached to a pressure vessel to constitute a hollow fiber membrane module. 本発明の中空糸膜エレメントの一例について、中空糸膜開口部とスナップと圧力容器との関係を示すための、モジュール軸方向に垂直方向の端面部を示す模式図である。It is a schematic diagram which shows the end surface part perpendicular | vertical to a module axial direction for showing the relationship between a hollow fiber membrane opening part, a snap, and a pressure vessel about an example of the hollow fiber membrane element of this invention. 本発明の中空糸膜エレメントの一例について、中空糸膜エレメント端部と透過流体収集部材をスナップが嵌め合うことで装着されている状態等を示す模式図である。It is a schematic diagram which shows the state etc. with which the snap of the hollow fiber membrane element end part and the permeated fluid collection member is fitted about an example of the hollow fiber membrane element of the present invention. 本発明の中空糸膜エレメントの使用状態の他の一例を示す模式図である。中空糸膜エレメントの両端に透過流体収集部材を設置し、これを圧力容器に2本を並列接続で装着して中空糸膜モジュールを構成した場合である。It is a schematic diagram which shows another example of the use condition of the hollow fiber membrane element of this invention. This is a case where a permeated fluid collecting member is installed at both ends of the hollow fiber membrane element, and two of these are attached to the pressure vessel in parallel connection to constitute a hollow fiber membrane module. 本発明の中空糸膜エレメント使用状態のさらに他の一例を示す模式図である。中空糸膜エレメントの両端に透過流体収集部材を設置し、これを圧力容器に1本装着して中空糸膜モジュールを構成した場合である。It is a schematic diagram which shows another example of the hollow fiber membrane element use state of this invention. This is a case where a permeated fluid collecting member is installed at both ends of the hollow fiber membrane element, and this is attached to a pressure vessel to constitute a hollow fiber membrane module.

符号の説明Explanation of symbols

1、1’:中空糸膜エレメント
2、2’:中空糸膜層
3、3’:供給流体分配管
4a、4b、4a’、4b’:外周リング
5a、5b、5a’、5b’:中空糸膜開口部
6a、6b、6a’、6b’:透過流体収集部材
7、7’:内部管
8:圧力容器
9:供給流体入口
10:濃縮流体出口
11、11’:透過流体出口
12:供給流体
13:濃縮流体
14、14’:透過流体
15:Oリング
16:中間コネクター
17:スナップ
101:樹脂
102:高強度繊維ロービング
103:ガラス繊維ロービング
201:治具
202:外周リング
203:固定ボルト
204:内側押さえプレート
1, 1 ': Hollow fiber membrane element 2, 2': Hollow fiber membrane layer 3, 3 ': Supply fluid distribution pipes 4a, 4b, 4a', 4b ': Outer peripheral rings 5a, 5b, 5a', 5b ': Hollow Yarn membrane openings 6a, 6b, 6a ′, 6b ′: Permeate fluid collecting members 7, 7 ′: Inner tube 8: Pressure vessel 9: Supply fluid inlet 10: Concentrated fluid outlet 11, 11 ′: Permeate fluid outlet 12: Supply Fluid 13: Concentrated fluid 14, 14 ': Permeating fluid 15: O-ring 16: Intermediate connector 17: Snap 101: Resin 102: High-strength fiber roving 103: Glass fiber roving 201: Jig 202: Outer ring 203: Fixing bolt 204 : Inner holding plate

Claims (2)

複数の選択透過性膜の両端部が樹脂で固定された流体分離膜エレメントにおいて、少なくとも一方の樹脂部の外周に引張弾性率が1,800〜5,000kg/mmの繊維強化樹脂からなる外周リングが固定されており、前記繊維強化樹脂が主としてガラス繊維と高強度繊維と樹脂からなり、該樹脂の体積分率が前記繊維強化樹脂に対して20〜50%を占め、該高強度繊維が体積分率で該ガラス繊維と該高強度繊維の体積分率の和の5〜95%を占めることを特徴とする流体分離膜エレメント。 In a fluid separation membrane element in which both end portions of a plurality of selectively permeable membranes are fixed with resin, an outer periphery made of a fiber reinforced resin having a tensile elastic modulus of 1,800 to 5,000 kg / mm 2 on the outer periphery of at least one resin portion A ring is fixed, and the fiber reinforced resin is mainly composed of glass fiber, high strength fiber and resin, and the volume fraction of the resin occupies 20 to 50% with respect to the fiber reinforced resin; A fluid separation membrane element characterized by occupying 5 to 95% of the sum of volume fractions of the glass fiber and the high-strength fiber in volume fraction . 選択透過性膜が外圧型中空糸膜で構成されていることを特徴とする請求項1に記載の流体分離膜エレメント。
The fluid separation membrane element according to claim 1, wherein the selectively permeable membrane is constituted by an external pressure type hollow fiber membrane.
JP2006282384A 2006-10-17 2006-10-17 Fluid separation membrane element Active JP5145685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006282384A JP5145685B2 (en) 2006-10-17 2006-10-17 Fluid separation membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006282384A JP5145685B2 (en) 2006-10-17 2006-10-17 Fluid separation membrane element

Publications (2)

Publication Number Publication Date
JP2008100127A JP2008100127A (en) 2008-05-01
JP5145685B2 true JP5145685B2 (en) 2013-02-20

Family

ID=39434862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006282384A Active JP5145685B2 (en) 2006-10-17 2006-10-17 Fluid separation membrane element

Country Status (1)

Country Link
JP (1) JP5145685B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102217068B1 (en) * 2013-06-12 2021-02-19 에보닉 피브레 게엠베하 Membrane cartridge system
CN109694138B (en) * 2017-10-20 2021-11-09 九阳股份有限公司 Reverse osmosis composite filter element assembly
CN109694139B (en) * 2017-10-20 2021-12-03 九阳股份有限公司 Reverse osmosis composite filter element assembly

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546250Y2 (en) * 1976-03-13 1980-10-30
JPS6369509A (en) * 1986-09-09 1988-03-29 Toshiba Corp Hollow yarn membrane filter
DE4233952C1 (en) * 1992-10-09 1994-04-21 Holger Knappe Reverse osmosis winding module
JPH11226365A (en) * 1998-02-16 1999-08-24 Toray Ind Inc Fluid separation element and manufacture thereof
JP4934978B2 (en) * 2005-03-28 2012-05-23 東レ株式会社 Hollow fiber membrane module

Also Published As

Publication number Publication date
JP2008100127A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
KR100523778B1 (en) Hollow fiber membrane cartridge, and hollow fiber membrane module and tank type filtration apparatus which use the cartridge
US9707518B2 (en) Hollow fiber membrane module
EP1666128B1 (en) Hollow fiber membrane submodule and module including the same
JP7197260B2 (en) Hollow fiber membrane module, seawater desalination system, method for desalinating seawater, method for producing freshwater from seawater, method for operating hollow fiber membrane module, method for filtration, and method for manufacturing hollow fiber membrane module
CN111514759A (en) Hollow fiber membrane module and method for manufacturing hollow fiber membrane module
JP2006247540A (en) Hollow fiber membrane module and its operation method
JP5145685B2 (en) Fluid separation membrane element
JP4498373B2 (en) Hollow fiber membrane cartridge, and hollow fiber membrane module and tank type filtration device using the same
JP5935808B2 (en) Method for hydrophilizing hollow fiber membrane module
JP5811738B2 (en) Method for repairing hollow fiber membrane module and hollow fiber membrane module
JP5737318B2 (en) Method for producing fiber-reinforced porous hollow fiber membrane
JP6264938B2 (en) Hollow fiber membrane module
JP4269171B2 (en) Filtration method of external pressure type hollow fiber membrane module for aeration flushing
JP4675062B2 (en) Hollow fiber membrane cartridge
JP7111885B2 (en) Filtration method, seawater desalination method, freshwater production method, hollow fiber membrane module, and seawater desalination system
JP7376397B2 (en) Filtration method and hollow fiber membrane module
US10434477B2 (en) Fiber-reinforced porous hollow fiber membrane
WO2022138127A1 (en) Fluid separation membrane module, fluid separation membrane plant, and purified fluid
JPH09225270A (en) Hollow fiber membrane module
JP2013202562A (en) Spiral type fluid separation element
JP2002066264A (en) Filtration module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R151 Written notification of patent or utility model registration

Ref document number: 5145685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350