JP5144498B2 - Single fiber bidirectional optical transceiver module and manufacturing method thereof - Google Patents

Single fiber bidirectional optical transceiver module and manufacturing method thereof Download PDF

Info

Publication number
JP5144498B2
JP5144498B2 JP2008508507A JP2008508507A JP5144498B2 JP 5144498 B2 JP5144498 B2 JP 5144498B2 JP 2008508507 A JP2008508507 A JP 2008508507A JP 2008508507 A JP2008508507 A JP 2008508507A JP 5144498 B2 JP5144498 B2 JP 5144498B2
Authority
JP
Japan
Prior art keywords
optical
fixed
signal receiving
wavelength selection
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008508507A
Other languages
Japanese (ja)
Other versions
JPWO2007114053A1 (en
Inventor
明 大木
誠治 福島
祐史 赤津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2008508507A priority Critical patent/JP5144498B2/en
Publication of JPWO2007114053A1 publication Critical patent/JPWO2007114053A1/en
Application granted granted Critical
Publication of JP5144498B2 publication Critical patent/JP5144498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

本発明は、光通信網の構成要素である光信号送受信用端末装置内に光送受信機能部として搭載される一心双方向光送受信モジュール及びその製造方法に関する。 The present invention relates to a single-fiber bidirectional optical transmission / reception module mounted as an optical transmission / reception function unit in an optical signal transmission / reception terminal device, which is a component of an optical communication network, and a method for manufacturing the same.

送信用と受信用の異なる2つの波長の光信号を一本の光ファイバを用いて伝送する一心双方向光送受信モジュールでは、従来BIDI(bi−directional)型と呼ばれる光送受信モジュールが用いられてきた(例えば、非特許文献1参照)。このBIDI型モジュールの構成を図23に示す。   2. Description of the Related Art Conventionally, an optical transceiver module called a BIDI (bi-directional) type has been used in a single-fiber bidirectional optical transceiver module that transmits optical signals of two different wavelengths for transmission and reception using a single optical fiber. (For example, refer nonpatent literature 1). The configuration of this BIDI type module is shown in FIG.

図23に示すように、BIDI型モジュールにおいては、レーザダイオード112を搭載した送信用TO(トランジスタ アウトライン)−CAN101、フォトダイオード122を搭載した受信用TO−CAN102、及び光ファイバ141を、WDMフィルター103が内蔵されたBIDI筐体100に調芯固定している。送信用TO−CAN101及び光ファイバ141は、BIDI筐体100の互いに対向する端面に固定され、受信用TO−CAN102は送信用TO−CAN101及び光ファイバ141が固定された端面と直交する面に固定されている。なお、TO−CANとは回路素子を収納する円筒状の金属筐体であり、図23に示したTO−CAN101,102はレンズを内蔵した状態のものである。   As shown in FIG. 23, in the BIDI type module, a transmission TO (transistor outline) -CAN 101 equipped with a laser diode 112, a reception TO-CAN 102 equipped with a photodiode 122, and an optical fiber 141 are connected to a WDM filter 103. Is aligned and fixed to the BIDI housing 100 in which is incorporated. The transmission TO-CAN 101 and the optical fiber 141 are fixed to the mutually facing end surfaces of the BIDI housing 100, and the reception TO-CAN 102 is fixed to a surface orthogonal to the end surface to which the transmission TO-CAN 101 and the optical fiber 141 are fixed. Has been. Note that the TO-CAN is a cylindrical metal housing that houses circuit elements, and the TO-CANs 101 and 102 shown in FIG. 23 have a built-in lens.

具体的には、送信用TO−CAN101はステム111にレーザダイオード112と共にモニタ用フォトダイオード113を搭載し、レンズキャップ114で封止している。受信用TO−CAN102はステム121にフォトダイオード122と共に受信IC123を搭載し、レンズキャップ124で封止している。光信号は、送信する場合は実線で示した矢印方向へ進行し、受信する場合は破線で示した矢印方向へと進行する構成となっている。そのため、BIDI型モジュールでは、コストの高いアクティブ調芯工程が少なくとも2回必要となる。
「PON用光デバイス(E-PON,B-PON,GE-PON)」、[online]、2004年1月、富士通株式会社、[平成18年3月検索]、インターネット〈URL:http://telecom.fujitsu.com/jp/products/device/pdf/pon_bidi_i.pdf〉 H.Tanaka et.al, IEEE Photonics Technology Letters, Vol.10, No.3、1998 Y.Kuhara et.al, Journal of Lightwave Technology, Vol.16, No.2、1998 H.L.Althaus et.al, IEEE Trans. On Components, Packaging, andManufacturing Technology part B, Vol.21, No.2、1998 H.Yoon et.al, IEEE Photonics Technology Letters, Vol.16, No.8、2004
Specifically, the transmission TO-CAN 101 includes a monitor photodiode 113 and a laser diode 112 mounted on a stem 111 and is sealed with a lens cap 114. The receiving TO-CAN 102 has a receiving IC 123 mounted on a stem 121 together with a photodiode 122 and sealed with a lens cap 124. The optical signal travels in the direction indicated by the solid line when transmitting, and proceeds in the direction indicated by the broken line when receiving the optical signal. Therefore, in the BIDI type module, an expensive active alignment process is required at least twice.
"Optical devices for PON (E-PON, B-PON, GE-PON)", [online], January 2004, Fujitsu Limited, [March 2006 search], Internet <URL: http: // telecom.fujitsu.com/jp/products/device/pdf/pon_bidi_i.pdf> H. Tanaka et.al, IEEE Photonics Technology Letters, Vol. 10, No. 3, 1998 Y. Kuhara et.al, Journal of Lightwave Technology, Vol.16, No.2, 1998 HLAlthaus et.al, IEEE Trans.On Components, Packaging, and Manufacturing Technology part B, Vol.21, No.2, 1998 H. Yoon et.al, IEEE Photonics Technology Letters, Vol. 16, No. 8, 2004

図23に示したように、従来のBIDI型モジュールでは、送信用TO−CAN101と受信用TO−CAN102が独立しているため、光ファイバとの間に少なくとも2回のアクティブ調芯工程が必須である。さらに、2個のTO−CAN筐体101,102の他にBIDI筐体100が必要となるなど部品点数が多く、コスト削減及び小型化が困難であった。   As shown in FIG. 23, in the conventional BIDI type module, since the transmission TO-CAN 101 and the reception TO-CAN 102 are independent, at least two active alignment processes are indispensable between the optical fibers. is there. Furthermore, the number of parts is large, such as the need for the BIDI casing 100 in addition to the two TO-CAN casings 101 and 102, and cost reduction and miniaturization are difficult.

一方、近年BIDI型モジュールの機能を1個のTO−CANに集積することで、低コスト化を図る技術的な試みも種々提案されている。代表的な例として非特許文献2,3,4,5を挙げる。   On the other hand, in recent years, various technical attempts have been proposed to reduce the cost by integrating the functions of the BIDI type module into one TO-CAN. Non-patent documents 2, 3, 4, and 5 are given as typical examples.

非特許文献2では、受信用フォトダイオードの表面にハーフミラーを設け、このハーフミラーによってレーザダイオードから出射された送信光の50%を反射し、ロッドレンズを介して光ファイバと結合する構成を提案している。この構成では、レーザダイオードと光ファイバ間光路がフォトダイオード上のハーフミラーを経由するため、1回のアクティブ調芯によりレーザダイオードと光ファイバ間、フォトダイオードと光ファイバ間の調芯が実現できる利点がある。反面、この構成には以下の欠点があり、アクセス系光通信システムへの適用には適していない。   Non-Patent Document 2 proposes a configuration in which a half mirror is provided on the surface of a receiving photodiode, 50% of the transmitted light emitted from the laser diode is reflected by this half mirror, and is coupled to an optical fiber via a rod lens. doing. In this configuration, since the optical path between the laser diode and the optical fiber passes through the half mirror on the photodiode, it is possible to realize alignment between the laser diode and the optical fiber and between the photodiode and the optical fiber by one active alignment. There is. On the other hand, this configuration has the following drawbacks and is not suitable for application to an access optical communication system.

1)ハーフミラーを用いており、信号送信時には送信光の50%程度がフォトダイオードに入射するため、信号送信時に他所から送られてくる信号を受信することができない。そのため、現在普及しているGE−PON等の通信システムには適用できない。
2)ハーフミラーが他所から送られてくる光信号の50%程度を反射してしまうため、受信感度の3dBの劣化は原理的に避けられない。
1) Since a half mirror is used and about 50% of the transmitted light is incident on the photodiode at the time of signal transmission, it is impossible to receive a signal transmitted from another place at the time of signal transmission. Therefore, it cannot be applied to communication systems such as GE-PON that are currently popular.
2) Since the half mirror reflects about 50% of the optical signal sent from other places, 3 dB degradation in reception sensitivity is unavoidable in principle.

非特許文献3は、非特許文献2のハーフミラー付きフォトダイオードの代わりに、半透明フォトダイオード(HT−PD)を用いることを提案している。この提案も文献2と同様の利点と欠点を持ち合わせており、実システムへの適用には不適である。   Non-Patent Document 3 proposes to use a translucent photodiode (HT-PD) instead of the photodiode with half mirror of Non-Patent Document 2. This proposal also has the same advantages and disadvantages as document 2, and is unsuitable for application to an actual system.

非特許文献4は、フォトプロセスを用いて高精度に加工したSi基板をレーザダイオード、フォトダイオード、フィルター、レンズ等の支持体に用いる構成を提案している。この構成では、支持体の高い加工精度と部品の高精度な搭載により、安価なパッシブ調芯のみによる光路調芯により低コスト化を狙っている。しかし、この提案の要求する部品搭載精度は±2μm以下であり、大量生産時にこのような高精度を実現することは極めて困難である。実際、文献4の提案より8年経た現在においても、この提案に基づく量産品はできていない。   Non-Patent Document 4 proposes a configuration in which a Si substrate processed with high accuracy using a photo process is used for a support such as a laser diode, a photodiode, a filter, or a lens. In this configuration, the high processing accuracy of the support and the high-precision mounting of the components aim to reduce the cost by optical path alignment using only inexpensive passive alignment. However, the component mounting accuracy required by this proposal is ± 2 μm or less, and it is extremely difficult to realize such high accuracy during mass production. In fact, even now, eight years after the proposal of Document 4, no mass-produced product based on this proposal has been made.

非特許文献5は、BIDI筐体を小さくして、TO−CANの内部に搭載することを提案している。この提案では、BIDI筐体を小型化するために金属製のBIDI筐体を用いず、セラミック板の上にレンズやフィルターを接着剤で固定している。しかしながら平面状に形成されたセラミック板の上に球体のレンズを接着剤で固定する場合、セラミック板とレンズとは点接触となるため高い接着強度は望めず、実用に耐え得るだけの信頼性を確保することは困難である。また、用いるレンズの個数もBIDI型モジュールよりも多い3個であるなど、コスト削減効果も期待できない。さらに、非特許文献5には、非特許文献2,3,4と異なり、レーザダイオードと光ファイバ間、フォトダイオードと光ファイバ間の2つの光路の一部を重ね合わせるための技術的な裏付けが無い。実際のフォトダイオード、レーザダイオード、セラミック基板、ボールレンズ、フィルター等の加工精度を熟知した技術者であれば、非特許文献5の構造の実現は技術的な見地から困難であると判断できる。   Non-Patent Document 5 proposes that the BIDI housing is made smaller and mounted inside the TO-CAN. In this proposal, in order to reduce the size of the BIDI housing, a metal BIDI housing is not used, and a lens and a filter are fixed on the ceramic plate with an adhesive. However, when a spherical lens is fixed on a flat ceramic plate with an adhesive, the ceramic plate and the lens are in point contact, so high adhesive strength cannot be expected, and reliability sufficient to withstand practical use. It is difficult to secure. In addition, a cost reduction effect cannot be expected, for example, the number of lenses used is three, which is larger than that of the BIDI module. Furthermore, Non-Patent Document 5, unlike Non-Patent Documents 2, 3, and 4, provides technical support for overlapping a part of two optical paths between a laser diode and an optical fiber and between a photodiode and an optical fiber. No. An engineer who is familiar with the processing precision of actual photodiodes, laser diodes, ceramic substrates, ball lenses, filters, etc., can determine that it is difficult to realize the structure of Non-Patent Document 5 from a technical standpoint.

このように、非特許文献2〜5に記載されるようなBIDI型モジュールの機能を1個のTO−CANに集積するための従来の技術提案や発明では、コストや製造時間を抑制しつつレーザダイオードと光ファイバ間及びフォトダイオードと光ファイバ間の光路の一部を高い歩留まりで一致させることが困難であった。そのため、未だにBIDI型モジュールが広く流通している。   As described above, in the conventional technical proposal and invention for integrating the functions of the BIDI type modules as described in Non-Patent Documents 2 to 5 in one TO-CAN, the laser is manufactured while suppressing the cost and the manufacturing time. It has been difficult to match a part of the optical path between the diode and the optical fiber and between the photodiode and the optical fiber with a high yield. Therefore, BIDI type modules are still widely distributed.

以上のことから、レーザダイオード−光ファイバ間の光路とフォトダイオード−光ファイバ間の光路を一致させるための簡易なパッシブ調芯法(以下、他のパッシブ調芯法との混同を避けるため、ビジュアルアライメントと呼ぶ)を新たに発明することで、上述したBIDI型および従来のCAN型送受信モジュールの問題点を解決し、小型で低コストなCAN型送受信モジュールを実現することが可能になると考えられる。   From the above, a simple passive alignment method for matching the optical path between the laser diode and the optical fiber and the optical path between the photodiode and the optical fiber (hereinafter, in order to avoid confusion with other passive alignment methods, It is considered that a novel CAN type transmission / reception module can be realized by solving the problems of the BIDI type and the conventional CAN type transmission / reception module described above.

本発明の目的は、部品点数及び製造工数が少なく低コストな一心双方向光送受信モジュールを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a single-fiber bidirectional optical transmission / reception module that has a low number of parts and manufacturing steps and is low in cost.

上記の課題を解決するための本発明の請求項1に係る一心双方向光送受信モジュールの製造方法は、円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキャップを固着してなる収納体の内部に1個の半導体光送信素子、1個の光信号受信素子、および少なくとも1個の波長選別フィルターを搭載し、該収納体の外側に1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおいて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とが一部重なり合うように、それぞれ異なる支持体を介して前記金属部材に固定される一心双方向光送受信モジュールを製造する方法であって、
各々前記支持体に固定された前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターを前記金属部材に固定する際、前記光信号受信素子が固定された支持体及び前記光信号送信素子が固定された支持体を前記金属部材に固着した後、前記波長選別フィルターが固定された支持体を、前記波長選別フィルターを介して観察される前記半導体光送信素子の出射端面の反射像と、前記波長選別フィルターを介して透過される前記光信号受信素子の受光面の透過像とが、観察位置で同時にピントを合わせるように配置し、前記出射端面の反射像と前記受光面の透過像とが重なり合う位置で前記波長選別フィルターが固定された支持体を前記金属部材に固着することを特徴とする。
According to a first aspect of the present invention for solving the above-described problem, a single-fiber bidirectional optical transceiver module according to the present invention has a lens cap having a light transmitting portion made of a condensing lens fixed to a cylindrical or columnar metal member. A semiconductor optical transmission element, an optical signal receiving element, and at least one wavelength selection filter are mounted inside the storage body, and one optical fiber is attached to the outside of the storage body. In the single-fiber bidirectional optical transceiver module having the configuration, an emission end face of a resonator of the semiconductor optical transmission element or an emission end face of the semiconductor optical transmission element has a shape capable of specifying an emission position of laser light, and the semiconductor optical transmission element The difference between the optical path length from the emission end surface to the optical fiber and the optical path length from the light receiving surface of the optical signal receiving element to the optical fiber is small, and the semiconductor optical transmission element The optical signal receiving element and the wavelength selection filter have different supports so that the optical path between the semiconductor optical transmitting element and the optical fiber partially overlaps with the optical path between the optical signal receiving element and the optical fiber. A method of manufacturing a single-fiber bidirectional optical transceiver module fixed to the metal member via
When the semiconductor optical transmission element, the optical signal receiving element and the wavelength selection filter fixed to the support are fixed to the metal member, the support and the optical signal transmission element to which the optical signal receiving element is fixed After fixing the support body fixed to the metal member, the support body to which the wavelength selection filter is fixed is reflected through the wavelength selection filter and the reflection image of the emission end face of the semiconductor optical transmission element, The transmission image of the light receiving surface of the optical signal receiving element transmitted through the wavelength selection filter is arranged so as to be simultaneously focused at the observation position, and the reflected image of the emission end surface and the transmission image of the light receiving surface The support to which the wavelength selection filter is fixed is fixed to the metal member at a position where the two overlap each other.

上記の課題を解決するための本発明の請求項2に係る一心双方向光送受信モジュールの製造方法は、円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキャップを固着してなる収納体の内部に1個の半導体光送信素子、1個の光信号受信素子、および少なくとも1個の波長選別フィルターを搭載し、該収納体の外側に1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおいて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とが一部重なり合うように配置され、前記半導体光送信素子及び前記光信号受信素子が共通の支持体を介して前記金属部材に固定され、前記波長選別フィルターが他の支持体を介して前記金属部材に固定される一心双方向光送受信モジュールを製造する方法であって、
各々前記支持体に固定された前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターを前記金属部材に固定する際、前記半導体光送信素子及び前記光信号受信素子が固定された支持体を前記金属部材に固着した後、前記波長選別フィルターが固定された支持体を、前記波長選別フィルターを介して観察される前記半導体光送信素子の出射端面の反射像と、前記波長選別フィルターを介して透過される前記光信号受信素子の受光面の透過像とが、観察位置で同時にピントを合わせるように配置し、前記出射端面の反射像と前記受光面の透過像とが重なり合う位置で前記波長選別フィルターが固定された支持体を前記金属部材に固着することを特徴とする。
According to a second aspect of the present invention for solving the above-described problem, a single-fiber bidirectional optical transceiver module according to the present invention has a lens cap having a light transmitting portion made of a condensing lens fixed to a cylindrical or columnar metal member. A semiconductor optical transmission element, an optical signal receiving element, and at least one wavelength selection filter are mounted inside the storage body, and one optical fiber is attached to the outside of the storage body. In the single-fiber bidirectional optical transceiver module having the configuration, an emission end face of a resonator of the semiconductor optical transmission element or an emission end face of the semiconductor optical transmission element has a shape capable of specifying an emission position of laser light, and the semiconductor optical transmission element The difference between the optical path length from the emission end surface to the optical fiber and the optical path length from the light receiving surface of the optical signal receiving element to the optical fiber is small, and the semiconductor optical transmission element The optical signal receiving element and the wavelength selecting filter are arranged so that an optical path between the semiconductor optical transmitting element and the optical fiber and an optical path between the optical signal receiving element and the optical fiber partially overlap, and the semiconductor optical Manufactures a single-fiber bidirectional optical transceiver module in which a transmitting element and the optical signal receiving element are fixed to the metal member via a common support, and the wavelength selection filter is fixed to the metal member via another support A way to
When the semiconductor optical transmitting element, the optical signal receiving element, and the wavelength selection filter fixed to the support are fixed to the metal member, the semiconductor optical transmitting element and the optical signal receiving element are fixed. After fixing the wavelength selective filter to the metal member, the support on which the wavelength selective filter is fixed is reflected on the reflection image of the emission end face of the semiconductor optical transmission element observed through the wavelength selective filter and through the wavelength selective filter. The transmission image of the light receiving surface of the optical signal receiving element that is transmitted through is arranged so as to be focused at the same time at the observation position, and the wavelength at the position where the reflected image of the emission end surface and the transmission image of the light receiving surface overlap. A support to which the sorting filter is fixed is fixed to the metal member.

上記の課題を解決するための本発明の請求項3に係る一心双方向光送受信モジュールの製造方法は、円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキャップを固着してなる収納体の内部に1個の半導体光送信素子、1個の光信号受信素子、および少なくとも1個の波長選別フィルターを搭載し、該収納体の外側に1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおいて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とが一部重なり合うように配置され、前記半導体光送信素子及び前記波長選別フィルターが共通の支持体を介して前記金属部材に固定され、前記光信号受信素子が他の支持体を介して前記金属部材に固定される一心双方向光送受信モジュールを製造する方法であって、
各々前記支持体に固定された前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターを前記金属部材に固定する際、前記光信号受信素子が固定された支持体を前記金属部材に固着した後、前記半導体光送信素子及び前記波長選別フィルターが固定された支持体を、前記波長選別フィルターを介して観察される前記半導体光送信素子の出射端面の反射像と、前記波長選別フィルターを介して透過される前記光信号受信素子の受光面の透過像とが、観察位置で同時にピントを合わせるように配置し、前記出射端面の反射像と前記受光面の透過像とが重なり合う位置で前記半導体光送信素子及び前記波長選別フィルターが固定された支持体を前記金属部材に固着することを特徴とする。
According to a third aspect of the present invention for solving the above problems, a single-fiber bidirectional optical transceiver module according to the present invention has a lens cap having a light transmitting portion made of a condensing lens fixed to a cylindrical or columnar metal member. A semiconductor optical transmission element, an optical signal receiving element, and at least one wavelength selection filter are mounted inside the storage body, and one optical fiber is attached to the outside of the storage body. In the single-fiber bidirectional optical transceiver module having the configuration, an emission end face of a resonator of the semiconductor optical transmission element or an emission end face of the semiconductor optical transmission element has a shape capable of specifying an emission position of laser light, and the semiconductor optical transmission element The difference between the optical path length from the emission end surface to the optical fiber and the optical path length from the light receiving surface of the optical signal receiving element to the optical fiber is small, and the semiconductor optical transmission element The optical signal receiving element and the wavelength selecting filter are arranged so that an optical path between the semiconductor optical transmitting element and the optical fiber and an optical path between the optical signal receiving element and the optical fiber partially overlap, and the semiconductor optical Manufacturing a single-fiber bidirectional optical transceiver module in which a transmitting element and the wavelength selection filter are fixed to the metal member via a common support, and the optical signal receiving element is fixed to the metal member via another support A way to
When the semiconductor optical transmission element, the optical signal receiving element and the wavelength selection filter fixed to the support are fixed to the metal member, the support to which the optical signal receiving element is fixed is fixed to the metal member. After that, the support on which the semiconductor optical transmission element and the wavelength selection filter are fixed is reflected on the reflection image of the emission end face of the semiconductor optical transmission element observed through the wavelength selection filter and through the wavelength selection filter. The transmission image of the light receiving surface of the optical signal receiving element that is transmitted through is arranged so as to be focused at the same time at the observation position, and the semiconductor at the position where the reflection image of the emission end surface and the transmission image of the light receiving surface overlap. A support on which an optical transmission element and the wavelength selection filter are fixed is fixed to the metal member.

上記の課題を解決するための本発明の請求項4に係る一心双方向光送受信モジュールの製造方法は、円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキャップを固着してなる収納体の内部に1個の半導体光送信素子、1個の光信号受信素子、および少なくとも1個の波長選別フィルターを搭載し、該収納体の外側に1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおいて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とが一部重なり合うように配置され、前記波長選別フィルター及び前記光信号受信素子が共通の支持体を介して前記金属部材に固定され、前記半導体光送信素子が他の支持体を介して前記金属部材に固定される一心双方向光送受信モジュールを製造する方法であって、
各々前記支持体に固定された前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターを前記金属部材に固定する際、前記光信号受信素子及び前記波長選別フィルターが固定された支持体を、前記波長選別フィルターを介して観察される前記半導体光送信素子の出射端面の透過像と、前記波長選別フィルターを介して観察される前記光信号受信素子の受光面の反射像とが、観察位置で同時にピントを合わせるように配置し、前記出射端面の透過像と前記受光面の反射像とが重なり合う位置で前記光信号受信素子及び前記波長選別フィルターが固定された支持体を前記金属部材に固着することを特徴とする。
According to a fourth aspect of the present invention for solving the above-described problem, a single-fiber bidirectional optical transceiver module according to the present invention has a lens cap having a light transmitting portion made of a condensing lens fixed to a cylindrical or columnar metal member. A semiconductor optical transmission element, an optical signal receiving element, and at least one wavelength selection filter are mounted inside the storage body, and one optical fiber is attached to the outside of the storage body. In the single-fiber bidirectional optical transceiver module having the configuration, an emission end face of a resonator of the semiconductor optical transmission element or an emission end face of the semiconductor optical transmission element has a shape capable of specifying an emission position of laser light, and the semiconductor optical transmission element The difference between the optical path length from the emission end surface to the optical fiber and the optical path length from the light receiving surface of the optical signal receiving element to the optical fiber is small, and the semiconductor optical transmission element The optical signal receiving element and the wavelength selecting filter are arranged so that an optical path between the semiconductor optical transmitting element and the optical fiber and an optical path between the optical signal receiving element and the optical fiber partially overlap, and the wavelength selecting Manufactures a single-fiber bidirectional optical transceiver module in which a filter and the optical signal receiving element are fixed to the metal member via a common support, and the semiconductor optical transmission element is fixed to the metal member via another support A way to
When the semiconductor optical transmission element, the optical signal receiving element, and the wavelength selection filter fixed to the support are fixed to the metal member, the support to which the optical signal reception element and the wavelength selection filter are fixed is provided. A transmission image of the emission end face of the semiconductor optical transmission element observed through the wavelength selection filter and a reflection image of the light receiving surface of the optical signal reception element observed through the wavelength selection filter The optical signal receiving element and the support for fixing the wavelength selection filter are fixed to the metal member at a position where the transmission image of the emission end surface and the reflection image of the light receiving surface overlap each other. It is characterized by doing.

上記の課題を解決するための本発明の請求項5に係る一心双方向光送受信モジュールの製造方法は、請求項1乃至請求項4のいずれかに記載の一心双方向光送受信モジュールを製造する方法であって、前記出射端面の反射像と前記受光面の透過像又は前記出射端面の透過像と前記受光面の反射像が、いずれも、前記波長選別フィルターの透過率が10%以上、90%以下となる共通の可視光領域の光による像であることを特徴とする。
A method for manufacturing a single-fiber bidirectional optical transceiver module according to claim 5 of the present invention for solving the above-described problems is a method for manufacturing a single-fiber bidirectional optical transceiver module according to any one of claims 1 to 4. The transmission image of the wavelength selection filter has a transmittance of 10% or more and 90% for the reflection image of the emission end surface and the transmission image of the light receiving surface or the transmission image of the emission end surface and the reflection image of the light reception surface. It is the image by the light of the common visible region which becomes the following, It is characterized by the above-mentioned.

なお、上述において記載した「前記半導体光送信素子の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光ファイバまでの光路長との差が僅少」であるとは、半導体光送信素子の出射端面から光ファイバまでの光路長と、光信号受信素子受光面から光ファイバまでの光路長との差Dが、以下の不等式を満たす範囲内であることをいう。
D<d÷NA (1)
ここで、dは用いる光信号受信素子の受光面の直径、NAは用いる集光用レンズの開口数である。
As described above, “the difference between the optical path length from the emitting end face of the semiconductor optical transmission element to the optical fiber and the optical path length from the light receiving surface of the optical signal receiving element to the optical fiber is small”. Means that the difference D between the optical path length from the emitting end surface of the semiconductor optical transmission element to the optical fiber and the optical path length from the light receiving surface of the optical signal receiving element to the optical fiber is within a range satisfying the following inequality.
D <d ÷ NA (1)
Here, d is the diameter of the light receiving surface of the optical signal receiving element to be used, and NA is the numerical aperture of the condensing lens to be used.

本発明に係る一心双方向光送受信モジュールを用いることで、BIDI型モジュールの有する光信号送受信機能を一つの収納体内に容易に集積化できる。そして、BIDI型モジュールの機能を1つの収納体に搭載することが可能となったことにより、BIDI型に比べて部品点数を30%程度削減することができる。   By using the single fiber bidirectional optical transceiver module according to the present invention, the optical signal transmission / reception function of the BIDI module can be easily integrated in one storage body. Since the function of the BIDI type module can be mounted on one storage body, the number of parts can be reduced by about 30% compared to the BIDI type.

また、本発明に係る一心双方向光送受信モジュールの製造方法によれば、レーザダイオード等の半導体光送信素子と光ファイバ間の光路と、フォトダイオード等の光信号受信素子と光ファイバ間の光路を容易に重ね合わせることができるため、半導体光送信素子、光信号受信素子およびこれらの支持体の加工および搭載精度を緩和することができる。そして、簡易に半導体光送信素子−光ファイバ間の光路と、光信号受信素子−光ファイバ間の光路を一致させることができることにより、アクティブ調芯の回数を1回に削減できる。   Further, according to the method for manufacturing a single-fiber bidirectional optical transceiver module according to the present invention, an optical path between a semiconductor optical transmission element such as a laser diode and an optical fiber, and an optical path between an optical signal receiving element such as a photodiode and an optical fiber are provided. Since they can be easily overlapped, the processing and mounting accuracy of the semiconductor optical transmission element, the optical signal receiving element, and their supports can be relaxed. And since the optical path between the semiconductor optical transmission element and the optical fiber can be easily matched with the optical path between the optical signal receiving element and the optical fiber, the number of active alignments can be reduced to one.

その結果、製造歩留まりが向上し、部品点数や工数削減の効果と合わせて、当該光モジュールの低コスト化が一層促進される。   As a result, the manufacturing yield is improved, and the cost reduction of the optical module is further promoted together with the effect of reducing the number of parts and man-hours.

本発明の実施形態における一心双方向光送受信モジュールを示す概略図である。It is the schematic which shows the single fiber bidirectional optical transmission / reception module in embodiment of this invention. 図2(a)は本発明の実施形態における観察光路を示す模式図、図2(b)は本発明の実施形態におけるWDMフィルター表面を示す模式図である。FIG. 2A is a schematic diagram showing an observation optical path in the embodiment of the present invention, and FIG. 2B is a schematic diagram showing a WDM filter surface in the embodiment of the present invention. 本発明の実施形態におけるWDMフィルターの移動による調芯方法を示す模式図である。It is a schematic diagram which shows the alignment method by the movement of the WDM filter in embodiment of this invention. 本発明の実施例1におけるレーザダイオード搭載の例を示す模式図である。It is a schematic diagram which shows the example of laser diode mounting in Example 1 of this invention. 本発明の実施例1における受信部作製の例を示す模式図である。It is a schematic diagram which shows the example of receiving part preparation in Example 1 of this invention. 本発明の実施例1におけるWDMフィルター調芯固定の例を示す模式図である。It is a schematic diagram which shows the example of the WDM filter center alignment fixation in Example 1 of this invention. 本発明の実施例1におけるレンズ付きキャップによる封止及び光ファイバ調芯固定の例を示す模式図である。It is a schematic diagram which shows the example of sealing by the cap with a lens in Example 1 of this invention, and optical fiber alignment fixing. 本発明の実施例1に係る光送受信モジュールによる符号誤り率特性を示すグラフである。It is a graph which shows the code error rate characteristic by the optical transmission / reception module which concerns on Example 1 of this invention. 本発明の実施例1に係る光送受信モジュールによるレーザダイオード送信信号波形を示すグラフである。It is a graph which shows the laser diode transmission signal waveform by the optical transmission / reception module which concerns on Example 1 of this invention. 本発明の実施例2におけるレーザダイオードキャリア作製の例を示す模式図である。It is a schematic diagram which shows the example of laser diode carrier preparation in Example 2 of this invention. 本発明の実施例2における受信部作製の例を示す模式図である。It is a schematic diagram which shows the example of receiving part preparation in Example 2 of this invention. 本発明の実施例2におけるWDMフィルター調芯固定の例を示す模式図である。It is a schematic diagram which shows the example of the WDM filter center alignment fixation in Example 2 of this invention. 本発明の実施例2におけるレンズ付きキャップによる封止及び光ファイバ調芯固定の例を示す模式図である。It is a schematic diagram which shows the example of sealing by the cap with a lens in Example 2 of this invention, and optical fiber alignment fixing. 本発明の実施例3におけるサブキャリア作製の例を示す模式図である。It is a schematic diagram which shows the example of subcarrier preparation in Example 3 of this invention. 本発明の実施例3におけるレーザダイオード搭載の例を示す模式図である。It is a schematic diagram which shows the example of laser diode mounting in Example 3 of this invention. 本発明の実施例3におけるWDMフィルター調芯固定の例を示す模式図である。It is a schematic diagram which shows the example of the WDM filter center alignment fixation in Example 3 of this invention. 本発明の実施例3におけるレンズ付きキャップによる封止及び光ファイバ調芯固定の例を示す模式図である。It is a schematic diagram which shows the example of sealing by the cap with a lens in Example 3 of this invention, and optical fiber alignment fixing. 本発明の実施例4におけるサブキャリア作製の例を示す模式図である。It is a schematic diagram which shows the example of subcarrier preparation in Example 4 of this invention. 本発明の実施例4における部品搭載の例を示す模式図である。It is a schematic diagram which shows the example of component mounting in Example 4 of this invention. 本発明の実施例4におけるWDMフィルター調芯固定の例を示す模式図である。It is a schematic diagram which shows the example of the WDM filter center alignment fixation in Example 4 of this invention. 本発明の実施例4におけるレンズ付きキャップによる封止及び光ファイバ調芯固定の例を示す模式図である。It is a schematic diagram which shows the example of sealing by the cap with a lens in Example 4 of this invention, and optical fiber alignment fixing. 本発明の実施例5におけるWDMフィルターの光透過特性の一例を示した図である。It is the figure which showed an example of the light transmission characteristic of the WDM filter in Example 5 of this invention. 従来のBIDI型モジュールの構造を示す模式図である。It is a schematic diagram which shows the structure of the conventional BIDI type | mold module.

符号の説明Explanation of symbols

図面において使用されている符号は、以下の通りである。1 レーザダイオード素子、2 フォトダイオード素子、2a フォトダイオード受光部、3 WDMフィルター、4 レーザダイオードサブキャリア(支持体)、5 フォトダイオードサブキャリア(支持体)、6 フィルターサブキャリア(支持体)、7 ステム、9 ピン端子、10 ピン端子、12 ワイヤボンド、13 モニタ用フォトダイオード、14 受信IC、15 チップコンデンサ、17 レンズ付キャップ、21 ピグテイルファイバ、22 サブキャリア、22a V溝部、23 面発光型レーザダイオード、24 サブキャリア(支持体)、41 レーザダイオード端面の反射像、42 フォトダイオード受光部のフィルター透過像、43 面発光型レーザダイオードの反射像 44 面発光型レーザダイオードの反射像 The symbols used in the drawings are as follows. DESCRIPTION OF SYMBOLS 1 Laser diode element, 2 Photodiode element, 2a Photodiode light-receiving part, 3 WDM filter, 4 Laser diode subcarrier (support body), 5 Photodiode subcarrier (support body), 6 Filter subcarrier (support body), 7 Stem, 9-pin terminal, 10-pin terminal, 12 wire bond, 13 monitor photodiode, 14 receiver IC, 15 chip capacitor, 17 lens cap, 21 pigtail fiber, 22 subcarrier, 22a V groove, 23 surface emitting type Laser diode, 24 subcarrier (support), 41 Reflected image of laser diode end face, 42 Transmitted image of photodiode light receiving part, 43 Reflected image of surface emitting laser diode 44 Reflected image of surface emitting laser diode

本発明の実施形態は、円筒状の金属部材としてのステムに集光レンズからなる光透過部を有するレンズキャップを固着してなる収納体としてのパッケージの内部に1個の半導体光送信素子としてのレーザダイオード、1個の光信号受信素子としてのフォトダイオード、および少なくとも1個の波長選別フィルターとしてのWDMフィルターを搭載し、且つパッケージの外側に1本の光ファイバを取り付けた構成を有するものであり、すなわち、光信号送受信機能を一つのパッケージ内に容易に集積化できるパッケージの構造(One−Canタイプ)及びその製造方法である。   In the embodiment of the present invention, a single semiconductor optical transmission element is provided inside a package as a storage body in which a lens cap having a light transmission portion made of a condensing lens is fixed to a stem as a cylindrical metal member. A laser diode, a photodiode as an optical signal receiving element, and at least one WDM filter as a wavelength selection filter are mounted, and one optical fiber is attached to the outside of the package. That is, a package structure (One-Can type) in which an optical signal transmission / reception function can be easily integrated in one package and a manufacturing method thereof.

レーザダイオードの共振器の端面はレーザ光の出射位置を特定できる形状を有するものとし、レーザダイオードの出射端面から前記光ファイバまでの光路長と、フォトダイオードの受光面から光ファイバまでの光路長との差を僅少、すなわち、上述した(1)式を満たす値Dの範囲内とすることにより、フォトダイオード受光部のWDMフィルターを透過したフィルター透過像とレーザダイオード光出射部の反射像とを同時に観察できる。そして、レーザダイオード、フォトダイオード及びWDMフィルターが、レーザダイオード及び前記光ファイバ間の光路と、フォトダイオード及び光ファイバ間の光路とが一部重なり合うように配置されるものである。   The end face of the resonator of the laser diode has a shape that can specify the emission position of the laser beam, the optical path length from the emission end face of the laser diode to the optical fiber, and the optical path length from the light receiving face of the photodiode to the optical fiber, Is small, that is, within the range of the value D that satisfies the above-mentioned equation (1), the filter transmission image transmitted through the WDM filter of the photodiode light receiving unit and the reflection image of the laser diode light emitting unit are simultaneously obtained. I can observe. The laser diode, the photodiode, and the WDM filter are arranged so that the optical path between the laser diode and the optical fiber and the optical path between the photodiode and the optical fiber partially overlap.

図1〜図3に基づいて本実施形態において重要であるビジュアルアライメントの一例の概要を示す。ここでは、初めにレーザダイオード1とフォトダイオード2を円筒状の金属部材であるステム7上に各々のサブキャリア4,5を介して固定した後に、WDMフィルター3を固定する場合を例として説明する。図1〜図3では、ステム7は、円筒状の金属部材で構成されているが、円柱状の金属部材であってもよい。   An outline of an example of visual alignment that is important in the present embodiment will be described based on FIGS. Here, a case where the laser diode 1 and the photodiode 2 are first fixed on the stem 7 which is a cylindrical metal member via the respective subcarriers 4 and 5 and then the WDM filter 3 is fixed will be described as an example. . In FIGS. 1 to 3, the stem 7 is formed of a cylindrical metal member, but may be a columnar metal member.

図1に示すように、レーザダイオード1とフォトダイオード2の固定後、レーザダイオード1とフォトダイオード2間のスペースに、矢印で示すようにWDMフィルター3を搭載したサブキャリア6を挿入する。   As shown in FIG. 1, after fixing the laser diode 1 and the photodiode 2, a subcarrier 6 on which the WDM filter 3 is mounted is inserted into the space between the laser diode 1 and the photodiode 2 as indicated by an arrow.

その際、実体顕微鏡もしくはCCDカメラ11により、図2(a)に示す観察光路31でWDMフィルター3を介して図2(b)に示すようなレーザダイオード1端面の反射像41が観察できる。このときレーザダイオード1がリッジもしくはメサ型等の共振器端面に凹凸のある光導波路構造を有していると、通電することなく図2(b)中に破線で囲んだレーザダイオード光の出射位置が正確に確認できる。なお、図2(b)に示した反射像41は、リッジ導波路の例を示している。図2では、レーザダイオード1の共振器の出射端面の反射像41がWDMフィルター3に写っている例を示しているが、レーザダイオード1に代えて、例えば、面発光型レーザダイオードを適用する場合には、レーザダイオードの出射端面の反射像を観察するようにしてもよい。   At this time, the reflected image 41 of the end face of the laser diode 1 as shown in FIG. 2B can be observed through the WDM filter 3 through the observation optical path 31 shown in FIG. At this time, if the laser diode 1 has an optical waveguide structure with an uneven surface such as a ridge or mesa resonator, the emission position of the laser diode light surrounded by a broken line in FIG. Can be confirmed accurately. Note that the reflected image 41 shown in FIG. 2B shows an example of a ridge waveguide. Although FIG. 2 shows an example in which the reflection image 41 of the emission end face of the resonator of the laser diode 1 is reflected on the WDM filter 3, for example, a surface emitting laser diode is applied instead of the laser diode 1. Alternatively, the reflected image of the emission end face of the laser diode may be observed.

さらに、実体顕微鏡もしくはCCDカメラ11からフォトダイオード2までの光路長と、図2(a)に示した観察光路31長との差Dを0.5mm以下に光学設計し、図2(a)(b)に示すようにフィルターサブキャリア6をフォトダイオード2側へと移動させると、図3に示すように光信号受信素子の受光面としてのフォトダイオード受光部2aのWDMフィルター3を透過したフィルター透過像42とレーザダイオード1の光出射部の反射像41を同時に観察できる。そして、これら2つの像41,42を重ね合わせることで、レーザダイオード1−光ファイバ間の光路とフォトダイオード2−光ファイバ間の光路の一部が一致する。   Further, an optical design is made so that the difference D between the optical path length from the stereomicroscope or CCD camera 11 to the photodiode 2 and the observation optical path 31 length shown in FIG. 2A is 0.5 mm or less, and FIG. When the filter subcarrier 6 is moved to the photodiode 2 side as shown in b), the filter is transmitted through the WDM filter 3 of the photodiode light receiving portion 2a as the light receiving surface of the optical signal receiving element as shown in FIG. The image 42 and the reflected image 41 of the light emitting part of the laser diode 1 can be observed simultaneously. Then, by superimposing these two images 41 and 42, the optical path between the laser diode 1 and the optical fiber and the optical path between the photodiode 2 and the optical fiber coincide with each other.

このように、本実施形態におけるビジュアルアライメントではレーザダイオード1の光出射部の反射像41とフォトダイオード受光部2aのフィルター透過像42を直接観察しながら位置合わせできるため、部材の加工精度やレーザダイオード1、フォトダイオード2の搭載精度によらず、ほぼ100%の歩留まりでレーザダイオード1−フォトダイオード2間の光路調芯が簡便に実施できる。なお、本実施形態においては、一般的な光学系材料を用いる場合の例を示した。   As described above, in the visual alignment in the present embodiment, the reflected image 41 of the light emitting portion of the laser diode 1 and the filter transmission image 42 of the photodiode light receiving portion 2a can be aligned while directly observing. 1. Regardless of the mounting accuracy of the photodiode 2, the optical path alignment between the laser diode 1 and the photodiode 2 can be easily performed with a yield of almost 100%. In this embodiment, an example in which a general optical system material is used is shown.

上述したように本実施形態によれば、部材精度やチップ搭載精度によらずに、レーザダイオード−フォトダイオード間の光路調芯が可能となる。そしてこのビジュアルアライメントを行うために必要な条件は、レーザダイオード1が共振器端面に光出射位置が特定できる凹凸のある光導波路構造、例えばリッジもしくはメサ型導波路構造を有する端面発光レーザダイオード又は面発光型レーザダイオード(VCSEL)を有していることと、レーザダイオード1端面の反射像41とフォトダイオード受光部2aの透過像42のピントが同時に合うことの二つだけである。   As described above, according to the present embodiment, optical path alignment between a laser diode and a photodiode can be performed regardless of member accuracy and chip mounting accuracy. The condition necessary for performing this visual alignment is that the laser diode 1 has an uneven optical waveguide structure that can specify the light emission position on the cavity end face, for example, an edge emitting laser diode or surface having a ridge or mesa type waveguide structure. There are only two, that is, having a light emitting laser diode (VCSEL) and that the reflected image 41 of the end face of the laser diode 1 and the transmitted image 42 of the photodiode light receiving unit 2a are simultaneously focused.

上記二つの条件のうち、レーザダイオード1の共振器端面構造については、リッジ加工を施したタイプのレーザダイオードチップを選択すればよく、特に問題はない。一方、ピントの両立、すなわちレーザダイオード1端面の反射像41とフォトダイオード受光部2aの透過像42のピントを同時に合わせるためには、WDMフィルター3表面からレーザダイオード1表面までの光路長とWDMフィルター3表面からフォトダイオード2までの光路長との差Dを、上述した(1)に示す不等式を満たす範囲内、例えば、一般的な光学系材料を用いる場合であれば0.5mm以下にする等、光学系材料等に応じてフォトダイオード受光部2aのWDMフィルター3を透過したフィルター透過像42とレーザダイオード1の光出射部の反射像41とを同時に観察できる値に設定する光学設計を行うものとする。これにより、レーザダイオード1−光ファイバ間の光路とフォトダイオード2−光ファイバ間の光路の一部を一致させることが可能となる。   Of the above two conditions, the cavity end face structure of the laser diode 1 may be selected from a ridge-processed type laser diode chip, and there is no particular problem. On the other hand, in order to achieve both focus, that is, to simultaneously focus the reflected image 41 on the end face of the laser diode 1 and the transmitted image 42 of the photodiode light receiving unit 2a, the optical path length from the surface of the WDM filter 3 to the surface of the laser diode 1 and the WDM filter 3 The difference D from the optical path length from the surface to the photodiode 2 is within a range satisfying the inequality shown in the above (1), for example, 0.5 mm or less if a general optical system material is used. In accordance with the optical system material or the like, an optical design is performed in which the filter transmission image 42 transmitted through the WDM filter 3 of the photodiode light receiving unit 2a and the reflection image 41 of the light emitting unit of the laser diode 1 are set to values that can be observed simultaneously. And Thereby, it is possible to make a part of the optical path between the laser diode 1 and the optical fiber coincide with a part of the optical path between the photodiode 2 and the optical fiber.

なお、上述したレーザダイオード1の共振器端面に光出射位置が特定できる凹凸のある光導波路構造としては、埋め込み導波路型であって、容量を減らす等の理由によりリッジもしくはメサを追加工したレーザダイオードも含まれる。   In addition, as the optical waveguide structure having an unevenness capable of specifying the light emission position on the resonator end face of the laser diode 1 described above, it is a buried waveguide type, and a laser in which a ridge or a mesa is additionally processed for the purpose of reducing the capacity or the like A diode is also included.

本実施形態に係る一心双方向光送受信モジュール及びその製造方法によれば、ビジュアルアライメント法を用いることにより、レーザダイオード1−光ファイバ間の光路とフォトダイオード2−光ファイバ間の光路の重ね合わせに必要な、レーザダイオード1、フォトダイオード2およびこれらのサブキャリア3,4の加工精度および搭載精度を緩和することが可能となる。その結果、製造歩留まりが向上し、部品点数や工数削減の効果による光モジュールの小型化と合わせて、当該光モジュールの低コスト化が一層促進される。   According to the single-fiber bidirectional optical transceiver module and the manufacturing method thereof according to the present embodiment, by using the visual alignment method, the optical path between the laser diode 1 and the optical fiber and the optical path between the photodiode 2 and the optical fiber are overlapped. The required processing accuracy and mounting accuracy of the laser diode 1, the photodiode 2 and their subcarriers 3 and 4 can be relaxed. As a result, the manufacturing yield is improved, and the cost reduction of the optical module is further promoted together with the downsizing of the optical module due to the effect of reducing the number of parts and man-hours.

このように、レーザダイオード1側とフォトダイオード2側の光路長差を定量的に取り入れて光学設計する点が、上述した非特許文献2〜5に記載された発明との差異である。   Thus, the difference from the inventions described in Non-Patent Documents 2 to 5 described above is that the optical design is made by quantitatively taking in the optical path length difference between the laser diode 1 side and the photodiode 2 side.

以下に、本発明の第1の実施例を具体的な実施態様を例にして説明する。なお、本実施例は、本発明の効果を示す一つの例であり、本発明の主旨を逸脱しない範囲内で種々の変更を行い得ることは言うまでもない。   The first embodiment of the present invention will be described below by taking specific embodiments as examples. Note that this embodiment is an example showing the effects of the present invention, and it goes without saying that various modifications can be made without departing from the spirit of the present invention.

本実施例においては、レーザダイオードとして発振波長1310nmのリッジ導波路型FP−レーザダイオードを用い、受信素子として受光径80μmのInGaAs系pin型フォトダイオード(以下、単にフォトダイオードという)を用いるものとし、半導体光送信素子としてのレーザダイオード、光信号受信素子としてのフォトダイオード、波長選別フィルターとしてのWDMフィルターがそれぞれ異なるサブキャリア上に固定されている場合を例として実施形態及び効果を説明する。   In this embodiment, a ridge waveguide type FP-laser diode having an oscillation wavelength of 1310 nm is used as the laser diode, and an InGaAs-type pin photodiode (hereinafter simply referred to as a photodiode) having a light receiving diameter of 80 μm is used as the receiving element. Embodiments and effects will be described by taking as an example the case where a laser diode as a semiconductor optical transmission element, a photodiode as an optical signal reception element, and a WDM filter as a wavelength selection filter are fixed on different subcarriers.

なお、本実施例においては、WDMフィルターからフォトダイオードまでの光路長を0.65±0.1mm、WDMフィルターからレーザダイオードまでの光路長を0.6±0.1mmとして設計している(最大光路長差:0.25mm)。   In this embodiment, the optical path length from the WDM filter to the photodiode is designed to be 0.65 ± 0.1 mm, and the optical path length from the WDM filter to the laser diode is designed to be 0.6 ± 0.1 mm (maximum Optical path length difference: 0.25 mm).

本実施例における光送信モジュールの組立工程を図4〜図7に示す。   The assembly process of the optical transmission module in the present embodiment is shown in FIGS.

1.レーザダイオード搭載
図4に示すように、初めにレーザダイオード1およびレーザダイオード出力モニタ用フォトダイオード(以下モニタ用フォトダイオード)13をレーザダイオードサブキャリア4を介してステム7上に金錫ハンダにより固定する。レーザダイオード1の搭載は自動搭載機により行い、その搭載精度は、ステム7上の指定した座標を中心とした半径100μmの円内で良く、ほぼ100%の歩留まりで精度を満足することができる。次いで、レーザダイオード1とモニタ用フォトダイオード13をステム7上のピン端子10にワイヤボンド12で接続する。
1. As shown in FIG. 4, first, the laser diode 1 and the laser diode output monitoring photodiode (hereinafter referred to as monitoring photodiode) 13 are fixed onto the stem 7 via the laser diode subcarrier 4 by gold tin solder. . The laser diode 1 is mounted by an automatic mounting machine, and the mounting accuracy may be within a circle having a radius of 100 μm centered on a specified coordinate on the stem 7, and the accuracy can be satisfied with a yield of almost 100%. Next, the laser diode 1 and the monitoring photodiode 13 are connected to the pin terminal 10 on the stem 7 by a wire bond 12.

2.受信部作製
図5に示すように、レーザダイオード1等を固定したステム7上にフォトダイオード2をフォトダイオードサブキャリア5を介して金錫ハンダにより固定する。フォトダイオード2の搭載は、自動搭載機により搭載済みのレーザダイオード1のストライプ電極を基準に座標指定して行い、固定には金錫ハンダを用いる。フォトダイオード2の搭載精度は、レーザダイオード1のストライプに対して99%以上の歩留まりで±25μm以下に収まっている。次いで、受信IC(transimpedance−amplifier:TIAともいう)14と電源ノイズカット用のチップコンデンサ15を自動搭載機で搭載し、接着剤を用いて固定し、ピン端子9と受信IC14間など、導通の必要な端子間をワイヤボンド12で接続する。
2. As shown in FIG. 5, the photodiode 2 is fixed to the stem 7 to which the laser diode 1 and the like are fixed by gold tin solder via the photodiode subcarrier 5. The photodiode 2 is mounted by specifying coordinates with reference to the stripe electrode of the laser diode 1 already mounted by an automatic mounting machine, and gold-tin solder is used for fixing. The mounting accuracy of the photodiode 2 is within ± 25 μm with a yield of 99% or more with respect to the stripe of the laser diode 1. Next, a reception IC (transimpedance-amplifier: TIA) 14 and a chip capacitor 15 for cutting power supply noise are mounted by an automatic mounting machine, fixed with an adhesive, and connected between the pin terminal 9 and the reception IC 14. Necessary terminals are connected by wire bonds 12.

3.フィルター搭載
図6に示すように、WDMフィルター3をフィルター用サブキャリア6に接着剤で固定する。固定後、フィルター用サブキャリア6をレーザダイオード1とフォトダイオード2の間のスペースに挿入し、図1〜3に示し上述したビジュアルアライメントにより調芯する。調芯後、YAG溶接16によりステム7上にフィルター用サブキャリア6ごとWDMフィルター3を固定する。この工程により、レーザダイオード1−光ファイバ21(図7参照)間の光路であるレーザダイオード側光路32と、フォトダイオード2−光ファイバ21間の光路であるフォトダイオード側光路33とが一部共通した共通光路34を有することとなり、重ね合わせが実現できる。
3. As shown in FIG. 6, the WDM filter 3 is fixed to the filter subcarrier 6 with an adhesive. After fixing, the filter subcarrier 6 is inserted into the space between the laser diode 1 and the photodiode 2 and aligned by the visual alignment shown in FIGS. After alignment, the WDM filter 3 is fixed together with the filter subcarrier 6 on the stem 7 by YAG welding 16. By this process, a laser diode side optical path 32 that is an optical path between the laser diode 1 and the optical fiber 21 (see FIG. 7) and a photodiode side optical path 33 that is an optical path between the photodiode 2 and the optical fiber 21 are partially shared. The common optical path 34 is provided, and superposition can be realized.

4.レンズキャップ封止とファイバ調芯
図7に示すように、全ての部品搭載の終わったステム7上にレンズ付キャップ17を被せて抵抗溶接により固定する。このとき、用いるレンズ17aは非球面レンズであってもボールレンズであっても良い。次いで、レンズキャップ17の上に、1.55μmカットフィルター18を内蔵したスリーブ19を被せてYAGレーザにより溶接固定16する。さらにレーザダイオード1に通電して発光させ、ファイバカラー20を被せたピグテイルファイバ21をアクティブ調芯してファイバカラー20をスリーブ19にYAGレーザにより溶接固定16する。
4). Lens Cap Sealing and Fiber Alignment As shown in FIG. 7, a lens cap 17 is placed on the stem 7 on which all components have been mounted and fixed by resistance welding. At this time, the lens 17a used may be an aspherical lens or a ball lens. Next, a sleeve 19 containing a 1.55 μm cut filter 18 is placed on the lens cap 17 and fixed by welding 16 using a YAG laser. Further, the laser diode 1 is energized to emit light, the pigtail fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is welded and fixed 16 to the sleeve 19 with a YAG laser.

5.送受信特性
以上の工程により作製した送受信モジュールによる受信特性(符号誤り率特性)及び送信波形をそれぞれ図8及び図9に示す。なお、受光感度はレーザダイオードとの同時動作時にも−28.7dBmとなり、高速・パッシブ・オプティカル・ネットワーク(High speed Passive Optical Network:HSPON)の規格を満足するものであった。また、図9に示すように、送信波形はLAN用通信規格の一つである高速光LAN(Local Area Network)のマスクテストをパスしている。以上の結果より、本実施例に係る光送受信モジュールは商用レベルの性能を有することが明らかである。
5. Transmission / Reception Characteristics FIG. 8 and FIG. 9 show the reception characteristics (symbol error rate characteristics) and transmission waveforms by the transmission / reception module manufactured by the above steps, respectively. The light receiving sensitivity was −28.7 dBm even when operated simultaneously with the laser diode, which satisfied the high speed passive optical network (HSPON) standard. As shown in FIG. 9, the transmission waveform passes a mask test of a high-speed optical LAN (Local Area Network) which is one of LAN communication standards. From the above results, it is clear that the optical transceiver module according to the present embodiment has a commercial level performance.

以下に、本発明の第2の実施例を具体的な実施態様を例にして説明する。本実施例においては、レーザダイオードとして発振波長1310nmリッジ加工を施した埋め込み導波路型DFB−レーザダイオードを用い、光信号受信素子として受光径60μmのフォトダイオードを用いるものとし、レーザダイオードとWDMフィルターが同一のサブキャリア上に固定され、フォトダイオードが別なサブキャリア上に固定されている場合を例として実施形態及び効果を説明する。   The second embodiment of the present invention will be described below by taking a specific embodiment as an example. In this embodiment, a buried waveguide type DFB-laser diode having an oscillation wavelength of 1310 nm ridge processing is used as a laser diode, and a photodiode having a light receiving diameter of 60 μm is used as an optical signal receiving element. Embodiments and effects will be described with reference to an example in which the photodiode is fixed on the same subcarrier and the photodiode is fixed on another subcarrier.

本実施例においては、WDMフィルターからフォトダイオードまでの光路長を0.55±0.1mm、WDMフィルターからレーザダイオードまでの光路長を0.55±0.1mmとして設計している(最大光路長差:0.2mm)。   In this embodiment, the optical path length from the WDM filter to the photodiode is designed to be 0.55 ± 0.1 mm, and the optical path length from the WDM filter to the laser diode is designed to be 0.55 ± 0.1 mm (maximum optical path length). Difference: 0.2 mm).

本実施の光送受信モジュールの組立工程を図10〜図13に示す。以下、図1〜7に示し上述した部材と同一の部材については同符号を用いて説明するものとする。   The assembly process of the optical transceiver module of this embodiment is shown in FIGS. Hereinafter, the same members as those illustrated in FIGS. 1 to 7 and described above will be described using the same reference numerals.

1.レーザダイオードサブキャリア作製
図10に示すように、初めにレーザダイオード1およびモニタ用フォトダイオード13をサブキャリア22上に金錫ハンダにより固定する。レーザダイオード1の搭載は自動搭載機により行い、その搭載精度は、サブキャリア22上の指定座標に対して±50μm以内にほぼ100%の歩留まりで搭載可能である。その後、サブキャリア22のV溝部22aにWDMフィルター3を挿入し、接着剤により固定する。
1. Fabrication of Laser Diode Subcarrier As shown in FIG. 10, first, the laser diode 1 and the monitoring photodiode 13 are fixed on the subcarrier 22 with gold-tin solder. The laser diode 1 is mounted by an automatic mounting machine, and the mounting accuracy can be mounted with a yield of almost 100% within ± 50 μm with respect to the designated coordinates on the subcarrier 22. Thereafter, the WDM filter 3 is inserted into the V-groove portion 22a of the subcarrier 22 and fixed with an adhesive.

2.受信部作製
図11に示すように、ステム7上に、フォトダイオードサブキャリア5を介してフォトダイオード2を金錫ハンダにより固定する。フォトダイオード2の搭載は、自動搭載機により行い、その搭載精度は、ステム7上の指定座標を中心とした半径100μmの円内で良く、ほぼ100%の歩留まりでこの精度を達成できる。次いで、受信IC14と電源ノイズカット用のチップコンデンサ15を自動搭載機で搭載し、接着剤を用いて固定する。最後に、導通の必要な各端子間をワイヤボンドで接続する。
2. Production of Receiving Unit As shown in FIG. 11, the photodiode 2 is fixed on the stem 7 through the photodiode subcarrier 5 by gold tin solder. The photodiode 2 is mounted by an automatic mounting machine, and the mounting accuracy may be within a circle having a radius of 100 μm centered on the designated coordinates on the stem 7, and this accuracy can be achieved with a yield of almost 100%. Next, the receiving IC 14 and the power source noise cutting chip capacitor 15 are mounted by an automatic mounting machine, and fixed using an adhesive. Finally, the terminals that need to be electrically connected are connected by wire bonds.

3.レーザダイオードサブキャリア調芯固定
図12に示すように、レーザダイオード1、モニタ用フォトダイオード13とWDMフィルター3が搭載されているサブキャリア22を図1〜図3に示し上述したビジュアルアライメントにより調芯し、金錫ハンダで固定する。以上の調芯工程により、レーザダイオード1−光ファイバ21(図13参照)とフォトダイオード2−光ファイバ21間の光路の一部重ね合わせが実現できる。
3. Laser diode subcarrier alignment fixing As shown in FIG. 12, the laser diode 1, the monitoring photodiode 13 and the subcarrier 22 on which the WDM filter 3 is mounted are aligned by the visual alignment shown in FIGS. And fix with gold tin solder. Through the above alignment process, a partial overlap of the optical path between the laser diode 1-optical fiber 21 (see FIG. 13) and the photodiode 2-optical fiber 21 can be realized.

4.レンズキャップ封止と光ファイバ調芯固定
図13に示すように、全ての部品搭載の終わったステム7上にレンズ付キャップ17を被せて抵抗溶接により固定する。このとき、用いるレンズ17aは非球面レンズであってもボールレンズであっても良い。次いで、レンズキャップ17の上に、1.55μmカットフィルター18を内蔵したスリーブ19を被せてYAGレーザにより溶接固定する。さらにレーザダイオード1に通電して発光させ、ファイバカラー20を被せたピグテイルファイバ21をアクティブ調芯して、ファイバカラー20をスリーブ19にYAGレーザにより溶接固定する。
4). Lens Cap Sealing and Optical Fiber Alignment Fixing As shown in FIG. 13, a lens cap 17 is placed on the stem 7 on which all components have been mounted and fixed by resistance welding. At this time, the lens 17a used may be an aspherical lens or a ball lens. Next, a sleeve 19 containing a 1.55 μm cut filter 18 is placed on the lens cap 17 and fixed by welding with a YAG laser. Further, the laser diode 1 is energized to emit light, the pigtail fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is fixed to the sleeve 19 by welding with a YAG laser.

以上の工程により作製した光送受信モジュールは、実施例1と同様に図8および図9に示すような良好な送受信特性を示している。   The optical transmission / reception module manufactured by the above steps exhibits good transmission / reception characteristics as shown in FIGS.

以下に、本発明の第3の実施例を具体的な実施態様を例にして説明する。本実施例においては、レーザダイオードとして発振波長1310nmの面発光型レーザダイオードを用い、光信号受信素子として受光径60μmのフォトダイオードを用いるものとし、フォトダイオードとWDMフィルターが同一のサブキャリア上に固定され、レーザダイオードが別なサブキャリア上に固定されている場合を例として実施形態及び効果を説明する。   The third embodiment of the present invention will be described below by taking a specific embodiment as an example. In this embodiment, a surface emitting laser diode having an oscillation wavelength of 1310 nm is used as the laser diode, and a photodiode having a light receiving diameter of 60 μm is used as the optical signal receiving element. The photodiode and the WDM filter are fixed on the same subcarrier. The embodiment and effects will be described by taking as an example the case where the laser diode is fixed on another subcarrier.

本実施例においては、WDMフィルターからフォトダイオードまでの光路長を0.55±0.1mm、WDMフィルターからレーザダイオードまでの光路長を0.55±0.1mmとして設計している(最大光路長差:0.2mm)。   In this embodiment, the optical path length from the WDM filter to the photodiode is designed to be 0.55 ± 0.1 mm, and the optical path length from the WDM filter to the laser diode is designed to be 0.55 ± 0.1 mm (maximum optical path length). Difference: 0.2 mm).

本実施の光送受信モジュールの組立工程を図14〜図17に示す。以下、図1〜7に示し上述した部材と同一の部材については同符号を用いて説明するものとする。   The assembly process of the optical transceiver module of this embodiment is shown in FIGS. Hereinafter, the same members as those illustrated in FIGS. 1 to 7 and described above will be described using the same reference numerals.

1.受光部サブキャリア作製
図14に示すように、初めにフォトダイオード2をサブキャリア22上に金錫ハンダにより固定する。フォトダイオード2の搭載は自動搭載機により行い、その搭載精度は、サブキャリア22上の指定座標に対して±50μm以内にほぼ100%の歩留まりで搭載可能である。その後、サブキャリア22のV溝部22aにWDMフィルター3を挿入し、接着剤により固定する。
1. Production of Light-Receiving Section Subcarrier As shown in FIG. 14, first, the photodiode 2 is fixed on the subcarrier 22 with gold-tin solder. The photodiode 2 is mounted by an automatic mounting machine, and the mounting accuracy can be mounted with a yield of almost 100% within ± 50 μm with respect to the designated coordinates on the subcarrier 22. Thereafter, the WDM filter 3 is inserted into the V-groove portion 22a of the subcarrier 22 and fixed with an adhesive.

2.レーザダイオード搭載
図15に示すように、初めに面発光型レーザダイオード23とモニタ用フォトダイオード(以下モニタ用フォトダイオード)13をサブキャリア24上に金錫ハンダにより固定する。面発光型レーザダイオード23搭載は自動搭載機により行い、各チップはサブキャリア24上の指定座標に対して±30μm以内にほぼ100%の歩留まりで搭載可能である。次いで、面発光型レーザダイオード23とモニタ用フォトダイオード13をステム7上のピン端子9にワイヤボンド12で接続する。
2. Laser diode mounting As shown in FIG. 15, first, a surface emitting laser diode 23 and a monitoring photodiode (hereinafter, monitoring photodiode) 13 are fixed on a subcarrier 24 by gold-tin solder. The surface emitting laser diode 23 is mounted by an automatic mounting machine, and each chip can be mounted with a yield of almost 100% within ± 30 μm with respect to the designated coordinates on the subcarrier 24. Next, the surface emitting laser diode 23 and the monitoring photodiode 13 are connected to the pin terminals 9 on the stem 7 by wire bonds 12.

3.レーザダイオードサブキャリア調芯固定
図16に示すように、フォトダイオード2とWDMフィルター3が搭載されているサブキャリア22を図1〜図3に示し上述したビジュアルアライメントにより調芯し、金錫ハンダで固定するか、又はYAGレーザにより溶接固定する。但し、図1から図3では、レーザダイオード1端面の反射像41(図2を参照。)を観察することとしているが、本実施形態では、面発光型レーザダイオード23の出射端面の透過像44をWDMフィルター3を介して観察することとする。ここで、面発光型レーザダイオード23の出射端面の出射位置の周囲をリッジ型にすると、より正確に出射位置を確認できる。また、フォトダイオード受光部2aのWDMフィルター3を透過したフィルター透過像42(図3を参照。)を観察することとしているが、本実施形態では、フォトダイオード2のフォトダイオード受光部(不図示)のWDMフィルター3で反射した反射像(不図示)を観察することとする。以上の調芯工程により、面発光型レーザダイオード23−光ファイバ21(図17参照)とフォトダイオード2−光ファイバ21間の光路の一部重ね合わせが実現できる。その後、受信IC14と電源ノイズカット用のチップコンデンサ15を自動搭載機で搭載し、接着剤を用いて固定し、ピン端子10と受信IC14間など、導通の必要な端子間をワイヤボンドで接続する。
3. Laser diode subcarrier alignment fixing As shown in FIG. 16, the subcarrier 22 on which the photodiode 2 and the WDM filter 3 are mounted is aligned by the visual alignment shown in FIGS. Fix by welding or fix with YAG laser. However, in FIGS. 1 to 3, the reflected image 41 (see FIG. 2) of the end face of the laser diode 1 is observed, but in this embodiment, the transmitted image 44 of the exit end face of the surface emitting laser diode 23 is observed. Is observed through the WDM filter 3. Here, if the periphery of the emission position of the emission end face of the surface emitting laser diode 23 is a ridge type, the emission position can be confirmed more accurately. In addition, although the filter transmission image 42 (see FIG. 3) transmitted through the WDM filter 3 of the photodiode light receiving unit 2a is observed, in this embodiment, the photodiode light receiving unit (not shown) of the photodiode 2 is used. A reflected image (not shown) reflected by the WDM filter 3 is observed. By the alignment process described above, a partial overlap of the optical path between the surface emitting laser diode 23 and the optical fiber 21 (see FIG. 17) and the photodiode 2 and the optical fiber 21 can be realized. Thereafter, the receiving IC 14 and the power source noise cutting chip capacitor 15 are mounted by an automatic mounting machine, fixed using an adhesive, and the terminals that need to be electrically connected, such as between the pin terminal 10 and the receiving IC 14, are connected by wire bonding. .

4.レンズキャップ封止と光ファイバ調芯固定
図17に示すように、全ての部品搭載の終わったステム7上にレンズ付キャップ17を被せて抵抗溶接により固定する。このとき、用いるレンズ17aは非球面レンズであってもボールレンズであっても良い。次いで、レンズキャップ17の上に、1.55μmカットフィルター18を内蔵したスリーブ19を被せてYAGレーザにより溶接固定する。さらにレーザダイオード1に通電して発光させ、ファイバカラー20を被せたピグテイルファイバ21をアクティブ調芯して、ファイバカラー20をスリーブ19にYAGレーザにより溶接固定する。
4). Lens Cap Sealing and Optical Fiber Alignment Fixing As shown in FIG. 17, the lens cap 17 is placed on the stem 7 on which all components have been mounted and fixed by resistance welding. At this time, the lens 17a used may be an aspherical lens or a ball lens. Next, a sleeve 19 containing a 1.55 μm cut filter 18 is placed on the lens cap 17 and fixed by welding with a YAG laser. Further, the laser diode 1 is energized to emit light, the pigtail fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is fixed to the sleeve 19 by welding with a YAG laser.

以上の工程により作製した光送受信モジュールは、実施例1と同様に図8および図9に示すような良好な送受信特性を示している。   The optical transmission / reception module manufactured by the above steps exhibits good transmission / reception characteristics as shown in FIGS.

以下に、本発明の第4の実施例を具体的な実施態様を例にして説明する。本実施例においては、レーザダイオードとして発振波長1290nmの面発光型レーザダイオードを用い、光信号受信素子として受光径80μmのフォトダイオードを用いるものとし、面発光型レーザダイオードとフォトダイオードが同一のサブキャリア上に固定され、WDMフィルターが別なサブキャリア上に固定されている場合を例として本発明の実施形態と効果を説明する。   The fourth embodiment of the present invention will be described below by taking a specific embodiment as an example. In this embodiment, a surface emitting laser diode having an oscillation wavelength of 1290 nm is used as the laser diode, and a photodiode having a light receiving diameter of 80 μm is used as the optical signal receiving element. The surface emitting laser diode and the photodiode are the same subcarrier. Embodiments and effects of the present invention will be described by taking as an example a case where the WDM filter is fixed on another subcarrier.

本実施例においては、WDMフィルターからフォトダイオードまでの光路長を0.45±0.1mm、WDMフィルターからレーザダイオードまでの光路長を0.5±0.1mmとして設計している(最大光路長差:0.25mm)。   In this embodiment, the optical path length from the WDM filter to the photodiode is designed to be 0.45 ± 0.1 mm, and the optical path length from the WDM filter to the laser diode is designed to be 0.5 ± 0.1 mm (maximum optical path length). Difference: 0.25 mm).

本実施の光送受信モジュールの組立工程を図18〜図21に示す。   The assembly process of the optical transceiver module of this embodiment is shown in FIGS.

1.サブキャリア上への面発光型レーザダイオードとフォトダイオードの搭載
図18に示すように、初めに面発光型レーザダイオード23とモニタ用フォトダイオード13をサブキャリア24上に金錫ハンダにより固定する。次に、面発光型レーザダイオード23の発光部を基準座標として、指定したサブキャリア上の座標にフォトダイオード2を搭載する。これらのチップ搭載は自動搭載機により行い、各チップはサブキャリア24上の指定座標に対して±30μm以内にほぼ100%の歩留まりで搭載可能である。
1. Mounting of Surface Emitting Laser Diode and Photodiode on Subcarrier First, as shown in FIG. 18, the surface emitting laser diode 23 and the monitoring photodiode 13 are fixed on the subcarrier 24 with gold tin solder. Next, the photodiode 2 is mounted on the coordinates on the designated subcarrier with the light emitting portion of the surface emitting laser diode 23 as the reference coordinates. These chips are mounted by an automatic mounting machine, and each chip can be mounted with a yield of almost 100% within ± 30 μm with respect to the designated coordinates on the subcarrier 24.

2.ステム上への部品搭載
図19に示すように、ステム7上に面発光型レーザダイオード23、モニタ用フォトダイオード13、フォトダイオード2を搭載済みのサブキャリア24を金錫ハンダにより固定する。サブキャリア24の搭載は、自動搭載機により行う。その搭載精度は、ステム7上の指数座標を中心とした半径100μmの円内で良く、ほぼ100%の歩留まりでこの精度を達成できる。次いで、受信IC14と電源ノイズカット用のチップコンデンサ15を自動搭載機でステム7上に搭載し、接着剤を用いて固定する。最後に、導通の必要な各端子間をワイヤボンド12で接続する。
2. Component Mounting on Stem As shown in FIG. 19, a subcarrier 24 on which a surface emitting laser diode 23, a monitoring photodiode 13 and a photodiode 2 are mounted on a stem 7 is fixed by gold tin solder. The subcarrier 24 is mounted by an automatic mounting machine. The mounting accuracy may be within a circle with a radius of 100 μm centered on the exponential coordinates on the stem 7, and this accuracy can be achieved with a yield of almost 100%. Next, the receiving IC 14 and the power source noise cutting chip capacitor 15 are mounted on the stem 7 by an automatic mounting machine, and fixed using an adhesive. Finally, the terminals that need to be electrically connected are connected by wire bonds 12.

3.WDMフィルターの調芯固定
図20に示すように、WDMフィルター3を搭載されているフィルター用サブキャリア6上に接着固定する。その後、フィルター固定済みサブキャリア24をステム7上に載せ、図1〜図3に示し上述したビジュアルアライメント、すなわち本実施例においてはフォトダイオード2の受光部のWDMフィルター3を透過したフィルター透過像と面発光型レーザダイオード23の反射像43とを重ね合わせることにより調芯し、YAGレーザ溶接16で固定する。以上の調芯工程により、レーザダイオード1−光ファイバ21(図21参照)とフォトダイオード2−光ファイバ21間の光路の重ね合わせが実現できる。
3. WDM filter alignment fixing As shown in FIG. 20, the WDM filter 3 is adhered and fixed on a filter subcarrier 6 on which the WDM filter 3 is mounted. Thereafter, the filter-fixed subcarrier 24 is placed on the stem 7 and the visual alignment shown in FIGS. 1 to 3 described above, that is, in this embodiment, the filter transmission image transmitted through the WDM filter 3 of the light receiving portion of the photodiode 2 and Alignment is performed by superimposing the reflection image 43 of the surface emitting laser diode 23, and the YAG laser welding 16 is used for fixing. By the above alignment process, the optical paths between the laser diode 1-optical fiber 21 (see FIG. 21) and the photodiode 2-optical fiber 21 can be superimposed.

4.レンズキャップ封止とファイバ調芯
図21に示すように、全ての部品搭載の終わったステム7上にレンズ付キャップ17を被せて抵抗溶接により固定する。このとき、用いるレンズ17aは非球面レンズであってもボールレンズであっても良い。次いで、レンズキャップ17の上に、1.55μmカットフィルター18を内蔵したスリーブ19を被せてYAGレーザによって溶接固定16する。さらにレーザダイオード1に通電して発光させ、ファイバカラー20を被せたピグテイルファイバ21をアクティブ調芯して、ファイバカラー20をスリーブ19にYAGレーザにより溶接固定16する。
4). Lens Cap Sealing and Fiber Alignment As shown in FIG. 21, a lens cap 17 is placed on the stem 7 on which all components have been mounted and fixed by resistance welding. At this time, the lens 17a used may be an aspherical lens or a ball lens. Next, a sleeve 19 containing a 1.55 μm cut filter 18 is placed on the lens cap 17 and fixed by welding 16 using a YAG laser. Further, the laser diode 1 is energized to emit light, the pigtail fiber 21 covered with the fiber collar 20 is actively aligned, and the fiber collar 20 is welded and fixed 16 to the sleeve 19 with a YAG laser.

以上の工程により作製した光送受信モジュールは、実施例1と同様に図8および図9に示すような良好な送受信特性を示している。   The optical transmission / reception module manufactured by the above steps exhibits good transmission / reception characteristics as shown in FIGS.

以下に、第5の実施例を具体的な実施態様を例にして説明する。本実施例は、前述の第1乃至第4の実施例においてWDMフィルター3の特性を限定した実施例である。   The fifth embodiment will be described below by taking a specific embodiment as an example. The present embodiment is an embodiment in which the characteristics of the WDM filter 3 are limited in the first to fourth embodiments described above.

図22は、本実施例に係るWDMフィルターの光透過特性の一例を示した図である。   FIG. 22 is a diagram illustrating an example of light transmission characteristics of the WDM filter according to the present embodiment.

本実施例では、前述の第1乃至第4の実施例で説明したWDMフィルター3(図1から図3参照。)について、少なくとも可視光領域の一部(例えば、光の波長が760nmから860nmの領域)において透過率が10%以上、90%以下とした。WDMフィルター3の透過率を上記の値にすると、図1から図3に示し上述したビジュアルアライメントにより調芯する際、フォトダイオード受光部2aのWDMフィルター3を透過したフィルター透過像42及びレーザダイオード1端面の反射像41をいずれも可視光領域の像とすることができるため、透過像42及び反射像41をともに視覚やCCDカメラで確認しながら調芯することができる。また、図22から分かるように、WDMフィルター3の透過率を可視光領域の一部(例えば、光の波長が760nmから860nmの領域)において20%以上、70%以下にすることもできる。このように、WDMフィルター3の透過率を可視光領域の一部において20%以上、70%以下とすることは、図1から図3に示し上述したビジュアルアライメントにより調芯する際、フォトダイオード受光部2aのWDMフィルター3を透過したフィルター透過像42及びレーザダイオード1端面の反射像41を略等しい光強度で観察できるためより望ましい。 In this embodiment, the WDM filter 3 (see FIGS. 1 to 3) described in the first to fourth embodiments is at least a part of the visible light region (for example, the light wavelength is 760 nm to 860 nm). In the region), the transmittance was 10% or more and 90% or less. When the transmittance of the WDM filter 3 is set to the above value, the filter transmission image 42 and the laser diode 1 transmitted through the WDM filter 3 of the photodiode light receiving unit 2a when aligning by the visual alignment shown in FIGS. 1 to 3 and described above. Since both of the reflection images 41 on the end surface can be images in the visible light region, it is possible to align the transmission image 42 and the reflection image 41 while visually confirming them with a CCD camera. Further, as can be seen from FIG. 22, the transmittance of the WDM filter 3 can be 20% or more and 70% or less in a part of the visible light region (for example, a region where the wavelength of light is 760 nm to 860 nm). Thus, when the transmittance of the WDM filter 3 is set to 20% or more and 70% or less in a part of the visible light region, the photodiode is received when the alignment is performed by the visual alignment shown in FIGS. The filter transmission image 42 transmitted through the WDM filter 3 of the portion 2a and the reflection image 41 of the end face of the laser diode 1 can be observed with substantially the same light intensity, which is more desirable.

本発明は、光通信網の構成要素である光信号送受信用端末装置内に光送受信機能部として搭載される一心双方向光送受信モジュール及びその製造方法に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for a single-fiber bidirectional optical transmission / reception module mounted as an optical transmission / reception function unit in an optical signal transmission / reception terminal device, which is a component of an optical communication network, and a manufacturing method thereof.

Claims (5)

円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキャップを固着してなる収納体の内部に1個の半導体光送信素子、1個の光信号受信素子、および少なくとも1個の波長選別フィルターを搭載し、該収納体の外側に1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおいて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とが一部重なり合うように、それぞれ異なる支持体を介して前記金属部材に固定される一心双方向光送受信モジュールを製造する方法であって、
各々前記支持体に固定された前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターを前記金属部材に固定する際、前記光信号受信素子が固定された支持体及び前記光信号送信素子が固定された支持体を前記金属部材に固着した後、前記波長選別フィルターが固定された支持体を、前記波長選別フィルターを介して観察される前記半導体光送信素子の出射端面の反射像と、前記波長選別フィルターを介して透過される前記光信号受信素子の受光面の透過像とが、観察位置で同時にピントを合わせるように配置し、前記出射端面の反射像と前記受光面の透過像とが重なり合う位置で前記波長選別フィルターが固定された支持体を前記金属部材に固着することを特徴とする一心双方向光送受信モジュールの製造方法。
One semiconductor optical transmitting element, one optical signal receiving element, and at least one inside a housing formed by fixing a lens cap having a light transmitting portion made of a condenser lens to a cylindrical or columnar metal member In the single-fiber bidirectional optical transceiver module having a configuration in which a single wavelength selection filter is mounted and one optical fiber is attached to the outside of the housing, the output end face of the resonator of the semiconductor optical transmission element or the semiconductor optical transmission The emission end face of the element has a shape that can specify the emission position of the laser beam, the optical path length from the emission end face of the semiconductor optical transmission element to the optical fiber, and the optical signal receiving element receiving surface to the optical fiber The difference between the optical path length is small, and the semiconductor optical transmission element, the optical signal receiving element, and the wavelength selection filter are light between the semiconductor optical transmission element and the optical fiber. If, so as to overlap the optical path and a portion between the optical signal receiving elements and the optical fiber, a method for producing a fiber bidirectional optical transceiver module which is fixed to the metal member through a respectively different supports,
When the semiconductor optical transmission element, the optical signal receiving element and the wavelength selection filter fixed to the support are fixed to the metal member, the support and the optical signal transmission element to which the optical signal receiving element is fixed After fixing the support body fixed to the metal member, the support body to which the wavelength selection filter is fixed is reflected through the wavelength selection filter and the reflection image of the emission end face of the semiconductor optical transmission element, The transmission image of the light receiving surface of the optical signal receiving element transmitted through the wavelength selection filter is arranged so as to be simultaneously focused at the observation position, and the reflected image of the emission end surface and the transmission image of the light receiving surface A method of manufacturing a single-fiber bidirectional optical transceiver module, comprising: fixing a support on which the wavelength selection filter is fixed to the metal member at a position where the optical fiber overlaps each other .
円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキャップを固着してなる収納体の内部に1個の半導体光送信素子、1個の光信号受信素子、および少なくとも1個の波長選別フィルターを搭載し、該収納体の外側に1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおいて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とが一部重なり合うように配置され、前記半導体光送信素子及び前記光信号受信素子が共通の支持体を介して前記金属部材に固定され、前記波長選別フィルターが他の支持体を介して前記金属部材に固定される一心双方向光送受信モジュールを製造する方法であって、
各々前記支持体に固定された前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターを前記金属部材に固定する際、前記半導体光送信素子及び前記光信号受信素子が固定された支持体を前記金属部材に固着した後、前記波長選別フィルターが固定された支持体を、前記波長選別フィルターを介して観察される前記半導体光送信素子の出射端面の反射像と、前記波長選別フィルターを介して透過される前記光信号受信素子の受光面の透過像とが、観察位置で同時にピントを合わせるように配置し、前記出射端面の反射像と前記受光面の透過像とが重なり合う位置で前記波長選別フィルターが固定された支持体を前記金属部材に固着することを特徴とする一心双方向光送受信モジュールの製造方法。
One semiconductor optical transmitting element, one optical signal receiving element, and at least one inside a housing formed by fixing a lens cap having a light transmitting portion made of a condenser lens to a cylindrical or columnar metal member In the single-fiber bidirectional optical transceiver module having a configuration in which a single wavelength selection filter is mounted and one optical fiber is attached to the outside of the housing, the output end face of the resonator of the semiconductor optical transmission element or the semiconductor optical transmission The emission end face of the element has a shape that can specify the emission position of the laser beam, the optical path length from the emission end face of the semiconductor optical transmission element to the optical fiber, and the optical signal receiving element receiving surface to the optical fiber The difference between the optical path length is small, and the semiconductor optical transmission element, the optical signal receiving element, and the wavelength selection filter are light between the semiconductor optical transmission element and the optical fiber. And the optical path between the optical signal receiving element and the optical fiber are partially overlapped, and the semiconductor optical transmission element and the optical signal receiving element are fixed to the metal member via a common support, A method of manufacturing a single-fiber bidirectional optical transceiver module in which the wavelength selection filter is fixed to the metal member via another support,
When the semiconductor optical transmitting element, the optical signal receiving element, and the wavelength selection filter fixed to the support are fixed to the metal member, the semiconductor optical transmitting element and the optical signal receiving element are fixed. After fixing the wavelength selective filter to the metal member, the support on which the wavelength selective filter is fixed is reflected on the reflection image of the emission end face of the semiconductor optical transmission element observed through the wavelength selective filter and through the wavelength selective filter. The transmission image of the light receiving surface of the optical signal receiving element that is transmitted through is arranged so as to be focused at the same time at the observation position, and the wavelength at the position where the reflected image of the emission end surface and the transmission image of the light receiving surface overlap. A method of manufacturing a single-fiber bidirectional optical transceiver module, wherein a support to which a sorting filter is fixed is fixed to the metal member.
円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキャップを固着してなる収納体の内部に1個の半導体光送信素子、1個の光信号受信素子、および少なくとも1個の波長選別フィルターを搭載し、該収納体の外側に1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおいて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とが一部重なり合うように配置され、前記半導体光送信素子及び前記波長選別フィルターが共通の支持体を介して前記金属部材に固定され、前記光信号受信素子が他の支持体を介して前記金属部材に固定される一心双方向光送受信モジュールを製造する方法であって、
各々前記支持体に固定された前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターを前記金属部材に固定する際、前記光信号受信素子が固定された支持体を前記金属部材に固着した後、前記半導体光送信素子及び前記波長選別フィルターが固定された支持体を、前記波長選別フィルターを介して観察される前記半導体光送信素子の出射端面の反射像と、前記波長選別フィルターを介して透過される前記光信号受信素子の受光面の透過像とが、観察位置で同時にピントを合わせるように配置し、前記出射端面の反射像と前記受光面の透過像とが重なり合う位置で前記半導体光送信素子及び前記波長選別フィルターが固定された支持体を前記金属部材に固着することを特徴とする一心双方向光送受信モジュールの製造方法。
One semiconductor optical transmitting element, one optical signal receiving element, and at least one inside a housing formed by fixing a lens cap having a light transmitting portion made of a condenser lens to a cylindrical or columnar metal member In the single-fiber bidirectional optical transceiver module having a configuration in which a single wavelength selection filter is mounted and one optical fiber is attached to the outside of the housing, the output end face of the resonator of the semiconductor optical transmission element or the semiconductor optical transmission The emission end face of the element has a shape that can specify the emission position of the laser beam, the optical path length from the emission end face of the semiconductor optical transmission element to the optical fiber, and the optical signal receiving element receiving surface to the optical fiber The difference between the optical path length is small, and the semiconductor optical transmission element, the optical signal receiving element, and the wavelength selection filter are light between the semiconductor optical transmission element and the optical fiber. And the optical signal receiving element and the optical path between the optical fibers are arranged so as to partially overlap, the semiconductor optical transmission element and the wavelength selection filter are fixed to the metal member through a common support, A method of manufacturing a single-fiber bidirectional optical transceiver module in which an optical signal receiving element is fixed to the metal member via another support,
When the semiconductor optical transmission element, the optical signal receiving element and the wavelength selection filter fixed to the support are fixed to the metal member, the support to which the optical signal receiving element is fixed is fixed to the metal member. After that, the support on which the semiconductor optical transmission element and the wavelength selection filter are fixed is reflected on the reflection image of the emission end face of the semiconductor optical transmission element observed through the wavelength selection filter and through the wavelength selection filter. The transmission image of the light receiving surface of the optical signal receiving element that is transmitted through is arranged so as to be focused at the same time at the observation position, and the semiconductor at the position where the reflected image of the emission end surface and the transmission image of the light receiving surface overlap A method of manufacturing a single-fiber bidirectional optical transceiver module, comprising: fixing a support to which an optical transmission element and the wavelength selection filter are fixed to the metal member.
円筒状又は円柱状の金属部材に集光レンズからなる光透過部を有するレンズキャップを固着してなる収納体の内部に1個の半導体光送信素子、1個の光信号受信素子、および少なくとも1個の波長選別フィルターを搭載し、該収納体の外側に1本の光ファイバを取り付けた構成を有する一心双方向光送受信モジュールにおいて、前記半導体光送信素子の共振器の出射端面又は前記半導体光送信素子の出射端面がレーザ光の出射位置を特定できる形状を有し、前記半導体光送信素子の前記出射端面から前記光ファイバまでの光路長と、前記光信号受信素子受光面から前記光ファイバまでの光路長との差が僅少であり、前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターが、前記半導体光送信素子及び前記光ファイバ間の光路と、前記光信号受信素子及び前記光ファイバ間の光路とが一部重なり合うように配置され、前記波長選別フィルター及び前記光信号受信素子が共通の支持体を介して前記金属部材に固定され、前記半導体光送信素子が他の支持体を介して前記金属部材に固定される一心双方向光送受信モジュールを製造する方法であって、
各々前記支持体に固定された前記半導体光送信素子、前記光信号受信素子及び前記波長選別フィルターを前記金属部材に固定する際、前記光信号受信素子及び前記波長選別フィルターが固定された支持体を、前記波長選別フィルターを介して観察される前記半導体光送信素子の出射端面の透過像と、前記波長選別フィルターを介して観察される前記光信号受信素子の受光面の反射像とが、観察位置で同時にピントを合わせるように配置し、前記出射端面の透過像と前記受光面の反射像とが重なり合う位置で前記光信号受信素子及び前記波長選別フィルターが固定された支持体を前記金属部材に固着することを特徴とする一心双方向光送受信モジュールの製造方法。
One semiconductor optical transmitting element, one optical signal receiving element, and at least one inside a housing formed by fixing a lens cap having a light transmitting portion made of a condenser lens to a cylindrical or columnar metal member In the single-fiber bidirectional optical transceiver module having a configuration in which a single wavelength selection filter is mounted and one optical fiber is attached to the outside of the housing, the output end face of the resonator of the semiconductor optical transmission element or the semiconductor optical transmission The emission end face of the element has a shape that can specify the emission position of the laser beam, the optical path length from the emission end face of the semiconductor optical transmission element to the optical fiber, and the optical signal receiving element receiving surface to the optical fiber The difference between the optical path length is small, and the semiconductor optical transmission element, the optical signal receiving element, and the wavelength selection filter are light between the semiconductor optical transmission element and the optical fiber. And the optical signal receiving element and the optical path between the optical fibers are arranged so as to partially overlap, the wavelength selection filter and the optical signal receiving element are fixed to the metal member through a common support, A method of manufacturing a single-fiber bidirectional optical transceiver module in which a semiconductor optical transmission element is fixed to the metal member via another support,
When the semiconductor optical transmission element, the optical signal receiving element, and the wavelength selection filter fixed to the support are fixed to the metal member, the support to which the optical signal reception element and the wavelength selection filter are fixed is provided. A transmission image of the emission end face of the semiconductor optical transmission element observed through the wavelength selection filter and a reflection image of the light receiving surface of the optical signal reception element observed through the wavelength selection filter The optical signal receiving element and the support for fixing the wavelength selection filter are fixed to the metal member at a position where the transmission image of the emission end surface and the reflection image of the light receiving surface overlap each other. A method of manufacturing a single-fiber bidirectional optical transceiver module, characterized in that:
請求項1乃至請求項4のいずれかに記載の一心双方向光送受信モジュールを製造する方法であって、前記出射端面の反射像と前記受光面の透過像又は前記出射端面の透過像と前記受光面の反射像が、いずれも、前記波長選別フィルターの透過率が10%以上、90%以下となる共通の可視光領域の光による像であることを特徴とする一心双方向光送受信モジュールの製造方法。 5. A method of manufacturing a single-fiber bidirectional optical transceiver module according to claim 1, wherein a reflection image of the emission end face and a transmission image of the light reception face or a transmission image of the emission end face and the light reception are provided. Manufacturing of a single-fiber bidirectional optical transceiver module characterized in that the reflected images of the surfaces are all images of light in a common visible light region in which the transmittance of the wavelength selection filter is 10% or more and 90% or less. Method.
JP2008508507A 2006-04-06 2007-03-20 Single fiber bidirectional optical transceiver module and manufacturing method thereof Active JP5144498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008508507A JP5144498B2 (en) 2006-04-06 2007-03-20 Single fiber bidirectional optical transceiver module and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006104943 2006-04-06
JP2006104943 2006-04-06
PCT/JP2007/055769 WO2007114053A1 (en) 2006-04-06 2007-03-20 Single-core bidirectional optical transmitting/receiving module and its manufacturing method
JP2008508507A JP5144498B2 (en) 2006-04-06 2007-03-20 Single fiber bidirectional optical transceiver module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPWO2007114053A1 JPWO2007114053A1 (en) 2009-08-13
JP5144498B2 true JP5144498B2 (en) 2013-02-13

Family

ID=38563322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008508507A Active JP5144498B2 (en) 2006-04-06 2007-03-20 Single fiber bidirectional optical transceiver module and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP5144498B2 (en)
WO (1) WO2007114053A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5216714B2 (en) * 2009-02-25 2013-06-19 矢崎総業株式会社 Single-core bidirectional optical communication module and single-core bidirectional optical communication connector
JP2011085623A (en) * 2009-10-13 2011-04-28 Qd Laser Inc Optical transmission/reception device
KR101419381B1 (en) 2010-04-07 2014-07-15 한국전자통신연구원 Apparatus for Bi-directional Optical transmission
KR20150145124A (en) * 2014-06-18 2015-12-29 한국전자통신연구원 Bi-directional optical transceiver module and the aligning method thereof
DE102022106941A1 (en) * 2022-03-24 2023-09-28 Ams-Osram International Gmbh OPTOELECTRONIC SEMICONDUCTOR LASER COMPONENT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159659A (en) * 1993-12-07 1995-06-23 Matsushita Electron Corp Method for aligning optical semiconductor device
JPH1039179A (en) * 1996-07-26 1998-02-13 Mitsubishi Electric Corp Manufacture of optical semiconductor device
JP2000260058A (en) * 1999-03-04 2000-09-22 Nec Corp Method and device for assembling optical module
JP2003322770A (en) * 2002-05-07 2003-11-14 Matsushita Electric Ind Co Ltd Optical transmission and reception module and mounting method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3365598B2 (en) * 1995-08-31 2003-01-14 富士通株式会社 Method and apparatus for manufacturing optical module assembly
JP3573315B2 (en) * 1996-07-22 2004-10-06 ソニー株式会社 Optical transceiver
KR100480252B1 (en) * 2002-10-10 2005-04-07 삼성전자주식회사 Bi-directional optical transceiver module with double cap
JP3979396B2 (en) * 2003-03-07 2007-09-19 住友電気工業株式会社 Optical module and manufacturing method thereof
JP2005202157A (en) * 2004-01-15 2005-07-28 Tdk Corp Optical module
JP2005202156A (en) * 2004-01-15 2005-07-28 Tdk Corp Optical module
JP2005234464A (en) * 2004-02-23 2005-09-02 Tdk Corp Optical transceiver and optical module used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159659A (en) * 1993-12-07 1995-06-23 Matsushita Electron Corp Method for aligning optical semiconductor device
JPH1039179A (en) * 1996-07-26 1998-02-13 Mitsubishi Electric Corp Manufacture of optical semiconductor device
JP2000260058A (en) * 1999-03-04 2000-09-22 Nec Corp Method and device for assembling optical module
JP2003322770A (en) * 2002-05-07 2003-11-14 Matsushita Electric Ind Co Ltd Optical transmission and reception module and mounting method thereof

Also Published As

Publication number Publication date
JPWO2007114053A1 (en) 2009-08-13
WO2007114053A1 (en) 2007-10-11

Similar Documents

Publication Publication Date Title
CN100479197C (en) Optical receiver package
KR101025267B1 (en) Single-core bilateral optical module
KR101041570B1 (en) Optical communication module
JP3937911B2 (en) Optical transceiver module and optical communication system using the same
US6527458B2 (en) Compact optical transceiver integrated module using silicon optical bench
US20100247043A1 (en) Optical module and wavelength division multiplexing optical module
KR20170012339A (en) Vision-based passive alignment of an optical fiber subassembly to an optoelectronic device
JPH1010373A (en) Receptacle type optical transmitter-receiver and production therefor
JP2005234052A (en) Optical transmission and reception module
JP2004020851A (en) Optical module
TW200428057A (en) Photo module
US9912437B2 (en) Optical transmitters
JP2016091024A (en) Light-emitting module and multichannel light-emitting module
JP5144498B2 (en) Single fiber bidirectional optical transceiver module and manufacturing method thereof
EP2778730B1 (en) Optical subassembly and method of manufacturing the same
US7430375B2 (en) Optical transceiver
JP2007121920A (en) Optical module, optical communication module, and optical communication device
JP4433730B2 (en) Optical filter holding member and optical transmission / reception module
US5123067A (en) Optical head capable of being fitted into a hybrid circuit
JP6494094B2 (en) Optical module
JP2009253086A (en) Light-emitting module
JP2004233687A (en) Optical waveguide substrate and optical module
JPS619610A (en) Module for bidirectional optical communication
JP2008083281A (en) Single core bi-directional transmission/reception module
KR20120016033A (en) Integrated two wave optical transmitter module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5144498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350