JP5143528B2 - Polishing pad - Google Patents

Polishing pad Download PDF

Info

Publication number
JP5143528B2
JP5143528B2 JP2007277297A JP2007277297A JP5143528B2 JP 5143528 B2 JP5143528 B2 JP 5143528B2 JP 2007277297 A JP2007277297 A JP 2007277297A JP 2007277297 A JP2007277297 A JP 2007277297A JP 5143528 B2 JP5143528 B2 JP 5143528B2
Authority
JP
Japan
Prior art keywords
polishing
polishing pad
groove
layer
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007277297A
Other languages
Japanese (ja)
Other versions
JP2009101487A (en
Inventor
充 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2007277297A priority Critical patent/JP5143528B2/en
Publication of JP2009101487A publication Critical patent/JP2009101487A/en
Application granted granted Critical
Publication of JP5143528B2 publication Critical patent/JP5143528B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体ウェハ等を研磨する際に有用な研磨パッドおよびその製造方法に関する。   The present invention relates to a polishing pad useful for polishing a semiconductor wafer or the like and a method for manufacturing the same.

従来、集積回路を形成するための基板として使用される半導体ウェハを鏡面加工したり、半導体デバイス製造時に絶縁膜や導電体膜の凹凸を平坦化加工したりする際に用いられる研磨パッドとしては、不織布にポリウレタン樹脂を含浸させた比較的軟質の研磨パッドや、発泡ポリウレタンからなる研磨パッドが使用されている(例えば、特許文献1〜3参照)。
なかでも、近年、高い平坦化性能の要求に応えるため、発泡ポリウレタンからなる硬質の研磨パッドが主に使用されている。ところで、さらなる平坦化性能の向上も求められているが、平坦化性能のみを追求して研磨パッドの硬度を過度に高くし過ぎると、研磨パッドの研磨側表面に形成された溝の肩部への応力集中により、平坦化性能が逆に低下したり、あるいはウェハ表面にスクラッチが多発したりする問題が生じやすくなる。これを解決するため、肩部が上方ほど広がる順テーパー形状になるように溝を形成する方法が提案されている(特許文献4参照)。しかしながら、研磨パッドが磨耗するにつれて研磨パッド表面に占める溝の割合が変化するため、研磨特性が安定しにくい問題があった。
Conventionally, as a polishing pad used when mirror-finishing a semiconductor wafer used as a substrate for forming an integrated circuit or when flattening unevenness of an insulating film or a conductor film during semiconductor device manufacturing, A relatively soft polishing pad in which a nonwoven fabric is impregnated with a polyurethane resin or a polishing pad made of foamed polyurethane is used (for example, see Patent Documents 1 to 3).
Among them, in recent years, a hard polishing pad made of foamed polyurethane is mainly used to meet the demand for high planarization performance. By the way, further improvement of the planarization performance is also demanded, but if the hardness of the polishing pad is excessively increased in pursuit of only the planarization performance, the shoulder of the groove formed on the polishing side surface of the polishing pad Due to the stress concentration, the flattening performance tends to be deteriorated, or the wafer surface is likely to be scratched frequently. In order to solve this, a method has been proposed in which a groove is formed so that the shoulder portion has a forward taper shape that widens upward (see Patent Document 4). However, since the ratio of the groove to the polishing pad surface changes as the polishing pad wears, there is a problem that the polishing characteristics are difficult to stabilize.

特開平5−8178号公報Japanese Patent Laid-Open No. 5-8178 特開2000−178374号公報JP 2000-178374 A 特開2001−89548号公報JP 2001-89548 A 特開平11−333699号公報JP-A-11-333699

本発明は、平坦化性能に優れ、かつスクラッチの発生が少ない研磨をすることができる研磨パッドおよびその製造方法を提供することを目的とする。   An object of this invention is to provide the polishing pad which can be grind | polished which is excellent in planarization performance, and there is little generation | occurrence | production of a scratch, and its manufacturing method.

上記の目的を達成すべく本発明者は鋭意検討を重ねてきた。その結果、研磨パッドの研磨層に形成する溝や穴の側面を形成する材料として、研磨層におけるそれ以外の部分の材料と異なるものを採用することにより、上記課題を達成することができることを見出し、その知見に基づいてさらに検討を重ねて本発明を完成させた。   In order to achieve the above object, the present inventor has intensively studied. As a result, it has been found that the above-mentioned problem can be achieved by adopting a material different from the material of the other portions of the polishing layer as the material for forming the side surfaces of the grooves and holes formed in the polishing layer of the polishing pad. The present invention was completed through further studies based on the findings.

すなわち、本発明は、
[1] 第一の材料と当該第一の材料とは異なる第二の材料とから構成される研磨層を有する研磨パッドであって、当該研磨層には研磨側表面に開口する溝および/または穴が形成され、研磨側表面の全面積に対して第一の材料から形成される研磨側表面の面積の占める割合が80〜99%であり、上記溝および/または穴の側面の全面積に対して第二の材料から形成される溝および/または穴の側面の面積の占める割合が90〜100%であり、第二の材料が第一の材料よりも磨耗しやすい研磨パッド
[2] 少なくとも上記研磨側表面から研磨層の厚み方向に溝および/または穴の底の最も浅い深さまで、研磨層の厚み方向に材料が均一である上記[1]の研磨パッド、
]第二の材料が第一の材料よりもD硬度で3以上低い上記[1]または[2]の研磨パッド、
] 第一の材料および第二の材料がともに無発泡構造である上記[1]〜[]のいずれかの研磨パッド、
] さらにクッション層を有する上記[1]〜[]のいずれかの研磨パッド
関する。
That is, the present invention
[1] A polishing pad having a polishing layer composed of a first material and a second material different from the first material, wherein the polishing layer has grooves and / or openings opened on the polishing side surface. Holes are formed, and the ratio of the area of the polishing side surface formed from the first material to the total area of the polishing side surface is 80 to 99%, and the total area of the side surface of the groove and / or hole is Ri second groove and / or percentage from 90% to 100% der occupied area of the side surface of the hole is formed of a material for the second material is abraded easily polishing pad than the first material,
[2] The polishing pad according to [1] , wherein the material is uniform in the thickness direction of the polishing layer from at least the surface on the polishing side to the shallowest depth of the bottom of the groove and / or hole in the thickness direction of the polishing layer.
[ 3 ] The polishing pad according to [1] or [2] above, wherein the second material has a D hardness of 3 or more lower than that of the first material.
[ 4 ] The polishing pad according to any one of the above [1] to [ 3 ], wherein both the first material and the second material have a non-foamed structure.
[ 5 ] The polishing pad according to any one of [1] to [ 4 ], further comprising a cushion layer ,
About the.

本発明の研磨パッドは、特に半導体基板(ウェハ)上に形成された酸化膜等の絶縁膜や金属膜などを化学機械的研磨する際に有用であり、平坦化性能に優れ、かつスクラッチの発生が少ない研磨をすることができる。   The polishing pad of the present invention is particularly useful for chemical mechanical polishing of an insulating film such as an oxide film or a metal film formed on a semiconductor substrate (wafer), has excellent planarization performance, and generates scratches. It is possible to polish with less.

以下、本発明について詳細に説明する。
本発明の研磨パッドは、第一の材料と当該第一の材料とは異なる第二の材料とから構成される研磨層を有する。
第一の材料および第二の材料を構成する素材としては特に限定されず、公知の合成または天然の樹脂(高分子)をそれぞれの材料において単独で用いたり、それぞれの材料において複数の樹脂の混合物から当該材料を構成したり、または単独もしくは複数の樹脂に添加剤を配合した組成物から当該材料を構成したりすることができるが、これらの中でも、第一の材料および第二の材料をそれぞれ単独の樹脂から構成することが好ましい。当該樹脂の種類としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、エチレン−酢酸ビニル共重合体、ブチラール樹脂、ポリスチレン、ポリ塩化ビニル、アクリル樹脂、エポキシ樹脂、ポリウレタン、ポリエステル、ポリアミド等を例示することができるが、樹脂の硬度等の特性の制御が容易であり、また耐磨耗性にも優れることから、ポリウレタンが好ましい。ポリウレタンは熱可塑性ポリウレタンであることがより好ましい。
Hereinafter, the present invention will be described in detail.
The polishing pad of the present invention has a polishing layer composed of a first material and a second material different from the first material.
The material constituting the first material and the second material is not particularly limited, and a known synthetic or natural resin (polymer) is used alone in each material, or a mixture of a plurality of resins in each material. The material can be constituted from the above, or the material can be constituted from a composition in which an additive is added to one or a plurality of resins. Among these, the first material and the second material are respectively It is preferable to comprise from a single resin. The type of the resin is not particularly limited, and examples include polyethylene, polypropylene, polybutadiene, ethylene-vinyl acetate copolymer, butyral resin, polystyrene, polyvinyl chloride, acrylic resin, epoxy resin, polyurethane, polyester, polyamide, and the like. However, polyurethane is preferred because it is easy to control properties such as the hardness of the resin and is excellent in wear resistance. More preferably, the polyurethane is a thermoplastic polyurethane.

第二の材料は、第一の材料とは異なる。ここで材料が異なるとは、それぞれの材料を構成する素材の種類やそれぞれの材料の物性が異なっていることを意味し、例えば、それぞれの材料を構成する樹脂の種類が異なっている場合(当該樹脂を製造する際に使用される原料の種類あるいは使用量が異なる場合を含む)、樹脂の種類は同じであってもその分子量等が異なる場合、第一の材料および第二の材料がそれぞれ同じ種類の素材の混合物から構成されかつそれらの素材の配合比が異なる場合、並びに第一の材料および第二の材料が同一の高分子あるいは組成物から構成されるものの第一の材料が無発泡構造であり第二の材料が発泡構造である場合等を包含する。   The second material is different from the first material. Here, different materials mean that the types of materials constituting each material and the physical properties of each material are different. For example, when the types of resins constituting each material are different (the relevant Including the case where the type or amount of the raw materials used in the production of the resin are different), if the molecular weight is different even if the type of the resin is the same, the first material and the second material are the same. When the mixture is composed of a mixture of different types of materials and the blending ratio of these materials is different, and the first material and the second material are composed of the same polymer or composition, but the first material is a non-foamed structure And the second material has a foam structure.

上記第二の材料は、上記第一の材料よりも磨耗しやすいことが好ましい。上記第二の材料が上記第一の材料よりも磨耗しやすい場合には、後述する溝および/または穴の肩部は、研磨中に、それらの肩部が上方ほど広がる順テーパー形状の曲面を形成しやすい。これにより、第一の材料の作用により優れた平坦化特性を示しながら、溝の肩部に存在する第二の材料の作用により、溝および/または穴の肩部での応力集中による過研磨やスクラッチを防ぐことができる。また溝および/または穴の形状ならびに溝幅および/または穴径は、例えば研磨層を単一の材料から形成してさらに溝および/または穴の肩部を順テーパー形状にした場合に比べて、研磨中における研磨パッドの磨耗に由来する変化が少ない、あるいは実質的にないため、長時間にわたり安定した研磨特性を発現させることができる。   The second material is preferably easier to wear than the first material. When the second material is more easily worn than the first material, the shoulders of the grooves and / or holes described later have a forward tapered curved surface in which the shoulders spread upward during polishing. Easy to form. Thus, while exhibiting excellent planarization characteristics due to the action of the first material, over-polishing due to stress concentration at the shoulder of the groove and / or hole due to the action of the second material present on the shoulder of the groove. Scratch can be prevented. In addition, the shape of the groove and / or hole and the groove width and / or hole diameter are, for example, compared to a case where the polishing layer is formed from a single material and the shoulder of the groove and / or hole is made into a forward tapered shape. Since there is little or substantially no change resulting from abrasion of the polishing pad during polishing, stable polishing characteristics can be expressed over a long period of time.

なお、第一の材料および第二の材料の磨耗性(磨耗のしやすさ)は、例えば、実施例において具体的に示すように、それぞれの材料を単独で使用した研磨パッドを作製し、通常の研磨と同様に研磨パッドをダイヤモンドドレッサー等によりコンディショニングし、その際の磨耗速度を求めることにより評価することができる。本発明の研磨パッドにおいては、スクラッチ抑制の観点から、第二の材料の磨耗速度が第一の材料の磨耗速度の1.2倍以上であることが好ましく、1.4倍以上であることがより好ましく、1.6倍以上であることがさらに好ましい。   In addition, the abrasion property (easy to wear) of the first material and the second material is, for example, as shown in the examples, by producing a polishing pad using each material alone, and usually In the same manner as in the above polishing, the polishing pad can be conditioned with a diamond dresser or the like, and the wear rate at that time can be evaluated. In the polishing pad of the present invention, from the viewpoint of suppressing scratches, the wear rate of the second material is preferably 1.2 times or more of the wear rate of the first material, and preferably 1.4 times or more. More preferably, it is 1.6 times or more.

また本発明の研磨パッドは、第二の材料が第一の材料よりもD硬度で3以上低いことが好ましい。第一の材料と第二の材料の硬度差を上記の範囲とすることにより、溝および/または穴の肩部の硬度が低くなるため当該肩部での応力集中による過研磨やスクラッチを防ぐことができる。第二の材料のD硬度は、第一の材料のD硬度より3以上低いことが好ましく、5以上低いことがより好ましく、7以上低いことがさらに好ましい。
第一の材料のD硬度としては、平坦化性能の向上の観点から、60以上であることが好ましく、65以上であることがより好ましく、70以上であることがさらに好ましい。
In the polishing pad of the present invention, it is preferable that the second material is 3 or more lower in D hardness than the first material. By setting the hardness difference between the first material and the second material within the above range, the hardness of the shoulder of the groove and / or hole is reduced, so that over-polishing and scratching due to stress concentration at the shoulder are prevented. Can do. The D hardness of the second material is preferably 3 or more lower than the D hardness of the first material, more preferably 5 or more, and even more preferably 7 or more.
The D hardness of the first material is preferably 60 or more, more preferably 65 or more, and further preferably 70 or more, from the viewpoint of improving planarization performance.

本発明の研磨パッドは、第一の材料が無発泡構造であることが、研磨層の硬度が高くなりより優れた平坦化性能を示すことから好ましい。また第二の材料が無発泡構造であることが、溝や穴の側面に露出した気孔に研磨スラリーの砥粒が凝集・凝着してウェハのスクラッチの原因となることがないため好ましい。本発明の研磨パッドは、第一の材料および第二の材料がともに無発泡構造であることがより好ましい。   In the polishing pad of the present invention, it is preferable that the first material has a non-foamed structure because the hardness of the polishing layer is increased and more excellent planarization performance is exhibited. Further, it is preferable that the second material has a non-foamed structure because the abrasive particles of the polishing slurry do not aggregate and adhere to the pores exposed on the side surfaces of the grooves and holes, thereby causing a scratch on the wafer. In the polishing pad of the present invention, it is more preferable that both the first material and the second material have a non-foamed structure.

本発明の研磨パッドが有する研磨層には、その研磨側表面に開口する溝および/または穴が形成される。そして、研磨側表面(上記溝および穴の開口部分を除く)の全面積に対して上記第一の材料から形成される研磨側表面の面積の占める割合[以下、「割合1」という場合がある]が80〜99%であり、かつ溝および/または穴の側面の全面積に対して上記第二の材料から形成される溝および/または穴の側面の面積の占める割合[以下、「割合2」という場合がある]が90〜100%である。割合1が上記範囲内であることにより、研磨層の研磨側表面を第一の材料から主として形成させることができ、第一の材料として平坦化性能に優れるものを採用することにより平坦化性能に優れた研磨パッドとすることができる。また、割合2が上記範囲内であることにより、溝および/または穴の側面を第二の材料から主として形成させることができ、第二の材料として磨耗しやすいものや柔らかいものを採用することによりスクラッチの発生が少ない研磨パッドとすることができる。
上記割合1は82〜98%であることが好ましく、84〜97%であることがより好ましい。また、上記割合2は93〜100%であることが好ましく、96〜100%であることがより好ましい。
The polishing layer of the polishing pad of the present invention is formed with grooves and / or holes that open on the polishing side surface. The ratio of the area of the polishing-side surface formed from the first material to the total area of the polishing-side surface (excluding the groove and the opening of the hole) [hereinafter sometimes referred to as “ratio 1”] ] Of 80 to 99%, and the ratio of the area of the side surface of the groove and / or hole formed from the second material to the total area of the side surface of the groove and / or hole [hereinafter referred to as “Ratio 2 Is sometimes 90% to 100%. When the ratio 1 is within the above range, the polishing side surface of the polishing layer can be mainly formed from the first material, and by adopting a material having excellent planarization performance as the first material, the planarization performance can be improved. An excellent polishing pad can be obtained. Further, when the ratio 2 is within the above range, the side surfaces of the grooves and / or holes can be mainly formed from the second material, and the second material can be easily worn or soft. A polishing pad with less generation of scratches can be obtained.
The ratio 1 is preferably 82 to 98%, and more preferably 84 to 97%. Further, the ratio 2 is preferably 93 to 100%, and more preferably 96 to 100%.

第二の材料から形成される溝および/または穴の側面から、当該側面に垂直な方向への当該第二の材料の厚みは、被研磨面へのスクラッチ発生の抑制の観点から0.1mm以上であることが好ましく、0.2mm以上であることがより好ましく、0.3mm以上であることがさらに好ましい。一方、被研磨面の平坦性の観点から、当該厚みは5mm以下であることが好ましく、3mm以下であることがより好ましく、1mm以下であることがさらに好ましい。   The thickness of the second material in the direction perpendicular to the side surface from the side surface of the groove and / or hole formed from the second material is 0.1 mm or more from the viewpoint of suppressing the occurrence of scratches on the polished surface. Is preferably 0.2 mm or more, and more preferably 0.3 mm or more. On the other hand, from the viewpoint of flatness of the surface to be polished, the thickness is preferably 5 mm or less, more preferably 3 mm or less, and even more preferably 1 mm or less.

本明細書においては、溝および/または穴における上記研磨側表面に対する角度(溝および/または穴の空間側の角度)が45°以上の面を側面とする。本発明の研磨パッドにおいて、上記側面の研磨側表面に対する角度(溝および/または穴の空間側の角度)は60〜120°の範囲内であることが好ましく、80〜100°の範囲内であることがより好ましく、実質的に90°であることがさらに好ましい。   In the present specification, a surface having an angle with respect to the polishing side surface in the groove and / or hole (angle on the space side of the groove and / or hole) of 45 ° or more is defined as a side surface. In the polishing pad of the present invention, the angle of the side surface to the polishing side surface (the angle on the space side of the groove and / or hole) is preferably in the range of 60 to 120 °, and in the range of 80 to 100 °. It is more preferable that the angle is substantially 90 °.

溝および/または穴の側面の研磨側表面に対する上記角度が実質的に90°である場合に、溝および/または穴が形成された部分(研磨層の研磨側表面における上記溝および/または穴の開口部分から研磨側表面に対して垂直方向に位置する領域)以外の部分において、少なくとも研磨層の研磨側表面から研磨層の厚み方向に溝および/または穴の底の最も浅い深さまで、研磨層の厚み方向(研磨側表面に対して垂直方向)に材料が均一であることが好ましい。研磨層の厚み方向に材料が均一であるとは、研磨層の厚み方向に材料の変化が実質的になく、第一の材料または第二の材料のどちらかのみが存在することを意味する。つまり、少なくとも上記範囲内においては、研磨層の研磨側表面が第一の材料から形成される部分では研磨層の厚み方向に第一の材料のみが存在し、また研磨層の研磨側表面が第二の材料から形成される部分では研磨層の厚み方向に第二の材料のみが存在する。通常、研磨パッドは溝および/または穴が磨耗により完全に消失する前に交換されることから、研磨層の研磨側表面から研磨層の厚み方向に溝および/または穴の最も浅い底と同じ深さまで、研磨層の厚み方向に材料が均一であることにより、研磨パッドを使用している間、常に安定した研磨特性を得ることができる。研磨層に後述する貫通孔の穴のみ存在する場合には、研磨層の研磨側表面から研磨層の裏面(研磨側表面に対して反対側の面)まで研磨層の厚み方向に材料が均一であるようにすることが好ましい。
なお、研磨層の厚み方向に材料が均一である場合、各材料は巨視的に均一であればよく、例えば当該材料が混合物であるなどして分散相が存在していてもよい。その場合には、分散相の分散径が100μm以下であることが好ましく、50μm以下であることがより好ましく、20μm以下であることがさらに好ましい。
When the angle of the side surface of the groove and / or hole with respect to the polishing side surface is substantially 90 °, the portion where the groove and / or hole is formed (the groove and / or hole on the polishing side surface of the polishing layer). In a portion other than the opening portion (region positioned in a direction perpendicular to the polishing side surface), the polishing layer is at least from the polishing side surface of the polishing layer to the shallowest depth of the bottom of the groove and / or hole in the thickness direction of the polishing layer. The material is preferably uniform in the thickness direction (perpendicular to the polishing side surface). That the material is uniform in the thickness direction of the polishing layer means that there is substantially no change in the material in the thickness direction of the polishing layer, and only either the first material or the second material exists. That is, at least within the above range, only the first material exists in the thickness direction of the polishing layer in the portion where the polishing side surface of the polishing layer is formed from the first material, and the polishing side surface of the polishing layer is the first surface. In the portion formed from the two materials, only the second material exists in the thickness direction of the polishing layer. Usually, since the polishing pad is replaced before the grooves and / or holes are completely lost due to wear, the same depth as the shallowest bottom of the grooves and / or holes from the polishing side surface of the polishing layer to the thickness direction of the polishing layer. By the way, since the material is uniform in the thickness direction of the polishing layer, stable polishing characteristics can always be obtained while the polishing pad is used. When only the through-holes described later are present in the polishing layer, the material is uniform in the thickness direction of the polishing layer from the polishing side surface of the polishing layer to the back surface of the polishing layer (surface opposite to the polishing side surface). It is preferable to have it.
In addition, when the material is uniform in the thickness direction of the polishing layer, each material may be macroscopically uniform. For example, the material may be a mixture, and a dispersed phase may exist. In that case, the dispersed diameter of the dispersed phase is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 20 μm or less.

研磨層の研磨側表面における上記溝の形状としては、特に限定されず、同心円状、格子状(X−Y格子状等)、螺旋状、クロスハッチ状、六角形状、三角形状またはこれらの組み合わせなどが挙げられる。
溝の深さとしては、研磨層の研磨側表面から研磨層の厚み方向に最も深い深さまでの距離として、0.2〜2mmの範囲内であることが好ましい。溝の深さが0.2mm未満の場合には研磨パッドの寿命が短くなる傾向があり、一方、溝の深さが2mmを超える場合には研磨パッドが柔軟になりすぎ、研磨特性が低下する傾向がある。研磨パッドの寿命と研磨特性の観点から、溝の深さは0.4〜1.8mmの範囲内であることがより好ましい。
The shape of the groove on the polishing side surface of the polishing layer is not particularly limited, and is concentric, lattice (XY lattice, etc.), spiral, cross hatch, hexagon, triangle, or a combination thereof. Is mentioned.
The depth of the groove is preferably in the range of 0.2 to 2 mm as the distance from the polishing side surface of the polishing layer to the deepest depth in the thickness direction of the polishing layer. When the groove depth is less than 0.2 mm, the life of the polishing pad tends to be shortened. On the other hand, when the groove depth exceeds 2 mm, the polishing pad becomes too flexible and the polishing characteristics deteriorate. Tend. From the viewpoint of the life and polishing characteristics of the polishing pad, the depth of the groove is more preferably within a range of 0.4 to 1.8 mm.

溝の幅としては、研磨層の研磨側表面において、0.2〜3mmの範囲内であることが好ましい。溝の幅が0.2mm未満の場合には研磨時に使用される研磨スラリーが効率的に***されず研磨速度が低下する傾向があり、一方、溝の幅が3mmを超える場合には研磨パッドが柔軟になりすぎ研磨特性が低下する傾向がある。研磨速度と研磨特性の観点から、溝の幅は0.5〜2.5mmの範囲内であることがより好ましい。   The width of the groove is preferably in the range of 0.2 to 3 mm on the polishing side surface of the polishing layer. When the groove width is less than 0.2 mm, the polishing slurry used at the time of polishing is not efficiently excreted and the polishing speed tends to decrease. On the other hand, when the groove width exceeds 3 mm, the polishing pad It tends to be too flexible and the polishing properties tend to deteriorate. From the viewpoint of polishing speed and polishing characteristics, the groove width is more preferably in the range of 0.5 to 2.5 mm.

溝のピッチとしては、研磨層の研磨側表面において、1〜30mmの範囲内であることが好ましい。溝のピッチが1mm未満の場合には研磨パッドが柔軟になりすぎ研磨特性が低下する傾向があり、一方、溝のピッチが30mmを超える場合には研磨スラリーが効率的に***されず研磨速度が低下する傾向がある。研磨速度と研磨特性の観点から、溝のピッチは2〜20mmの範囲内であることがより好ましい。   The pitch of the grooves is preferably in the range of 1 to 30 mm on the polishing side surface of the polishing layer. If the pitch of the grooves is less than 1 mm, the polishing pad tends to be too flexible and the polishing characteristics tend to deteriorate. On the other hand, if the pitch of the grooves exceeds 30 mm, the polishing slurry is not efficiently excreted and the polishing rate is increased. There is a tendency to decrease. From the viewpoint of polishing speed and polishing characteristics, the groove pitch is more preferably in the range of 2 to 20 mm.

溝の進行方向に対して垂直な面(研磨層の研磨側表面に対して垂直な面)で切断した場合における溝の断面形状としては、研磨中における研磨パッドの磨耗に由来する溝および/または穴の開口部の形状変化を抑制することができることから、長方形(正方形を含む)、平行四辺形等の、向かい合う側面が互いに平行である断面形状が好ましく、長方形であることがより好ましい。溝の底面は研磨層の研磨側表面に対して平行な平面であっても、断面形状が凸状あるいは凹状の曲線となるものであってもよい。   As the cross-sectional shape of the groove when cut along a plane perpendicular to the groove traveling direction (a plane perpendicular to the polishing side surface of the polishing layer), the groove derived from abrasion of the polishing pad during polishing and / or Since a change in the shape of the opening of the hole can be suppressed, a cross-sectional shape such as a rectangle (including a square), a parallelogram, or the like whose side surfaces facing each other are parallel to each other is preferable, and a rectangle is more preferable. The bottom surface of the groove may be a plane parallel to the polishing side surface of the polishing layer, or the cross-sectional shape may be a convex or concave curve.

また上記穴の形状についても、特に限定されず、円状、だ円状、多角形状、星型またはこれらの組み合わせ等が挙げられる。上記穴は、研磨層を貫通する貫通孔であっても、貫通していない孔であってもよい。穴のサイズとしては、研磨層の研磨側表面における最大径として、0.5〜5mmの範囲内であることが好ましい。   The shape of the hole is not particularly limited, and examples thereof include a circle, an ellipse, a polygon, a star, or a combination thereof. The hole may be a through hole that penetrates the polishing layer or a hole that does not penetrate. The size of the hole is preferably in the range of 0.5 to 5 mm as the maximum diameter on the polishing side surface of the polishing layer.

本発明の研磨パッドの研磨層の代表的な断面の概略図を図1に例示する。図1(1a)〜(1d)として示される断面では、溝および/または穴3が研磨層の研磨側表面4に開口しており、溝および/または穴の側面は第二の材料2から形成されている。そして、溝および/または穴の近傍以外の部分は第一の材料1から形成されている。図1(1a)〜(1d)では、研磨側表面から研磨層の厚み方向に溝および/または穴の底の最も浅い深さまで(図1中、5として示した深さに相当)、研磨層の厚み方向に第一の材料1または第二の材料2のどちらかのみが存在し、材料が均一である。図1(1a)および(1d)では、溝の底面が第二の材料2から形成されており、図1(1d)では、第二の材料2が研磨層の裏面まで達している。図1(1c)では、溝および/または穴3は貫通孔の穴であり、研磨層の研磨側表面から研磨層の裏面まで研磨層の厚み方向に第一の材料1または第二の材料2のどちらかのみが存在し、材料が均一である。   A typical cross-sectional schematic view of the polishing layer of the polishing pad of the present invention is illustrated in FIG. In the cross section shown as FIGS. 1 (1 a) to (1 d), the grooves and / or holes 3 are open in the polishing side surface 4 of the polishing layer, and the side surfaces of the grooves and / or holes are formed from the second material 2. Has been. The portions other than the vicinity of the grooves and / or holes are formed from the first material 1. 1 (1a) to (1d), from the polishing side surface to the shallowest depth of the bottom of the groove and / or hole in the thickness direction of the polishing layer (corresponding to the depth shown as 5 in FIG. 1), the polishing layer Only the first material 1 or the second material 2 exists in the thickness direction, and the material is uniform. 1 (1a) and (1d), the bottom surface of the groove is formed from the second material 2, and in FIG. 1 (1d), the second material 2 reaches the back surface of the polishing layer. In FIG. 1 (1c), the groove and / or hole 3 is a hole of a through hole, and the first material 1 or the second material 2 in the thickness direction of the polishing layer from the polishing side surface of the polishing layer to the back surface of the polishing layer. Only one of them is present and the material is uniform.

研磨層を製造する方法としては特に限定されないが、例えば下記の方法A〜Dのいずれかにより製造することができる。   Although it does not specifically limit as a method of manufacturing an abrasive layer, For example, it can manufacture by either of the following methods AD.

[方法A]
第一の材料からなるシートに溝および/または穴を形成させた後、第二の材料からなるフィルムを第一の材料からなるシートの表面に貼り合わせ、金型等を用いた加圧・加熱などにより溝および/または穴の形状に第二の材料からなるフィルムを変形させながら圧着させる。次いで、研磨層の研磨側表面において第一の材料が再び露出するまで、研削やスライス等の方法により第二の材料を取り除く(図2参照)。
[Method A]
After forming grooves and / or holes in the sheet made of the first material, the film made of the second material is bonded to the surface of the sheet made of the first material, and pressurization / heating using a mold or the like For example, the film made of the second material is pressed into the shape of the groove and / or hole while being deformed. Next, the second material is removed by a method such as grinding or slicing until the first material is exposed again on the polishing side surface of the polishing layer (see FIG. 2).

[方法B]
第一の材料からなるシートに溝および/または穴を形成させた後、第二の材料(樹脂等)を溶解または分散させた液を表面に塗工後、乾燥させる。次いで、研磨層の研磨側表面において第一の材料が再び露出するまで、研削やスライス等の方法により第二の材料を取り除く(図3参照)。
[Method B]
After forming grooves and / or holes in the sheet made of the first material, a solution in which the second material (resin or the like) is dissolved or dispersed is applied to the surface and then dried. Next, the second material is removed by a method such as grinding or slicing until the first material is exposed again on the polishing side surface of the polishing layer (see FIG. 3).

[方法C]
第一の材料からなるシートに溝および/または穴を形成させた後、第二の材料を構成する樹脂の原料となるモノマーを表面に塗工後、紫外線照射や加熱等により重合させ第二の材料を形成させる。次いで、研磨層の研磨側表面において第一の材料が再び露出するまで、研削やスライス等の方法により第二の材料を取り除く(図4参照)。
[Method C]
After forming grooves and / or holes in the sheet made of the first material, after coating the surface with a monomer that is a raw material of the resin constituting the second material, the second material is polymerized by ultraviolet irradiation, heating, or the like. Form the material. Next, the second material is removed by a method such as grinding or slicing until the first material is exposed again on the polishing side surface of the polishing layer (see FIG. 4).

[方法D]
第一の材料からなるシートに溝および/または穴を形成させた後、可塑剤を表面に塗工して吸収させ、第一の材料と可塑剤から構成される第二の材料を形成させる。次いで、研磨層の研磨側表面において第一の材料が再び露出するまで、研削やスライス等の方法により第二の材料を取り除く(図5参照)。
[Method D]
After forming grooves and / or holes in the sheet made of the first material, a plasticizer is applied to the surface and absorbed, thereby forming a second material composed of the first material and the plasticizer. Next, the second material is removed by a method such as grinding or slicing until the first material is exposed again on the polishing side surface of the polishing layer (see FIG. 5).

上記の方法A〜Cにおいては、第一の材料と第二の材料との接着性を高めるために、第一の材料および/または第二の材料に対して、コロナ放電、プラズマ照射、電子線照射、紫外線照射、フレーム処理、オゾン処理、プライマー処理、サンドブラスティング、ドライアイスブラスト等の前処理を予め施してもよい。   In the above methods A to C, in order to improve the adhesion between the first material and the second material, corona discharge, plasma irradiation, electron beam is applied to the first material and / or the second material. Pretreatments such as irradiation, ultraviolet irradiation, flame treatment, ozone treatment, primer treatment, sand blasting, and dry ice blasting may be performed in advance.

上記の方法A〜Dのなかでも、製造や品質管理の容易性等の観点から、方法A、BおよびCが好ましく、方法AおよびBがより好ましく、方法Aがさらに好ましい。   Among the above methods A to D, the methods A, B and C are preferable, the methods A and B are more preferable, and the method A is more preferable from the viewpoint of ease of production and quality control.

研磨層の厚みは0.3〜3mmの範囲内であることが好ましい。研磨層の厚みが0.3mm未満の場合には研磨層の研磨側表面と反対側の面にある後述のクッション層や研磨装置の定盤の硬さの影響が強く出るうえ、研磨層の磨耗に伴いその影響の度合いが変化し研磨特性が安定しない傾向がある。一方、研磨層の厚みが3mmを超える場合には研磨パッドの曲げ剛性が大きくなりすぎ、研磨パッドを研磨装置に取り付けたり研磨装置から取り外したりする作業が困難となる傾向がある。研磨特性と作業性の観点から研磨層の厚みは0.5〜2.5mmの範囲内であることがより好ましい。   The thickness of the polishing layer is preferably in the range of 0.3 to 3 mm. When the thickness of the polishing layer is less than 0.3 mm, the influence of the hardness of the cushion layer described later on the surface opposite to the polishing side surface of the polishing layer and the surface plate of the polishing apparatus becomes strong, and the abrasion of the polishing layer As a result, the degree of influence tends to change and the polishing characteristics tend to be unstable. On the other hand, when the thickness of the polishing layer exceeds 3 mm, the bending rigidity of the polishing pad becomes too large, and it becomes difficult to attach and remove the polishing pad from the polishing apparatus. From the viewpoint of polishing characteristics and workability, the thickness of the polishing layer is more preferably in the range of 0.5 to 2.5 mm.

本発明の研磨パッドは、上記の研磨層のみからなる単層構造であってもよいが、ウェハ面内での研磨均一性を向上させるために、研磨層の研磨側表面と反対側の面にさらにクッション層を積層させてもよい。クッション層の積層は、公知の粘着剤あるいは接着剤を用いて行うことができる。クッション層のA硬度は30〜90であることが好ましい。   The polishing pad of the present invention may have a single layer structure consisting only of the above polishing layer. However, in order to improve polishing uniformity within the wafer surface, the polishing pad has a surface opposite to the polishing side surface. Further, a cushion layer may be laminated. Lamination of the cushion layer can be performed using a known pressure-sensitive adhesive or adhesive. The A hardness of the cushion layer is preferably 30 to 90.

本発明の研磨パッドは、公知の研磨スラリーと共に、化学機械的研磨に使用することができる。研磨スラリーは、例えば、水やオイル等の液状媒体;シリカ、アルミナ、酸化セリウム、酸化ジルコニウム、炭化ケイ素等の研磨剤;塩基、酸、界面活性剤などの成分を含有している。また、化学機械的研磨を行うに際し、必要に応じ、研磨スラリーとともに、潤滑油、冷却剤等を併用してもよい。   The polishing pad of the present invention can be used for chemical mechanical polishing together with a known polishing slurry. The polishing slurry contains components such as a liquid medium such as water and oil; an abrasive such as silica, alumina, cerium oxide, zirconium oxide, and silicon carbide; a base, an acid, and a surfactant. Moreover, when performing chemical mechanical polishing, you may use lubricating oil, a coolant, etc. together with polishing slurry as needed.

化学機械的研磨は、公知の化学機械的研磨用装置を使用し、研磨スラリーを介して被研磨面と研磨パッドを、加圧下、一定速度で、一定時間接触させることによって実施することができる。研磨の対象となる物品には特に制限はないが、例えば、水晶、シリコン、ガラス、光学基板、電子回路基板、多層配線基板、ハードディスク等が挙げられる。   The chemical mechanical polishing can be performed by using a known chemical mechanical polishing apparatus and bringing the surface to be polished and the polishing pad into contact with each other at a constant speed under a pressure for a certain period of time through a polishing slurry. The article to be polished is not particularly limited, and examples thereof include quartz, silicon, glass, an optical substrate, an electronic circuit substrate, a multilayer wiring substrate, and a hard disk.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、材料のD硬度、材料の磨耗速度および研磨パッドの研磨性能の評価は次の方法で実施した。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. The D hardness of the material, the wear rate of the material, and the polishing performance of the polishing pad were evaluated by the following methods.

[材料のD硬度]
JIS K 7311に準じて、測定温度25℃の条件で測定した。
[D hardness of material]
According to JIS K7311, it measured on the conditions of measurement temperature 25 degreeC.

[材料の磨耗速度]
単独の材料のみからなる後述の研磨パッド(研磨パッド1〜4)を株式会社エム・エー・ティ製研磨装置「MAT−BC15」に設置し、株式会社アライドマテリアル製ダイヤモンドドレッサー(#100−被覆率80%、直径19cm、質量1kg)を用い、蒸留水を150mL/分の速度で流しながらドレッサー回転数140rpm、プラテン回転数100rpmにて3時間研磨パッド表面を研削(コンディショニング)した。研磨パッドの溝の深さの変化より研磨パッドの磨耗速度を求め、これを材料の磨耗速度とした。
[Material wear rate]
A polishing pad (polishing pads 1 to 4), which will be described later made of only a single material, is installed in a polishing apparatus “MAT-BC15” manufactured by MT Corporation, and a diamond dresser manufactured by Allied Material Co., Ltd. (# 100-coverage) The surface of the polishing pad was ground (conditioned) for 3 hours at a dresser rotational speed of 140 rpm and a platen rotational speed of 100 rpm while flowing distilled water at a rate of 150 mL / min. The wear rate of the polishing pad was determined from the change in the depth of the groove of the polishing pad, and this was used as the wear rate of the material.

[研磨性能]
研磨パッド(研磨パッド1〜3、5および6)を株式会社エム・エー・ティ製研磨装置「MAT−BC15」に設置し、株式会社アライドマテリアル製ダイヤモンドドレッサー(#100−被覆率80%、直径19cm、質量1kg)を用い、蒸留水を150mL/分の速度で流しながらドレッサー回転数140rpm、プラテン回転数100rpmにて1時間研磨パッド表面を研削した(以下「コンディショニング」と称する)。
次に、プラテン回転数100rpm、ヘッド回転数99rpm、研磨圧力45kPaの条件において、キャボット社製研磨スラリー「SS25」を蒸留水で2倍に希釈した液を120mL/分の速度で供給しつつ膜厚1000nmの、パターンを有しない熱酸化膜を表面に有する直径4インチのシリコンウェハを60秒間研磨し、次いで、再びコンディショニングを前記条件で30秒間行った。その後、ウェハを交換して再度研磨およびコンディショニングを繰り返し、各研磨パッドにつき計9枚のウェハを研磨した。
次いで、再びコンディショニングを前記条件で30秒間行った後、凸部幅30μm、凹部幅70μm、ピッチ100μmのラインアンドスペース形状のパターンを有し、凸部の酸化膜厚が2000nm、凸部と凹部の初期段差が850nmである、化学気相蒸着法による酸化膜(PETEOS;Plasma Enhanced Tetraethyl Orthosilicate)を表面に有する直径4インチのシリコンウェハを前記研磨条件と同条件で90秒間研磨した。
9枚研磨したパターンを有しない酸化膜ウェハのうち最後に研磨したウェハ(9枚目に研磨したウェハ)について、株式会社キーエンス製カラーレーザー顕微鏡「VK−9500」を使用し、倍率500倍で観察してスクラッチを確認した。
また、10枚目に研磨したパターンを有する酸化膜ウェハの中心部の研磨後の段差、凸部および凹部の酸化膜厚みを測定し、研磨前後における凸部および凹部のそれぞれの酸化膜の膜厚の変化量から各々の研磨速度を求めた。凸部の研磨速度が大きく、凹部の研磨速度が小さいほど、ウェハ表面の平坦化が短時間で、また、より少ない研磨量で研磨が達成されるため好ましい。
[Polishing performance]
A polishing pad (polishing pads 1 to 3, 5 and 6) was installed in a polishing apparatus “MAT-BC15” manufactured by MT Corporation, and a diamond dresser manufactured by Allied Material Co., Ltd. (# 100—coverage 80%, diameter) The surface of the polishing pad was ground for 1 hour at a dresser rotational speed of 140 rpm and a platen rotational speed of 100 rpm while flowing distilled water at a rate of 150 mL / min (hereinafter referred to as “conditioning”).
Next, under the conditions of a platen rotation speed of 100 rpm, a head rotation speed of 99 rpm, and a polishing pressure of 45 kPa, a film obtained by diluting Cabot polishing slurry “SS25” twice with distilled water is supplied at a rate of 120 mL / min. A silicon wafer having a diameter of 4 inches and having a thermal oxide film having no pattern on the surface of 1000 nm was polished for 60 seconds, and then conditioned again for 30 seconds under the above conditions. Thereafter, the wafer was replaced, and polishing and conditioning were repeated again, and a total of nine wafers were polished for each polishing pad.
Next, after conditioning was performed again for 30 seconds under the above conditions, the pattern had a line-and-space pattern with a protrusion width of 30 μm, a recess width of 70 μm, and a pitch of 100 μm. A silicon wafer having a diameter of 4 inches having an initial step of 850 nm and having an oxide film by chemical vapor deposition (PETEOS) on the surface was polished for 90 seconds under the same conditions as described above.
Observation of the last polished wafer (the 9th polished wafer) among the oxide film wafers without 9 polished patterns using Keyence Color Laser Microscope “VK-9500” at 500 × magnification And confirmed the scratch.
In addition, the oxide film thickness of the oxide film wafer having the pattern polished on the tenth wafer is measured for the step difference after polishing, the oxide film thickness of the protrusions and the recesses, and the film thickness of each oxide film of the protrusions and recesses before and after polishing Each polishing rate was determined from the amount of change in. The higher the polishing rate of the convex portion and the lower the polishing rate of the concave portion, the better because the planarization of the wafer surface can be accomplished in a short time and with a smaller polishing amount.

[製造例1]
熱可塑性ポリウレタン(PU−1)の製造
数平均分子量650のポリ(テトラメチレングリコール)[略号:PTMG650]、1,4−ブタンジオール[略号:BD]および4,4’−ジフェニルメタンジイソシアネート[略号:MDI]を、PTMG650:BD:MDIの質量比が34.5:13.7:51.8(窒素原子の含有率:5.8質量%)となるような割合で用い、かつ、それらの合計供給量が300g/分になるようにして、定量ポンプにより同軸で回転する2軸押出機(30mmφ、L/D=36、シリンダー温度:75〜260℃)に連続的に供給して、連続溶融重合を行って熱可塑性ポリウレタンを製造した。生成した熱可塑性ポリウレタンの溶融物をストランド状に水中に連続的に押出した後、ペレタイザーでペレット状に細断し、得られたペレットを70℃で20時間除湿乾燥することにより、熱可塑性ポリウレタン(以下、これをPU−1という)を製造した。PU−1のD硬度は75であった。
[Production Example 1]
Production of thermoplastic polyurethane (PU-1) Poly (tetramethylene glycol) [abbreviation: PTMG650], 1,4-butanediol [abbreviation: BD] and 4,4′-diphenylmethane diisocyanate [abbreviation: MDI] having an average molecular weight of 650 ] In a ratio such that the mass ratio of PTMG650: BD: MDI is 34.5: 13.7: 51.8 (content of nitrogen atom: 5.8 mass%), and the total supply thereof Continuous melt polymerization by continuously feeding to a twin screw extruder (30 mmφ, L / D = 36, cylinder temperature: 75-260 ° C.) rotating coaxially by a metering pump so that the amount is 300 g / min. To produce a thermoplastic polyurethane. The resulting thermoplastic polyurethane melt was continuously extruded into water in a strand form, then chopped into pellets with a pelletizer, and the resulting pellets were dehumidified and dried at 70 ° C. for 20 hours to obtain a thermoplastic polyurethane ( Hereinafter, this was referred to as PU-1. The D hardness of PU-1 was 75.

[製造例2]
熱可塑性ポリウレタン(PU−2)の製造
原料として数平均分子量1000のポリ(3−メチル−1,5−ペンタメチレンアジペート)[略号:PMPA1000]、BDおよびMDIを、PMPA1000:BD:MDIの質量比が32.7:15.5:51.8(窒素原子の含有率:5.8質量%)となるような割合で用いた以外は参考例1と同様にして熱可塑性ポリウレタン(以下、これをPU−2という)を製造した。PU−2のD硬度は80であった。
[Production Example 2]
Poly (3-methyl-1,5-pentamethylene adipate) [abbreviation: PMPA1000], BD and MDI having a number average molecular weight of 1000 as a raw material for producing thermoplastic polyurethane (PU-2) , and a mass ratio of PMPA1000: BD: MDI Is 32.7: 15.5: 51.8 (nitrogen atom content: 5.8 mass%). PU-2) was produced. The D hardness of PU-2 was 80.

[製造例3]
熱可塑性ポリウレタン(PU−3)の製造
原料として数平均分子量1000のポリ(テトラメチレングリコール)[略号:PTMG1000]、BDおよびMDIを、PTMG1000:BD:MDIの質量比が40.8:12.8:46.4(窒素原子の含有率:5.2質量%)となるような割合で用いた以外は参考例1と同様にして熱可塑性ポリウレタン(以下、これをPU−3という)を製造した。PU−3のD硬度は55であった。
[Production Example 3]
Poly (tetramethylene glycol) [abbreviation: PTMG1000], BD and MDI having a number average molecular weight of 1000 as a raw material for producing thermoplastic polyurethane (PU-3) , and a mass ratio of PTMG1000: BD: MDI is 40.8: 12.8. : A thermoplastic polyurethane (hereinafter referred to as PU-3) was produced in the same manner as in Reference Example 1 except that it was used at a ratio of 46.4 (nitrogen atom content: 5.2% by mass). . The D hardness of PU-3 was 55.

[製造例4]
熱可塑性ポリウレタン(PU−4)の製造
原料として数平均分子量1500のポリ(3−メチル−1,5−ペンタメチレンアジペート)[略号:PMPA1500]、BDおよびMDIを、PMPA1500:BD:MDIの質量比が39.4:14.2:46.4(窒素原子の含有率:5.2質量%)となるような割合で用いた以外は参考例1と同様にして熱可塑性ポリウレタン(以下、これをPU−4という)を製造した。PU−4のD硬度は60であった。
[Production Example 4]
Poly (3-methyl-1,5-pentamethylene adipate) [abbreviation: PMPA1500], BD and MDI having a number average molecular weight of 1500 as a raw material for producing thermoplastic polyurethane (PU-4) , and a mass ratio of PMPA1500: BD: MDI In the same manner as in Reference Example 1 except that it was used at a ratio such that 39.4: 14.2: 46.4 (nitrogen atom content: 5.2 mass%). PU-4). The D hardness of PU-4 was 60.

[製造例5]
製造例1で得られたPU−1を単軸押出成形機に仕込み、T−ダイより押出し、厚み2.0mmのシートを成形した。次いで、得られたシートの表面を研削して厚み1.5mmの均一なシートとした後、幅2.0mm、深さ0.6mmの溝(断面形状:長方形)を15.0mm間隔で格子状に形成し、直径38cmの円形状の研磨パッド1を作製した。研磨パッド1の磨耗速度は6.2μm/hrであった。
[Production Example 5]
The PU-1 obtained in Production Example 1 was charged into a single screw extruder and extruded from a T-die to form a 2.0 mm thick sheet. Next, after grinding the surface of the obtained sheet to obtain a uniform sheet having a thickness of 1.5 mm, grooves (cross-sectional shape: rectangle) having a width of 2.0 mm and a depth of 0.6 mm are formed in a lattice pattern at intervals of 15.0 mm. A circular polishing pad 1 having a diameter of 38 cm was prepared. The wear rate of the polishing pad 1 was 6.2 μm / hr.

[製造例6]
製造例2で得られたPU−2を単軸押出成形機に仕込み、T−ダイより押出し、厚み2.0mmのシートを成形した。次いで、得られたシートの表面を研削して厚み1.5mmの均一なシートとした後、幅2.0mm、深さ0.6mmの溝(断面形状:長方形)を15.0mm間隔で格子状に形成し、直径38cmの円形状の研磨パッド2を作製した。研磨パッド2の磨耗速度は5.7μm/hrであった。
[Production Example 6]
PU-2 obtained in Production Example 2 was charged into a single screw extruder and extruded from a T-die to form a 2.0 mm thick sheet. Next, after grinding the surface of the obtained sheet to obtain a uniform sheet having a thickness of 1.5 mm, grooves (cross-sectional shape: rectangle) having a width of 2.0 mm and a depth of 0.6 mm are formed in a lattice pattern at intervals of 15.0 mm. A circular polishing pad 2 having a diameter of 38 cm was prepared. The wear rate of the polishing pad 2 was 5.7 μm / hr.

[製造例7]
製造例3で得られたPU−3を単軸押出成形機に仕込み、T−ダイより押出し、厚み2.0mmのシートを成形した。次いで、得られたシートの表面を研削して厚み1.5mmの均一なシートとした後、幅2.0mm、深さ0.6mmの溝(断面形状:長方形)を15.0mm間隔で格子状に形成し、直径38cmの円形状の研磨パッド3を作製した。研磨パッド3の磨耗速度は10.1μm/hrであった。
[Production Example 7]
The PU-3 obtained in Production Example 3 was charged into a single screw extruder and extruded from a T-die to form a 2.0 mm thick sheet. Next, after grinding the surface of the obtained sheet to obtain a uniform sheet having a thickness of 1.5 mm, grooves (cross-sectional shape: rectangle) having a width of 2.0 mm and a depth of 0.6 mm are formed in a lattice pattern at intervals of 15.0 mm. A circular polishing pad 3 having a diameter of 38 cm was produced. The wear rate of the polishing pad 3 was 10.1 μm / hr.

[製造例8]
製造例4で得られたPU−4を単軸押出成形機に仕込み、T−ダイより押出し、厚み2.0mmのシートを成形した。次いで、得られたシートの表面を研削して厚み1.5mmの均一なシートとした後、幅2.0mm、深さ0.6mmの溝(断面形状:長方形)を15.0mm間隔で格子状に形成し、直径38cmの円形状の研磨パッド4を作製した。研磨パッド4の磨耗速度は8.3μm/hrであった。
[Production Example 8]
The PU-4 obtained in Production Example 4 was charged into a single screw extruder and extruded from a T-die to form a 2.0 mm thick sheet. Next, after grinding the surface of the obtained sheet to obtain a uniform sheet having a thickness of 1.5 mm, grooves (cross-sectional shape: rectangle) having a width of 2.0 mm and a depth of 0.6 mm are formed in a lattice pattern at intervals of 15.0 mm. A circular polishing pad 4 having a diameter of 38 cm was produced. The abrasion rate of the polishing pad 4 was 8.3 μm / hr.

[実施例1]
製造例3で得られたPU−3を単軸押出成形機に仕込み、T−ダイより押出し、厚み0.3mmのフィルムを成形した。得られたフィルムを、溝の幅を2.5mm、溝の深さを1.0mmとしたこと以外は製造例5で作製した研磨パッド1と同様にして作製した研磨パッド(材料の磨耗速度の評価をしていないもの)の上に重ね、研磨パッドの溝形状と凹凸が逆になっている金型(幅2.0mm、高さ1.0mmの凸部を15.0mm間隔で格子状に有するもの)を押し当て、180℃,35kPaの条件で1分間加熱加圧し、PU−1からなる研磨パッドの上にPU−3からなるフィルムを積層した。
次いで、研磨パッドの上部を約0.5mm研削し、溝部分はPU−3に覆われ、それ以外の部分ではPU−1が表面に露出した研磨パッド5を作製した。研磨パッド5の研磨側表面の全面積に対してPU−1から形成された研磨側表面の面積の占める割合は92%であり、溝の側面の全面積に対してPU−3から形成された溝の側面の面積の占める割合は100%であった。研磨パッド5は、厚みが1.3mmであり、幅2.0mm、深さ0.55mmの溝(断面形状:長方形)を15.0mm間隔で格子状に有していた。また溝の側面から、当該側面に垂直な方向へのPU−3の厚みは0.25mmであった。
研磨パッド5を用いて、上記した方法により研磨性能を評価した結果、表1に示すように、平坦化性能に優れ、スクラッチも確認されなかった。
[Example 1]
PU-3 obtained in Production Example 3 was charged into a single screw extruder and extruded from a T-die to form a film having a thickness of 0.3 mm. The obtained film was prepared in the same manner as the polishing pad 1 produced in Production Example 5 except that the groove width was 2.5 mm and the groove depth was 1.0 mm. A mold (with 2.0 mm width and 1.0 mm height projections) in a grid pattern at intervals of 15.0 mm. And a film made of PU-3 was laminated on the polishing pad made of PU-1 under pressure of 180 ° C. and 35 kPa for 1 minute.
Next, the upper part of the polishing pad was ground by about 0.5 mm, and the groove part was covered with PU-3, and in the other part, the polishing pad 5 in which PU-1 was exposed on the surface was produced. The ratio of the area of the polishing side surface formed from PU-1 to the total area of the polishing side surface of the polishing pad 5 is 92%, and the area of the side surface of the groove is formed from PU-3. The ratio of the area of the side surface of the groove was 100%. The polishing pad 5 had a thickness of 1.3 mm, and had grooves (cross-sectional shape: rectangular) having a width of 2.0 mm and a depth of 0.55 mm in a grid pattern at intervals of 15.0 mm. The thickness of PU-3 in the direction perpendicular to the side surface from the side surface of the groove was 0.25 mm.
As a result of evaluating the polishing performance by the above-described method using the polishing pad 5, as shown in Table 1, it was excellent in flattening performance and no scratch was confirmed.

[実施例2]
製造例4で得られたPU−4をトルエンと2−プロパノールの混合溶媒(質量比で、トルエン:2−プロパノール=7:3)中に固形分濃度が12%となるような割合で溶解させた。得られた溶液を、溝の幅を2.5mm、深さを1.0mmとしたこと以外は製造例6で作製した研磨パッド2と同様にして作製した研磨パッド(材料の磨耗速度の評価をしていないもの)の上に塗工した後80℃で24hr乾燥する作業を4回繰り返し、PU−2からなる研磨パッドの上にPU−4からなる厚み約0.2mmの層を形成させた。
次いで、研磨パッドの上部を約0.4mm研削し、溝部分はPU−4に覆われ、それ以外の部分ではPU−2が表面に露出した研磨パッド6を作製した。研磨パッド6の研磨側表面の全面積に対してPU−2から形成された研磨側表面の面積の占める割合は94%であり、溝の側面の全面積に対してPU−4から形成された溝の側面の面積の占める割合は100%であった。研磨パッド6は、厚みが1.3mmであり、幅2.1mm、深さ0.6mmの溝(断面形状:長方形)を15.0mm間隔で格子状に有していた。また溝の側面から、当該側面に垂直な方向へのPU−4の厚みは0.2mmであった。
研磨パッド6を用いて、上記した方法により研磨性能を評価した結果、表1に示すように、平坦化性能に優れ、スクラッチも僅かであった。
[Example 2]
The PU-4 obtained in Production Example 4 was dissolved in a mixed solvent of toluene and 2-propanol (mass ratio: toluene: 2-propanol = 7: 3) at a ratio such that the solid concentration was 12%. It was. The obtained solution was a polishing pad produced in the same manner as the polishing pad 2 produced in Production Example 6 except that the groove width was 2.5 mm and the depth was 1.0 mm. (4) and then drying at 80 ° C. for 24 hours was repeated four times to form a PU-4 layer having a thickness of about 0.2 mm on the PU-2 polishing pad. .
Next, the upper part of the polishing pad was ground by about 0.4 mm, and the polishing pad 6 in which the groove part was covered with PU-4 and PU-2 was exposed on the other part was produced. The ratio of the area of the polishing side surface formed from PU-2 to the total area of the polishing side surface of the polishing pad 6 is 94%, and it is formed from PU-4 to the entire area of the side surface of the groove. The ratio of the area of the side surface of the groove was 100%. The polishing pad 6 had a thickness of 1.3 mm, and had grooves (cross-sectional shape: rectangular shape) having a width of 2.1 mm and a depth of 0.6 mm in a grid pattern at intervals of 15.0 mm. The thickness of PU-4 in the direction perpendicular to the side surface from the side surface of the groove was 0.2 mm.
As a result of evaluating the polishing performance by the above-described method using the polishing pad 6, as shown in Table 1, it was excellent in flattening performance and had few scratches.

[比較例1]
製造例5と同様にして得られた研磨パッド1(材料の磨耗速度の評価をしていないもの)を用いて、上記した方法により研磨性能を評価した結果、表1に示すように、平坦化性能は良好であったが、スクラッチが多く確認された。
[Comparative Example 1]
As a result of evaluating the polishing performance by the above-described method using the polishing pad 1 obtained in the same manner as in Production Example 5 (without evaluating the wear rate of the material), as shown in Table 1, the surface was flattened. Although the performance was good, many scratches were confirmed.

[比較例2]
製造例6と同様にして得られた研磨パッド2(材料の磨耗速度の評価をしていないもの)を用いて、上記した方法により研磨性能を評価した結果、表1に示すように、平坦化性能は良好であったが、スクラッチが多く確認された。
[Comparative Example 2]
As a result of evaluating the polishing performance by the above-described method using the polishing pad 2 obtained in the same manner as in Production Example 6 (without evaluating the wear rate of the material), as shown in Table 1, the surface was flattened. Although the performance was good, many scratches were confirmed.

[比較例3]
製造例7と同様にして得られた研磨パッド3(材料の磨耗速度の評価をしていないもの)を用いて、上記した方法により研磨性能を評価した結果、表1に示すように、スクラッチは確認されなかったものの、平坦化性能は劣っていた。
[Comparative Example 3]
As a result of evaluating the polishing performance by the above-described method using the polishing pad 3 obtained in the same manner as in Production Example 7 (without evaluating the wear rate of the material), as shown in Table 1, Although not confirmed, the planarization performance was inferior.

Figure 0005143528
Figure 0005143528

本発明によれば、半導体ウェハ等を高精度に、かつ高効率に研磨するために有用な研磨パッドおよびその製造方法が提供される。   According to the present invention, a polishing pad useful for polishing a semiconductor wafer or the like with high accuracy and high efficiency and a method for manufacturing the same are provided.

本発明の研磨パッドの研磨層の代表的な断面の概略図の例示である。It is an illustration of the schematic of the typical cross section of the polishing layer of the polishing pad of this invention. 本発明の研磨パッドの研磨層の製造方法(方法A)の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method (method A) of the polishing layer of the polishing pad of this invention. 本発明の研磨パッドの研磨層の製造方法(方法B)の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method (method B) of the polishing layer of the polishing pad of this invention. 本発明の研磨パッドの研磨層の製造方法(方法C)の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method (method C) of the polishing layer of the polishing pad of this invention. 本発明の研磨パッドの研磨層の製造方法(方法D)の一例を示す概略図である。It is the schematic which shows an example of the manufacturing method (method D) of the polishing layer of the polishing pad of this invention.

符号の説明Explanation of symbols

1 第一の材料
2 第二の材料
3 溝および/または穴
4 研磨層の研磨側表面
DESCRIPTION OF SYMBOLS 1 First material 2 Second material 3 Groove and / or hole 4 Polishing side surface of polishing layer

Claims (5)

第一の材料と当該第一の材料とは異なる第二の材料とから構成される研磨層を有する研磨パッドであって、当該研磨層には研磨側表面に開口する溝および/または穴が形成され、研磨側表面の全面積に対して第一の材料から形成される研磨側表面の面積の占める割合が80〜99%であり、上記溝および/または穴の側面の全面積に対して第二の材料から形成される溝および/または穴の側面の面積の占める割合が90〜100%であり、第二の材料が第一の材料よりも磨耗しやすい研磨パッドA polishing pad having a polishing layer composed of a first material and a second material different from the first material, wherein the polishing layer has a groove and / or a hole opened on the polishing side surface. The ratio of the area of the polishing side surface formed from the first material to the total area of the polishing side surface is 80 to 99%, and the ratio to the total area of the side surfaces of the grooves and / or holes is Ri grooves and / or percentage from 90% to 100% der occupied area of the side surface of the hole is formed from a second material, the second material is a polishing pad tends to wear than the first material. 少なくとも上記研磨側表面から研磨層の厚み方向に溝および/または穴の底の最も浅い深さまで、研磨層の厚み方向に材料が均一である請求項1に記載の研磨パッド。  The polishing pad according to claim 1, wherein the material is uniform in the thickness direction of the polishing layer from at least the surface on the polishing side to the shallowest depth of the bottom of the groove and / or hole in the thickness direction of the polishing layer. 第二の材料が第一の材料よりもD硬度で3以上低い請求項1または2に記載の研磨パッド。  The polishing pad according to claim 1 or 2, wherein the second material has a D hardness of 3 or more lower than that of the first material. 第一の材料および第二の材料がともに無発泡構造である請求項1〜のいずれかに記載の研磨パッド。 The polishing pad according to any one of claims 1 to 3 the first and second materials are both non-foamed structure. さらにクッション層を有する請求項1〜のいずれかに記載の研磨パッド。 Further polishing pad according to any one of claims 1 to 4 having a cushion layer.
JP2007277297A 2007-10-25 2007-10-25 Polishing pad Active JP5143528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277297A JP5143528B2 (en) 2007-10-25 2007-10-25 Polishing pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277297A JP5143528B2 (en) 2007-10-25 2007-10-25 Polishing pad

Publications (2)

Publication Number Publication Date
JP2009101487A JP2009101487A (en) 2009-05-14
JP5143528B2 true JP5143528B2 (en) 2013-02-13

Family

ID=40703797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277297A Active JP5143528B2 (en) 2007-10-25 2007-10-25 Polishing pad

Country Status (1)

Country Link
JP (1) JP5143528B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071461B2 (en) 2014-04-03 2018-09-11 3M Innovative Properties Company Polishing pads and systems and methods of making and using the same
US11446788B2 (en) 2014-10-17 2022-09-20 Applied Materials, Inc. Precursor formulations for polishing pads produced by an additive manufacturing process
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11964359B2 (en) 2015-10-30 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US11980992B2 (en) 2022-09-16 2024-05-14 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5414377B2 (en) * 2009-06-19 2014-02-12 株式会社ディスコ Polishing pad
US9873180B2 (en) * 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US10399201B2 (en) 2014-10-17 2019-09-03 Applied Materials, Inc. Advanced polishing pads having compositional gradients by use of an additive manufacturing process
WO2016061585A1 (en) * 2014-10-17 2016-04-21 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10821573B2 (en) 2014-10-17 2020-11-03 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US10875145B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
KR102398130B1 (en) 2014-10-31 2022-05-13 주식회사 쿠라레 Nonporous molded article for polishing layer, polishing pad, and polishing method
US10328548B2 (en) 2014-11-28 2019-06-25 Kuraray Co., Ltd. Polishing-layer molded body, and polishing pad
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US10596763B2 (en) 2017-04-21 2020-03-24 Applied Materials, Inc. Additive manufacturing with array of energy sources
US11072050B2 (en) 2017-08-04 2021-07-27 Applied Materials, Inc. Polishing pad with window and manufacturing methods thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533923A (en) * 1995-04-10 1996-07-09 Applied Materials, Inc. Chemical-mechanical polishing pad providing polishing unformity
US5795218A (en) * 1996-09-30 1998-08-18 Micron Technology, Inc. Polishing pad with elongated microcolumns
JP2000000755A (en) * 1998-06-16 2000-01-07 Sony Corp Polishing pad and polishing method
JP4601804B2 (en) * 2000-11-20 2010-12-22 ソニー株式会社 Polishing wheel and method for manufacturing polishing wheel
US6848977B1 (en) * 2003-08-29 2005-02-01 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad for electrochemical mechanical polishing

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10071461B2 (en) 2014-04-03 2018-09-11 3M Innovative Properties Company Polishing pads and systems and methods of making and using the same
US10252396B2 (en) 2014-04-03 2019-04-09 3M Innovative Properties Company Polishing pads and systems and methods of making and using the same
US11446788B2 (en) 2014-10-17 2022-09-20 Applied Materials, Inc. Precursor formulations for polishing pads produced by an additive manufacturing process
US11964359B2 (en) 2015-10-30 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11813712B2 (en) 2019-12-20 2023-11-14 Applied Materials, Inc. Polishing pads having selectively arranged porosity
US11806829B2 (en) 2020-06-19 2023-11-07 Applied Materials, Inc. Advanced polishing pads and related polishing pad manufacturing methods
US11980992B2 (en) 2022-09-16 2024-05-14 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods

Also Published As

Publication number Publication date
JP2009101487A (en) 2009-05-14

Similar Documents

Publication Publication Date Title
JP5143528B2 (en) Polishing pad
JP6290004B2 (en) Soft and conditionable chemical mechanical window polishing pad
KR100770852B1 (en) Grooved polishing pads for chemical mechanical planarization
KR102170859B1 (en) Polishing pad and polishing method using it
JP6367611B2 (en) Multilayer chemical mechanical polishing pad stack with soft and conditioned polishing layer
JP5706178B2 (en) Polishing pad
JP6518680B2 (en) Nonporous molded article for polishing layer, polishing pad and polishing method
KR101084808B1 (en) Metal film polishing pad and method for polishing metal film using the same
JP6541683B2 (en) Molded article for polishing layer and polishing pad
JP6334266B2 (en) Soft and conditionable chemical mechanical polishing pad stack
WO2014080729A1 (en) Polishing pad
JP5997973B2 (en) Metal film polishing pad and polishing method using the same
JP2008235508A (en) Polishing pad, polishing method using the same, and method of manufacturing semiconductor device
WO2010032715A1 (en) Polishing pad
WO2020255744A1 (en) Polishing pad, method for manufacturing polishing pad, and polishing method
WO2023013576A1 (en) Polishing pad
JP7253475B2 (en) Polishing pad and method for compacting polishing pad
WO2023149434A1 (en) Polishing layer, polishing pad, method for manufacturing polishing pad, and polishing method
JP7014526B2 (en) Manufacturing method of polishing layer for polishing pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150